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We consider a random walk S in the domain of attraction of a standard normal law Z, ie there exists a positive sequence a n such that S n /a n converges in law towards Z. The main result of this note is that the rescaled process (S ⌊nt⌋ /a n , t 0) conditioned to stay non-negative, to start and to come back near the origin converges in law towards the normalized brownian excursion.

Introduction and the main result

It is a classical result that if a random walk S is in the domain of attraction of the standard normal law with norming sequence a n , the rescaled process (S ⌊nt⌋/an ) t 0 converges in law towards the brownian motion (see [START_REF] Billingsley | Convergence of probability measures[END_REF]). Denoting by S * , P x the random walk starting from x and conditioned to stay always positive (one can make sense of such a definition by means of a so called h-transform), it has recently been shown in [START_REF] Doney | A functional limit theorem for random walk conditioned to stay non-negative[END_REF] and in [START_REF] Caravenna | Invariance principles for random walks conditioned to stay positive[END_REF] that if x/a n vanishes as n → ∞, the corresponding rescaled process converges in law towards the brownian meander. A natural question related to these results is whether conditioning on a late return near the origin (ie on {S * n = y} with y/a n → 0 as n → ∞) implies the convergence of (S * , P x ) towards the brownian excursion.

Extending previous results from [START_REF] Doney | A functional limit theorem for random walk conditioned to stay non-negative[END_REF], we show in this paper that such a convergence holds. Before stating precisely our main results, we recall the essentials of the conditioning to stay positive for an oscillating random walk.

Conditioning a random walk to stay positive

Let S n = X 1 + . . . + X n be an integer valued aperiodic random walk. We write P x the law of S started at x and for convenience we put P = P 0 .

Next we introduce the strict descending ladder process (T - k , H - k ) k 0 by setting (T - 0 , H - 0 ) = (0, 0) and

T - k+1 := min{j > T - k |S j < S T - k }, H - k+1 = -S T - k+1
.

(1.1)

Note that under P, (T -, H -) is a bivariate renewal process, that is a random walk on (Z + ) 2 with step law supported on the first quadrant. The sequence T -is the sequence of the so called (strictly) descending ladder epochs, the sequence H -the sequence of descending ladder heights.

We denote by V (•) the renewal function associated to H -, that is the positive function defined by V (x) :=

k 0 P(H - k x).
(1.2)

Note in particular that V (y) is the expected number of ladder points in the stripe [0, ∞) × [0, y]. It follows that it is a subadditive and increasing function.

The killed random walk S is a Markov chain defined in the following way. Let τ (-∞,0) denote the first entrance time of S into the negative half plane. Introducing {∆} a cimetery state, for every n, S n := S n 1 τ (-∞,0) >n + ∆1 τ (-∞,0) n .

(1.3)

Then we denote S conditioned to stay non negative by S * n = n i=1 X * i . In our integer valued oscillating case this is a Markov chain on Z + whose law is defined for any n ∈ N and for any B ∈ σ(S 1 , . . . , S n ) by:

P * x [B ∩ {S n = y}] := V (y) V (x) P x [B ∩ {S n = y} ∩ C n ] = V (y) V (x) P x [B ∩ { S n = y}], (1.4) 
where C n = {S 1 0, . . . , S n 0}. The terminology is justified by the following weak convergence result

P * x = lim n→∞ P x (•|C n ) (1.5)
which is proved in [START_REF] Bertoin | On conditioning a random walk to stay nonnegative[END_REF], Theorem 1.

A convergence towards the brownian excursion

From now on, we will always assume that S lies in the domain of attraction of the standard normal law. This means that the sequence (X k ) is iid and that for a suitable norming sequence (a n ) one has the weak convergence

S n /a n ⇒ φ(x)dx, φ(x) := 1 √ 2π e -x 2 /2 . (1.6)
In particular this is the case when E[X 1 ] = 0 and E[X 2 1 ] =: σ 2 < ∞ with a n = σ √ n by the central limit theorem. By standard theory of stability, (see [START_REF] Feller | An introduction to probability theory and its applications[END_REF] IX.8 and XVII.5) for (1.6) to hold it is necessary and sufficient that E[X 1 ] = 0, that the truncated variance Φ(t

) := E[X 2 1 1 |X 1 | t ]
is slowly varying at infinity (that is Φ(ct) Φ(t) → 1 as t → ∞ for any c > 0 ) and that the sequence a n satisfies a 2 n ∼ nΦ(a n ) as n → ∞. We define Ω as being the space D([0, 1], R) the set of càdlàg functions on [0, 1] endowed with the standard Skorohod topology (see [START_REF] Billingsley | Convergence of probability measures[END_REF]) and for n ∈ Z + , we define the application X n by:

X n : Z n -→ Ω (u 1 , . . . , u n ) → [nt] i=1 u i an t∈[0,1]
.

(1.7)

For x, y positive integers, we denote by P * ,x,y n the law of S * conditionally on the event {S * 0 = x, S * n = y}, and we define the probability laws on Ω:

Q x,y n := P * ,x,y n • (X n ) -1 . (1.8)
We can now state our main result:

Theorem 1.1. Let x n and y n be positive integer valued sequences such that x n /a n → 0 and y n /a n → 0. Then, as n → ∞, the following convergence holds in Ω:

Q xn,yn n ⇒ e (1.9)
where e denotes the law of the normalized brownian excursion.

The proof of this result will follow the standard procedure of showing finite dimensional convergence and tightness.

Some motivations and a short overview of the literature

The study of invariance principles for random walks is a very classical topic in probability (classical references are [START_REF] Skorohod | Limit theorems for stochastic processes with independent increments[END_REF], [START_REF] Billingsley | Convergence of probability measures[END_REF]). Extending these invariance principles to conditioned random walks is far from being straightforward. Sometimes a clever representation can considerably simplify the proofs (like in [START_REF] Bolthausen | On a functional central limit theorem for random walks conditioned to stay positive[END_REF], [START_REF] Doney | Conditional limit theorems for asymptotically stable random walks[END_REF] for the convergence towards the meander), but generally speaking such an issue demands some technical efforts, see [START_REF] Iglehart | Functional central limit theorems for random walks conditioned to stay positive[END_REF] for a convergence towards the meander or [START_REF] Liggett | An invariance principle for conditioned sums of independent random variables[END_REF] for the brownian bridge.

The more particular case of convergence towards the brownian excursion for the conditioned simple random walk conditioned by a late return to zero has first been proved in [START_REF] Durrett | Weak convergence to Brownian meander and Brownian excursion[END_REF]. Their results have been extended to the case where S has finite variance in [START_REF] Kaigh | An invariance principle for random walk conditioned by a late return to zero[END_REF].

A related result to ours that will turn out to be quite useful in our proofs is the convergence towards the brownian meander of a random walk in the domain of attraction of the normal law starting from x n where x n is o(a n ) conditioned on C n (see [START_REF] Shimura | A class of conditional limit theorems related to ruin problem[END_REF]Remark 4]). Combining tightness arguments and local limit estimates, this result has been extended to the case where S is conditioned to stay positive by [START_REF] Doney | A functional limit theorem for random walk conditioned to stay non-negative[END_REF], and their results in turn have been extended by quite different and somewhat lighter techniques in [START_REF] Caravenna | Invariance principles for random walks conditioned to stay positive[END_REF] to the case where S is in the domain of attraction of a stable law with index α ∈ (0, 2] and with positivity parameter ρ ∈ (0, 1). Lacking a suitable representation under the form of an h-transform for the brownian excursion, our methods follow the same path as in [START_REF] Doney | A functional limit theorem for random walk conditioned to stay non-negative[END_REF].

Besides the interest they have in their own, invariance principles are important in view of their applications. Let us mention one of them which is actually the main motivation of this paper. Consider the following homogeneous polymer model (a by now classical reference for polymer models is [START_REF] Giacomin | Random polymer models[END_REF]): for N ∈ N, y ∈ R + , a > 0 and ε ∈ R, we set

dP c N,a,ε dP := 1 Z N,a,ε exp ε N i=1 1 S i ∈[0,a] 1 S N ∈[0,a] (1.10)
where P is an aperiodic Z valued random walk in the domain of attraction of the standard normal law. The law P c N,a,ε may be viewed as an effective model for a (1 + 1) dimensional interface above a wall with homogeneous impurities which are concentrated in the stripe [0, ∞) × [0, a]. These impurities are either attracting or repelling the interface (depending on the sign of ε).

One standard goal related to this kind of models is to find the asymptotic behavior of the typical paths in the limit N → ∞ and to study their dependence on ε and a. These limits have been resolved in the thesis [START_REF] Sohier | On pinning phenomena and random walk fluctuation theory[END_REF].

A common feature shared by this model and the classical homogeneous one is that the measure P c N,a,ε exhibits a remarkable decoupling between the contact level set I N := {i N, S i ∈ [0, a]} and the excursions of S between two consecutive contact points (see [START_REF] Deuschel | Scaling limits of equilibrium wetting models in (1 + 1)-dimension[END_REF] for more details in the standard homogeneous pinning case). In fact, conditionally on I N = {t 1 , . . . , t k } and on (S t 1 , . . . , S t k ), the bulk excursions e i = {e i (n)} n := {S t i +n } 0 n t i+1 -t i are independent under P c N,a,ε and are distributed like the random walk (S,

P St i ) conditioned on the event S t i+1 -t i ∈ [0, a], S t i +j > a, j ∈ {1, . . . , t i+1 -t i -1} .
It is therefore clear that to extract scaling limits on P c N,a,ε , one has to combine good control over the law of the contact set I N and suitable asymptotics properties of the excursions, and for this the utility of Theorem 1.1 emerges (see chapter 3 of the thesis [START_REF] Sohier | On pinning phenomena and random walk fluctuation theory[END_REF] for details).

Outline of the paper

The exposition of this paper will be organized as follows: 4 -in Section 2, we collect some preliminary facts.

-in Section 3, we discuss finite dimensional convergence and state our main technical lemma.

-in Section 4, we prove Lemma 3.1, which implies the finite dimensional convergence in Theorem 1.1.

-in Section 5, we show the tightness of the sequence of measures (Q xn,yn n

) n , thus proving Theorem 1.1.

-in Section 6, we give a uniform equivalence for the tails of the random variable τ (-∞,0) under the law P xn . This estimate is widely used in sections 4 and 5.

2 Some preliminary facts

Regular varying sequences

Throughout this note, for positive sequences α n and β n , we use the notation α n ∼ β n to indicate that α n /β n → 1 as n → ∞. Following Doney's terminology, for positive measurable functions g, h on R + , we will often say that the equivalence

g(x n ) ∼ h(x n ) (2.1)
is true uniformly on the sequences x n such that x n /a n → 0. By this we mean that, given any positive sequence ε n such that ε n → 0 as n → ∞, the convergence

g(x n ) h(x n ) → 1 (2.2)
holds uniformly for every sequence x n ∈ ∆ εn where

∆ εn := {y ∈ Z N , ∀n 0, y n ∈ [0, ε n a n ]}. (2.3)
A positive sequence d n is said to be slowly varying with index α ∈ R (which we denote by

d n ∈ R α ) if d n ∼ L n n α where L n is slowly varying at infinity that is for every positive t, lim n→∞ L [nt] Ln = 1. If d n ∈ R α ,
we can (and will always assume) that

d n = d(n) where d(•) is a continuous strictly monotone function whose inverse will be denoted d -1 (•) (see [BGT89, Theorem 1.5.3]). Observe that if d n ∈ R α , d -1 (n) ∈ R 1/α and 1/d n ∈ R -α .
The following basic uniform convergence property ([BGT89, Theorem 1.2.1]) will be often used in the sequel; if d n ∈ R α , then for every fixed ε > 0

d [tn] = t α d n (1 + o(1)) (2.4) uniformly for t ∈ [ε, 1/ε].

Fluctuation theory

In a similar way as for the descending ladder process, one can define the weak ascending bivariate renewal process (

T + k , H + k ) k as T + 0 := 0, T k+1 := min{j > T + k , S j S T + k }, H + k := S T + k and U(x) := k 0 P(H + k x). (2.5)
It is known that S 1 is in the domain of attraction (without centering) of a stable law if and only if (T - 1 , H - 1 ) lies in a bivariate domain of attraction (see for example [START_REF] Doney | On the joint distribution of ladder variables of random walk[END_REF]). We can specialize this fact to our setting. By hypothesis, S 1 lies in the domain of attraction of the standard normal law, so that by standard fluctuation theory, a n ∈ R 1/2 . We then define two sequences

log( n √ 2 ) = ∞ m=1 P[S m < 0] m e -m bn , c n := a(b n ). (2.6) Then b n ∈ R 2 , c n ∈ R 1 and we have the weak convergence T - n b n , H - n a n ⇒ Z, P[Z ∈ (dx, dy)] = e -1/2x √ 2πx 3/2 1 x 0 δ 1 (dy), (2.7) 
where δ 1 (dy) denotes the Dirac measure at y = 1. Note in particular that, like in the simple random walk case,

T - 1 is attracted to Y , the stable law of index 1/2. T - n b n ⇒ Y, P[Y ∈ dx] = e -1/2x √ 2πx 3/2 1 x 0 .
(2.8)

We recall also that b n is sharply linked to the tails of T - 1 by the relation

P[T - 1 > b n ] ∼ 2 π 1 n (2.9)
and it is known that this is a necessary and sufficient relation in order for b n to be such that T - n /b n ⇒ Y . Equation (2.7) also implies that the process (H -) follows a generalized law of large numbers, namely

H - n cn ⇒ 1 (H -
1 is said to be relatively stable). Consequently the following equivalence holds (see [BGT89, Theorem 8.8.1])

V (x) ∼ c -1 (x) =: x l -(x) (2.10)
where l -(•) is slowly varying at infinity. In a similar way, one can prove that the equivalence

U(x) ∼ x l + (x) (2.11)
is verified for some slowly varying function l + (•).

2.3

The duality lemma and local limit estimates

Let v(•, •) be the renewal mass function of the bivariate renewal process (H

-, T -), that is v(n, x) := k P[T - k = n, H - k = x]
(2.12) and u(•, •) its counterpart for the process (H + , T + )

u(n, x) := k P[T + k = n, H + k = x].
(2.13)

The power of fluctuation theory for the study of random walks is linked to some fundamental identities, the most famous one being the so called "duality lemma" (see [START_REF] Feller | An introduction to probability theory and its applications[END_REF] Chapter XII] ):

P[C n , S n ∈ dx] = P[n is a ladder epoch, S n ∈ dx] = u(n, x) (2.14)
where by the event {n is a ladder epoch} we mean of course the disjoint union of the events

∪ k {T + k = n}.
The following equivalence about the asymptotics of u(•, •) has been shown independently in [START_REF] Caravenna | A local limit theorem for random walks conditioned to stay positive[END_REF] and in [START_REF] Doney | A functional limit theorem for random walk conditioned to stay non-negative[END_REF]. Note that for the later, it is the chore of the proof of their main result.

Lemma 2.1. Uniformly for 0 y n Ka n , one has the following equivalence:

P[ S n = y n ] = u(n, y n ) ∼ U(y n ) n P[S n = y n ].
(2.15)

3 Finite dimensional convergence in Theorem 1.1

The law of the renormalized brownian excursion

For x, y, t > 0, we define q t (x, y) the transition function of the killed Brownian motion, that is

q t (x, y) := 1 √ t r( x √ t , y √ t )
where r(u, v) := 2 π sinh(uv) exp(-

u 2 + v 2 2 ), (3.1) 
and the following transition function :

l t (y) := 1 t r 0 ( y √ t ) where r 0 (v) := 1 2π v exp(- v 2 2 ). (3.2)
It is well known that (see [START_REF] Borodin | Handbook of Brownian motion-facts and formulae[END_REF]) for k ∈ N, 0 < t 1 < . . . < t k < 1 and f ∈ C b ([0, 1] k , R), one has:

e(f (ω t 1 , . . . , ω t 1 )) = 2 √ 2π (R + ) k f (x 1 , . . . , x k )l t 1 (x 1 ) . . . q t k -t k-1 (x k-1 , x k )l 1-t k (x k )dx 1 . . . dx k .
(3.3)

To get Theorem 1.1, we have to show finite dimensional convergence, that is we show that for every positive integer k, (t 1 , . . . , t k )

∈ (0, 1) k , f ∈ C b ((R + ) k , R): E xn [f ( S * ⌈nt 1 ⌉ an , . . . , S * ⌈nt k ⌉ an )1 S * n =yn ] P xn [S * n = y n ] → 2 √ 2π R + f (x 1 , . . . , x k )l t 1 (x 1 )q t 2 -t 1 (x 1 , x 2 ) . . . l 1-t k (x k )dx 1 . . . dx k (3.4)
as n → ∞.

3.2

Getting the convergence (3.4)

Our main tool to get this convergence is the following result which we prove in part 4:

Lemma 3.1. For K > 0, uniformly in x n /a n → 0 as n → ∞ and in y n such that y n /a n ∈ [0, K], one has the following equivalence:

P xn ( S n = y n ) ∼ V (x n )U(y n ) n P(S n = y n ). (3.5)
The next result is a consequence of the Wiener Hopf factorization, it has been shown in [START_REF] Doney | A functional limit theorem for random walk conditioned to stay non-negative[END_REF] and it will turn out to be useful numerous times in the sequel. Lemma 3.2. Let K > 0. Uniformly in the sequences (x n ) n 0 , (y n ) n 0 such that x n /a n ∈ [0, K], y n /a n ∈ [0, K], one has the following equivalence:

U(x n )V (y n ) n = 2 x n a n y n a n + o(1) as n → ∞ (3.6)
Lemma 3.1 straightforwardly implies the equivalence:

P xn (S * n = y n ) ∼ U(y n )V (y n ) n P[S n = y n ]. (3.7)
Of course, S * is not reversible. Nevertheless, using time reversal, combining Lemma 3.2 and the equivalence (3.7) straightforwardly imply the following:

Lemma 3.3. For K > 0, uniformly in x n /a n ∈ [0, K] and in y n such that y n /a n → 0 as n → ∞, one has the following equivalence:

P xn (S * n = y n ) ∼ 2 y 2 n a 2 n P(S n = x n ) ∼ 2 y 2 n a 2 n φ(x n /a n ) a n . (3.8)
We finally recall the following proposition from [BJD06]:

Proposition 3.4. Suppose x n and y n are integers such that

x n /a n → u > 0, y n /a n → v > 0 (3.9)
as n → ∞. Then one has the convergence:

a n P[ S n = y n ] → r(u, v) (3.10)
It is then easy to check that combining the Lemmas 3.1, 3.2, 3.3 and the Proposition 3.4, one gets the convergence in (3.4), so that finite dimensional convergence in Theorem 1.1 holds.

4 Proof of Lemma 3.1

4.1

The case where y n /a n is bounded away from zero

We first assume that there exists ε > 0 such that for every n, y n /a n ε.

We define m n := inf{S j , j n} and µ n := inf{j n, S j = m} and their all time counterparts m = inf{S j , j 0} and µ := inf{j 0, S j = m}. Let η > 0 be fixed.

Alili and Doney have used the following equality in [START_REF] Alili | Martin boundaries associated with a killed random walk[END_REF], it is an easy consequence of the duality lemma: We first treat the first term in the right hand side of the above equality. The assumptions on x n , y n imply that for large enough n, x n ∧ y n = x n . Using Lemma 2.1, for large enough n, we get that:

ηn j=0 xn∧yn k=0 v(j, x n -k)u(n -j, y n -k) ∼ ηn j=0 xn k=0 v(j, x n -k) U(y n -k)P k [S n-j = y n ] n -j (4.2)
as n → ∞, so that:

g n (η) ηn j=0 xn k=0 v(j, k) n U(y n )P[S n = y n ] ηn j=0 xn k=0 v(j, x n -k) U(y n -k)P k [S n-j = y n ] n -j f n (η) ηn j=0 xn k=0 v(j, k) (4.3)
where we defined

f n (η) := sup j ηn,k∈[0,xn] U(y n -k)P k [S n-j = y n ] (1 -η)U(y n )P[S n = y n ] (4.4) and g n (η) := inf j ηn,k∈[0,xn] U(y n -k)P k [S n-j = y n ] U(y n )P[S n = y n ] . (4.5)
Using the standard local limit theorem and equivalence (2.10), one gets easily that lim ηց0 lim sup n→∞ f n (η) = lim ηց0 lim inf n→∞ g n (η) = 1. Thus we are left with showing that

ηn j=0 xn k=0 v(j, k) ∼ V (x n ). (4.6) Note that of course ∞ j=0 xn k=0 v(j, k) = V (x n ), (4.7)
so that we just have to show that

j>ηn xn k=0 v(j, k) V (x n ) → 0 (4.8)
as n → ∞ uniformly on x n such that x n /a n → 0. For this, we note that Lemma 2.1 implies

v(n, x) ∼ V (x)P[S n = -x] n (4.9)
as n → ∞ uniformly on x ∈ [0, Ka n ] where K > 0 , so that Using the fact that V (•) is increasing and the standard local limit theorem (here and later c is a positive constant which may vary from line to line):

j>ηn xn k=0 v(j, k) V (x n ) c j>ηn xn k=0 φ(k/a j ) ja j c j>ηn x n ja j . (4.11)
Finally, as a n ∈ R 1/2 , using property (2.4) it is easy to see that

j>ηn a n ja j ∼ ∞ η
x -3/2 dx (4.12) and this entails (4.6). To conclude the case where y n /a n is bounded away from zero, we are left with showing that for any η > 0, one has:

lim sup n→∞ nP xn [ S n = y n ; µ n ηn] V (x n )U(y n )P[S n = y n ] = 0 (4.13)
as n → ∞. By the standard local limit theorem, there exists a, b > 0 such that a a n P[S n = y n ] b. Using Lemma 3.2, we get that: Then we fix θ ∈ (η, 1) and we have:

nP xn [ S n = y n ; µ n ηn] V (x n )U(y n )P[S n = y n ] = nP * xn [S n = y n ; µ n ηn] V (y n )U(y n )P[S n = y n ] ca n P * xn [S n = y n ; µ n ηn] ε 2 (4.
a n P * xn [S n = y n ; µ n ηn] = a n P * xn [ηn µ n θn]
(1)

+ a n P * xn [µ n > θn] (2) 
.

(4.16)

Making use of the Markov property, one gets:

(1) = a n θn j=ηn xn k=0

P * xn [µ n = j, m n = k] P * k S n-j = y n , min l n-j S l k a n θn j=ηn xn k=0 P * xn [µ n = j, m n = k] V (y n ) V (k) P k S n-j = y n , min i n-j S i k .
(4.17)

Noting that one has the equality P k S n-j = y n , min i n-j S i k = P S n-j = y n -k , we get (note that V (k) 1 for every k):

(1) a n θn j=ηn xn k=0

P * xn [µ n = j, m n = k] V (y n )P S n-j = y n -k . (4.18)
Making use of Lemma 3.2, of Lemma 2.1 and of the fact that x n /a n → 0 as n → ∞, we get :

(1) ca n θn j=ηn xn k=0

P * xn [µ n = j, m n = k] U(y n )V (y n ) n -j P[S n-j = y n -k] cK 2 θn j=ηn P * xn [µ n = j] n n -j a n P[S n-j = y n ]. (4.19)
Making use of the standard local limit theorem, we have easily:

(1) cK 2 (1 -θ) -3/2 P * xn [µ n ηn] . (4.20) 
Evidently, for every n, one has µ n µ, so that

P * xn [µ n ηn] P * xn [µ ηn], (4.21) 
and it has been shown in [BJD06, Theorem 5.1] that for every η > 0, uniformly in the sequences x n such that x n /a n → 0 as n → ∞, the quantity P * xn [µ ηn] vanishes as n → ∞.

For the second term in (4.16), we will need the following result which has been proved in [START_REF] Doney | A functional limit theorem for random walk conditioned to stay non-negative[END_REF]: Proposition 4.1. For any κ > 0, for x n /a n → 0 as n → ∞, one has the following convergence:

P * xn max j µ S j κa n → 0. (4.22)
We give us κ ∈ (0, ε) and for n > 0, we note τ := inf{j 0, S j κa n }. Then we have:

(2) = a n P * xn [µ n ηn, S n = y n , τ θn]

(3)

+ a n P * xn [µ n ηn, S n = y n , τ < θn] (4) 
.

(4.23)

Making use of the Markov property, we have:

(3) a n κan j=0

P * xn max i θn S i κa n , S θn = j, S n = y n a n V (y n ) V (x n ) κan j=0 P xn max i θn S i κa n , S θn = j P j S (1-θ)n = y n a n V (y n ) V (x n ) κan j=0 P xn max i θn S i κa n , τ (-∞,0) > θn, S θn = j P S (1-θ)n = y n -j , (4.24) 
where we recall that τ (-∞,0) = inf{j 1, S j ∈ (-∞, 0)}. Using the local limit theorem and the fact that j ∈ [0, κa n ], we get:

(3) c V (y n )P xn τ (-∞,0) > θn V (x n ) × P xn max i θn S i κa n τ (-∞,0) > θn 1 √ 1 -θ φ (ε -κ)(1 -θ) -1/2 . (4.25) 
Using the remark 4 in [START_REF] Shimura | A class of conditional limit theorems related to ruin problem[END_REF], we note that, as n → ∞,

P xn max i θn S i κa n τ (-∞,0) > θn → m sup [0,1] ω t κ √ θ , (4.26) 
where m(•) denotes the measure of the brownian meander. We prove that the equivalence

P xn [τ (-∞,0) > θn] ∼ V (x n )P[T - 1 > θn] (4.27)
holds uniformly on the sequences x n such that x n /a n → 0 in Lemma 6.1, so that finally, using the convergence

V (Ka n )P[T - 1 > θn] → c K √ θ , (4.28) 
which one can deduce from part 2.2, one gets:

(3) cV (Ka n )P[T - 1 > θn]m sup [0,1] ω t κ √ θ 1 √ 1 -θ φ (ε -κ)(1 -θ) -1/2 cKm sup [0,1] ω t κ √ θ 1 θ(1 -θ) φ (ε -κ)(1 -θ) -1/2 (4.29)
and for θ > 0 fixed, the quantity in the right hand side above vanishes as κ ց 0. We are left with the second term in equation (4.23). To get this, one notes that looking at the proof of Lemma 3.4 in [START_REF] Doney | A functional limit theorem for random walk conditioned to stay non-negative[END_REF], it is not difficult to see that, with c, c ′ > 0 fixed, the convergence in (3.10) holds uniformly for (u, v) in the compact set [c, c ′ ] × [ε, K]. Note in particular the uniformity part in Lemma 3.1, the fact that the convergence in the local limit theorem is uniform on the sets [ca n , c ′ a n ] and finally the fact that the derivative of the function (x, u) → x u 3/2 φ(x/u 2 ) is uniformly bounded for (x, u) ∈ [c, c ′ ] × (0, 1) (to get the uniform convergence of the Riemann's sums in the proof of Lemma 3.4 in [START_REF] Doney | A functional limit theorem for random walk conditioned to stay non-negative[END_REF]).

Making use once again of the Markov property, this implies that:

(4) a n j θn k κan

P * xn [τ = j, S j = k, µ > θn]P * k [S n-j = y n ] j θn k κan P * xn [τ = j, S j = k, µ > θn] V (y n ) V (k) a n P k S n-j = y n .
(4.30)

Note that one can restrict the range of summation of k in the above expression over [κa n , K ′ a n ] where K ′ > 0 is large enough and independent of n. Thus, using Proposition 3.4 and the fact that r(•, •) is continuous, one obtains:

(4) c V (K) V (κ) √ 1 -θ K ′ ε sup u∈[κ,K ′ ],v∈[ε,K] r(u, v) j θn k κan P * xn [τ = j, S j = k, µ n > θn] c V (K) V (κ) √ 1 -θ K ′ ε sup u∈[κ,K ′ ],v∈[ε,K] r(u, v) P * xn [ max j µn S j κa n ] (4.31)
and as evidently the inclusion of events {max j µn S j κa n } ⊂ {max j µ S j κa n } holds, making use of Proposition 4.1, the last term in the equation above vanishes as n → ∞ since x n /a n → 0.

4.2

The case where y n /a n vanishes at infinity

This case relies heavily on the previous one. One has the equality:

P xn S n = y n = Kan z=εan P xn S n/2 = z P z S n/2 = y n (5) 
+ P xn S n = y n , S n/2 εa n , S n/2 Ka n (6) (4.32)

We first show that the term in (5) yields the desired estimate, and then that the term in ( 6) is negligible with respect to the first one.

For the term in (5) , using time reversal and the case we just treated, one has of course:

P z [ S n/2 = y n ] ∼ U(y n )V (z) n/2 P[S n/2 = z] (4.33)
so that, for n → ∞, we have the equivalence: 

Kan z=εan P xn S n/2 = z P z S n/2 = y n ∼ Kan z=εan V (x n )U(z) n/2 U(y n )V (z) n/2 P[S n/2 = z] 2 ∼ V (x n )U(y n ) n Kan z=εan 8 z 2 a 2 n φ(z/a n/
V (x n )U(y n ) P xn S n = y n , S n/2 Ka n = 0, lim sup εց0 lim n→∞ na n V (x n )U(y n ) P xn S n = y n , S n/2 εa n = 0.
(4.37)

We define S as being the time reversed version of S, that is the random walk whose transitions are given by

P[ S 1 = y] := P[S 1 = -y], y ∈ Z. (4.38) Note that na n V (x n )U(y n ) P xn S n = y n , S n/2 Ka n = na n V (x n )U(y n ) z Kan P xn S n/2 = z P yn S n/2 = z . (4.39)
We recall that the following equivalences are shown in Lemma 6.1 below:

P xn [τ (-∞,0) > n/2] ∼ V (x n )P[T - 1 > n/2], P yn [τ (-∞,0) > n/2] ∼ V (y n )P[ T - 1 > n/2] (4.40)
and that they hold uniformly for x n , y n which are o(a n ). Therefore, one deduces (4.42)

na n V (x n )U(y n ) P xn [ S n = y n , S n/2 Ka n ] ∼ nP[T - 1 > n/2]P[ T - 1 > n/2] × z Kan a n P xn [S n/2 = z|τ (-∞,0) > n/2]P yn [ S n/2 = z| τ (-∞,0) > n/2].
Recall that T + 1 and T - 1 are attracted to stable laws of index 1/2, so that by standard Tauberian theorems (see [START_REF] Feller | An introduction to probability theory and its applications[END_REF]XIII 5.]):

P[T - 1 > n] ∼ 1 √ π 1 -E e -1 n T - 1 , P[ T - 1 > n] ∼ 1 √ π 1 -E e -1 n T - 1 . (4.43)
On the other hand, by the Wiener-Hopf factorization:

1

-E[e -λT - 1 ] = exp - ∞ n=1 e -λn n P[S n < 0] 1 -E[e -λT + 1 ] = exp - ∞ n=1 e -λn n P[S n 0] (4.44) hence, for λ ց 0, 1 -E e -λT - 1 1 -E e -λT + 1 = exp - ∞ n=1 e -λn n = 1 -e -λ ∼ λ (4.45) therefore lim n→∞ nP[T - 1 > n]P[ T - 1 > n] = 1 π .
Using finally the convergence towards the brownian meander, we get that

na n V (x n )U(y n ) P xn S n = y n , S n/2 Ka n C π P yn S n/2 Ka n T - 1 > n cm ω 1/2 > K (4.46)
and the last term vanishes as K → ∞. Proceeding in the same way, it is easy to see that

lim n→∞ na n V (x n )U(y n ) P xn S n = y n , S n/2 εa n cm ω 1/2 ε , (4.47) 
and this last quantity also vanishes when ε ց 0, and this concludes the proof of Lemma 3.1.

5 Tightness of the measures Q x n ,y n n

The proof of tightness is very similar to the one of [START_REF] Doney | A functional limit theorem for random walk conditioned to stay non-negative[END_REF]. We first note that the process S under P * xn [•|S n = y n ] is still a Markov chain, so that according to [Bil68, Theorem 8.4] , tightness will follow if we can show that for each positive ε and K ∈ (0, 1), there exists λ > 0 and an integer n 0 such that Using the same considerations as in the last part of the proof of Lemma 3.1 (by simply replacing n/2 by Kn or (1 -K)n) , one gets that there exists a constant C > 0 such that:

⋆ C √ 1 -K j 0 P xn max i Kn
S i λa n , S Kn = j τ (-∞,0) > Kn (5.3) so that using the weak convergence towards the brownian meander, we get:

⋆ C √ 1 -K m sup t∈[0,1] ω t λ √ K , (5.4) 
which for fixed K vanishes exponentially fast when λ becomes large, and in particular (5.1) holds. This concludes the proof of Theorem 1.1, and thus we are done.

Appendix

The following is the main result of this appendix: Lemma 6.1. Uniformly in x n such that x n a -1 n → 0 as n → ∞, one has the following convergence: V (x) (6.2) in full generality (that is for every oscillating random walk S verifying P[S 1 > 0] ∈ (0, 1)). The convergence (6.1) has also been proved in [START_REF] Kesten | Ratio theorems for random walks[END_REF] in the lattice case for fixed x.

P xn [τ (-∞,0) > n] P[T - 1 > n] ∼ V (x n ). ( 6 
Proof. For x > 0, we denote by τ x = inf{k 1, S k < -x}. One has the following identity: and as ε n → 0, both conditions of the first part of (6.6) are fulfilled by the sequence j∈[0,x] v(l,j) V (x) l . Thus we get that the following equivalence holds uniformly on ∆ (εn) :

P xn τ (-∞,0) > n V (x n ) ∼ P T - 1 > n .
(6.10)

This entails that the following equivalence holds uniformly on x n such that x n a -1 n → 0 as n → ∞:

lim n→∞ P xn τ (-∞,0) > n P[T - 1 > n] ∼ V (x n ) (6.11)
which is equation (6.1).

PP

  xn [ S n = y n ] = P xn [ S n = y n ; µ n < ηn] + P xn [ S n = y n ; µ n ηn] xn [S n = y n , µ n = j, m n = k] + P xn [ S n = y n ; µ n ηn] , x n -k)u(n -j, y n -k) + P xn [ S n = y n ; µ n ηn].

  14) so that we have to show that lim sup n→∞ a n P * xn [S n = y n ; µ n ηn] = 0. (4.15)

  limit theorem for the random walk conditioned to stay positive (see [Car05, Theorem 2]): sup z∈Z a n P xn [S n/2 = z|τ (-∞,0) > n/2] =: C < ∞.

SS

  i λa n S n = y n ε λ2 (5.1) for all n n 0 . We proceed quite similarly as in the last part of the proof of Lemma 3.1. We write:⋆ := P * xn max i Kn S i λa n S n = y n i λa n , S Kn = j S n = y n ∼ na n V (x n )U(y n ) j 0 P xn max i Kn S i λa n , S Kn = j P j S n(1-K) = y n (5.2)

. 1 )

 1 Note that it has been proved in[START_REF] Bertoin | On conditioning a random walk to stay nonnegative[END_REF] thatlim inf n→∞ P x [τ (-∞,0) > n] P[T - 1 > n]

P

  x [τ (-∞,0) > n] = P[τ x > n]
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where in the last equality we made use of the Markov property. Thus:

(6.4) We recall a strong version of Iglehart's lemma ([AD99, Lemma 5] ): Lemma 6.2. Let c n , d n (z)be two sequences where z belongs to a subset ∆ of R . Define e n on ∆ by:

(6.5)

Assume that there exist c > 0 such that the following condition holds uniformly on z ∈ ∆:

Assume moreover that the sequence c n is regularly varying with index -ρ where ρ ∈ (0, 1). Then the equivalence e n (z) ∼ d(z)c n holds uniformly on z ∈ ∆.

We already pointed out that:

Recalling that b(•) ∈ R 2 , one has b -1 (n)/n ∈ R -1/2 , which implies that the sequence P[T - 1 > n] n verifies the hypothesis of the sequence c of Lemma 6.2 with ρ = 1/2. On the other hand, we write

and thus we want to prove that the sequence

satisfies the second conditions of Lemma 6.2 with ∆ (εn) = (x n ) ∈ Z N , ∀n, x n ∈ [0, ε n a n ] where ε n is a given positive sequence which vanishes at infinity.

We first note that the uniform convergence of the series on ∆ (εn) has already been proved in the first part of the proof of Lemma 3.1.

For the second point, we consider a sequence (x n ) n ∈ ∆ (εn) . For l > 0 and making use of Lemma 2.1 (note in particular the uniformity part of it) and of the