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Abstract settings for stabilization of nonlinear parabolic system with a Riccati-based strategy.

Application to Navier-Stokes and Boussinesq equations with Neumann or Dirichlet control

Mehdi Badra
1

Abstract. Let −A : D(A) → H be the generator of an analytic semigroup and B : U → [D(A∗)]′ a relatively bounded
control operator such that (A − σ, B) is stabilizable for some σ > 0. In this paper, we consider the stabilization of the
nonlinear system y′ + Ay + G(y, u) = Bu by means of a feedback or a dynamical control u. The control is obtained from
the solution to a Riccati equation which is related to a low-gain optimal quadratic minimization problem. We provide
a general abstract framework to define exponentially stable solutions which is based on the contruction of Lyapunov
functions. We apply such a theory to stabilize, around an unstable stationary solution, the 2D or 3D Navier-Stokes
equations with a Neumann control and the 2D or 3D Boussinesq equations with a Dirichlet control.

Key words. Feedback stabilization, Riccati equation, Lyapunov function, Navier-Stokes, Boussinesq, Neumann con-
trol, Dirichlet control.

AMS subject classifications. 93D15, 93C20, 76D05, 76D55, 35Q30, 35Q35.

1. Introduction. The present paper is dedicated to the question of feedback stabilization of a nonlinear controlled
system of the form:

y′ + Ay + G(y, u) = Bu. (1.1)

In the above setting, A is a closed linear operator defined on a Hilbert space H, B is a linear and possibly unbounded
input operator defined on a Hilbert space of control U and such that (A−σ, B) is stabilizable for some σ > 0, and G is a

nonlinear mapping obeying G′(0) = 0. It is also assumed that bA def
= λ0 +A has bounded imaginary powers for sufficiently

large λ0 > 0 and that −A generates an analytic semigroup on H. Here, t 7→ y(t) is the state trajectory to be stabilized
by means of a control function t 7→ u(t) that we want to express in a feedback form.

More precisely, we want to find a linear mapping F : H → U such that the solution to (1.1) with u(t) = Fy(t) obeys:

‖y(t)‖ ≤ Ce−σt‖y(0)‖,
for some norm ‖ · ‖ which has to be determined. Let us recall that a well-known strategy to construct F consists in
solving an auxiliary optimal quadratic cost problem stated over an infinite time horizon on the linear system:

y′ + Ay − σy = Bu.

The stabilizability of (A− σ, B) guarantees the well-posedness of such problem and the resulting optimal control is then
given by u = −B∗Πy where Π is a linear mapping which is the unique solution to an algebraic Riccati equation, see
[24, Chap. 2]. In the present paper we consider a feedback control related to a Riccati operator Π obtained from the
minimization of a cost function of the form:Z ∞

0

‖Ry(t)‖2
Zdt +

Z ∞

0

‖u(t)‖2
Udt,

where R is a bounded, and boundedly invertible, linear mapping from H into a Hilbert space Z. We also make the

additional assumption that R is bounded from D( bA1/2) into D( bA∗1/2) to guarantee that Π maps H onto D(A∗). It then
ensures that Π is the solution to a Riccati equation that can be written in the following strong formulation:

A∗Π + ΠA + ΠBB∗Π = R∗R + 2σΠ.

Thus, if we set F (y)
def
= G(y,−B∗Πy) then the nonlinear system (1.1) for such a feedback control has the following form:

y′ + Ay + B(B∗Π)y + F (y) = 0. (1.2)

Then our goal is to define stable solutions to the above equation and to provide a related Lyapunov function. Of course,
some assumptions on F should be made, and these will be induced by the regularity theory of the non homogeneous
closed-loop linear system:

y′ + AΠy = f where AΠ
def
= A + B(B∗Π). (1.3)

In the first part of the present paper (subsection 2.2), we prove that the natural spaces in which a trajectory t 7→ y(t)

of (1.3) is continuous are Hr
Π

def
= D(Ar

Π) and H−r
Π

def
= [D(A∗r

Π )]′, r ≥ 0, and that the regularity theory for the linear closed-

loop system can be enounced as follows: if y(0) ∈ Hr
Π and f ∈ L2(H

r−1/2
Π ) then t 7→ y(t) ∈ Hr

Π is continuous. Then

starting from this observation, we also prove that if F is a continuous mapping from H
r−1/2
Π into H

r+1/2
Π which satisfies

some related Lipschitz and boundedness assumptions, then for a prescribed initial datum y(0) ∈ Hr
Π in a neighborhood
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of the origin there exists a unique continuous trajectory t 7→ y(t) ∈ Hr
Π of system (1.2), see Theorem 4 below. Moreover,

we prove that the norm of Hr
Π defined by

‖ξ‖2
r

def
= 〈A∗r+1/2

Π Π A
r+1/2
Π ξ|ξ〉[Hr

Π
]′,Hr

Π

is a Lyapunov function of (1.2): for ‖y(0)‖r in a neighborhood of the origin the mapping t 7→ ‖y(t)‖r is decreasing and

‖y(t)‖r ≤ ‖y(0)‖re
−σt.

A direct consequence of the above result is that, when dealing with a particular controlled PDE system which can be
rewritten in the form (1.2), the crucial point is to characterize the corresponding spaces of initial data Hr

Π for which the
stabilization result is valid. Indeed, since the closed-loop dynamic is contained in the definition of D(AΠ), the elements of

Hr
Π

def
= D(Ar

Π) may verify a closed-loop compatibility condition for large r and the stabilization result may be irrelevant
for such r. For instance, when considering the heat equation or Stokes like systems with Dirichlet feedback boundary
control, a trace compatibility condition appears in the definition of Hr

Π when r ≥ 1/4, see [4]. Then in such situation
the relevant space of initial data is Hr

Π for r < 1/4. It means that to obtain a satisfactory stabilization result for the
nonlinear system (1.2), the nonlinearity should not be ”too strong”: to define solutions which are continuous in Hr

Π for

r < 1/4 the nonlinear mapping F should be continuous from H
r−1/2
Π into H

r+1/2
Π for r < 1/4. That is the reason why

Dirichlet boundary feedback control obtained from a low gain Riccati operator fails to stabilize the 3D Navier-Stokes
equations, and it explains why other strategies such that time dependent feedback control [28] or dynamical control [3]
have been investigated. That is why the end of the first part of the paper is dedicated to a general framework to contruct
stabilizing dynamical control obtained from an extended Riccati equation (see Subsection 2.3).

Let us underline that the results which are presented in the first part of the present paper deeply rely on the general
theory of optimal quadratic cost problem of [24], and that, according to the terminology of [8], we are in the particular
situation of ”low-gain” feedback law (R is a bounded operator). Notice also that the last quoted work gives an abstract
setting for general nonlinear closed-loop system (not necessarily obtained from a Riccati equation) but without providing
a Lyapunov function.

In the second part of the paper (sections 3 and 4), we give two exemples of applications of the above abstract
framework. We obtain new stabilization results for the Navier-Stokes equations with Neumann feedback control, and
for the Boussinesq equations with Dirichlet feedback or dynamical control, see Theorem 8, Theorem 9 and Theorem 10
below. Unlike the Dirichlet case treated in [4], while considering the Navier-Stokes equation with Neumann control we
obtain a 3D feedback stabilization result with no specific restriction on the initial datum. Indeed, since the spaces Hr

Π are
closed subspaces of (H2r(Ω))3 the 3D Navier-Stokes nonlinearity imposes to define a continuous trajectory t 7→ y(t) ∈ Hr

Π

of (1.2) for and index r greater than 1/4, which is precisely the value above which a compatibility trace condition appears
in the definition of Hr

Π in the case of Dirichlet control, see [4, Cor. 6 and Rem. 13]. In the case of Neumann control a
compatibility trace condition also appears in the definition of Hr

Π but only for r ≥ 3/4, and it allows to define solutions
of the 3D Navier-Stokes equations for an initial datum in (H2r(Ω))3 for r ∈ [1/4, 3/4). Notice that analogous comments
apply for Boussinesq equations, and that the last section dealing with Dirichlet control extends the results of [4, 3] to
the Boussinesq equations. More generally, the abstract framework of the present paper can be applied to many other
parabolic system with a nonlinear term of bilinear type, or even of multilinear type, such as power function for instance,
see Remark 2 below.

We shall underline that the use of a Riccati based-strategy to stabilize the Navier-Stokes equations around a stationary
state has been the object of numerous works. For internal control, let us mention [6, 12] or the recent book [7] for finite
or infinite dimensional feedback control obtained from an infinite dimensional Riccati equation. For Dirichlet control, let
us mention [27, 28, 4, 9, 8, 10] and [7, Chap 3, par. 4] for finite or infinite dimensional feedback control obtained from an
infinite dimensional Riccati equation, [3] for dynamical control or [30, 5] for finite dimensional feedback control obtained
from a finite dimensional Riccati equation. About the stabilizability questions related to [9, 8, 10] for tangential control,
see [32]. Notice that [5] proposes a general abstract theory as well as a Lyapunov approach adapted to the case of finite
dimensional control. Finally, we shall also mention the recent work [11] where an optimal quadratic cost problem is used
to stabilize around an instationary state by means of an internal control.

The rest of the paper is organized as follows. Section 2 is dedicated to the construction of a feedback or a dynamical
control in a general abstract setting: notations and general definitions are stated in subsection 2.1, subsection 2.2 is
devoted to feedback control and subsection 2.3 is devoted to dynamical control. Thus, we apply the abstract framework
in the case of Navier-Stokes equations with Neumann control in section 3, and in the case of Boussinesq equations with
Dirichlet control in section 4.

2. Abstract Closed-loop Linear and Nonlinear System.

2.1. Technical background and notations. For a Hilbert space X, we denote by ‖ · ‖X its norm, we denote by [X]′

its dual space and by 〈·|·〉[X]′,X the [X]′-X duality pairing. For two Hilbert spaces X1 and X2, we use the notation
X1 →֒ X2 to say that X1 is continuously embedded into X2, for α ∈ (0, 1) we denote by [X1, X2]α the interpolation
space obtained from X1 and X2 with the complex interpolation method [31, p.55], we denote by L(X1, X2) the space of
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all bounded linear operators from X1 into X2 and we use the shorter expression L(X)
def
= L(X, X). If L is a closed linear

mapping in X, we denote its domain by D(L), and we denote by L∗ the adjoint of L.
Let us consider now a closed linear mapping L on X with bounded imaginary powers, and such that −L is the

infinitesimal generator of an analytic semigroup on X of negative type [13, Part. II, Chap 1, Par. 2.2. p.91]. Notice that
in such case the powers Lr for r ∈ C are well-defined, see [31, Par. 1.15 p. 98] or [13, Part. II, Chap 1, Par. 5. p.167]
for the particular case r ∈ R. Thus, we can set Xr = D(Lr) when r ≥ 0 and Xr = [D(L∗−r)]′ when r < 0, we recall that
Xr can be equipped with:

‖ · ‖Xr
def
= ‖Lr · ‖X , (2.1)

and that we have the following interpolation equalities:

[Xr1 , Xr2 ]1−α = X(1−α)r1+αr2 , ∀α ∈ (0, 1), r2 < r1. (2.2)

Notice that when r < 0, since we have Lr = (L−r)−1 the norm definition (2.1) can be justified by invoking [33, Chap.
2, Prop. 2.10.2, p. 60]. Moreover, equality (2.2) is obtained as follows. Since L−r2 is an isomorphism from X onto Xr2

as well as from Xr1−r2 onto Xr2 [31, Thm.1.15.2, p. 101] we first obtain that [Xr1 , Xr2 ]1−α = L−r2 [Xr1−r2 , X]1−α.

Thus, since the fact that L has bounded imaginary powers implies [Xr1−r2 , X]1−α = X(1−α)(r1−r2) [31, Thm.1.15.3, p.

103], then (2.2) follows from L−r2X(1−α)(r1−r2) = X(1−α)r1+αr2 because L−r2 is an isomorphism from X(1−α)(r1−r2)

onto X(1−α)r1+αr2 . Next, for (r, r1, r2) ∈ R
3, r2 < r1 and 0 < T ≤ ∞, we denote by L2(0, T ; Xr) the usual vector-valued

Lebesgue space equipped with the norm ‖z‖2
L2(0,T ;Xr)

def
=
R T

0
‖Lrz(t)‖2

Xdt, and we define the space

W (0, T ; Xr1 , Xr2)
def
=


z ∈ L2(0, T ; Xr1) | dz

dt
∈ L2(0, T ; Xr2)

ff
,

equipped with the norm

‖z‖2
W (0,T ;Xr1 ,Xr2 )

def
=

Z T

0

 
‖Lr1z(t)‖2

X +

‚‚‚‚L
r2

„
dz

dt
(t)

«‚‚‚‚
2

X

!
dt.

When T = +∞ we use the shorter expressions L2(Xr)
def
= L2(0, +∞; Xr) and W (Xr1 , Xr2)

def
= W (0, +∞; Xr1 , Xr2).

Moreover, we denote by L∞(Xr) (resp. Cb(X
r)) the space of bounded (resp. continuous and bounded) functions of

t ∈ [0,∞[ with values in Xr, we denote by L2
loc(X

r) the space of functions belonging to L2(0, T ; X) for all T > 0, and
we define L∞

loc(X
r), Wloc(X

r1 , Xr2) analogously. Since it is well-known that W (Xr1 , Xr2) →֒ Cb([X
r1 , Xr2 ]1/2) [31, 1.8

(2), p.44 and Rem.3 p.143] then from (2.2) with α = 1/2 we have:

W (Xr1 , Xr2) →֒ Cb(X
(r1+r2)/2).

Finally, since −L is the infinitesimal generator of an analytic semigroup on X of negative type, the mapping z 7→
(z′ + Lz, z(0)) is an isomorphism from W (D(L), X) onto L2(X)×X1/2 [13, Part. II, Chap 1, Thm. 3.1. p.143 and Par.
6 eq. (6.4)], and from a change of variable y = L−rz one easily obtain that the mapping

y 7→ (y′ + Ly, y(0)) : W (Xr+1/2, Xr−1/2) → L2(Xr−1/2) × Xr is an isomorphism for all r ∈ R. (2.3)

In the sequel, the letter C denotes a generic positive constant that may change from line to line.

2.2. Linear and nonlinear systems with feedback control. Let us now consider a closed linear operator A in a

Hilbert space H, with domain D(A), and such that bA def
= A + λ0 fits the above framework for some λ0 > 0: − bA is the

infinitesimal generator of a stable analytic semigroup (e−
bAt)t≥0 on H and bA has bounded imaginary powers. Notice that

A∗ and bA∗ def
= A∗ + λ0 also obey those properties. Then by applying the theoretical background of subsection 2.1 for

X := H, L := bA and L := bA∗ respectively, we have that the spaces

Hr def
= D( bAr) if r ≥ 0 and Hr def

= [D( bA∗−r)]′ if r < 0,

and

Hr
∗

def
= D( bA∗r) if r ≥ 0 and Hr

∗
def
= [D( bA−r)]′ if r < 0,

obey the following interpolation equalities:

[Hr1 , Hr2 ]1−α = H(1−α)r1+αr2 and [Hr1
∗ , Hr2

∗ ]1−α = H(1−α)r1+αr2
∗ , ∀α ∈ (0, 1), r2 < r1.

Moreover, since (e−
bAt)t≥0 is analytic on H, then obviously, (e−At)t≥0 is also analytic on H, but not necessarily stable:

the solutions to the dynamical system
y′ + Ay = 0 (2.4)

do not necessarily verify
lim

t→∞
y(t) = 0. (2.5)

In order to obtain the above limit one choose to act through a control function t 7→ u(t) in the following way:

y′ + Ay = Bu, (2.6)
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where B is a linear input operator defined on a Hilbert space of control U and with values in H−1. In the whole following
we assume that B is stictly relatively bounded with respect to A:

bA−γB ∈ L(U, H) for 0 ≤ γ < 1, (2.7)

and that there is σ > 0 such that

(A − σ, B) is stabilizable. (2.8)

Thus, in order to construct a control in a feedback form u(t) = Fy(t), for F ∈ L(H, U), ensuring the exponential decrease:

‖y(t)‖H ≤ Ce−σt‖y(0)‖H t ≥ 0,

let us introduce an auxiliary optimal control problem. For an initial datum ξ ∈ H and a control function u ∈ L2(U) we
consider the solution y ∈ Wloc(H, H−1) to the following linear controlled system:

y′ + (A − σ)y = Bu ∈ H−1, y(0) = ξ ∈ H. (2.9)

We are then interested in the following minimization problem:

inf


J (y, u) | (y, u) ∈ Wloc(H, H−1) × L2(U) satisfies (2.9)

ff
, (2.10)

where the cost functional J is defined by

J (y, u)
def
=

Z ∞

0

‖Ry(t)‖2
Zdt +

Z ∞

0

‖u(t)‖2
Udt. (2.11)

In the above setting, Z is a Hilbert space and R ∈ L(H, Z) is boundedly invertible (i.e. R−1 ∈ L(Z, H)). Notice that
the stabilizability of (A − σ, B) guarantees the well-posedness of (2.10). Indeed, it implies the following condition:

8
<
:

for all ξ ∈ H there exists u ∈ L2(U)
such that the corresponding solution
y ∈ Wloc(H, H−1) to (2.9) belongs to L2(H)

(2.12)

which guarantees that for all ξ ∈ H there is a pair (y, u) for which J (y, u) is finite, i.e. the set that we are looking the
infimum (2.10) is not empty. According to [24, Chap. 2 Thm. 2.2.1] the solution of (2.10) is characterized as follows.

Theorem 1. If (2.12) is satisfied then for all ξ ∈ H problem (2.10) admits a unique solution (yξ, uξ). The optimal
control obeys uξ = −B∗Φξ, where (yξ, Φξ) ∈ W (H, H−1) × W (H1

∗ , H) is the unique solution to:

`
Sξ

´
8
<
:

y′ + (A − σ)y = −BB∗Φ, y(0) = ξ ∈ H,
−Φ′ + (A∗ − σ)Φ = R∗Ry, Φ(∞) = 0,

Φ(t) = Π y(t) ∀t ≥ 0,

where Π is the unique nonnegative and self-adjoint operator of L(H), which belongs to L(H, H1−ǫ
∗ ) for all ǫ > 0, solution

to the following Riccati equation:

(Πξ|Aζ)H + (Aξ|Πζ)H + (B∗Πξ|B∗Πζ)U = (Rξ|Rζ)H + 2σ(Πξ|ζ)H ∀(ξ, ζ) ∈ H1 × H1. (2.13)

Moreover, we also have (yξ, uξ) ∈ Cb(H) × Cb(U) and the estimate

‖yξ(t)‖H + ‖uξ(t)‖U ≤ C‖ξ‖H , ∀t ≥ 0, (2.14)

and Π satisfies:

(Πξ|ξ) = J (yξ, uξ) = inf


J (y, u) | (y, u) satisfies (2.9)

ff
. (2.15)

Remark 1. Since (2.7) implies B ∈ L(U, H−γ) and then B∗ ∈ L(Hγ
∗ , U), a first immediate consequence of the above

theorem with ǫ = 1 − γ is that B∗Π is bounded from H into U (which hopefully guarantees the well-posedness of the
nonlinear term in (2.13)). Then it ensures that the linear map A + B(B∗Π) is well defined as a bounded linear operator
from H into H−1:

〈Aξ + B(B∗Π)ξ|ζ〉H−1,H1
∗

= (ξ|A∗ζ + (B∗Π)∗B∗ζ)H ∀(ξ, ζ) ∈ H × H1
∗ .

Next, if we make the following additional assumption:

R∗R ∈ L(H1/2, H1/2
∗ ), (2.16)

then arguing as in [9, Appendix B, Prop. B.4.1] we prove that Theorem 1 is also true with ǫ = 0.

Theorem 2. If (2.16) is satisfied then the solution Π of (2.13) belongs to L(H, H1
∗) and satisfies:

(A∗Πξ|ζ)H + (ξ|A∗Πζ)H + (B∗Πξ|B∗Πζ)U = (Rξ|Rζ)H + 2σ(Πξ|ζ)H ∀(ξ, ζ) ∈ H × H. (2.17)
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Proof. Since (2.17) is an immediate consequence of (2.13) with Π ∈ L(H, H1
∗), let us focus on the proof of this last

statement. First, for ξ ∈ H we set buξ = e−(λ0+σ)(·)uξ, byξ = e−(λ0+σ)(·)yξ and bΦξ = e−(λ0+σ)(·)Φξ and we verify that

bΦξ(t) =

Z ∞

t

e−
bA∗(τ−t)(2(λ0 + σ)Π + R∗R)byξ(τ)dτ and byξ(t) = e−

bAtξ +

Z t

0

e−
bA(t−τ)Bbuξ(τ)dτ.

Thus, by substituing the above expression of byξ in the first above equality we obtain:

Πξ = bΦξ(0) = I1ξ + I2ξ + I3ξ,

where

I1ξ =

Z ∞

0

e−
bA∗tR∗Re−

bAtξdt, I2ξ = 2(λ0 + σ)

Z ∞

0

e−
bA∗tΠe−

bAtξdt

and

I3ξ =

Z ∞

0

e−
bA∗t(2(λ0 + σ)Π + R∗R)L(buξ)(t)dt where L(buξ)(t) =

Z t

0

e−
bA(t−τ)Bbuξ(τ)dτ.

To prove Π ∈ L(H, H1
∗), let us show ‖ bA∗Iiξ‖H ≤ C‖ξ‖H , i = 1, 2, 3. First, an obvious calculation give

( bA∗I1ξ|ζ)H =

Z ∞

0

([ bA∗1/2R∗R bA−1/2] bA1/2e
bAtξ| bA1/2e

bAtζ)Hdt

and since from (2.16) we have [ bA∗1/2R∗R bA−1/2] ∈ L(H), the continuity of ξ ∈ H 7→ bA1/2e
bAtξ ∈ L2(H) (obtained

from (2.3) with r = 0) combined with Cauchy-Schwarz inequality yields ‖ bA∗I1ξ‖H ≤ C‖ξ‖H . Moreover, estimate

‖ bA∗I2ξ‖H ≤ C‖ξ‖H follows analogously from [ bA∗1/2Π bA−1/2] ∈ L(H) which is a consequence of Π ∈ L(H, H
1/2
∗ ). Next,

for 0 < η < min(1− γ, 1/2), R∗R ∈ L(H1/2, H
1/2
∗ )∩L(H) with and interpolation argument gives R∗R ∈ L(Hη, Hη

∗ ) and

since we also have Π ∈ L(H, Hη
∗ ) we deduce that bA∗η(2(λ0 + σ)Π + R∗R) bA−η ∈ L(H). Thus, by writing

bA∗η(2(λ0 + σ)Π + R∗R)L(buξ)(t) = [ bA∗η(2(λ0 + σ)Π + R∗R) bA−η]

Z t

0

bAγ+ηe−
bA(t−τ) bA−γBbuξ(τ)dτ,

then the Young inequality combined with the analyticity estimate ‖Aγ+ηe−
bA(t−τ)‖H ≤ C(t − τ)−γ−η, bA−γB ∈ L(U, H)

and the bound of ‖uξ(t)‖U given in (2.14), ensures that ξ ∈ H 7→ bAη(2(λ0 + σ)Π + R∗R)L(buξ) ∈ Cb(H) is continuous.
Finally, by writing

bA∗I3ξ =

Z ∞

0

bA∗1−ηe−
bA∗t bA∗η(2(λ0 + σ)Π + R∗R)L(buξ)(t)dt

Young inequality with the analyticity estimate ‖ bA∗1−ηe−
bA∗t‖H ≤ Ctη−1 yields ‖ bA∗I3ξ‖H ≤ C‖ξ‖H .

Notice that if (2.16) is true then the above theorem ensures that A∗Π ∈ L(H). Moreover, the self-adjointness of Π
combined with Π ∈ L(H, H1

∗) and a duality argument guarantee Π ∈ L(H−1, H). Then ΠA and ΠB also belong to L(H)
and (2.17) can be rewritten as an equation stated in L(H).

Corollary 1. If (2.16) is satisfied then the solution Π of (2.13) belongs to L(H, H1
∗) ∩ L(H−1, H) and satisfies:

A∗Π + ΠA + ΠBB∗Π = R∗R + 2σΠ. (2.18)

In the sequel we will assume that (2.16) is satisfied. Next, according to Remark 1 we are allowed to introduce the linear
operator (D(AΠ), AΠ)) as follows:

D(AΠ) =
˘
ξ ∈ H | Aξ + B(B∗Π)ξ ∈ H

¯
, (2.19)

AΠξ = Aξ + B(B∗Π)ξ. (2.20)

Let us state the first main theorem of this subsection.

Theorem 3. The following results hold.

1. The adjoint of (D(AΠ), AΠ) is given by

D(A∗
Π) = H1

∗ and A∗
Π = A∗ + (B∗Π)∗B∗, (2.21)

and the following equality holds:

D(A∗r
Π ) = Hr

∗ ∀r ∈ [0, 1]. (2.22)

2. (D(AΠ),−AΠ) is the infinitesimal generator of an analytic and exponentially stable semigroup on H with an

exponential rate of decrease greater than σ > 0: there exists ǫ > 0 such that ‖e−AΠt‖L(H) ≤ Ce−(σ+ǫ)t.

3. For ξ ∈ H the optimal trajectory yξ satisfies yξ(t) = e(σ−AΠ)tξ for all t ≥ 0.



6

4. The spaces defined by

Hr
Π

def
= D(Ar

Π) if r ≥ 0 and Hr
Π

def
= [D( bA∗−r

Π )]′ if r < 0,

obey the interpolation equalities:

[Hr1

Π , Hr2

Π ]1−α = H
(1−α)r1+αr2

Π ∀α ∈ (0, 1), r2 < r1. (2.23)

Moreover, we have:

Hr
Π = Hr ∀r ∈ [−1, 0]. (2.24)

5. The operator AΠ satisfies ΠAΠ ∈ L(H) and A∗
ΠΠ ∈ L(H) and

A∗
ΠΠ + ΠAΠ = 2σΠ + R∗R + ΠBB∗Π. (2.25)

Proof. First, (2.21) follows by noticing that AΠ is exactly defined as the adjoint of (D(A∗), A∗ + (B∗Π)∗B∗). Thus,
since (B∗Π)∗B∗ belongs to L(Hγ

∗ , H), a perturbation argument ensures that (D(A∗), A∗ +(B∗Π)∗B∗) is the infinitesimal
generator of an analytic semigroup on H [26, Chap.3, Cor.2.4], and the analyticity of AΠ follows from a duality argument.

As a consequence, for ξ ∈ H, the trajectory t 7→ y(t) = e(σ−AΠ)tξ is the (unique) weak solution of

y′ = (σ − AΠ)y ∈ [D(A∗
Π)]′ = H−1, y(0) = ξ. (2.26)

Moreover, since B(B∗Π) is well-defined as a bounded operator from H into H−1 and since yξ ∈ W (H, H−1), we deduce
that B(B∗Π)yξ ∈ L2(H−1) and we are allowed to replace Φξ by Πyξ in the first equality of (Sξ): yξ is solution of

y′
ξ = σyξ − Ayξ − B(B∗Π)yξ ∈ H−1, yξ(0) = ξ,

which exactly means that yξ is solution of (2.26), and then that yξ(t) = e(σ−AΠ)tξ for all t ≥ 0. As a consequence, since by

Theorem 1 we know that e(σ−AΠ)(·)ξ belongs to L2(H) for all ξ ∈ H, the exponential stability of (e(σ−AΠ)t)t≥0 follows from

a well-known result due to Datko (see [26, Chap. 4, Th. 4.1] or [13, Th. 2.2 p. 93]) and then ‖e−AΠt‖L(H) ≤ Ce−(σ+ǫ)t

for some ǫ > 0. Moreover, since −AΠ generates an exponentially stable semigroup on H, it is boundedly invertible [13,
Part. II, Chap. 1, Prop. 2.9, p. 120], the fractional powers of AΠ are well-defined [13, Part II, Chap. 1, Par. 5 p. 167]

and the fact that bA has bounded imaginary powers combined with a perturbation argument [16, Prop. 2.7] ensures that
AΠ (and A∗

Π also) has bounded imaginary powers which ensures (2.23). Next, since (2.24) is a direct consequence of

(2.22), it remains to shows (2.22). Since from (2.21) we have D(A∗
Π) = D( bA∗), the fact that A∗

Π has bounded imaginary
powers implies D(Ar∗

Π ) = [H1
∗ , H]r = Hr

∗ . Finally, from D(A∗
Π) = H1

∗ and Π ∈ L(H, H1
∗) ∩ L(H−1, H) we deduce that

ΠAΠ ∈ L(H) and A∗
ΠΠ ∈ L(H), and (2.25) follows from (2.18).

As a first consequence of Theorem 3 we have that (2.3) with L := AΠ is true, and then the following regularity result
for system (1.3) holds.

Corollary 2. Let r ∈ R, y0 ∈ Hr
Π and f ∈ L2(H

r−1/2
Π ). The solution to

y′ + AΠy = f and y(0) = y0, (2.27)

belongs to W (H
r+1/2
Π , H

r−1/2
Π ) and obeys the following estimate:

‖y‖
W (H

r+1/2

Π
,H

r−1/2

Π
)
≤ C(‖f‖

L2(H
r−1/2

Π
)
+ ‖y0‖Hr

Π
). (2.28)

The second consequence of Theorems 2 and 3 is the possibility to construct a Lyapunov function for system (1.3) with
f = 0. It is the subject of the following corollaries.

Corollary 3. The linear operator Π obeys:

A
∗r+1/2
Π Π A

r+1/2
Π ∈ L(Hr

Π, [Hr
Π]′) ∀r ∈ [0, 1]. (2.29)

Proof. Since from Corollary 1 we know that Π ∈ L(H, H1
∗) ∩ L(H−1, H), the fact that Π ∈ L(H−1/2, H

1/2
∗ ) follows

by interpolation. Moreover, from (2.24) and (2.22) with r = 1/2 we deduce that A
∗1/2
Π ∈ L(H

1/2
∗ , H) and A

1/2
Π ∈

L(H, H−1/2). Then we have A
∗1/2
Π Π A

1/2
Π ∈ L(H) from which (8) is a direct consequence.

Corollary 4. For r ∈ R, the linear operator

Πr
def
= A

∗r+1/2
Π Π A

r+1/2
Π

is bounded from Hr
Π onto [Hr

Π]′ and the bilinear form

(ξ|ζ)r
def
= 〈Πrξ|ζ〉[Hr

Π
]′,Hr

Π
for all (ξ, ζ) ∈ Hr

Π × Hr
Π, (2.30)

defines an inner-product in Hr
Π: the norm defined by

‖ξ‖r
def
=
p

(ξ|ξ)r (2.31)

is equivalent to ‖ · ‖Hr
Π
.



7

Proof. The first part of the corollary is a direct consequence of (8), and since ‖ξ‖r = ‖Ar
Πξ‖0 for all ξ ∈ Hr

Π, it suffices to

prove the second part of the corollary for r = 0. First, ‖ · ‖0 ≤ C‖ · ‖H is a straightforward consequence of Π(0) ∈ L(H).

To prove the converse inequality, let us first pick ξ ∈ H and set ζ = A
1/2
Π ξ ∈ H−1/2 and from (2.3) we have

‖ξ‖H = ‖A−1/2
Π ζ‖H ≤ C‖e−AΠtζ‖

W (H,H−1

Π
)
= C(‖e−AΠtζ‖L2(H) +

‚‚‚‚A
−1
Π

„
d

dt
e−AΠtζ

«‚‚‚‚
L2(H)

),

and d
dt

e−AΠtζ = −AΠe−AΠtζ yields

‖ξ‖H ≤ C‖e−AΠtζ‖L2(H) ≤ C‖R−1‖L(Z,X)‖Re(σ−AΠ)tζ‖L2(H).

Finally, we conclude by observing that:

‖Re(σ−AΠ)tζ‖2
L2(H) + ‖(B∗Π)e(σ−AΠ)tζ‖2

L2(H) = (Πζ|ζ) = (Π0ξ|ξ) = ‖ξ‖2
0.

Corollary 5. The mappings

⌈|ξ|⌉r+1/2
def
=

1√
2

“
‖RA

r+1/2
Π ξ‖2

H + ‖(B∗Π)A
r+1/2
Π ξ‖2

U

”1/2

and ⌊|ξ|⌋r−1/2
def
= sup

ζ∈H
r+1/2

Π

(ξ|ζ)r

⌈|ζ|⌉r+1/2

, (2.32)

define equivalent norms in H
r+1/2
Π and in H

r−1/2
Π respectively. Moreover, we have

(AΠξ|ξ)r = σ‖ξ‖2
r + ⌈|ξ|⌉2r+1/2 (2.33)

Proof. First, from (2.25) we deduce that for all ξ ∈ H:

(ΠAΠξ|ξ)H = σ(ξ|Πξ)H +
1

2
‖Rξ‖2

H +
1

2
‖(B∗Π)ξ‖2

U

and by replacing ξ by A
r+1/2
Π ξ for ξ ∈ H

r+1/2
Π in the above equation we obtain:

(AΠξ|ξ)r = σ(Πrξ|ξ)H +
1

2
‖RA

r+1/2
Π ξ‖2

H +
1

2
‖(B∗Π)A

r+1/2
Π ξ‖2

U (2.34)

Then (2.33) is proved, and from B∗Π ∈ L(H, U) and the fact that R : H → Z is an isomorphism we deduce that that

⌈| · |⌉r+1/2 ∼ ‖ · ‖
H

r+1/2

Π

. Next, from ΠAΠ ∈ L(H) and ‖Ar+1/2
Π · ‖H ∼ ⌈| · |⌉r+1/2 we deduce that

(ξ|ζ)r = (ΠAΠA
r−1/2
Π ξ|Ar+1/2

Π ζ) ≤ C‖ξ‖
H

r−1/2

Π

⌈|ζ|⌉r+1/2, ∀(ξ, ζ) ∈ H
r−1/2
Π × H

r+1/2
Π ,

which first gives ⌊| · |⌋r−1/2 ≤ C‖ · ‖
H

r−1/2

Π

. To obtain the converse inequality we start by noticing that ⌈| · |⌉r+1/2 ∼
‖Ar+1/2

Π · ‖H implies ⌈|A−1
Π · |⌉r+1/2 ∼ ‖Ar−1/2

Π · ‖H , and by replacing ξ in (2.34) by A−1
Π ξ for ξ ∈ H

r−1/2
Π we obtain:

(ξ|A−1
Π ξ)r ≥ 1

2
‖RA

r−1/2
Π ξ‖2

H ≥ C‖Ar−1/2
Π ξ‖H⌈|A−1

Π ξ|⌉r+1/2

and we conclude with:

⌊|ξ|⌋r−1/2 ≥ (ξ|A−1
Π ξ)r

⌈|A−1
Π ξ|⌉r+1/2

≥ C‖Ar−1/2
Π ξ‖H .

Corollary 6. For all r ∈ R and ξ ∈ Hr
Π, the mapping t 7−→ ‖e−AΠtξ‖r decreases to 0 and obeys:

‖e−AΠtξ‖r ≤ e−(σ+βr)t‖ξ‖r where βr = inf
0 6=ξ∈H

r+1/2

Π

⌈|ξ|⌉2r+1/2

‖ξ‖2
r

,

Proof. From (y′ + AΠy|y)r = 0 we deduce that d
dt
‖y(t)‖2

r + 2σ‖y(t)‖2
r + 2⌈|y(t)|⌉2r+1/2 = 0, and the concusion follows

from βr‖ · ‖2
r ≤ ⌈| · |⌉2r+1/2.

Finally, let us give an abstract characterization of the spaces Hr
Π in the case where r ∈ [0, 1].

Proposition 1. For all r ∈ [0, 1] the linear operator I + bA−1B(B∗Π) is an isomorphism from Hr
Π onto Hr and the

following characterization hold:

Hr
Π = {ξ ∈ H | ξ + bA−1B(B∗Π)ξ ∈ Hr}, r ∈ [0, 1]. (2.35)
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Proof. Let us set T
def
= I + bA−1B(B∗Π) for readability convenience. First, from (2.19) we deduce that:

H1
Π = {ξ ∈ H | ξ + bA−1B(B∗Π)ξ ∈ H1} = {ξ ∈ H | Tξ ∈ H1}, (2.36)

which also means that T ∈ L(H1
Π, H1). Then since T also belongs to L(H) and interpolation argument yields T ∈

L(Hr
Π, Hr) for r ∈ [0, 1]. Next, to prove that T is injective in H we suppose that ξ ∈ H obeys the equality Tξ =

ξ + bA−1B(B∗Π)ξ = 0, and by multiplying by bA∗Πξ and using (2.17) applied to (ξ, ξ) we obtain:

(λ0 + σ)(ξ|Πξ)H +
1

2
‖Rξ‖2

H +
1

2
‖B∗Πξ‖2

U = 0,

which ensures that ξ = 0. Thus, to prove that T is surjective, it suffices to remark that Tξ = f ∈ H is equivalent to
bATξ = bAf ∈ H−1 or to AΠξ = bAf ∈ H−1. Then for f ∈ H the element ξ = A−1

Π
bAf ∈ H obeys Tξ = f ∈ H. Then we

have proved that T is an isomorphism from H onto H. Finally, since (2.36) exactly means that T−1 maps H1 to H1
Π,

we obtain T−1 ∈ L(Hr, Hr
Π) by interpolation.

We are now in position to state the existence and uniqueness of a stable solution to the following nonlinear system:

y′ + AΠy + F (y) = 0, y(0) = y0 ∈ Hr
Π, (2.37)

where the nonlinear mapping F (·) satisfies the following assumptions.

‖F (ξ)‖
H

r−1/2

Π

≤ C‖ξ‖Hr
Π
‖ξ‖

H
r+1/2

Π

, (2.38)

‖F (ξ) − F (ζ)‖
H

r−1/2

Π

≤ C(‖ξ − ζ‖Hr
Π
‖ξ‖

H
r+1/2

Π

+ ‖ζ‖Hr
Π
‖ξ − ζ‖

H
r+1/2

Π

). (2.39)

Theorem 4. Assume (2.38)-(2.39) and y0 ∈ Hr
Π for r ∈ R. There exist ρ > 0 and µ > 0 such that, if δ ∈ (0, µ)

and ‖y0‖r < δ, then system (2.37) admits a solution yy0
∈ W (H

r+1/2
Π , H

r−1/2
Π ) such that ‖yy0

‖
W (H

r+1/2

Π
,H

r−1/2

Π
)
≤ ρδ,

which is unique within the class of functions in L∞
loc(H

r
Π)∩L2

loc(H
r+1/2
Π ). Moreover, every solution with an initial datum

obeying:

‖y0‖r < Dr where
1

Dr
= sup

0 6=ξ∈H
r+1/2

Π

⌊|F (ξ)|⌋r−1/2

‖ξ‖r⌈|ξ|⌉r+1/2

,

is such that t 7−→ ‖yy0
(t)‖r is decreasing and we have:

‖yy0
(t)‖r ≤ ‖y0‖re

−σt−βr(1−‖y0‖r/Dr)t, (2.40)
Z ∞

0

eσt⌈|yy0
(t)|⌉2r+1/2dt ≤ Dr‖y0‖2

r

2(Dr − ‖y0‖r)
. (2.41)

Proof. Let us use the notation Wr
def
= W (H

r+1/2
Π , H

r−1/2
Π ) for readability convenience. In a first step, let us suppose that

‖y0‖r < Dr and that y ∈ L∞
loc(H

r
Π)∩L2

loc(H
r+1/2
Π ) is a solution of (2.37) and let us prove that y ∈ Wr as well as estimates

(2.40) and (2.41). Since (2.38) ensures that F (y) ∈ L2
loc(H

r−1/2
Π ), from (2.37) we obtain y ∈ Wloc(H

r+1/2
Π , H

r−1/2
Π ), and

by (·|·)r-multiplying the first equality in (2.37) by y(t) and we obtain:

d

dt
‖y(t)‖2

r + 2σ‖y(t)‖2
r + 2(1 − ‖y(t)‖r/Dr)⌈|y(t)|⌉2r+1/2 ≤ 0.

Thus, because ‖y0‖r < Dr, the mapping t 7−→ ‖y(t)‖r is a nonincreasing function lower than Dr and:

d

dt
‖y(t)‖2

r + 2σ‖y(t)‖2
r + 2(1 − ‖y0‖r/Rs)⌈|y(t)|⌉2r+1/2 ≤ 0.

Then (2.40) follows from βr‖y(t)‖2
r ≤ ⌈|y(t)|⌉2r+1/2, and multiplying the above equation by e2σt and integrating over

(0,∞) gives (2.41). Moreover, since the first equation in (2.37) with (2.38) yields:

⌊|y′(t)|⌋r−1/2 ≤ Kr⌈|y(t)|⌉r+1/2 + ‖y(t)‖r⌈|y(t)|⌉r+1/2/Dr ≤ (Kr + 1)⌈|y(t)|⌉r+1/2,

where Kr denotes the supremum of ⌊|AΠξ|⌋r−1/2/⌈|ξ|⌉r+1/2 over 0 6= ξ ∈ H
r+1/2
Π , we also have:

‖y‖2
Wr

≤ Mr

1 − ‖y0‖r/Dr
‖y0‖2

r. (2.42)

for some Mr > 0. In a second step, in order to prove existence and uniqueness of a solution to (2.37), let us determine
ρ > 0 and µ > 0 such that for ‖y0‖r < δ and δ ∈ (0, µ) the mapping:

Ψ : z ∈ Wr → yz ∈ Wr where y′
z + AΠyz + F (z) = 0, yz(0) = y0,

is a contraction of Bδ
def
= {z ∈ Wr | ‖z‖Wr ≤ ρδ} into itself. First, by combining (2.28) and (2.38),(2.39) we obtain:

‖Ψ(z)‖Wr ≤ C0(‖z‖2
Wr

+ ‖y0‖r) and ‖Ψ(z1) − Ψ(z2)‖Wr ≤ C1(‖z1‖Wr + ‖z2‖Wr )‖z1 − z2‖Wr ,

and for z, z1, z2 in Bδ and ‖y0‖r < δ, we deduce that:

‖Ψ(z)‖Wr ≤ C0(ρµ + 1)δ and ‖Ψ(z1) − Ψ(z2)‖Wr ≤ 2C1ρµ‖z1 − z2‖Wr .
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Then for any ρ > 0 and µ > 0 obeying ρµ < 1
2C1

and ρ(1 − C0µ) ≥ C0 the mapping Ψ is a contraction of Bδ into itself

and (2.37) admits a unique solution in Bδ. Moreover, if we also choose (ρ, µ) such that µ ∈ (0, Dr) and ρ ≥
q

Mr
1−µ/Dr

then (2.42) ensures that every solution in L∞
loc(H

r
Π) ∩ L2

loc(H
r+1/2
Π ) belongs to Bδ. As a consequence, for such (ρ, µ) the

fixed point solution of (2.37) is unique within the class of functions in L∞
loc(H

r
Π) ∩ L2

loc(H
r+1/2
Π ).

Remark 2. Notice that (2.38)-(2.39) suggests that the nonlinear term is of bilinear type: F (ξ) = B(ξ, ξ) where B(·, ·) is
bilinear. It is the main situation when considering Navier-Stokes type nonlinearity. In fact, Theorem 4 remains true if
(2.38)-(2.39) hold only in a neighborhood of the origin in Hr+1

Π . It means that a nonlinearity obtained from a multilinear
mapping can be considered, such as power functions for instance.

2.3. Linear and nonlinear systems with dynamical control. Another way to obtain the limit (2.5) is to consider
(2.6) with a function t 7→ u(t) itself solution to a dynamical system of the form:

u′ + Eu = g (2.43)

where t 7→ g(t) is now a control function for system (2.6)-(2.43). In the following, we suppose that E is a closed linear

operator in U such that −E generates an analytic semigroup on U , and that bE = λ0 +E has bounded imaginary powers.

Then we define the spaces Ur = D( bEr), Ur
∗ = D( bE∗r) and U−r = [D( bE∗r)]′, U−r

∗ = [D( bEr)]′ for r ≥ 0 and we recall
that the following interpolation equalities hold:

[Ur1 , Ur2 ]1−α = U (1−α)r1+αr2 and [Ur1
∗ , Ur2

∗ ]1−α = U (1−α)r1+αr2
∗ , ∀α ∈ (0, 1), r2 < r1.

Thus, we introduce the extended state space H
def
= H × U , we introduce the extended linear operator A defined in H by:

D(A)
def
=

(
(y, u) ∈ H | y − bA−1Bu ∈ H1, u ∈ U1

)
, A(y, u)

def
= (Ay − Bu, Eu),

and we set bA def
= λ0 + bA. Notice that D(A) is equipped with the norm ‖bA(y, u)‖H = ‖ bA(y − bA−1Bu)‖H + ‖ bEu‖U . Next,

if we also introduce that canonical projection B ∈ L(H):

B(w, g)
def
= (0, g),

as well as the new state Y = (y, u) and the new control V = (w, g), system (2.6)-(2.43) can be rewritten as follows:

Y ′ + AY = BV. (2.44)

The following Theorem states that A fits the framework of section 2.2.

Theorem 5. The following results hold.

1. The linear operator (D(A),−A) is the infinitesimal generator of an analytic semigroup on H, and bA def
= λ0 + bA has

bounded imaginary powers.
2. The adjoint of A is given by

A
∗(y, u) = (A∗y,−B∗y + E∗u) and D(A∗) = H1

∗ × U1
∗ ,

and the following characterization of D(bA∗r) for r ≥ 0 hold

D(bA∗r) = Hr
∗ × Ur

∗ ∀r ≥ 0. (2.45)

3. The following characterization of D(bAr) for r ∈ [0, 1] holds:

D(bAr) = { (y, u) ∈ H | y − bA−1Bu ∈ Hr, u ∈ Ur } ∀r ∈ [0, 1]. (2.46)

Moreover, D(bAr) for r ∈ [0, 1] can be equipped with the equivalent norm ‖y − bA−1Bu‖Hr + ‖u‖Ur .

Proof. First, by remarking that for λ ∈ C the equality (λ + A)(y, u) = (f, h) is equivalent to

(λ + A)y = Bu + f and (λ + E)u = h, (2.47)

we deduce that the resolvent set of A is exactly the union of the resolvent sets of A and of E, and that the positive

halfaxis R
+ is contained in the resolvent set of bA def

= λ0 + A. Moreover, since we also notice that for λ in the resolvent
set of A, (2.47) is equivalent to

y = (λ + A)−1 bA( bA−1B)(λ + E)−1h + (λ + A)−1f and u = (λ + E)−1h,

by using the boundedness of bA−1B as well as resolvent estimates related to the analyticity of (e−At)t≥0 and of (e−Et)t≥0,
we deduce that there exists M > 0 such that for all F = (f, h) ∈ H and for all λ in an open sector of the complex plane,
symmetric with respect to the real line and with an opening angle greater than π [13, Chap. II-1, Thm. 2.10], we have:

‖(λ + A)−1F‖H ≤ M

|λ| ‖F‖H.

The above estimate proves that −A generates an analytic semigroup. Next, to characterize the adjoint of A let us
show the inclusion D(A∗) ⊂ D(A∗) × D(E∗) which is the only non obvious fact to prove. If Y = (y, u) ∈ D(A∗) then
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Z ∈ D(A) 7→ (Y |AZ)H is continuous for the topology of H, and by successively remarking that D(A) × {0} ⊂ D(A)

and that bA−1B(U) × U ⊂ D(A) we deduce that z ∈ D(A) 7→ (y|Az)H is continuous for the topology of H and that
v ∈ D(E) 7→ (y|Ev)U is continuous for the topology of U . Then it means that y ∈ D(A∗) and u ∈ D(E∗) and the desired

inclusion is proved. Next, let us recall that bA has bounded imaginary powers if and only if the operator defined for z ∈ C

such that ℜz > 0 by

bA−z =
sin πz

π

Z +∞

0

t−z(t + bA)−1dt,

can be extended to strongly continuous functions from {z ∈ C | ℜz ≥ 0} to L(H). Since an easy calculation gives

bA−z =

 
bA−z −β(z)

0 bE−z

!
where β(z) =

sin πz

π

Z +∞

0

t−z(t + bA)−1B(t + bE)−1dt,

then to prove that bA has bounded imaginary powers it remains to prove that we can extend β(z) to a strongly continuous

function from {z ∈ C | ℜ(z) ≥ 0} in L(U, H). From bA(t + bA)−1 = I − t(t + bA)−1 and ‖(t + bA)−1‖L(H) ≤ C0(1 + t)−1 we

deduce that ‖(t+ bA)−1‖L(H,D( bA)) = ‖ bA(t+ bA)−1‖L(H) ≤ 1+C0 and an interpolation argument with [D( bA), H]1−γ = D( bAγ)

gives ‖(t + bA)−1‖L(H,D( bAγ)) = ‖ bAγ(t + bA)−1‖L(H) ≤ (1 + C0)
γ(C0(1 + t)−1)1−γ . Then (1 + t)1−γ bAγ(t + bA)−1 is bounded

independently of t and with bA−γB ∈ L(H) we can bound the term under the integral and obtain that β(z) is bounded
independently on z ∈ {z ∈ C | ℜ(z) > 0} in a neighborhood of 0. Then by [23, Ch. 17, Thm. 17.9.1] one can extend

β(z) to a strongly continuous function from {z ∈ C | ℜ(z) ≥ 0} in L(U, H). Finally, since the fact that bA, bA and
bE have bounded imaginary powers means that for r ∈ (0, 1) we the interpolation equalities [D(bA), H]1−r = D(bAr),

[D(bA∗), H]1−r = D(bA∗r), [D( bA), H]1−r = D( bAr), [D( bA∗), H]1−r = D( bA∗r), [D( bE), U ]1−r = D( bEr) and [D( bE∗), U ]1−r =

D( bE∗r) hold, then equalities (2.45) and (2.46) follow with an interpolation argument. Indeed, it suffices to remark that

the mapping (y, u) 7→ (y − bA−1Bu, u) is an isomorphism from H onto H × U as well as from D(A) onto D(A) × D(E),
and that (y, u) 7→ (y, u) is an isomorphism from H onto H × U as well as from D(A∗) onto D(A∗) ×D(E∗).

Next, let us introduce the spaces:

H
r def

= D(bAr) and H
r
∗

def
= D(bA∗r) r ≥ 0, (2.48)

respectively equipped with norms

‖(y, u)‖Hr
def
= ‖y − bA−1Bu‖Hr + ‖u‖Ur and ‖(y, u)‖Hr

∗

def
= ‖y‖Hr

∗
+ ‖u‖Ur

∗

and let us we set H
−r def

= [D(bA∗r)]′ and H
r
∗

def
= [D(bA−r)]′ for r > 0. According to Theorem 5, we have the following

interpolation equalities:

[Hr1 , Hr2 ]1−α = H
(1−α)r1+αr2 and [Hr1

∗ , Hr2
∗ ]1−α = H

(1−α)r1+αr2
∗ , ∀α ∈ (0, 1), r2 < r1.

Thus, for a prescribed rate σ > 0 we consider

Y ′ + (A − σ)Y = BV. (2.49)

Suppose now that there is a Hilbert space Z and a bounded operator R ∈ L(H, Z), boundedly invertible and such that

R
∗
R ∈ L(H1/2, H∗1/2) (see Remark 4 below), and consider the following minimization problem:

inf


J (Y, V ) | (Y, V ) ∈ Wloc(H, H−1) × L2(H) satisfies (2.49)

ff
, (2.50)

where the cost functional J is defined by

J (Y, V )
def
=

Z ∞

0

‖RY (t)‖2
Zdt +

Z ∞

0

‖V (t)‖2
Hdt. (2.51)

Moreover, we assume the following finite cost condition:
8
<
:

for all Y0 ∈ H there exists V ∈ L2(H) such
that the corresponding solution to (2.49)
with Y (0) = Y0 satisfies Y ∈ L2(H).

(2.52)

Then the results of section 2.2 apply: for a prescribed rate σ > 0 there exists a self-adjoint operator Π ∈ L(H, H1
∗) which

is the unique solution to the Riccati equation

A
∗
Π + ΠA + ΠBB

∗
Π = R

∗
R + 2σΠ, (2.53)

the closed-loop operator AΠ

def
= A + BB

∗Π is such that −AΠ generates an analytic and exponentially stable semigroup

on H, and the norm of H
r
Π

def
= D(Ar

Π) if r ≥ 0, or H
r
Π

def
= [D(A∗−r

Π
)]′ if r < 0, which is defined by

||| · |||2r def
= 〈A∗r+1/2

Π
ΠA

r+1/2
Π

· |·〉[Hr
Π

]′,Hr
Π
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is such that for Y0 ∈ H
r
Π the mapping t 7−→ |||e−AΠtY0|||r decreases to 0 and obeys:

|||e−AΠtY0|||r ≤ e−σt|||Y0|||r.
Moreover, for an extended nonlinear mapping F(·) satisfying the analogue extended version of (2.38)-(2.39), which is to

say with F(·) instead of F (·) and by replacing the norms of H
r−1/2
Π , Hr

Π and H
r+1/2
Π by the norms of H

r−1/2
Π

, H
r
Π and

H
r+1/2
Π

, then the analogue extended version of Theorem 8 applies and guarantees existence and uniqueness of a stable
solution to the nonlinear system:

Y ′ + AΠY + F(Y ) = 0, Y (0) = Y0, (2.54)

provided that Y0 is in a neighborhood of the origin of H
r
Π. Thus, since B is a bounded operator in H, the closed-loop

operator AΠ is a bounded perturbation of A and we have D(AΠ) = D(A) as well as the following equalities:

H
r
Π = H

r ∀r ∈ [0, 1].

Then it means that when r ∈ [0, 1] the stabilization result for system (2.54) hold for an initial datum Y0 ∈ H
r. In

the following, we suppose that r ∈ [0, 1/2] and that the nonlinear mapping has the form F((y, u)) = (G(y, u), 0) where

G(·) : H
r+1/2 → Hr−1/2 is a nonlinear mapping satisfying

‖G(ξ, θ)‖Hr−1/2 ≤ C‖(ξ, θ)‖Hr‖(ξ, θ)‖
Hr+1/2 , (2.55)

‖G(ξ, θ) − G(ζ, τ)‖Hr−1/2 ≤ C(‖(ξ − ζ, θ − τ)‖Hr‖(ξ, θ)‖
Hr+1/2 + ‖(ζ, τ)‖Hr‖(ξ − ζ, θ − τ)‖

Hr+1/2). (2.56)

Since we have H
r
Π = H

r and H
−r
Π

= H
−r = H−r × U−r it is easily seen that such F(·) satisfy the extended version of

(2.38)-(2.39). Moreover, if we introduce the components Π1 = Π∗
1 ∈ L(H, H1

∗), Π2 ∈ L(H, U1
∗ ) and Π3 = Π∗

3 ∈ L(U, U1
∗ )

of Π, i.e.

Π =

„
Π1 Π∗

2

Π2 Π3

«
(2.57)

then (2.54) can be rewritten as

y′ + Ay + G(y, u) = Bu, y(0) = y0 (2.58)

u′ + Eu + Π2y + Π3u = 0, u(0) = u0, (2.59)

and the following corollary is a consequence of the extended version of Theorem 4.

Corollary 7. Assume (2.55)-(2.56) and (y0, u0) ∈ H × U such that y0 − bA−1Bu0 ∈ Hr and u ∈ Ur for r ∈ [0, 1/2].
There exist ρ > 0 and µ > 0 such that, if δ ∈ (0, µ) and |||(y0, u0)|||r < δ, then system (2.58)-(2.59) admits a solution

(yy0
, uy0

) ∈ W (Hr+1/2, Hr−1/2) such that ‖(yy0
, uy0

)‖W (Hr+1/2,Hr−1/2) ≤ ρδ, which is unique within the class of functions

in L∞
loc(H

r) ∩ L2
loc(H

r+1/2). Moreover, there is Dr > 0 such that every solution with an initial datum obeying:

|||(y0, u0)|||r < Dr,

is such that t 7−→ |||(yy0
(t), u0(t))|||r is decreasing and we have:

|||(yy0
(t), u0(t))|||r ≤ |||(y0, u0)|||re−σt. (2.60)

Remark 3. Notice that (2.60) implies the following estimate:

‖y(t) − bA−1Bu(t)‖Hr + ‖u(t)‖Ur ≤ Ce−σt(‖y0 − bA−1Bu0‖Hr + ‖u0‖Ur ).

Remark 4. Suppose that B∗ bA∗−1 ∈ L(H
1/2
∗ , U

1/2
∗ ), and that for two Hilbert spaces Z1 and Z2 we have two bounded

linear operators R ∈ L(H, Z1) and Θ ∈ L(U, Z2), both boundedly invertible and satisfying R ∈ L(H1/2, H
1/2
∗ ) and

Θ ∈ L(U1/2, U
1/2
∗ ). Then if we set Z

def
= Z1 × Z2 an adequate bounded linear mapping R ∈ L(H, Z) can be defined as

follows:

R(y, u)
def
= (R(y − bA−1Bu), Θu).

Indeed, its bounded invertibility is a direct consequence of the bounded invertibility of R and of Θ, and the fact that

R ∈ L(H1/2, H
1/2
∗ ) follows by remarking that:

R
∗
R(y, u) = (R∗R(y − bA−1Bu), Θ∗Θu − B∗ bA∗−1R∗R(y − bA−1Bu)).

Finally, let us give a sufficient condition for (2.52).

Theorem 6. Assume that (A, B) is approximatively controllable and that B∗(D(A∗n)) →֒ U1 for some n ∈ N
∗. Then

the finite cost condition (2.52) is satisfied.

Proof. In a first step, let us prove that a sufficient condition for (2.52) is:
8
<
:

for all ξ ∈ H1 there exists u ∈ W (U1, U)
such that the corresponding solution
y ∈ Wloc(H, H−1) to (2.9) belongs to L2(H).

(2.61)

Indeed, under the assumption (2.61) let us construct V = (0, g) with g ∈ L2(U) such that Y = (y, u) solution to (2.49)
with Y (0) = (y0, u0) ∈ H × U belongs to L2(H) × L2(U). It will then implies (2.52). First, we fix ǫ > 0 and we set
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g = 0 on (0, ǫ/3) so that the analyticity of (e−Et)t≥0 ensures that u(ǫ/3) ∈ U1/2. Thus, we set g = u′ + (E − σ)u where
u ∈ W (ǫ/3, ǫ, U1, U) is chosen so that it is identically zero on (2ǫ/3, ǫ). Then the control g ∈ L2(U) constructed on (0, ǫ)
drives u0 to 0 at 2ǫ/3 and fix u at zero on (2ǫ/3, ǫ), y obeys (2.4) on (2ǫ/3, ǫ) and the analyticity of (e−At)t≥0 guarantees
y(ǫ) ∈ H1. Finally, we choose g = u′ + (E − σ)u on (ǫ, +∞) where u ∈ W (ǫ, +∞; U1, U) is given by (2.61).

In a second step, it remains to prove that (2.61) is true under the assumption of the theorem. According to [5] the
approximate controllability of (A, B) guarantees the stabilizability of (2.9) by means of a finite dimensional control of
the form

u(t) =

KX

j=1

uj(t)vj

where (u1, . . . , uK) ∈ (H1(R))K is solution to a differential equation and vj , j = 1, . . . , K is a linear combination of
real and imaginary parts of eigenvectors of A∗. Then we have u ∈ H1(U), and since each eigenvector of A∗ belongs
to D(A∗n), the fact that B∗(D(A∗n)) →֒ U1 guarantees vj ∈ U1, j = 1, . . . , K which also implies u ∈ L2(U1). As a
consequence, u ∈ W (U1, U) and the desired result is obtained.

3. Stabilization of Navier-Stokes equations with Neumann feedback control. We suppose here that Ω is a
bounded and connected domain in R

d for d = 2 or d = 3, with a boundary Γ = ∂Ω of class C2,1. By L2(Ω), L2(Γ),
H2r(Ω), H2r(Γ), H2r

0 (Ω) and H−2r(Ω) = (H2r
0 (Ω))′ for r ≥ 0, we denote the usual Lebesgue and Sobolev spaces of scalar

functions in Ω or in Γ, and we write in bold the spaces of vector-valued functions: L2(Ω) = (L2(Ω))d, L2(Γ) = (L2(Γ))d,
etc. Moreover, (·|·) is the usual inner product in L2(Ω). We also introduce the space of free divergence vector fields:

V
2r(Ω) =


y ∈ H

2r(Ω) | ∇ · y = 0 in Ω

ff
, r ≥ 0.

Let us underline that the following interpolation equalities hold:

[V2r1(Ω),V2r2(Ω)]1−α = V
2((1−α)r1+αr2)(Ω), α ∈ (0, 1), 0 ≤ r2 ≤ r1 ≤ 1. (3.62)

To justify the above equalities it suffices to remark that the orthogonal projection operator P : L2(Ω) → V0(Ω) is bounded
from H2ri(Ω) onto V2ri(Ω), i = 1, 2 and then to apply [31, Thm. 1.17.1.1, p.118]. Indeed, since we have Pf = f + ∇p
where p ∈ H1(Ω) is the solution of −∆p = ∇ · f in Ω and p = 0 on Γ, then regularity results for the Laplace problem
with a homogeneous Dirichlet condition guarantees the claimed boundedness properties of P. Then [31, Thm. 1.17.1.1,
p.118] yields [H2r1(Ω)∩V0(Ω),H2r2(Ω)∩V0(Ω)]1−α = [H2r1(Ω),H2r2(Ω)]1−α ∩V0(Ω) and the conclusion follows from

[V2r1(Ω),V2r2(Ω)]1−α = [H2r1(Ω) ∩ V0(Ω),H2r2(Ω) ∩ V0(Ω)]1−α and [H2r1(Ω),H2r2(Ω)]1−α = H2((1−α)r1+αr2)(Ω).
In the following, C denotes a positive constant which may change from line to line and which only depends on the

geometry. We recall that n = (n1, . . . , nd) denotes the unit interior normal vector field defined near Γ, for a vector field y

defined near the boundary we denote by ynn
def
= (y · n)n and yτ

def
= y − (y · n)n the normal and the tangential component

of y respectively, and for a scalar function or a vector field y its normal derivative is defined by dy
dn

=
Pd

i=1 ni
dy
dxi

. We

also underline that ( dy
dn

)τ = dyτ
dn

and ( dy
dn

)n = dyn
dn

, see [21, App. A] for details.

Next, for ν > 0 and f ∈ L2(Ω) we consider a pair (ze, re) ∈ V2(Ω) × H1(Ω) solution to the stationary Navier-Stokes
equations:

−ν∆ze + (ze · ∇)ze + ∇re = f, ∇ · ze = 0 in Ω, (3.63)

and we focus on the question of stabilizing around (ze, re) the unstationary solution (z, r) of the Navier-Stokes equations

∂tz − ν∆z + (z · ∇)z + ∇r = f, ∇ · z = 0 in Ω × (0, +∞), (3.64)

by means of a Neumann control. Our goal is to apply the Riccati approach presented in section 2 to construct a feedback
law F : V0(Ω) → L2(Γ) such that the solution to the above equations with

ν
d(z − ze)

dn
− (r − re)n = F(z − ze) on Γ × (0, +∞)

obeys:

lim
t→+∞

z(t) = ze.

In the following we will use the notations:

χ(y, p)
def
= ν

dy

dn
− pn and χe(y, p)

def
= ν

dy

dn
+ (ze · n)y − pn.

We shall underline that most of the technical statements dealing with the well-posedness of Stokes-type system with
Neumann boundary condition which are given in the following can be found in [14] or in [21]. The last quoted work
is a complete study of stationary and instationary Stokes and Navier-Stokes system with Neumann boundary condition
treated by pseudo-differential methods. However, in order to be complete an self-contained, we choose here to give all
proofs exept the following two lemma’s. The first one is a lifting theorem which is a direct consequence of a theorem
due to Amrouche and Girault [1]. The second one is a regularity theorem for Stokes system with Neumann boundary
condition which can be found in [21, Thm. 6.3], see also [14].
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Lemma 1. Let Ω be a bounded and connected open subset of R
d of class Ck+1,1 for k ∈ N and let (b0, b1) ∈ Hk+3/2(Γ)×

Hk+1/2(Γ) such that
R
Γ

b0 · n = 0. Then there exists (ub, pb) ∈ Hk+2(Ω) × Hk+1(Ω) satisfying:

∇ · ub = 0 in Ω, ub = b0 and χ(ub, pb) = b1 on Γ

and
‖ub‖Hk+2(Ω) + ‖pb‖Hk+1(Ω) ≤ C(‖b0‖Hk+3/2(Γ) + ‖b1‖Hk+1/2(Γ)),

Moreover, the result is still valid with χe instead of χ.

Proof. The lemma relies on [1, Thm. A.] which states that for all (g0, g1) ∈ Hk+3/2(Γ)×Hk+1/2(Γ) satisfying
R
Γ

g0 ·n = 0

and g1 · n = Ψ(g0)
def
= 2νKg0 · n − ν∇Γ · (g0)τ there exists u ∈ Hk+2(Ω) such that:

∇ · u = 0 in Ω, u = g0 and ν
du

dn
= g1 on Γ and ‖u‖Hk+2(Ω) ≤ C(‖g0‖Hk+3/2(Γ) + ‖g1‖Hk+1/2(Γ)).

In the above setting K denotes the mean curvature of Γ and ∇Γ· denotes the surface divergence operator. Thus,
it suffices to define ub ∈ Hk+2(Ω) as the vector field obtained for g0 = b0 and g1 = (b1)τ + Ψ(b0)n, and to define
pb ∈ Hk+1(Ω) as a pressure function obtained from a continuous right inverse of the trace operator [20, Thm. 1.5.1.5]
and such that pb = −b1 · n + Ψ(b0) on Γ. The results whith χe instead of χ can be obtained analogously, with
g1 = (b1)τ − (ze · n)(b0)τ + Ψ(b0)n and pb = −b1 · n + (ze · n)b0 · n + Ψ(b0) on Γ.

Lemma 2. Let Ω be a bounded and connected open subset of R
d of class Ck+1,1 for k ∈ N and let f ∈ Hk(Ω). If

(u, p) ∈ V1(Ω) × L2(Ω) satisfies

ν

Z

Ω

∇u : ∇v −
Z

Ω

p∇ · v =

Z

Ω

f · v ∀v ∈ H
1(Ω), (3.65)

then we have (u, p) ∈ Vk+2(Ω) × Hk+1(Ω) and the following estimate hold:

‖u‖Hk+2(Ω) + ‖p‖Hk+1(Ω) ≤ C‖f‖Hk(Ω).

Corollary 8. Let the assumptions of Lemma 2 be satisfied and let g ∈ Hk+1/2(Γ). If (u, p) ∈ V1(Ω) × L2(Ω) satisfies

ν

Z

Ω

∇u : ∇v −
Z

Ω

p∇ · v =

Z

Ω

f · v +

Z

Γ

g · v ∀v ∈ H
1(Ω),

then we have (u, p) ∈ Vk+2(Ω) × Hk+1(Ω) and the following estimate hold:

‖u‖Hk+2(Ω) + ‖p‖Hk+1(Ω) ≤ C(‖f‖Hk(Ω) + ‖g‖
Hk+1/2(Γ)).

Proof. The conclusion follows from Lemma 2 by remarking that if we write (u, p) = (eu, ep) + (ug, pg) where (ug, pg) ∈
Vk+2(Ω) × Hk+1(Ω) is given by Lemma 1 with b0 = 0 and b1 = g, then an integration by parts shows that (eu, ep) obeys
(3.65) with f + ∆ug −∇pg ∈ Hk(Ω) instead of f at the right side of the equality.

Next, let m ∈ C2(Γ; R+) be a compactly supported function of Γ which is not identically equal to zero. Then our
objective is to prove that for a prescribed rate of decrease σ > 0 there is a unique nonnegative and self-adjoint linear
mapping Π ∈ L(V0(Ω)) belonging to L(V0(Ω),V2(Ω)) and solution to the Riccati equation

Z

Ω

∇Πξ : ∇ζ +

Z

Ω

∇ξ : ∇Πζ +

Z

Γ

mΠξ · mΠζ =

Z

Ω

ξ · ζ + 2σ

Z

Ω

Πξ · ζ, ∀(ξ, ζ) ∈ V
1(Ω) × V

1(Ω), (3.66)

such that for z0 close enough to ze in V2r(Ω) for r ∈ [0, 3/4), system

∂tz − ν∆z + (z · ∇)z + ∇r = f, ∇ · z = 0 in Ω × (0,∞), (3.67)

χ(z, r) = χ(ze, re) + m2Π(ze − z) on Γ × (0,∞), (3.68)

with initial datum
z(0) = z0 (3.69)

admits a unique solution which satisfies

‖z(t) − ze‖V2r(Ω) ≤ Ce−σt‖z0 − ze‖V2r(Ω).

To achieve this goal we need: first to prove that system (3.67), (3.68) can be rewritten in the form (2.37), second to
characterize the spaces Hr

Π and finally to apply Theorem 4.
First, for z0 ∈ V0(Ω) we should say that (z, p) ∈ Wloc(V

1(Ω), [V1(Ω)]′) × L2
loc(L

2(Ω)) is a solution to (3.67), (3.68),
(3.69), if and only if, it satisfies (3.69) and for all v ∈ H1(Ω) and t ≥ 0:

d

dt

Z

Ω

z(t) · v +

Z

Ω

(ν∇z(t) : ∇v + (z(t) · ∇z(t)) · v − r(t)∇ · v) =

Z

Γ

(χ(ze, re) + m2Π(ze − z)) · v +

Z

Ω

f · v. (3.70)

Obviously, if (z, p) is regular an integration by parts shows that a solution to (3.70) obeys (3.67), (3.68) in a classical
sense. Thus, an easy calculation shows that (y, p) = (z − ze, r − re) is solution of the variational formulation:

d

dt

Z

Ω

y(t) · v +

Z

Ω

(ν∇y(t) : ∇v + (y(t) · ∇ze) · v + (ze · ∇y(t)) · v) +

Z

Ω

(y(t) · ∇)y(t) · v +

Z

Γ

m2Πy(t) · v = 0,
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for all v ∈ H1(Ω) and t ≥ 0. Then, if we introduce the linear operator:

D(A)
def
=
˘
v ∈ V

1(Ω) | w 7→ a(v, w) is V
0(Ω) − continuous

¯
(Av|w)

def
= a(v, w), (3.71)

defined from the continuous bilinear form on H1(Ω):

a(v, w)
def
=

Z

Ω

(ν∇v : ∇w + (v · ∇ze) · w + (ze · ∇v) · w) ∀(v, w) ∈ H
1(Ω) × H

1(Ω),

if we introduce the input linear operator B ∈ L(L2(Γ), [V1(Ω)]′) defined by

〈Bu|v〉[V1(Ω)]′,V1(Ω)
def
=

Z

Γ

mu · v ∀(u, v) ∈ L
2(Γ) × V

1(Ω), (3.72)

with adjoint B∗ ∈ L(V1(Ω),L2(Γ)) given by B∗v = mv|Γ, and if we define the nonlinear mapping:

F : V1(Ω) → [V1(Ω)]′, 〈F (y)|v〉[V1(Ω)]′,V1(Ω) =

Z

Ω

(y · ∇)y · w ∀(y, v) ∈ V
1(Ω) × V

1(Ω), (3.73)

the above system can be rewritten as follows:

y′ + Ay + B(B∗Π)y + F (y) = 0. (3.74)

In the following, we are going to prove that A, B and F fit the framework of section 2 with H = V0(Ω) and U = L2(Γ)
and we are going to make more precise the equivalence between formulation (3.70) and formulation (3.74).

First, recall that the trilinear form (v1, v2, v3) 7→
R
Ω
(v1 · ∇)v2 · v3 obeys:

˛̨ Z

Ω

(v1 · ∇)v2 · v3

˛̨
≤ C‖v1‖Hs1 (Ω)‖v2‖H1+s2 (Ω)‖v3‖Hs3 (Ω), (3.75)

for all (v1, v2, v3) ∈ Hs1(Ω)×H1+s2(Ω)×Hs3(Ω), where s1, s2 and s3 are real nonnegative numbers such that s1+s2+s3 ≥
d
2

if si 6= d
2
, i = 1, 2, 3 or s1 + s2 + s3 > d

2
if si = d

2
, for at least one i [15, Prop. 6.1, (6.10)]. Then it yields

˛̨
˛̨
Z

Ω

(v · ∇ze) · v +

Z

Ω

(ze · ∇v) · v
˛̨
˛̨ ≤ C0‖ze‖H2(Ω)‖v‖L2(Ω)‖v‖H1(Ω),

and we deduce the existence of λ0 > such that:

a(v, v) + λ0‖v‖2
L2(Ω) ≥

ν

2
‖v‖2

H1(Ω) ∀v ∈ H
1(Ω). (3.76)

We set bA def
= λ0 + A and we are going to prove that

1. −A is the infinitesimal generator of an analytic semigroup on V0(Ω).
2. A and A∗ are characterized by

8
<
:

D(A) =


y ∈ V

2(Ω)
˛̨ dyτ

dn
= 0 on Γ

ff

Ay = −ν∆y + (y · ∇)ze + (ze · ∇)y + ∇Ry,
(3.77)

and: 8
<
:

D(A∗) =


y ∈ V

2(Ω)
˛̨
ν

dyτ

dn
+ (ze · n)yτ = 0 on Γ

ff

A∗y = −ν∆y + t(∇ze)y − (ze · ∇)y + ∇Sy.
(3.78)

3. bA has bounded imaginary powers and the fractional powers of bA and of bA∗ satisfy:

D( bAr) = D( bA∗r) = V
2r(Ω), ∀r ∈ [0, 3/4) , (3.79)

D( bAr) =


y ∈ V

2r(Ω)

˛̨
˛̨ dyτ

dn
= 0 on Γ

ff
, ∀r ∈ (3/4, 3/2], (3.80)

D( bA∗r) =


y ∈ V

2r(Ω)

˛̨
˛̨ ν

dyτ

dn
+ (ze · n)yτ = 0 on Γ

ff
, ∀r ∈ (3/4, 3/2]. (3.81)

In the above setting, the mappings R ∈ L(V2(Ω), H1(Ω)) and S ∈ L(V2(Ω), H1(Ω)) are defined by p = Ry and q = Sy
where p and q are the respective solutions to

−∆p = ∇ · [(y · ∇)ze + (ze · ∇)y] in Ω and p = ν
dyn

dn
on Γ, (3.82)

and

−∆q = ∇ · [ t(∇ze)y − (ze · ∇)y] in Ω and q = ν
dyn

dn
+ (ze · n)yn on Γ. (3.83)

Remark 5. Notice that from (3.75) we deduce that ‖(y · ∇)ze + (ze · ∇)y‖L2(Ω) ≤ C‖ze‖H2(Ω)‖y‖V1(Ω). Then ∇ · [(y ·
∇)ze + (ze · ∇)y] belongs to H−1(Ω) and regularity results for Laplace problem with nonhomogeneous Dirichlet condition
ensures that R belongs to L(V2r(Ω), H2r−1(Ω)) for r ∈]3/4, 1]. Analogously, we can prove that S ∈ L(V2r(Ω), H2r−1(Ω))
for r ∈]3/4, 1].

We first need the following Lemma which is consequence of De Rham’s theorem.
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Lemma 3. If f ∈ [H1(Ω)]′ obeys 〈f | v〉[H1(Ω)]′,H1(Ω) = 0 for all v ∈ V1(Ω) then there exists a unique p ∈ L2(Ω) such
that

〈f | v〉[H1(Ω)]′,H1(Ω) =

Z

Ω

p∇ · v ∀v ∈ H
1(Ω).

Proof. First, under the above assumptions we have in particular 〈f | v〉[H1(Ω)]′,H1(Ω) = 0 for all v ∈ V1(Ω) ∩ H1
0(Ω)

and De Rham’s theorem [2, Thm 2.8] ensures that there exists p ∈ L2(Ω), defined up to a constant, and such that
〈f | v〉[H1(Ω)]′,H1(Ω) =

R
Ω

p∇ · v for all v ∈ H1
0(Ω). Thus, we verify that each v ∈ H1(Ω) can be decomposed as

v = v1 + v2 + c(v)ϕd with v1 ∈ H1
0(Ω), v2 ∈ V1(Ω), ϕd(x) = 1

d
t(x1, x2, . . . , xd) and c(v) = |Ω|−1

R
Γ

v · n. Indeed, since

we have ∇·ϕd ≡ 1 then
R
Ω
∇· (v− c(v)ϕd) = 0 and we can choose v1 ∈ H1

0(Ω) such that ∇· v1 = ∇· (v− c(v)ϕd), see [2,

Cor. 3.1, ii)]. Finally, since 〈f | v1〉[H1(Ω)]′,H1(Ω) =
R
Ω

p∇ · v1 and 〈f | v2〉[H1(Ω)]′,H1(Ω) = 0 an easy computation gives:

〈f | v〉[H1(Ω)]′,H1(Ω) −
Z

Ω

p∇ · v = (〈f | ϕd〉[H1(Ω)]′,H1(Ω) −
Z

Ω

p)c(v),

and by choosing p ∈ L2(Ω) such that
R
Ω

p = 〈f | ϕd〉[H1(Ω)]′,H1(Ω) we obtain the desired result.

Remark 6. Notice that since the orthogonal projection operator P : L2(Ω) → V0(Ω) is also bounded from H1(Ω) into
V1(Ω) then its adjoint P∗ : V0(Ω) → L2(Ω), which is simply the injection operator, can be extended as a bounded
operator from [V1(Ω)]′ into [H1(Ω)]′ as follows:

〈P∗f |v〉[H1(Ω)]′,H1(Ω) = 〈f |Pv〉[V1(Ω)]′,V1(Ω) ∀v ∈ H
1(Ω).

Then Lemma 3 has the following interpretation: if f ∈ [H1(Ω)]′ and g ∈ [V1(Ω)]′ coincide on V1(Ω) then

〈f | v〉[H1(Ω)]′,H1(Ω) = 〈P∗g | v〉[H1(Ω)]′,H1(Ω) +

Z

Ω

p∇ · v ∀v ∈ H
1(Ω).

Theorem 7. The operator (D(A),−A) [resp. (D(A∗),−A∗)] is the infinitesimal generator of an analytic semigroup

(e−At)t≥0 [resp. (e−A∗t)t≥0] on V0(Ω) and equalities (3.77) and (3.78) are satisfied. Moreover, bA has bounded imaginary

powers and the fractional powers of bA and of bA∗ satisfy (3.79),(3.80),(3.81).

Proof. First, according to [13, Part.I, Chap. 1, Thm 2.12, p.115] the coercivity condition (3.76) ensures that (D(A),−A)
and (D(A∗),−A∗) are infinitesimal generators of analytic semigroups on V0(Ω). Next, let us characterize D(A). For
y ∈ D(A) we have Ay ∈ V0(Ω) and a(y, v) =

R
Ω

Ay · v for all v ∈ V1(Ω), and by Lemma 3 there is p ∈ L2(Ω) obeying:

ν

Z

Ω

∇y : ∇v −
Z

Ω

p∇ · v =

Z

Ω

(Ay − (y · ∇)ze − (ze · ∇)y) · v ∀v ∈ H
1(Ω).

Thus, because Ay − (y · ∇)ze − (ze · ∇)y ∈ L2(Ω), Lemma 2 ensures that (y, p) belongs to V2(Ω) × H1(Ω), and an
integration by parts yields:

−ν∆y + ∇p = Ay − (y · ∇)ze − (ze · ∇)y in Ω, χ(y, p) = 0 on Γ.

The above trace condition means that ( dy
dn

)τ = dyτ
dn

= 0, and the application of the divergence operator to the above

first equation gives p = Ry. Then (3.77) is proved. Next, to characterize D(A∗), let us denote V ♯ = {y ∈ V2(Ω) |
ν dyτ

dn
+ (ze · n)yτ = 0 on Γ} and A♯y = −ν∆y + t(∇ze)y − (ze · ∇)y + ∇Sy and let us prove that D(A∗) = V ♯ and

A∗ = A♯. First, for all (y, v) ∈ D(A) × V ♯ an integration by parts gives:
Z

Ω

(−ν∆y + (y · ∇)ze + (ze · ∇)y + ∇Ry) · v =

Z

Ω

y · (−ν∆v + t(∇ze)v − (ze · ∇)v + ∇Sv),

which means that (Ay|v) = (y|A♯v). Then we have V ♯ ⊂ D(A∗) and the operators A♯ and A∗ coincide on V ♯. Conversely,

if v ∈ D(A∗) then for all y ∈ D(A) we have (Ay|v) = (y|A∗v) and then ( bAy|v) = (y| bA∗v). Moreover, according to the

Lax-Milgram theorem there is unique ev ∈ V1(Ω) obeying λ0(w|ev) + a(w, ev) = (w| bA∗v) for all w ∈ V1(Ω). Then by

choosing w = y ∈ D(A) we obtain that ev obeys ( bAy|ev) = (y| bA∗v) and ( bAy|v − ev) = 0 for all y ∈ D(A), which means that

v = ev ∈ V1(Ω) and that λ0(y|v) + a(y, v) = (y| bA∗v) for all y ∈ D(A). A density argument ensures that this last equality

remains valid for all y ∈ V1(Ω), and by Lemma 3 there is q ∈ L2(Ω) such that λ0(y|v) + a(y, v)−
R
Ω

q∇ · y = (y| bA∗v) for

all y ∈ H1(Ω) and

ν

Z

Ω

∇y : ∇v + (y · ∇)ze · v + (ze · ∇y) · v −
Z

Ω

q∇ · y =

Z

Ω

y · A∗v ∀y ∈ H
1(Ω). (3.84)

Thus, an integration by parts gives

ν

Z

Ω

∇v : ∇y +

Z

Γ

(ze · n)v · y −
Z

Ω

q∇ · y =

Z

Ω

(A∗v − t(∇ze)v + (ze · ∇v)) · y ∀y ∈ H
1(Ω).

Moreover, since (ze · n)v ∈ H1/2(Γ) and A∗v − t(∇ze)v + (ze · ∇v) ∈ L2(Ω), then Corollary 8 ensures that (y, p) belongs
to V2(Ω) × H1(Ω), and integrating by parts in (3.84) yields

Z

Ω

(−ν∆v + t(∇ze)v − (ze · ∇)v + ∇q) · y +

Z

Γ

(ν
dv

dn
− qn + (ze · n)v) · y =

Z

Ω

A∗v · y ∀y ∈ H
1(Ω),
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which means:

−ν∆v + t(∇ze)v − ze · ∇v + ∇q = A∗v in Ω and χe(v, q) = 0 on Γ.

Finally, the application of the divergence operator to the first above equation gives q = S(v) and the second above
equation means that ν dvτ

dn
+ (ze · n)vτ = 0. Then we have proved (3.78).

Now, let us prove (3.79) and (3.80)-(3.81). First, since bA is closed maximal accretive and that bA−1 is bounded in

V0(Ω), then according to [13, Part.I, Chap. 1, Thm 6.1 and Prop. 6.1, p.171] bA has bounded imaginary powers and the

fractional powers of bA and of bA∗ satisfy D( bAr) = [D(A),V0(Ω)]1−r and D( bA∗r) = [D(A∗),V0(Ω)]1−r for all r ∈ [0, 1].
We underline that the same argument applies for the following auxiliary selfadjoint linear operators A1 and A2 defined
by:

D(Ai)
def
=
˘
v ∈ V

1(Ω) | w 7→ ai(v, w) is V
0(Ω) − continuous

¯
, (Aiv|w)

def
= ai(v, w), i = 1, 2

and

a1(v, w)
def
=

Z

Ω

(v · w + ν∇v : ∇w) and a2(v, w)
def
= λ2a1(v, w) +

Z

Γ

(ze · n)w · v,

where λ2 > 0 is large enough so that a2(·, ·) is coercive. Then we also have D(Ar
i ) = [D(Ai),V

0(Ω)]1−r, i = 1, 2, for all
r ∈ [0, 1]. Moreover, analogously as in the first part of the proof, by invoking Corollary 8 and integrating by parts, we

verify that D(A1) = D(A) and D(A2) = D(A∗). As a consequence, we have D( bAr) = [D(A1),V
0(Ω)]1−r = D(Ar

1) and

D( bA∗r) = [D(A2),V
0(Ω)]1−r = D(Ar

2) and the proof of (3.79)-(3.80)-(3.81) is then reduced to the characterization of
D(Ar

i ), i = 1, 2. We then fix i = 1, 2 in the following and we first remark that the continuity and coercivity of ai(·, ·)
with the obvious calculation:

‖A1/2
i y‖2

V0(Ω) = (Aiy|y) = ai(y, y),

yield D(A
1/2
i ) = V1(Ω), which proves (3.79) for r = 1/2. Moreover, since we know from Lemma 3 that there exists

p ∈ L2(Ω) satisfying:

ai(v, w) −
Z

Ω

p∇ · v =

Z

Ω

Aiy · v ∀v ∈ H
1(Ω),

and since y ∈ D(A
3/2
i ) is equivalent to Aiy ∈ D(A

1/2
i ) = V1(Ω), then equalities (3.80) and (3.81) for r = 3/2 are direct

consequences of Corollary 8. Then it remains to conclude for r ∈ (0, 1/2) and for r ∈ (1/2, 3/2) with an interpolation
argument. According to [31, Thm. 1.15.3.1, p. 103] the fact that Ai has bounded imaginary powers also yields the
general interpolation equalities:

D(A
αa+(1−α)b
i ) = [D(Aa

i ),D(Ab
i )]1−α, ∀α ∈ (0, 1), a ≥ b ≥ 0. (3.85)

Then using (3.85) for (a, b) = (1/2, 0) with D(A
1/2
i ) = V1(Ω) yield D(Ar

i ) = [V1(Ω),V0(Ω)]1/2−r for all r ∈ (0, 1/2),
and (3.79) for r ∈ (0, 1/2) follows from (3.62) with (r1, r2) = (1, 0). Next, to prove (3.79)-(3.80)-(3.81) for r ∈ (1/2, 3/2)
we introduce

H
3
1(Ω)

def
=


y ∈ H

3(Ω)

˛̨
˛̨ dyτ

dn
= 0 on Γ

ff
and H

3
2(Ω)

def
=


y ∈ H

3(Ω)

˛̨
˛̨ ν

dyτ

dn
+ (ze · n)yτ = 0 on Γ

ff
,

and we write (3.85) with (a, b) = (3/2, 1/2) as follows:

D(Ar
i ) = [H3

i (Ω) ∩ V
1(Ω),V1(Ω)]3/2−r, ∀r ∈ (1/2, 3/2).

Thus, we define the projection operator Pi : H1(Ω) → V1(Ω) by

Pif
def
= y where ai(y, v) = ai(f, v) ∀v ∈ V

1(Ω),

and with Lemma 3 and Corollary 8 we can verify that Pi is also continuous from H3
i (Ω) onto H3

i (Ω) ∩V1(Ω). Then by
applying [31, Thm. 1.17.1.1, p.118] we deduce that D(Ar

i ) = [H3
i (Ω),H1(Ω)]3/2−r ∩ V1(Ω) for r ∈ (1/2, 3/2). Finally,

since by [31, Thm. 4.3.3.1, p.321] or [19] we have H1(Ω) = [H3
i (Ω),L2(Ω)]2/3 then the reiteration Theorem [31, Thm.

1.10.3.2, p.66] yields [H3
i (Ω),H1(Ω)]3/2−r = [H3

i (Ω), [H3
i (Ω),L2(Ω)]2/3]3/2−r = [H3

i (Ω),L2(Ω)]1−2r/3 for r ∈ (1/2, 3/2),

which gives D(Ar
i ) = [H3

i (Ω),L2(Ω)]1−2r/3 ∩ V1(Ω) for r ∈ (1/2, 3/2) and [31, Thm. 4.3.3.1, p.321] or [19] allows to
conclude.

Let us now give an expression of B defined in (3.72) in terms of the Neumann operator associated with λ0 + A. For
u ∈ L2(Γ) set Nu = w where w obeys:

λ0w − ν∆w + (w · ∇)ze + (ze · ∇)w + ∇(Rw + Tu) = 0, ∇ · w = 0 in Ω, χ(w, Rw + Tu) = u on Γ. (3.86)

In the above setting, T is the linear mapping defined by p = Tu where p is the solution to

−∆p = 0 in Ω and p = un on Γ. (3.87)

For rough data u ∈ L2(Γ), defining a solution to (3.86) can be done with the transposition method. It consists in looking
for a velocity w ∈ V0(Ω) obeying: Z

Γ

u · ϕ =

Z

Ω

w · f ∀f ∈ V
0(Ω), (3.88)
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where ϕ ∈ V2(Ω) is the unique solution to bA∗ϕ = f : ϕ ∈ H2(Ω) and

λ0ϕ − ν∆ϕ + t(∇ze)ϕ − (ze · ∇)ϕ + ∇Sϕ = f, ∇ · ϕ = 0, in Ω, χe(ϕ, Sϕ) = 0 on Γ. (3.89)

The existence and uniqueness of w ∈ V0(Ω) solution to (3.88) is a consequence of the Riesz representation theorem, and

an integration by parts allows to prove that a smooth velocity (say w ∈ V2(Ω) and u ∈ H1/2(Γ)) solution to (3.86) in a
classical sense is also the solution to (3.88).

Proposition 2. The operator N is bounded from L2(Γ) into V0(Ω) and it satisfies:

N ∈ L(H2r−3/2(Γ),V2r(Ω)) for all r ∈ [0, 3/2]. (3.90)

Proof. For u ∈ H3/2(Γ), the successive use of Lax-Milgram theorem and Lemma 3 first ensures the existence of a unique
pair (w, q) ∈ V1(Ω) × L2(Ω) satisfying:

Z

Ω

(λ0w · v + ν∇w : ∇v + (w · ∇)ze · v + (ze · ∇)w · v) −
Z

Ω

q∇ · v =

Z

Γ

u · v ∀v ∈ H
1(Ω). (3.91)

Thus, since by Corollary 8 we have (w, q) ∈ V3(Ω) × H1(Ω), an integration by part in (3.91) shows that (w, q) obeys:

λ0w − ν∆w + (w · ∇)ze + (ze · ∇)w + ∇q = 0 in Ω, χ(w, q) = u on Γ,

and by taking the divergence of the first above equality one verifies that q = Rw+Tu and Nu = w ∈ V3(Ω). Then (3.90)

for r = 3/2 follows. Next, let us prove that N can be uniquely extended to a bounded operator from H−3/2(Γ) into
V0(Ω). For f ∈ V0(Ω) and ϕ solution to (3.89) we obtain

R
Ω

Nu · f =
R
Γ

u ·ϕ by setting v = ϕ in (3.91) and integrating

by parts. Thus, by taking the sup over all f ∈ V0(Ω), with ‖ϕ‖
H3/2(Γ) ≤ C‖ϕ‖V2(Ω) and ‖ϕ‖V2(Ω) ≤ C‖f‖V0(Ω) we

deduce that ‖Nu‖V0(Ω) ≤ C‖u‖
H−3/2(Γ), and the density of H3/2(Γ) into H−3/2(Γ) ensures that N can be extended to a

bounded operator from H−3/2(Γ) into V0(Ω) in a unique way. Finally, (3.90) follows with an interpolation argument.

Remark 7. (i) Notice that to define a solution w ∈ V0(Ω) of (3.86) with the transposition method it is sufficient to

have a boundary value u in the dual space of V3/2(Γ)
def
= {y ∈ H3/2(Γ) |

R
Γ

y ·n = 0}, that we denote by V−3/2(Γ). Then

in (3.88) the sign
R
Γ

must be understood as a duality product between V−3/2(Γ) and V3/2(Γ).

(ii) In fact, for all solution w ∈ V0(Ω) defined by transposition the trace condition:

χ(w, Rw + Tu) = u on Γ,

is still valid. Indeed, from (3.88) one verifies that the transposition solution belongs to the space

Ξ(Ω)
def
=
˘
(y, p) ∈ V

0(Ω) ×D′(Ω) | −ν∆y + (y · ∇)ze + (ze · ∇)y + ∇p ∈ L
2(Ω)

¯

normed with

‖(y, p)‖Ξ(Ω)
def
= ‖y‖L2(Ω) + ‖ − ν∆y + (y · ∇)ze + (ze · ∇)y + ∇p‖L2(Ω).

Moreover, we can verify that Ξ(Ω) is a Hilbert space and that V2(Ω) × H1(Ω) is dense in Ξ(Ω), and then arguing as in
[25, Thm. 6.5, Chap. 2] we can prove that χ can be extended in a unique way to a bounded operator from Ξ(Ω) onto

V−3/2(Γ). Here is the argument. According to Lemma 2, for all b ∈ V3/2(Γ) we can choose (vb, pb) ∈ V2(Ω) × H1(Ω),

which continuously depends on b ∈ V3/2(Γ) and such that χe(vb, pb) = 0 and vb = b on Γ. Thus, since an integration by
parts ensures that every (y, p) ∈ V2(Ω) × H1(Ω) obeys:

Z

Γ

χ(y, p) · b =

Z

Ω

(−ν∆vb + t(∇ze)vb − (ze · ∇)vb + ∇pb) · y −
Z

Ω

vb · (−ν∆y + (y · ∇)ze + (ze · ∇)y + ∇p),

then by taking the supremum over all b ∈ V3/2(Γ) we deduce that:

‖χ(y, p)‖
V−3/2(Γ) ≤ C(‖y‖V0(Ω) + ‖ν∆y − (y · ∇)ze − (ze · ∇)y + ∇p‖L2(Ω)),

and the conclusion follows from a density argument.

Next, we recall that m ∈ C2(Γ; R+) is a compactly supported function of Γ which is not identically equal to zero.

Proposition 3. The following equality holds:

1. For all u ∈ L2(Ω) we have Bu = bAN(mu) ∈ [V1(Ω)]′.
2. For all v ∈ V1(Ω) we have B∗v = mv|Γ.

3. For all ε ∈]0, 1/4[ we have bA−1/4−εB ∈ L(L2(Γ),V0(Ω)).

Proof. The two first statements are straightforward consequences of (3.88). Thus, from D( bA∗1/4+ε) = V1/2+2ε(Ω)

we deduce that bA∗−1/4−ε ∈ L(V0(Ω),V1/2+2ε(Ω)) and with B∗ ∈ L(V1/2+2ε(Ω),V0(Ω)) we obtain B∗ bA∗−1/4−ε ∈
L(V0(Ω),L2(Γ)). Then the third statement follows from a duality argument.

The following proposition states precisely the equivalence between formulations (3.74) and (3.70).



18

Proposition 4. Let r ∈ [0, 1] and set

W 2r
loc

def
= Wloc(V

1+2r(Ω), [V1−2r(Ω)]′) if r ≤ 1/2 and W 2r
loc

def
= Wloc(V

1+2r(Ω),V−1+2r(Ω)) if r > 1/2.

Then y ∈ W 2r
loc obeys (3.74), if and only if, there is a unique p ∈ L2

loc(H
2r(Ω)) such that (z, r) = (ze, re) + (y, p) satisfies

(3.70) for all v ∈ H1(Ω).

Proof. Let us show that formulation (3.74) implies formulation (3.70), which is the only non obvious fact to prove.
Suppose that y ∈ W 2r

loc obeys (3.74), which means that:

〈y′|v〉[D(A∗)]′,D(A∗) + a(y, v) +

Z

Γ

mΠy · v +

Z

Ω

(y · ∇y) · v = 0 ∀v ∈ D(A∗).

Since y′ ∈ L2
loc([V

1(Ω)]′) and (y · ∇y) ∈ L2
loc([H

1(Ω)]′) the above equality can be extended to v ∈ V1(Ω) with a density
argument and by Lemma 3 there exists a unique p ∈ L2

loc(L
2(Ω)) such that:

〈P∗y′|v〉[H1(Ω)]′,H1(Ω) + a(y, v) −
Z

Ω

p∇ · v +

Z

Γ

mΠy · v +

Z

Ω

(y · ∇y) · v = 0 ∀v ∈ H
1(Ω). (3.92)

In the above setting, P∗ : [V1(Ω)]′ → [H1(Ω)]′ is the extension of the injection operator P∗ : V0(Ω) → L2(Ω) (see
Remark 6) and it is obvious to see that P∗ is also bounded from [V1−2r(Ω)]′ into [H1−2r(Ω)]′ if r ≤ 1/2, or from
V−1+2r(Ω) into H−1+2r(Ω) if r > 1/2. Then y ∈ W 2r

loc implies P∗y′ + (y · ∇)y ∈ L2
loc([H

1−2r(Ω)]′) if r ≤ 1/2, or

P∗y′ +(y ·∇)y ∈ L2
loc(H

−1+2r(Ω)) if r > 1/2, and with m(Πy)|Γ ∈ H3/2(Γ) we obtain p ∈ L2
loc(H

2r(Ω)) (apply Corollary
8 with an interpolation argument). Finally, for all φ ∈ C∞

0 ((0,∞)) the following calculation
Z ∞

0

˙
P

∗y′(t)
˛̨
v
¸
[H1(Ω)]′,H1(Ω)

φ(t)dt =
˙ Z ∞

0

y′(t)φ(t)dt
˛̨
Pv
¸
[V1(Ω)]′,V1(Ω)

=

Z

Ω

„
−
Z ∞

0

y(t)φ′(t)dt

«
· Pv

= −
Z ∞

0

„Z

Ω

y(t) · Pv

«
φ′(t)dt = −

Z ∞

0

„Z

Ω

y(t) · v
«

φ′(t)dt,

ensures that
˙
P∗y′(t)

˛̨
v
¸
[H1(Ω)]′,H1(Ω)

= d
dt

R
Ω

y(t) · v. Then (3.92) becomes

d

dt

Z

Ω

y(t) · v + a(y(t), v) −
Z

Ω

p(t)∇ · v +

Z

Γ

mΠy(t) · v +

Z

Ω

(y(t) · ∇)y(t) · v = 0 ∀v ∈ H
1(Ω), ∀t ≥ 0,

and (z, r) = (y + ze, p + re) obeys the desired equation.

We are then in the framework of Section 2 with H = V0(Ω), A and bA = λ0 + A defined by (3.71), (3.76), U = L2(Γ)
and B defined by (3.72). Indeed, as required, A is the infinitesimal generator of an analytic semigroup on H and has
bounded imaginary powers (Theorem 7), the mapping B obeys (2.7) with γ ∈ (1/4, 1/2) (Proposition 3). Then problem
(2.9)-(2.10)-(2.11) with Z = V0(Ω) and R equal to the identity in V0(Ω) guarantees the existence of a self-adjoint

operator Π ∈ L(V0(Ω),D( bA∗)) which is the unique solution to the Riccati equation (3.66). Notice that such a problem
is well-posed since the finite cost condition (2.12) can be obtained from [17] with a classical extension of the domain
procedure. Then in order to obtain a local feedback stabilization theorem for system (3.74) it suffices to apply Theorem
4. But for such stabilization result to be relevant, one first need to characterize the spaces Hr

Π introduced in Theorem 3.

Proposition 5. The following equalities holds:

Hr
Π = V

2r(Ω) ∀r ∈ [0, 3/4), (3.93)

Hr
Π = {ξ ∈ V

2r(Ω) | ν
dξτ

dn
+ m(Πξ)τ = 0 on Γ} ∀r ∈ (3/4, 3/2]. (3.94)

Proof. Let us first consider the case r ∈ [0, 1]. From B = bAN and (2.35) we deduce that:

Hr
Π = {ξ ∈ V

0(Ω) | ξ + N(m(Πξ)|Γ) ∈ D( bAr)}, ∀r ∈ [0, 1].

Thus, for ξ ∈ V0(Ω) the boundedness of Π from V0(Ω) into D( bA∗) →֒ V2(Ω) combined with and boundedness property

of the trace operator yields m(Πξ)|Γ ∈ H3/2(Γ). Then (3.90) yields N(m(Πξ)|Γ) ∈ V3(Ω) →֒ V2r(Ω), and with

D( bAr) →֒ V2r(Ω) we deduce that Hr
Π is the closed subspace of V2r(Ω) defined by:

Hr
Π = {ξ ∈ V

2r(Ω) | ξ + N(m(Πξ)|Γ) ∈ D( bAr)}. (3.95)

If r ∈ [0, 3/4) then D( bAr) = V2r(Ω) and (3.93) is an obvious consequence of (3.95). If r ∈ (3/4, 1], then ξ+N(m(Πξ)|Γ) ∈
D( bAr) means that ξ + N(m(Πξ)|Γ) ∈ Vr(Ω) and ν dξτ

dn
+ ν( dN(m(Πξ)|Γ)

dn
)τ = 0. Then we obtain (3.94) by recalling that

ν( dN(m(Πξ)|Γ)
dn

)τ = m(Πξ)τ on Γ. Next, let us consider the case r ∈ (1, 3/2]. Starting from Hr
Π = {ξ ∈ H1

Π | AΠξ ∈ Hr−1
Π }

and using the fact that Hr−1
Π = V2r−2(Ω) = D( bAr−1) we first deduce that Hr

Π = {ξ ∈ H1
Π | AΠξ ∈ D( bAr−1)}. Thus,

since AΠξ ∈ D( bAr−1) is equivalent to ξ + N(m(Πξ)|Γ) ∈ D( bAr), and according to the characterization of H1
Π given by

(3.95), we deduce that Hr
Π = {ξ ∈ V1(Ω) | ξ + N(m(Πξ)|Γ) ∈ D( bAr)}. Then with N(m(Πξ)|Γ) ∈ V3(Ω) →֒ V2r(Ω) we

obtain that (3.95) remains valid for r ∈ (1, 3/2] and the conclusion follows from (3.80) with r ∈ (1, 3/2], analogously as
in the case r ∈ [0, 1].
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Finally, from (3.75) with (s1, s2, s3) = (2r, 2r, 1 − 2r) we verify that the nonlinear mapping F defined by (3.73) fits the
assumptions (2.38)-(2.39) for r ∈ (0, 1] if d = 2 and r ∈ [ 1

4
, 1] if d = 3. Then Theorem 4 provides a stabilization result

for the abstract system (3.74), and with Proposition 4 and Proposition 5 we obtain the following stabilization Theorem.

Theorem 8. Let r ∈ (0, 1]\{ 3
4
} if d = 2 or r ∈ [ 1

4
, 1]\{ 3

4
} if d = 3, and set

W 2r def
= W (V1+2r(Ω), [V1−2r(Ω)]′) if r ≤ 1/2 and W 2r def

= W (V1+2r(Ω),V−1+2r(Ω)) if r > 1/2.

Let z0 ∈ {ze} + V2r(Ω) and if r ∈ (3/4, 1] we also assume that

ν
d(z0)τ

dn
+ m(Πz0)τ = ν

d(ze)τ

dn
+ m(Πze)τ .

Then there exists µ > 0 such that if ‖z0−ze‖V2r(Ω) ≤ µ, system (3.67), (3.68), admits a solution (z, r) ∈ {ze, re}+W 2r×
L2(H2r(Ω)) which is unique within the class of functions in {ze, re} + L∞

loc(V
2r(Ω)) ∩ L2

loc(V
1+2r(Ω)) × L2

loc(H
2r(Ω)).

Moreover, for all t ≥ 0 the following estimate holds:

‖z(t) − ze‖H2r(Ω) ≤ Ce−σt‖z0 − ze‖H2r(Ω).

4. Stabilization of Boussinesq equations with feedback or dynamical Dirichlet control. In this section, we
still consider an open subset Ω of R

d with d = 2 or d = 3 with a boundary Γ of class C2,1 and we consider a trajectory
(z, r, τ) of the Boussinesq equations:

∂tz − ∆z + (z · ∇)z + ∇r = τe + f in Ω × (0, +∞), (4.96)

∇ · z = 0 in Ω × (0, +∞), (4.97)

∂τ − ∆τ + z · ∇τ = h in Ω × (0, +∞). (4.98)

In the above setting, z = z(x, t) represents the velocity of the particules of the fluid, τ = τ(x, t) their temperature,
r = r(x, t) is the pressure function, e stands for the gravity vector field, and f ∈ L2(Ω) and h ∈ L2(Ω). We consider here
the question of stabilizing (z, r, τ) around a stationary state (ze, re, τe) ∈ H2(Ω)×H1(Ω)×H2(Ω) by means of boundary

control. For ū
def
= (u1, . . . , ud) ∈ L2(Γ)

def
= (L2(Γ))d and u

def
= (ū, ud+1) ∈ (L2(Γ))d+1, we consider the Dirichlet control

z = ze + M(ū) and τ = τe + mud+1 on Γ × (0, +∞), (4.99)

where m ∈ C2(Γ; R+) is a compactly supported function of Γ which is not identically equal to zero and M is an

operator used to localize the action of the control in the support of m, see (4.105) below. Then the triplet (w, p, θ)
def
=

(z − ze, r − re, τ − τe) satisfies:

∂tw − ∆w + (w · ∇)ze + (ze · ∇)w + (w · ∇)w + ∇p = θe in Ω × (0, +∞), (4.100)

∇ · w = 0 in Ω × (0, +∞), (4.101)

∂tθ − ∆θ + w · ∇τe + ze · ∇θ + w · ∇θ = 0 in Ω × (0, +∞), (4.102)

z = M(ū) on Γ × (0, +∞), (4.103)

θ = mud+1 on Γ × (0, +∞), (4.104)

and the question of stabilizing (4.96), (4.97), (4.98) around (ze, re, τe) is equivalent to the question of stabilizing (4.100),
(4.101), (4.102) around zero.

In addition to notations of section 3, we need to define some other function spaces. Let H2r
0 (Ω)

def
= H2r(Ω)

for r ∈ [0, 1/4), let H
1
2

0 (Ω)
def
= H

1
2 (Ω) ∩ L2

− 1
2

(Ω) , where L2
−1/2(Ω) is the space of functions y ∈ L2(Ω) such that

R
Ω

dist(x, Γ)−1|y|2 dx < +∞, and let H2r
0 (Ω)

def
= {y ∈ H2r(Ω) | y = 0 on Γ} for r ∈ (1/4, 1]. Moreover, we set

H2r
0 (Ω) = [H−2r

0 (Ω)]′ for r ∈ [−1, 0]. Let us also introduce:

V
2r
n (Ω)

def
=


y ∈ H

2r(Ω) ; ∇ · y = 0 in Ω, y · n = 0 on Γ

ff
, r ≥ 0,

V
2r
0 (Ω)

def
=


y ∈ H

2r(Ω) ; ∇ · y = 0 in Ω, y = 0 on Γ

ff
, r >

1

4
,

V
2r(Γ)

def
=


y ∈ H

2r(Γ) ;

Z

Γ

y · n = 0

ff
, r ∈ [0, 1].

Moreover, we define V2r
0 (Ω) for r ∈ [0, 1

4
) by V2r

0 (Ω)
def
= V2r

n (Ω), for r = 1/4 by V
1
2

0 (Ω)
def
= { y ∈ V

1
2
n (Ω) | y ∈

(L2
−1/2(Ω))d }, and for r < 0 by V2r

0 (Ω)
def
= [V−2r

0 (Ω)]′. Notice that the subscript 0 in H2r
0 (Ω) and in V2r

0 (Ω) only means
that one may have a vanishing Dirichlet boundary condition.

In order to rewrite the system in the form (1.1), we introduce:

1. the (Leray) orthogonal projection operator P : L2(Ω) → V0
n(Ω). Notice that from the Neumann problem related

to P we can verify that P ∈ L(H2r(Ω),V2r
n (Ω)) for r ∈ [0, 1], [18, Chap. I, Thm. 1.10].
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2. the Oseen operator:

D(A1)
def
= V

2
0(Ω) and A1ϕ

def
= P (−∆ϕ + (ϕ · ∇)ze + (ze · ∇)ϕ).

Notice that −A1 is the infinitesimal generator of an analytic semigroup on V0
n(Ω), that bA1

def
= λ0 + A1 for λ0 > 0

large enough has bounded imaginary powers, that the adjoint of A1 is given by

D(A∗
1)

def
= V

2
0(Ω) and A∗

1ϕ
def
= P (−∆ϕ + t(∇ze)ϕ − (ze · ∇)ϕ),

and that D( bAα
1 ) = D( bA∗α

1 ) = V2α
0 (Ω) for α ∈ [0, 1], see for instance [5].

3. the Dirichlet operator D1 : V0(Γ) −→ V0(Ω) associated with λ0 + A1: D1v
def
= ϕ where ϕ is the solution of

λ0ϕ − ∆ϕ + (ϕ · ∇)ze + (ze · ∇)ϕ + ∇q = 0 and ∇ · ϕ = 0 in Ω, ϕ = v on Γ.

Notice that D1 ∈ L(V2r(Γ),V2r+ 1
2 (Ω)) for r ∈ [0, 3/4], see [29].

4. the localization self-adjoint operator M ∈ L(L2(Γ);V0(Γ)):

Mv
def
= m

„
v −

„Z

Γ

m

«−1„Z

Γ

mv · n
«

n

«
, (4.105)

where m ∈ C2(Γ; R+) is a compactly supported function of Γ which is not identically equal to zero. Notice that
M ∈ L(V2r(Γ),V2r(Γ)) for r ∈ [0, 1] and that Supp(M(v)) ⊂ Supp(m).

5. the input operator

B1u = bA1PD1M(ū) : (L2(Γ))d → [D(A∗)]′.

Notice that B1 obeys (2.7) with γ ∈ (3/4, 1), see [4, Prop. 2], and according to [4, Prop. 3] its adjoint is given by

B∗
1ϕ =

 
−m

dϕ

dn
+ mφ(ϕ)n

0

!
,

where φ(ϕ) is the solution to the Neumann problem:

∆φ = ∇ · (ze · ∇ − t(∇ze))ϕ in Ω,

Z

Γ

mφ = 0, (4.106)

dφ

dn
= (∆ − t(∇ze) + ze · ∇)ϕ · n on Γ. (4.107)

6. the heat type operator on L2(Ω):

D(A2)
def
= H2

0(Ω) and A2̺
def
= −∆̺ + ze · ∇̺.

Notice that since −∆ is the infinitesimal generator of a stable analytic semigroup on L2(Ω) and has bounded

imaginary powers, a perturbation argument ensures that so does − bA2 where bA2
def
= λ0 + A2 for λ0 > 0 large

enough, see [26, Chap.3, Cor.2.4] and [16, Prop. 2.7]. Moreover, the adjoint of A2 is given by

D(A∗
2) = H2

0(Ω) and A∗
2̺

def
= −∆̺ − ze · ∇̺,

and we have D( bAα
2 ) = D( bA∗α

2 ) = H2α
0 (Ω) for α ∈ [0, 1].

7. the Dirichlet operator D2 : L2(Γ) −→ L2(Ω) associated with λ0 + A2: D2b = ̺ where ̺ is the solution of

λ0̺ − ∆̺ + ze · ∇̺ = 0 in Ω, ̺ = b on Γ.

Notice that D2 ∈ L(H2r(Γ), H2r+ 1
2 (Ω)) for r ∈ [0, 3/4].

8. the input operator

B2u = −(I − P )D1M(ū) · ∇τe + bA2D2(mud+1) : (L2(Γ))d+1 → [D(A∗
2)]

′.

Notice that from the regularizing property of P , D1, M and D2 one can verify that B1 obeys (2.7) with γ ∈ (3/4, 1).
Moreover, from the expression of D∗

1 , see [29], and from the Neumann problem related to P one verifies that the
adjoint B∗

2 ∈ L(D(A∗
2), (L

2(Γ))d+1) is given by

B∗
2̺ =

„ −MD∗
1(I − P )(∇τe̺)

mD∗
2
bA∗
2̺

«
=

 
mχ(̺)n

−m
d̺

dn

!
,

where χ(̺) = χ is the unique solution to the Neumann problem:

−∆χ = ∇ · (∇τe̺) in Ω,

Z

Ω

mχ = 0, (4.108)

dχ

dn
= 0 on Γ. (4.109)
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According to [29] system (4.100), (4.101), (4.102), (4.103), (4.104) can be equivalently rewritten in the abstract form:

Pw′ + A1Pw + P (w · ∇)w − Pθe = bA1P1D1M(ū) ∈ [D(A∗
1)]

′, Py(0) = P (z(0) − ze),

(I − P )w = (I − P )D1M(ū),

θ′ + A2θ + w · ∇τe + w · ∇θ = bA2D2(mud+1) ∈ [D(A2)]
′, θ(0) = τ(0) − τe.

Then with w = Pw + (I − P )D1M(ū), by setting

G1(Pw, ū) = P ((Pw + (I − P )D1M(ū)) · ∇)(Pw + (I − P )D1M(ū)),

and

G2(Pw, ū, θ) = ((Pw + (I − P )D1M(ū)) · ∇θ,

and by renaming z(0)− ze by w0 and τ(0)− τe by θ0 for simplicity, system (4.100), (4.101), (4.102), (4.103), (4.104) can
be equivalently rewritten in the following abstract form:

Pw′ + A1Pw − Pθe + G1(Pw, ū) = B1u ∈ [D(A∗
1)]

′, Pw(0) = Pw0, (4.110)

θ′ + A2θ + Pw · ∇τe + G2(Pw, ū, θ) = B2u ∈ [D(A∗
2)]

′, θ(0) = θ0. (4.111)

Thus, we introduce:

9. the closed and densely defined linear operator on V0
n(Ω) × L2(Ω)

D(A)
def
= D(A1) ×D(A2) and A

„
ϕ
̺

«
def
=

„
A1ϕ − P̺e

A2̺ + ϕ · ∇τe

«
.

Notice that an easy verification shows that the adjoint of A is given by

D(A)
def
= D(A∗

1) ×D(A∗
2) and A∗

„
ϕ
̺

«
def
=

„
A∗

1 + ̺∇τe

A∗
2̺ − ϕ · e

«
,

and that the known properties of A1, A2 combined with a perturbation argument ensures that −A generates an

analytic semigroup on V0
n(Ω) × L2(Ω), that bA def

= λ0 + A for λ0 > 0 large enough has bounded imaginary powers

and that D( bAα) = D( bA∗α) = V2
0(Ω) ×H2α

0 (Ω), for α ∈ [0, 1].
10. the linear input operator

B
def
=

„
B1

B2

«
: (L2(Γ))d+1 → [D(A∗)]′.

Notice that from the known properties of B1 and B2, we have that B obeys (2.7) with γ ∈ (3/4, 1) and that:

bA−1B ∈ L((H2r(Γ))d+1),V2r
n (Ω) × H2r(Ω)), r ∈ [0, 1]. (4.112)

Moreover, its adjoint is given by

B∗

„
ϕ
̺

«
=

0
B@

−m
dϕ

dn
+ m(φ(ϕ) + χ(̺))n

−m
d̺

dn

1
CA

where φ(ϕ) and χ(̺) are the respective solution to (4.106), (4.107) and to (4.108), (4.109).

Next, by setting:

y
def
=

„
Pw
θ

«
, y0

def
=

„
Pw0

θ0

«
and G(y, u)

def
=

„
G1(Pw, u)

G2(Pw, u, θ)

«
,

system (4.110), (4.111) can be rewritten as follows:

y′ + Ay + G(y, u) = Bu ∈ [D(A∗)]′, y(0) = y0. (4.113)

With the change of variable y = t(P (z − ze), τ − τe) we have then transformed (4.96),(4.97),(4.98),(4.99) to the abstract
system (4.113) with y0 = t(P (z(0) − ze), τ(0) − τe). Moreover, operators A and B fit the framework of section 2 with

H = V0
n(Ω) × L2(Ω) and U = (L2(Γ))d+1: bA has bounded imaginary powers, −A generates an analytic semigroup on

H and B satisfies (2.7) for γ ∈ (3/4, 1). Notice also that the required finite cost condition (2.12) can be obtained from
the null controllability results with internal control stated in [22], by means of a usual geometrical extension procedure.

Thus, since we have D( bA1/2) = D( bA∗1/2) = V1
0(Ω) × H1

0(Ω) we can apply the abstract Theory of Subsection 2.2 with
Z = V0

n(Ω) × L2(Ω) and R equal to the identity in V0
n(Ω) × L2(Ω): for a prescribed rate σ > 0 problem (2.10), (2.11)

guarantees the existence of a self-adjoint operator Π ∈ L(V0
n(Ω) × L2(Ω),V2

0(Ω) ×H2
0(Ω)) which is the unique solution

to the Riccati equation (2.18). Notice that it will be convenient to write Π as follows:

Π =

„
π1 π∗

2

π2 π3

«
where π1 ∈ L(V0

n(Ω)), π2 ∈ L(V0
n(Ω), L2(Ω)) and π3 ∈ L(L2(Ω))

so that for ξ = t(ϕ, ̺) ∈ V0
n(Ω)×L2(Ω) we have Πξ = t(π1ϕ+π∗

2̺, π2ϕ+π3̺). Moreover, the nonlinear abstract system
subjected to the feedback control u = −B∗Πy has the following form:

y′ + AΠy + F (y) = 0, y(0) = y0, (4.114)
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where F (y)
def
= G(y,−B∗Πy). In a way similar to what is done in [4, Cor. 6] one can prove that the space Hr

Π
def
= D(Ar

Π) is
a closed linear subspace of V2r

n (Ω)×H2r(Ω) when r ∈ [0, 1]. More precisely, as in [4] on can prove that when r 6= 1/4 we

have Hr
Π = {(Pϕ, ̺) | (ϕ, ̺) ∈ Ξ2r

Π (Ω)}, where for r ∈ [0, 1/4) we have Ξ2r
Π (Ω)

def
= V2r(Ω) × H2r(Ω), and for r ∈ (1/4, 1]

the space Ξ2r
Π (Ω) is composed with elements (ϕ, ̺) ∈ V2r(Ω) × H2r(Ω) which satisfy the trace condition

ϕ = m2 d

dn
(π1Pϕ + π∗

2̺) − m2(φ((π1Pϕ + π∗
2̺)) + χ((π2Pϕ + π3̺)))n on Γ,

̺ = m2 d̺

dn
on Γ.

Then since the nonlinear mappings w 7→ (w · ∇)w and (w, θ) 7→ w · ∇θ satisfy the following estimates for r ∈ ( d−2
4

, 1
2
]:

‖(w · ∇)w‖H2r−1(Ω) ≤ C‖w‖H2r(Ω)‖w‖H1+2r(Ω), (4.115)

‖w · ∇θ‖H2r−1(Ω) ≤ C‖w‖H2r(Ω)‖θ‖H1+2r(Ω), (4.116)

we can deduce that y 7→ F (y) obeys (2.38)-(2.39) for r ∈ ( d−2
4

, 1
2
], and Theorem 4 provides a local stabilization result

for system (4.114) with y0 ∈ Hr
Π and r ∈ ( d−2

4
, 1

2
]. Then with an easy adaptation of [4, Thm. 12] one can obtain a

stabilization theorem for system (4.96), (4.97), (4.98) with the boundary condition

z − ze = m2 d

dn
(π1P (z − ze) + π∗

2(τ − τe)) (4.117)

−m2(φ((π1P (z − ze) + π∗
2(τ − τe))) + χ((π2P (z − ze) + π3(τ − τe))))n on Γ × (0, +∞),

τ − τe = m2 d(τ − τe)

dn
on Γ × (0, +∞), (4.118)

and with initial data

z(0) = z0 and τ(0) = τ0. (4.119)

Theorem 9. Let r ∈ ( d−2
4

, 1
2
]\{ 1

4
} and (z0, τ0) ∈ {(ze, τe)} + V2r(Ω) × H2r(Ω). If r > 1

4
we also assume that (z0 −

ze, τ0 − τe) ∈ Ξ2r
Π (Ω), which is to say that the following initial compatibility conditions are satisfied:

z0 − ze = m2 d

dn
(π1P (z0 − ze) + π∗

2(τ0 − τe)) (4.120)

−m2(φ((π1P (z0 − ze) + π∗
2(τ − τe))) + χ((π2P (z0 − ze) + π3(τ0 − τe))))n on Γ,

τ0 − τe = m2 d(τ0 − τe)

dn
on Γ. (4.121)

Then there exist ρ > 0 and µ > 0 such that, if δ ∈ (0, µ) and ‖P (z0 − ze)‖H2r(Ω) + ‖τ0 − τe‖H2r(Ω) ≤ δ, system (4.96),
(4.97), (4.98), (4.117), (4.118), (4.119) admits a solution (z, r, τ) in

{(ze, re, τe)} + L2(V1+2r(Ω)) ∩ H1/2+r(L2(Ω)) × H−1/2+r(H2r(Ω)/R) × W (H2r+1(Ω), H2r−1(Ω)),

which is unique within the class of function in

{(ze, re, τe)} + L2
loc(V

1+2r(Ω)) ∩ H
1/2+r
loc (L2(Ω)) × H

−1/2+r
loc (H2r(Ω)/R) × Wloc(H

2r+1(Ω), H2r−1(Ω)).

Moreover, for all t ≥ 0 the following estimate holds:

‖z(t) − ze‖H2r(Ω) + ‖τ(t) − τe‖H2r(Ω) ≤ Ce−σt(‖z0 − ze‖H2r(Ω) + ‖τ0 − τe‖H2r(Ω)).

According to the above theorem, to define a solution to system (4.96), (4.97), (4.98), (4.117), (4.118), (4.119) when
d = 3 one must impose the initial velocity to fit the feedback trace condition (4.120), (4.121). Since such a condition is

very restrictive in practice, another strategy consists in looking for a control function u
def
= (ū, ud+1)

def
= (u1, . . . , ud+1)

itself solution to an evolution equation:

∂tui − ∆Γui = gi in Γ × (0, +∞), i = 1, . . . , d + 1, (4.122)

where g
def
= (g1, . . . , gd+1) plays the role of a control function for the whole system (4.96), (4.97), (4.98), (4.122). In the

above setting, ∆Γ denotes the Laplace Beltrami operator. Then if we consider (4.122) with the initial condition u(0) = 0,
every initial datum obeying z0 = ze and τ0 = τe on Γ would fit the initial compatibility conditions z0 − ze = Mū(0) and
τ0 − τe = mud+1(0) on Γ. It then allows to define a fixed-point solution to the Boussinesq system, see the introduction of
[3] for the particular case of Navier-Stokes equations. In the following, we apply the framework of section 2.3 to contruct
a stabilizing control g in the feedback form:

g(t) = F(z(t) − ze, τ(t) − τe, u) ∀t ≥ 0.

Let us denote by ∆b the vectorial Laplace Beltrami operator, i.e. (∆bu)i = ∆Γui, for all i = 1, . . . , d + 1, and let us
introduce:



23

11. the unbounded operator E on U
def
= (L2(Γ))d+1:

D(E) = (H2(Γ))d+1 and Eu = −∆bu.

Notice that E is self-adjoint, that −E is the infinitesimal generator of an analytic semigroup on (L2(Γ))d+1, that

bE def
= λ0 + E for λ0 > 0 has bounded imaginary powers and that D( bEα) = D( bE∗α) = (H2α(Γ))d+1 for α ∈ [0, 1].

Thus, (4.122) can be simply rewritten as

u′ + Eu = g,

and Subsection 2.3 applies with A defined from the pair (A, B) which has been introduced above, and for R given in
Remark 4 with R and Θ equal to the identity in V0

n(Ω)×L2(Ω) and in (L2(Γ))d+1 respectively. Indeed, the assumption

B∗ bA∗−1 ∈ L(H
1/2
∗ , U

1/2
∗ ) = L(V1

0(Ω) ×H1
0(Ω), (H1(Γ))d+1) is a consequence of regularity results for the Oseen and for

the heat equation which guarantees that D(A∗3/2) →֒ V3
0(Ω) × H3(Ω) and then B∗(D(A∗3/2)) →֒ U1/2 = (H1(Γ))d+1.

Notice that the finite cost condition (2.52) can be obtained from the null controllability result [22], by using Theorem 6,
if we additionally assume that Γ is of class C3,1. Indeed, with such an assumption regularity results for the Oseen and for
the heat equation guarantee D(A∗2) →֒ V4

0(Ω) × H4(Ω) and that B∗(D(A∗2)) →֒ U1
∗ = (H2(Γ))d+1. As a consequence,

for a prescribed rate σ > 0 we have the existence of a self-adjoint operator Π ∈ L(H, H1
∗) which is the unique solution to

the Riccati equation (2.53). Notice that it will be convenient to write Π as follows:

Π =

0
@

π1 π∗
2 π∗

3

π2 π4 π∗
5

π3 π5 π6

1
A ∈ L(V0

n(Ω) × L2(Ω) × (L2(Γ))d+1,V2
0(Ω) ×H2

0(Ω) × (H2(Γ))d+1),

with π1 = π∗
1 ∈ L(V0

n(Ω)), π2 ∈ L(V0
n(Ω), L2(Ω)), π3 ∈ L(V0

n(Ω), (L2(Γ))d+1), π4 = π∗
4 ∈ L(L2(Ω)), π5 ∈ L(L2(Ω), (L2(Γ))d+1)

and π6 = π∗
6 ∈ L((L2(Γ))d+1). In terms of the notations (2.57) we have the following correspondances:

Π1 =

„
π1 π∗

2

π2 π4

«
, Π2 =

`
π3 π5

´
and Π3 = π6.

Then (2.58), (2.59) with u0 = 0 can be rewritten as (4.96), (4.97), (4.98) with the following boundary conditions

z = ze + M(ū) and τ = τe + mud+1 on Γ × (0, +∞), (4.123)

and

∂tu − ∆bu + π6u + π3P (z − ze) + π5(τ − τe) = 0 in Γ × (0, +∞), (4.124)

and with the following initial conditions

z(0) = z0, τ(0) = τ0 and u(0) = 0. (4.125)

Finally, from (4.112) we deduce that the space H
r for r ∈ [0, 1] (defined in (2.48), (2.46)) is the closed subspace of

V2r
n (Ω) × H2r(Ω) × (H2r(Γ))d+1 defined by:

H
r = { (Pϕ, ̺, u) | (ϕ, ̺, u) ∈ V

2r(Ω) × H2r(Ω) × (H2r(Γ))d+1 s. t. ϕ = M(ū) and ̺ = ud+1 on Γ }, r ∈ [0, 1],

and that H
−r = V−2r

0 (Ω) ×H−2r
0 (Ω) × (H−2r(Γ))d+1 for r ∈ [0, 1]. Then it follows that (2.55), (2.56) can be obtained

from (4.115), (4.116) and the following stabilization theorem follows from corollary 7.

Theorem 10. Assume that Γ is of class C3,1, let r ∈ ( 1
4
, 1

2
] and (z0, τ0) ∈ {(ze, τe)} + V2r

0 (Ω) × H2r
0 (Ω). There exist

ρ > 0 and µ > 0 such that, if δ ∈ (0, µ) and ‖z0 − ze‖H2r(Ω) + ‖τ0 − τe‖H2r(Ω) ≤ δ, system (4.96), (4.97), (4.98), (4.123),
(4.124), (4.125) admits a solution (z, r, τ, u) in

{(ze, re, τe, 0)} + W (V2r+1(Ω),V2r−1
0 (Ω)) × H−1/2+r(H2r(Ω)/R)

×W (H2r+1(Ω), H2r−1(Ω)) × W ((H2r+1(Γ))d+1, (H2r−1(Γ))d+1),

which is unique within the class of function in

{(ze, re, τe, 0)} + Wloc(V
2r+1(Ω),V2r−1

0 (Ω)) × H
−1/2+r
loc (H2r(Ω)/R)

×Wloc(H
2r+1(Ω), H2r−1(Ω)) × Wloc((H

2r+1(Γ))d+1, (H2r−1(Γ))d+1).

Moreover, for all t ≥ 0 the following estimate holds:

‖z(t) − ze‖H2r(Ω) + ‖τ(t) − τe‖H2r(Ω) + ‖u(t)‖(H2r(Γ))d+1 ≤ Ce−σt(‖z0 − ze‖H2r(Ω) + ‖τ0 − τe‖H2r(Ω)).
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volume 52 of Mathématiques & Applications (Berlin) [Mathematics & Applications]. Springer-Verlag, Berlin, 2006.

[15] P. Constantin and C. Foias. Navier-Stokes equations. Chicago Lectures in Mathematics. University of Chicago Press, Chicago,
IL, 1988.

[16] R. Denk, M. Hieber, and J. Prüss. R-boundedness, Fourier multipliers and problems of elliptic and parabolic type. Mem.
Amer. Math. Soc., 166(788):viii+114, 2003.

[17] E. Fernández-Cara, S. Guerrero, O. Yu. Imanuvilov, and J.-P. Puel. Local exact controllability of the Navier-Stokes system. J.
Math. Pures Appl. (9), 83(12):1501–1542, 2004.

[18] V. Girault and P.-A. Raviart. Finite element methods for Navier-Stokes equations. Theory and algorithms, volume 5 of Springer
Series in Computational Mathematics. Springer-Verlag, Berlin, 1986.
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