
HAL Id: hal-00541523
https://hal.science/hal-00541523

Submitted on 30 Nov 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Synchronous design of avionic applications based on
model refinements

Abdoulaye Gamatié, Thierry Gautier, Paul Le Guernic

To cite this version:
Abdoulaye Gamatié, Thierry Gautier, Paul Le Guernic. Synchronous design of avionic applications
based on model refinements. Journal of Embedded Computing, 2006, 2 (3-4), pp.273-289. �hal-
00541523�

https://hal.science/hal-00541523
https://hal.archives-ouvertes.fr

Synchronous Design of Avionic

Applications based on Model Refinement

Abdoulaye Gamatié∗†, Thierry Gautier‡and Paul Le Guernic§

Abstract

In this article, we address the design of avionic applications based

on an approach, which relies on model refinement. This study is done

within the synchronous framework, which has solid mathematical foun-

dations enabling formal methods for specification, verification and anal-

ysis, transformations, etc. In the proposed approach, we first consider

a functional description of a given application using the Signal lan-

guage. This description is independent of a specific implementation

platform. Then, some transformations that fully preserve the seman-

tics of manipulated Signal programs are applied to the description

such that a representation reflecting an integrated modular avionics

architecture results.

Keywords: Integrated Modular Avionics, ARINC, synchronous design, Sig-

nal, model refinement.

∗Corresponding author. Phone: +33 3 59 57 78 16; Fax: +33 3 28 77 85 38; E-mail:

Abdoulaye.Gamatie@lifl.fr
†
Inria Futurs, Synergie Park, 6bis avenue Pierre et Marie Curie, 59260 Lezennes

‡
Irisa, Campus de Beaulieu, 35042 Rennes, France. Email: Thierry.Gautier@irisa.fr

§
Irisa, Campus de Beaulieu, 35042 Rennes, France. Email: Paul.LeGuernic@irisa.fr

1

1 Introduction

Avionics play an important role in the overall cost of modern aircrafts (e.g.,

in civil aeronautics, it is estimated around 35% of the global cost). By avion-

ics, we mean electronic systems, equipment, and other devices aboard air-

crafts, which achieve functions like the treatment of information received

from sensors, the autopilot, the management of fuel level, communication

with an operator during a flight, etc. Today, we notice that avionics have

significantly evolved. In particular, the following observations can be made

about modern avionics [31] [34] [15]:

• functionalities are increasing in these systems: maintenance and on-

board diagnostic, mission simulation, need of autonomy, etc. On the

other hand, the integration level of functions is getting higher for an

efficient cooperation;

• contrarily to the traditional approach where functions are loosely cou-

pled (e.g., the autopilot and navigation functions are achieved by ap-

plications using different computing resources), avionics progressively

adopt an integrated approach, where functions (even of different criti-

cality levels) can be achieved through applications that share common

computing resources;

• the industry of avionics tends to use more and more commercial ma-

terial components, which are not a priori designed for these systems.

While this could help to reduce the development cost and increase

functionalities, there is the risk of guarantee lack of such products (as

2

a matter of fact, they rapidly become obsolete or unavailable);

• the correctness and reliability requirements call for the use of formal

methods in order to efficiently cope with validation problems.

Therefore, the increasing complexity and high criticality of embedded

real-time systems in the avionic domain raise some challenging issues about

their development. Among these issues, we mention the correctness of de-

signed systems against requirements, development effort, correctness and

reliability of implementations (e.g. the costs of minor and major bugs re-

spectively range from $100K to $500K and from $1M to $500M), time-to-

market (which is between three and four years). Therefore, there is the need

of suitable methodologies that efficiently address above issues. According to

Pnueli [32], such methodologies must enable at least formal specifications,

verification and analysis, and automatic (possibly distributed) code genera-

tion.

In this article, we address the design of avionic applications based on

model refinement within the development environment Polychrony, as-

sociated with the synchronous language Signal. Synchronous technologies

are interesting because of their formal basis, which favors validation. The

remainder of the article is organized as follows: Section 2 first introduces

avionics architectures: federated architectures and integrated modular avion-

ics - IMA (our study relies on the latter); then, Section 3 presents related

work; after a short introduction to the Signal language in Section 4, we ex-

pose our approach to describe IMA applications using the Signal language

in Section 5 and 6; finally, concluding remarks are given in Section 7.

3

2 Architecture design for avionics

We present the two basic approaches for architecture design in the avionic

domain: the federated approach (Section 2.1) and the integrated modular

approach (Section 2.2).

2.1 Federated architectures

Traditionally in avionics, each control function is associated with its own

material resources (e.g. computer system). These resources are most often

replicated for fault tolerance and they vary from one function to another.

Hence, it results a loosely-coupled and heterogeneous architecture where

every function can be almost executed independently of other functions. It

is not the case locally to a function, where concerned components strongly

cooperate in order to achieve the mission affected to that function. Such

an architecture of avionics is called federated architecture [3]. For instance,

the Airbus A330 and A340 adopt this kind of architecture. The numeric

equipments that implement the concerned on-board functions are linked by

a mono-emitter bus.

Besides their simplicity, a great advantage of federated architectures is

the minimization of the risk for error propagation, which can occur during

the execution of a function in the system. Another advantage of these ar-

chitectures is their inherent heterogeneity (computing resources required by

one function may differ from those needed by another). As a result, this

enables to use computer systems with variable performance characteristics

depending on functions.

4

However, a major drawback of federated architectures lies in the high

risk of massive usage of computing resources (replicated for fault tolerance)

since each function requires its dedicated computer system. Consequently,

the overall design costs get increased: enough space is required on-board

aircrafts in order to support the computing resources (typically, their asso-

ciated weight), one must cope with the resulting install and maintenance

issues, etc.

2.2 Integrated modular avionics (IMA)

More recently, another vision emerged concerning avionics design. This vi-

sion aims at dealing with the major obstacles inherent to federated archi-

tectures by proposing a system organization where several functions (even

of different criticality level) can share now computing and communication

resources. This new architecture is referred to as integrated modular avionics

(IMA) [3]. The Airbus A380 and Boeing B777 are examples of aircrafts that

adopt this kind of architecture.

IMA enables resource savings, thus reasonably limits the global develop-

ment costs. However, it may introduce a high error propagation probability,

which no longer exists in federated architectures (e.g., an abnormal execut-

ing application that achieves some function in the system may monopolize

the communication system or may provoke inappropriate commands; it is

not easy to preserve each function from such an erroneous behavior). The

solution that has been proposed in order to solve this problem consists in a

functional decomposition of the system, which takes into account the avail-

able memory space and time budget. The logical allocation unit resulting

5

from the decomposition is called a partition [3]. In practice, the spatial par-

titioning of systems relies on the use of material components in charge of

memory management, in order to prevent every memory area from corrup-

tion during modifications of its neighbored areas. The temporal partitioning

rather depends on expected system functionalities (e.g., it is crucial to exe-

cute regularly the function achieving the refreshment of critical parameters

such as the fuel level). Finally, we can notice that partitioning facilitates the

verification, validation and certification of avionics.

High-level IMA infrastructures. IMA platforms consist of core process-

ing modules (CPM) grouped in cabinets throughout the aircraft. Message

exchanges between cabinets is achieved through multiplex networks, which

are composed of buses (e.g. of ARINC 629 type [1]) or Ethernet strands

linked by commutators. The IMA communication networks interacts with

its external environment (e.g. sensors and actuators) via gateway modules

(GWMs). Fig. 1 and 2 respectively illustrate two kinds of IMA infrastruc-

tures [9]. The first one shows an architecture for the Boeing B777 (CPMs

exchange messages within cabinets via ARINC 659 buses [2]) while the sec-

ond one depicts an architecture for the Airbus 380 (here, CPMs communicate

via an Ethernet network switched at nodes SW).

Module level. A core processing module contains one or more partitions

that possibly belong to functions of different criticality levels. Mechanisms

are provided in order to prevent a partition from having “abnormal” access

to the memory area of another partition. A processor is allocated to each par-

6

tition for a fixed time window within a major time frame maintained by the

module-level operating system (OS). A partition cannot be distributed over

multiple processors either in the same module or in different modules. Fi-

nally, partitions communicate asynchronously via logical ports and channels.

Message exchanges rely on two transfer modes: sampling mode and queuing

mode. In the former, no message queue is allowed. A message remains in

the source port until it is transmitted via the channel or it is overwritten by

a new occurrence of the message. A received message remains in the desti-

nation port until it is overwritten. A refresh period attribute is associated

with each sampling port. When reading a port, a validity parameter indi-

cates whether the age of the read message is consistent with the required

refresh period attribute of the port. In the queuing mode, ports are allowed

to store messages from a source partition in queues until they are received

by the destination partition (the queuing discipline is First-In First-Out).

Partition level. Partitions are composed of processes that represent exec-

utive units (in fact, an IMA partition/process is akin a UNIX process/task).

Processes run concurrently and achieve the functions associated with their

containing partitions. Each process is uniquely characterized by information

(typically, its period, priority or deadline time) useful to the partition-level

OS, which is responsible for the correct execution of processes within a

partition. The scheduling policy for processes is priority preemptive. Com-

munications between processes are achieved by three basic mechanisms. The

bounded buffer allows to send and receive messages following a FIFO policy.

The event permits the application to notify processes of the occurrence of

7

a condition for which they may be waiting. The blackboard is used to dis-

play and read messages: no message queues are allowed, and any message

written on a blackboard remains there until the message is either cleared or

overwritten by a new instance of the message. Synchronizations are achieved

using a semaphore.

The APEX-ARINC 653 standard [4] that codifies the “time/space par-

titioning” concept of IMA is now adopted by various real-time operating

systems, both proprietary and off-the-shelf (e.g. VxWorks AE653). It de-

fines an interface allowing IMA applications to access the underlying OS

functionalities. This interface includes services for communication between

partitions on the one hand and between processes on the other hand, syn-

chronization services for processes, and partition and process management

services, etc.

3 Related work

We first give a quick overview of works that specifically focus on IMA de-

sign. Then, we present three approaches aiming to address more general

issues on avionic software development: Aadl (Avionic Architecture De-

scription Language), Cotre (Real Time Components) and Scade (Safety

Critical Application Development Environment). All these approaches pro-

mote model-based and formal techniques. In particular, Scade relies on the

synchronous approach, which is also adopted in our study.

A few studies on IMA. We first mention studies that concern the two-

8

level hierarchical scheduling aspects of IMA systems. In [30] Lee et al. present

algorithms that provide cyclic partition and channel schedules for IMA sys-

tems. In the same context, Audsley and Wellings analyze response times of

IMA applications [7]. They point out the possibility of large amount of jitter

and discuss possible ways to reduce the jitter by checking process periods

with respect to partitions periods. In [23], we illustrate a Signal-based tech-

nique for temporal analysis that provides information about the execution

time of partitions. Typically, this information is useful when taking decisions

about processor allocation to partitions. Another benefit of defining such a

technique in a formal framework is the availability of techniques and tools

that help to address critical issues such as partitioning of IMA, which still re-

mains to be thoroughly explored. One outstanding study about partitioning

has been done by Di Vito [17]. He proposes a formal description of parti-

tioning requirements using the language associated with PVS (Prototype

Verification System). However, this description only concerns space parti-

tioning and does not address time partitioning. Communication is another

important topic in IMA systems. For this, we merely mention a communi-

cation network designed for the Airbus A380 presented by Sánchez-Puebla

and Carretero in [35]. Finally, a study addressing certification issues is done

by Conmy and McDermid [16] in which they propose a high level failure

analysis for IMA that is part of an overall IMA certification strategy.

AADL. The Avionics Architecture Description Language is a standard de-

veloped by the international Society of Automotive Engineers (SAE) [19].

It is dedicated to the design of the software and hardware components of

9

avionics and interfaces between these components. The definition of Aadl is

based on MetaH, an Architecture Description Language (Adl) developed

by Honeywell [36]. Aadl permits the description of the structure of an em-

bedded system as an assembly of software and hardware components in a

similar way as in MetaH. It also includes a dedicated Uml profile. This

enables the access to its underlying analysis and code generation tools from

Uml graphical specifications. While Aadl combines various formalisms and

tools for the design of embedded real-time systems, our approach relies on

the single semantic model of the Signal language. This favors a uniform

framework, which facilitates system validation.

COTRE. The Cotre approach [13] is also devoted to the design of em-

bedded real-time systems in the avionic domain. Its main objective consists

in providing the designer with a methodology, an Adl called Cotre and an

environment to describe, verify and implement embedded real-time systems.

The Cotre language distinguishes two different views for descriptions: a user

view expressed using the Cotre for User language (termed U-Cotre) and a

view for verification (termed V-Cotre). In fact, the latter plays the role of an

intermediate language between U-Cotre and existing verification formalisms

(e.g. timed automata, timed Petri nets). Authors of [13] argue that the use

of formal techniques is one of the main differences between the Cotre lan-

guage and other Adls. Cotre is closely related to Aadl.

SCADE. Scade proposes one of the most popular formal design envi-

ronments in avionics domain [18] [14]. It supports correct by construction

10

methodology [5] and automated generation of implementation from a high-

level formal model of embedded applications (cf. Fig. 3). As a result, drastic

savings of the development and validation effort are enabled.

Basically, Scade provides developer with two kinds of formalism for

specification: graphical block diagrams - GBDs (familiar to control engineers)

and hierarchical safe state machines - SSMs (based on the Esterel lan-

guage [12] and the SyncCharts state machine [6]). The former is used for

continuous control while the latter is used for discrete control. In this con-

text, continuous control means sampling sensors at regular time intervals,

performing signal-processing computations on their values, and producing

values often using complex mathematical formulas. Discrete control means

modifying behavior according to events coming either from discrete sensors

and user inputs or from internal program events. GBDs and SSMs can be

combined in order to define descriptions including both continuous and dis-

crete aspects. Scade adopts the synchronous computation model [10], which

is a fully precise representation of the well-known cycle-based computation

model. Roughly speaking, the cycle-based computation model consists of

a loop where a program (or a system) repeatedly achieves the following

actions: first read inputs from the environment, then compute them, and

finally write corresponding outputs (which the environment is waiting for).

In particular, Scade is based on the Lustre [26] and Esterel languages.

Its associated compilers and verifiers can be used to check the consistency

of specifications (e.g. detection of missing definitions, coherence of produc-

tion/consumption rates of data), and to validate them with respect to system

requirements. Finally, documentation and embeddable code can be automat-

11

ically generated from specifications-level descriptions by the Scade qualifi-

able code generator (level A with respect to DO-178B guidelines). This is

a major advantage of Scade compared to other synchronous design tools.

Among important avionic projects in which the Scade suite has been used,

we can mention the Airbus A380 and Eurocopter.

4 An introduction to the Signal language

The underlying theory of the synchronous approach is that of discrete event

systems and automata theory. Time is logical : it is handled according to

partial order and simultaneity of observed events. Actual execution dura-

tions are considered as constraints to be checked during implementation

phase. Typical synchronous languages are Esterel [12], Lustre [26] and

Signal [11]. They mainly differ from each other by their programming style

(Esterel is imperative while Lustre and Signal are dataflow oriented).

However, joint efforts have been made to provide a common format [8] in

order to facilitate interoperability.

Signal [11] is a dataflow oriented language. It handles infinite sequences

of typed values that are implicitly indexed by discrete logical time and called

signals. At a given logical instant, a signal may be present (then it holds

a value of some type, e.g., boolean, integer, real, etc.) or absent. There

is a particular type of signal called event. A signal of this type always

carries the value true. The set of instants where a signal is present is called

its clock. Signals that have the same clock are said to be synchronous. A

Signal program also termed a “process” (see Fig. 4), is a system of equations

12

over signals.

Signal relies on a handful of primitive constructs which are combined

using a composition operator noted “|”. These core constructs are suffi-

ciently expressive to derive other constructs for comfort and structuring. In

the next, we only mention operators used in the next sections:

• Under-sampling y := x when b; signal y takes the value of x when

boolean b is true. The statements x := when b and x := b when b are

equivalent.

• Deterministic merging y := u default v; signal y takes the value

of u when u is present; otherwise y takes the value of v.

• Clock extraction c := ^x; signal c (of type event) carries the value

true whenever x is present.

• Synchronization: x1 ^= ... ^= xn; signals x1,..., xn have the same

clock.

For more information on Signal, we invite the reader to see [28], which

gives a detailed formal presentation of basic concepts of the language.

5 Synchronous modeling of IMA concepts

This section first exposes the design of the basic concepts (introduced in

Section 2.2), also referred to as the building blocks required for the descrip-

tion of IMA applications in the synchronous multi-clock (or polychronous)

semantic model [28] of the Signal language (Section 5.1). Then, it gives

13

a brief presentation of an ongoing work (see Section 5.2) that consists in

defining a modeling paradigm based on the resulting library of components

within a Generic Modeling Environment (Gme) [29]. The intent is to facil-

itate the access to the library together with the polychronous development

platform through very general modeling environments like Gme.

5.1 Basic building blocks

The synchronous design of avionic applications using Signal relies on a few

basic blocks [22], which allow us to model partitions: APEX-ARINC 653

services, an RTOS and executive entities (i.e. processes). In the following,

we show for each building block, how its corresponding Signal model is

obtained.

Modeling of APEX services. To illustrate the approach that has been

adopted here, let us consider a typical APEX service: the read blackboard

service [4]. It enables messages to be displayed and read in a blackboard.

The inputs are the blackboard identifier and a time-out duration that limits

the waiting time on a request, when the blackboard is empty. The outputs

are a message defined by its address and size, and a return code for the

diagnostics of the service request. An informal specification of the service is

given in [22].

We start by defining an abstract formal description that corresponds

to the service (see Fig. 4). This description expresses properties such as

logical instants at which a return code is produced (s.2). The variable

C_return_code is a local boolean signal with the value true whenever a

14

return code is received on a read request, i.e. C_return_code represents the

clock of the return code1 signal. For the moment, C_return_code appears

in the description as a local signal. It is defined during refinements of the

abstract description. At this stage, we assume that there only exist signals

such that properties in which it is involved are satisfied. Property (s.1)

states that C_return_code and all inputs are synchronous i.e. whenever

there is read request, C_return_code indicates whether or not a return

code is to be produced. Property (s.3) says that messages are received on

a read request only when the return code value is NO ERROR.

Lines (d.1) and (d.2) are dependency relations between inputs and

outputs. In Signal, the notation x --> y expresses a dependency relation

between two signals x and y within a logical instant (read: y is preceded

by x). For instance, (d.2) states that message and length are preceded by

timeout and board_ID, at the logical instants where the return code carries

the value NO_ERROR.

Descriptions such as the one in Fig. 4 are expressive enough to check, for

instance, the conformance of a component model during its integration into

a system described within the same formalism. Here, the description exhibits

the interface properties of the read blackboard service. More specifically, it

states conditions that describe when a message is received by a process on a

read request. However, the description does not mention how messages can

1The retrieval of a return code is not always immediate when calling the read blackboard

service. Typically, when the blackboard is empty and the timeout parameter carries some

positive value, the calling process is suspended. In this case, C return code carries the

value false. The suspended process must wait: either a message is displayed on the black-

board, or the expiration of the activated time counter, which produces the return code

TIMED OUT.

15

be obtained.

The specifications given in [4] are somewhat imprecise. This gives rise

to ambiguities, which are not easy to see. As an example we can think of

two possible implementations for the read blackboard service. They mainly

depend on the interpretation of message retrieval. Consider a process P1,

previously blocked on a read request in a blackboard and now released on a

display request by another process P2:

1. some implementations assume that the message read by the suspended

process P1 is the same as the one just displayed on the blackboard P2;

2. there are other implementations that display the message retrieved

by P1 when the execution of P1 is resumed. This is because a higher

priority process could be ready to execute when P1 gets released. So,

P1 does not necessarily read the message displayed by P2 since the

message may have been overwritten while it was suspended.

As one can notice, the level of detail of the model described in Fig. 4, al-

though somewhat abstract, allows to cover both interpretations of the ser-

vice. In practice, we observe that these interpretations can be useful depend-

ing on the context.

• Implementations of type (1) may be interesting when all the messages

displayed on the blackboard are relevant to the process P1. Every mes-

sage must be retrieved. However, even if using a blackboard for such

message exchanges appears cheaper than using a buffer (in terms of

memory space required for message queuing, and of blocked processes

16

management), it would be more judicious to consider a buffer for such

communications since it guarantees that no message is lost.

• On the other hand, implementations of type (2) are useful when P1

does not need to retrieve all displayed messages. For instance, P1 only

needs to read refreshed data of the same type. In that case, only the

latest occurrence of message is relevant.

The presence of ambiguities as illustrated above justifies a model refine-

ment design approach, where abstract descriptions are sufficiently general

and can be refined progressively in order to derive a particular implementa-

tion. Here, the way messages are retrieved during the read blackboard service

call is not clear. The model given in Fig. 4 allows to describe such a situation.

A more detailed version of the service model is shown in Fig. 5. This

model relies on the second interpretation of the read blackboard service. Its

internal properties can now be explicitly specified with respect to interface

properties defined in Fig. 4. For that, we start with a functional decom-

position of the informal specification of the service [22], and this leads to

four main sub-parts as illustrated in Fig. 5. Sub-parts CHECK_BOARD_ID and

CHECK_TIMEOUT verify the validity of inputs board_ID and timeout. If these

inputs are valid, PERFORM_READ tries to read the specified blackboard. Only

after this it sends the latest message displayed on the blackboard. It also

transmits all necessary information to GET_RETURN_CODE, which defines the

final diagnostic message of the service request. The intermediate signals ex-

changed by these sub-parts allow us to derive a complete definition of the

local signal C return code, which was only declared previously (see Fig. 4).

17

In addition, further properties such as clock relations between all identified

signals are specified. Finally, each sub-part is developed in a similar way so

as to define every signal. The resulting model of the service, which gives the

complete Signal code of the service can be found in [21].

The modeling of the other APEX-ARINC services follows the approach.

The corresponding models allow us to describe process management, com-

munication and synchronization between processes, etc. The next section

presents the definition of the partition-level OS, which is in charge of con-

trolling the execution of processes within a partition.

Modeling of the partition-level OS. The role of the partition level

OS is to ensure the correct concurrent execution of processes within the

partition; each process must have exclusive control on the processor. An

example model of the partition level OS is shown in Fig. 6.

The notions taken into account for the modeling of the partition level OS

are mainly: process management (e.g. create, suspend a process), scheduling

(including the definition of process descriptors and a scheduler), time man-

agement (e.g. update time counters), communications, and synchronizations

between processes. The APEX interface provides a major part of required

services to achieve the notions mentioned above. However, in order to have

a complete description of the partition level OS functionalities, we added

additional services to our library. These services allow us to describe process

scheduling within a partition and they also allow to update time counters.

Their description can be found in [22]. A case study using these services is

presented in [23]. Here, we only present the generic interface of the partition

18

level OS (cf. Fig. 6). We explain how it interacts with the other subparts of

its containing partition, in particular processes.

In Fig. 6, the input Active_partition_ID represents the identifier of the

running partition selected by the module-level OS, and it denotes an execu-

tion order when it identifies the current partition. The activation of all parti-

tions depends on this signal. It is produced by the module-level OS, which is

in charge of the management of partitions within a module. The presence of

the input signal initialize, which corresponds to the initialization phase

of the partition: creation of all the mechanisms and processes contained in

the partition. Whenever the partition executes, the PARTITION_LEVEL_OS

selects an active process within the partition. The process is identified by

the value carried by the output Active_process_ID, which is sent to each

process. The signal dt denotes duration information corresponding to pro-

cess execution. This is the duration of the current “block” of actions executed

by an active process. It is used to update time counter values. The signal

timedout produced by the partition-level OS carries information about the

current status of the time counters used within the partition. For instance, a

time counter is used for a wait when a process gets interrupted on a service

request with time-out. As the partition-level OS is responsible for the man-

agement of time counters, it notifies each interrupted process of the partition

with the expiration of its associated time counter. This is reflected by the

signal timedout.

Modeling of IMA processes. The definition of an IMA process model

consists of its computation and control parts. This is depicted in Fig. 7

19

with the sub-components CONTROL and COMPUTE. Any process is seen

as a reactive component that reacts whenever an execution order (denoted

by the input Active_process_ID) is received. The input timedout notifies

processes of time-out expiration. In addition, there are other inputs (respec-

tively outputs) needed for (respectively produced by) the process computa-

tions. The CONTROL and COMPUTE sub-components cooperate in order

to achieve the correct execution of the process model.

The CONTROL sub-component of the IMA process is a transition sys-

tem that indicates which statements have to be executed when the pro-

cess model reacts. It can be encoded quite naturally by an automaton in

Signal. A process executes whenever it is identified by the numeric input

Active_process_ID. Depending on the current state of the transition sys-

tem representing the execution flow of the process, a block of actions in the

COMPUTE sub-component is selected to be executed instantaneously (this

is represented by the arrow pointing from CONTROL to COMPUTE in the

figure). The COMPUTE sub-component is composed of blocks of actions

that represent elementary pieces of code to be executed without interrup-

tion. The statements associated with a block are assumed to complete within

a bounded amount of time. In the model, a block is executed instantaneously.

Therefore, one must take care of what kinds of statements can be put to-

gether in a block [20]. An execution of IMA process is a sequence of blocks,

and preemption occurs when there are two consecutive blocks that belong to

different processes in a sequence. Finally, the execution duration associated

with blocks is provided through dt. This information can be obtained before

or during the execution of the model using wcet calculation techniques [33]

20

or a profiling technique based on Signal [27], as illustrated in [23].

Global view of a partition model. Fig. 8 shows a coarse overview

of a partition composed of three processes. In this model, the component

GLOBAL_OBJECTS is created for structuring purposes. It mainly includes com-

munication and synchronization mechanisms used by the processes such as

buff, sema.

5.2 A modeling paradigm based on the building blocks

Now, we briefly discuss ongoing efforts in order to carry out our library

of components in the General Modeling Environment (Gme) [29]. The pri-

mary purpose is to increase the usability of the library by proposing the

same concepts within a non domain-specific tool such as Gme. Therefore,

without being an expert of synchronous technologies, a user could still be

able to design applications based on the IMA modeling approach proposed

in Polychrony. Today, we observe that the attention of the industry tends

to shift to frameworks based on general-purpose modeling formalisms (e.g.

the Unified Modeling Language), in response to a growing industry demand

for higher abstraction-levels in the system design process and an attempt to

fill the so-called productivity gap. This calls for an effort toward the con-

vergence between the theory of formal methods and the industrial practice

and trends in the design of embedded real-time systems.

Gme [29] is a configurable object-oriented toolkit, which supports the

creation of domain-specific modeling and program synthesis environments.

Metamodels are proposed in the environment to describe modeling paradigms

21

for specific domains: basic concepts required for model representation from

a syntactical viewpoint to a semantical one.

Our modeling paradigm for IMA design in Gme, called Mimad, is rep-

resented by the layer on the top in Fig. 9. The layers on the bottom are dedi-

cated to domain-specific technologies. Here, we consider the Polychrony en-

vironment, which is associated with the Signal language. However, one can

observe that the idea is extensible to further technologies that offer specific

useful functionalities to the Mimad layer (e. g., the integrated environment

Uppaal, which enables validation and verification of real-time systems using

timed automata). As Gme enables to import and export XML files, informa-

tion exchange between layers relies on this intermediate format. This favors

a high flexibility and interoperability.

The Mimad layer aims at providing a user with a graphical framework

allowing to model applications using a component-based approach. Applica-

tion architectures can be easily described by just selecting these components

via drag and drop. Component parameters (e.g. period or deadline of an IMA

process model) can be specified. The resulting Gme model is transformed in

Signal (referred to as Mimad2Sig in Fig. 9) based on the XML intermediate

format.

In the synchronous data-flow layer, the XML description obtained from

the upper layer is used to generate a corresponding Signal model of the

initial application description. This is achieved by using the IMA-based com-

ponents already defined in Polychrony [22]. Thereon, the formal analysis

and transformation techniques available in the platform can be applied to

the generated Signal specification. Finally, a feedback is sent to the Mi-

22

mad layer to notify the user with possible incoherences in initial descriptions.

By defining the Mimad layer, users can easily design applications based

on the IMA modeling approach proposed in Polychrony without being

experts of synchronous technologies.

In the next section, a methodology is proposed in order to generalize our

design approach for IMA applications in Signal. The key idea is to con-

sider initial Signal program representing an application. This program does

not reflect any implementation architecture. By applying some conservative

transformations (i.e. they strictly preserve the semantics of manipulated pro-

grams) to the program, we obtain a new program that can be instantiated

on the IMA architecture using our predefined building blocks.

6 Design by model refinement

By refinement, we mean a set of transformations allowing to define pro-

gressively, from an initial Signal description P, further descriptions in the

following way: at each step, a new description Q is obtained through the “in-

stantiation” of intermediate variables by adding supplementary equations to

P. Typically, this refinement process could modify non-functional properties

of P such as temporal properties, by introducing delays during the execution

or by relaxing some synchronization relations, but its functional properties

are strictly preserved.

23

6.1 Basic notions

The notions presented below have been introduced during the European

project Sacres [24]. Its goal was to define ways for generating distributed

code from synchronous specifications (particularly Signal programs). In

the following, an application is represented by a Signal program P =

P1 | P2 | ... | Pn, where each sub-program Pi can be itself recursively com-

posed of other sub-programs (i.e., Pi = Pi1 | Pi2 | ... | Pim). We assume the

following hypotheses:

1. considered programs P are initially endochronous [28], hence tem-

porally deterministic (roughly speaking, an endochronous program is

temporally insensitive to its environment behavior);

2. they do not contain any circular definitions;

3. a set of processors q = {q1, q2, ..., qm}; and

4. a function locate : {Pi} −→ P(q), which associates with each subpart

of an application P = P1 | P2 | ... | Pn a non empty set of processors

(the allocation can be done either manually or automatically).

First transformation. Let us consider a Signal program P = P1 | P2,

as illustrated in Fig. 10. Each sub-program Pi (represented by a circle) is

itself composed of four sub-programs Pi1, Pi2, Pi3 and Pi4. The program P

is distributed on two processors q1 and q2 as follows:

∀i ∈ {1, 2} ∀k ∈ {1, 2}, locate(Pik) = {q1} and

∀i ∈ {1, 2} ∀k ∈ {3, 4}, locate(Pik) = {q2}

24

Hence, P can be rewritten into P = Q1 | Q2, where

Q1 = P11 | P12 | P21 | P22 and

Q2 = P13 | P14 | P23 | P24

The sub-programs Q1 and Q2 resulting from the partitioning of P are

called s-tasks [24]. This transformation yields a new form of the program P

that reflects a multi-processor architecture. It also preserves the semantics

of the transformed program (since it simply consists of program rewriting).

Second transformation. We want to refine the level of granularity re-

sulting from the above transformation. For that we consider descriptions at

processor level, so called s-tasks. We are now interested in how to decom-

pose s-tasks into fine grain entities. An s-task can be seen as a set of nodes

(e.g. P11, P12, P21 and P22 in Q1). In order to get an optimized execution at

the s-task level, nodes are gathered in a way such that they can be executed

atomically. We therefore distinguish two possible ways to define such subsets

of nodes, also referred to as clusters: either they are composed of a single

Signal primitive construct, or they contain more than one primitive con-

struct. The former yields a finer granularity than the latter. However, from

the execution point of view, the latter is more efficient since more actions

can be achieved at a same time (i.e. atomically).

The definition of atomic nodes use the following criterion: all expressions

contained in a node depend on the same set of inputs. The verification of

this condition relies on a sensitivity analysis. There exists a causality path

25

between a node N1 and a node N2 if there is at least one situation where

the execution of N2 depends on the execution of N1. If this is the case, all

possible intermediate nodes are also scheduled to be executed.

Definition 1 Two nodes N1 and N2 are sensitively equivalent iff for each

input i: there is a causality path from i to N1 ⇔ there is a causality path

from i to N2.

Sensitively equivalent nodes belong to the same cluster. Inputs always

precede outputs within a cluster. Also, if a transformed program is initially

endochronous, the resulting clusters are also endochronous (this ensures a

deterministic execution of each cluster). Fig. 11 shows a decomposition of

the s-task Q1 into two clusters L1 and L2. The input of the sub-program

P11 (bold-faced arrow) is originally an input of P . The other arrows rep-

resent communications between s-tasks (These message exchanges are local

to P). We can notice that after this second transformation, the semantic

equivalence of the initial program and the resulting one is strictly preserved.

The two transformations presented above describe a partitioning of Sig-

nal programs following a multi-task multi-processor architecture. The in-

stantiation of such a description in the IMA model consists in using the

ARINC component models we have introduced in Section 5.1 (APEX ser-

vices, processes, partitions).

26

6.2 Instantiation of Signal programs in the IMA model

We present this instantiation at processor level but the approach can be

generalized for the multi-processor level. From the above transformations,

a processor can be considered as a graph where nodes are represented by

clusters. Therefore, the partitioning of a given Signal program following

the IMA architecture model is obtained through the following steps :

• Step 0: Distribution on available processors. Here, we assume a

given distribution function. The program is transformed into s-tasks.

In practice, this step is often an expert matter. However, there exist

tools that can help to achieve this kind of task (e.g SynDEx [25]).

• Step 1: For each processor, transform the associated s-task

into a graph of clusters. This task is done automatically by the

Signal compiler.

• Step 2: For each processor, associate clusters with parti-

tions/processes. The first decision about the graph of clusters re-

sulting from the previous step consists in choosing a partitioning of

clusters into IMA partitions/processes. In other words, we have to

identify clusters that can be executed within the same partition/process.

In our simple example, we decide to model the graph associated with

Q1 (cf. Fig. 11) by one partition. Once partitions are chosen, each

graph corresponding to a partition is decomposed into sub-graphs.

These contain the clusters that should be executed by the same pro-

cess. In the example, clusters associated with the “partition Q1” form

27

the set of instruction blocks of a single process. The decomposition of

a graph of clusters into partitions and processes has to be done with

respect to coherent criteria. For instance, it can be very interesting

to put clusters that strongly depend on each other together in a same

partition/process. This would greatly reduce inter-process communica-

tion costs. In the next step, the program can be effectively instantiated

using our building blocks.

• Step 3: Instantiate the program in the IMA model. Two

phases are considered: we first instantiate processes then partitions.

An overview of used basic components is given in Fig. 12. The symbol

“|” denotes the synchronous composition. The following transforma-

tions are defined:

1. Description of the process associated with a set of clusters:

– The definition of the CONTROL part of the process relies

on dependencies between clusters. Clusters are executed se-

quentially with respect to these dependencies.

– Each cluster is “embedded” in a block within the COMPUTE

part of the process.

– Internal communications between the clusters of a sub-graph

associated with a process are modeled using local state vari-

ables (i.e. those defined by the delay primitive construct).

These variables enable to memorize exchanged data. On the

other hand, communications between sub-graphs of clusters

from different processes are modeled with APEX services. For

28

each entry point (resp. exit point) of a sub-graph, a block con-

taining a suitable communication or synchronization service

call is added in the COMPUTE part of the associated pro-

cess model. When the process becomes active, this block is

executed just before (resp. after) the block that contains the

cluster concerned by the entry point (resp. the exit point).

The choice of the suitable service to call here depends on the

desired type of communication. For instance, if one needs

to use a bounded message queue, services associated with a

buffer are preferred to those related to a blackboard, which

are more appropriate for message exchanges via one memory-

place. Services associated with semaphore are used for syn-

chronization.

2. Description of the partition associated with a set of clusters:

– The component corresponding to the partition-level OS (con-

taining among other things the scheduler, which manages

process execution within the partition) is added to processes

defined at the previous phase.

– The communication and synchronization mechanisms used

by the APEX services added in the previous phase are created

(for instance, for a send buffer service call, a buffer should

be created in which messages can be stored). This creation

is done for example within the GLOBAL OBJECTS sub-part of

the partition, as illustrated on Fig. 8.

29

Example Fig. 13 outlines a process model resulting from the transforma-

tion of Q1. There are six blocks two of which contain the clusters L1 and

L2. The other blocks have been added for communication: r, s and w re-

spectively denote a read request (receive buffer or read blackboard), an event

notification (set event), and an event notification waiting (wait event). The

automaton described in the control part gives the execution order of the blocks

with respect to the precedence constraints of the cluster graph. It is derived

following the identified dependencies. The corresponding partition is obtained

by considering the phase 2 of Step 3, in the current section.

For each processor with multiple partitions, a model of partition sched-

uler is required. Partition management is done based on a time sharing strat-

egy, so we have to compose a component (corresponding to the module-level

OS - see Section 2.2) with partition models. A model of such a component

is similar to the partition-level OS in that its definition relies on the use of

APEX services, except that the scheduling policy differs.

6.3 Discussion

One major characteristic of our study is the use of formal techniques in or-

der to address design obstacles in safety-critical domains such as avionics.

In the proposed solution, we advocate a correctness by construction philos-

ophy, which facilitates validation issues. As a result, global design costs can

be significantly reduced. More generally, we use the synchronous technology,

which provides designers with tools and techniques with solid mathematical

foundations for specification, verification and analysis, and automatic code

30

generation. In particular, we consider the Signal language associated with

its synchronous multi-clock (or polychronous) semantic model to describe

avionic applications. We primarily define Signal models of basic architec-

tural concepts based on the ARINC standard: execution entities and real-

time operating system functionalities (see Section 2.2). These models are

specific to IMA. They are used in our global design methodology, which

consists in i) refining Signal specifications that represent applications, and

ii) instantiating the resulting descriptions using the models so as to feature

an IMA architecture.

We note that our methodology combines both component-based ap-

proach and model refinement approach. While the latter favors correctness

by construction, the former enables re-usability. These are essential to the

safe and cost-effective design activity in critical domains. In this context, the

Radio Technical Commission for Aeronautics (RTCA) and the European Or-

ganization for Civil Aviation Equipment (EUROCAE) have been working

on a standard document with the draft title, ”Integrated Modular Avion-

ics (IMA) Development Guidelines and Certification Considerations” where

special emphasis is put on the dependable development of IMA modules,

applications, and systems using reusable components.

Our methodology enables to address the scalability issue. Typically, for

large applications, one may need to redefine the granularity for clusters.

This can be achieved by putting together clusters (as described in Section

6) within a new version of cluster based on a coherent criterion (e.g., clusters

that strongly depend on each other are put together). The overall resulting

description can be thereon instantiated in the IMA model (following step

31

3 in the methodology).

Another important issue is usability. Our methodology is entirely de-

veloped within Polychrony, the design environment associated with the

Signal language. This means that some knowledge of synchronous program-

ming is a prerequisite to use the provided models. However, as illustrated in

Section 5.2, we are currently modeling the same concepts within the Gme

environment, which is not a domain-specific tool. This supplementary layer

will be connected to Polychrony so as to provide users with access to our

Signal models.

Compared to existing related work, we can mention common points be-

tween our study and di Vito’s work [17] in that guaranteeing the correctness

of partitioning is a major objective. However, in [17], the author first con-

siders a given application partitioning and then addresses correctness issues.

Here, we rather use the data-flow representation offered by the Signal lan-

guage to get a correct-by-construction partitioning, based on the sensitivity

analysis. Akin to Cotre [13] and Aadl [19], our work aims at provid-

ing a solution to design and validation problems for avionic applications.

However, our approach entirely relies on the single semantic model of the

Signal language. This is not the case in Cotre and Aadl where different

kinds of formalism are considered for specification, verification, and analysis.

Using different formalisms can lead to difficult validation activity. Finally,

we mention the Scade approach [14], which is close to our approach. While

both rely on the synchronous technology, they do not have the same vision

of a system execution: the approach exposed in this article considers an

operating system based computation whereas Scade uses the cycle-based

32

computation model.

7 Conclusions

In this article, we present a design methodology based on model refinement

for avionic applications deployed on integrated modular avionics architec-

tures (IMA). This methodology relies, on the one hand, on systematic and

conservative transformations of Signal programs and, on the other hand,

on the use of a library of component models (also described in Signal)

specified by the avionic standard ARINC. For a given application, an asso-

ciated initial Signal specification is first considered, which is independent

of a specific implementation platform. This application is distributed on a

multi-processor architecture with the help of a specific distribution function.

Each resulting sub-part is now refined using transformations that strictly

preserve the semantics of the application. Finally, on each processor, our

ARINC component models are used to instantiate the transformed applica-

tion sub-parts such as to reflect IMA architecture.

Beyond the fact that our approach promotes a design activity within

a formal framework and therefore simplifies validation issues, it suggests

a solution to critical issues in partitioning of avionics. Indeed, the lack of

techniques that efficiently cope with these issues makes federated architec-

tures still very attractive from IMA ones. As a result, IMA architectures

and operating systems do not currently extend to the most critical avionic

functions. For instance, flight-critical systems such as the aircraft environ-

ment surveillance system (AESS) or the flight management system (FMS)

33

employ separate hardware assemblies and operating systems. The sensitiv-

ity analysis described in our approach provides a correct by construction

way enabling an easy identification of dependencies between sub-parts of an

application, which favors a reliable partitioning of the application.

Our methodology is defined within the Polychrony platform that offers

a set of tools and techniques for model transformation and analysis based

on the Signal language (http://www.irisa.fr/espresso/Polychrony).

A library of APEX-ARINC component models is available within the plat-

form.

Acknowledgments

This work has been partly supported by the European project IST SafeAir

(Advanced Design Tools for Aircraft Systems and Airborne Software - see

the following address: http://www.safeair.org).

References

[1] Airlines Electronic Engineering Committee. ARINC 629: IMA Multi-

transmitter databus parts 1-4. Technical Report 629, Aeronautical radio, Inc.,

Annapolis, Maryland, October 1990.

[2] Airlines Electronic Engineering Committee. ARINC 659: Backplane data bus.

Technical Report 659, Aeronautical radio, Inc., Annapolis, Maryland, Decem-

ber 1993.

34

[3] Airlines Electronic Engineering Committee. ARINC report 651-1: Design guid-

ance for integrated modular avionics. Technical Report 651, Aeronautical ra-

dio, Inc., Annapolis, Maryland, November 1997.

[4] Airlines Electronic Engineering Committee. ARINC specification 653: Avionics

application software standard interface. Technical Report 653, Aeronautical

radio, Inc., Annapolis, Maryland, January 1997.

[5] P. Amey. Correctness by construction: Better can also be cheaper. CrossTalk

Magazine, The journal of Defense Software Engineering, March 2002.

[6] C. André. Computing synccharts reactions. In Proc. of Synchronous Lang.,

Applications, and Programming (SLAP’03), Porto - Portugal, July 2003.

[7] N.C. Audsley and A.J. Wellings. Analysing APEX Applications. In Proceedings

of Real Time Systems Symposium (RTSS’96), Washington, DC, USA, IEEE

Computer Society, December 1996.

[8] P. Beaufreton, H. Granier, X. Méhaut, and E. Rutten. The Sacres approach

to embedded systems applied to aircraft engine controllers. In Proc. of the 22nd

IFAC/IFIP Workshop on Real-Time Program., Lyon - France, Sep. 1997.

[9] G. Bel, F. Boniol, G. Durrieu, C. Fraboul, J. Foisseau, and V. Wiels. Modèles

comportementaux pour l’avionique modulaire intégrée. In 1er Congrès pluri-

sectoriel - Logiciel Temps Réel Embarqués - Météo France, Toulouse, pages

677–691, January 2002.

[10] A. Benveniste, P. Caspi, S. Edwards, N. Halbwachs, P. Le Guernic, and R. de

Simone. The synchronous languages twelve years later. Proceedings of the

IEEE, 91(1):64–83, January 2003.

[11] A. Benveniste, P. Le Guernic, and C. Jacquemot. Programming with events

and relations: the Signal language and its semantics. Science of Computer

Programming, 16(2):103–149, November 1991.

35

[12] G. Berry and G. Gonthier. The Esterel synchronous programming lan-

guage : design, semantics, implementation. Science of Computer Programming,

19(2):87–152, November 1992.

[13] B. Berthomieu et al. Towards the Verification of Real-Time Systems in Avion-

ics: the Cotre Approach. In 8th International workshop for industrial critical

systems, ROROS, Thomas Arts, Wan Fokkink (eds), pages 201–216, June 2003.

[14] J.-L. Camus and B. Dion. Efficient development of airborne soft-

ware with Scade suite. In Esterel Technologies white paper, 2003.

http://www.esterel-technologies.com.

[15] D. Cofer and M. Rangarajan. Formal modeling and analysis of advanced

scheduling features in an avionics RTOS. In procedings of Conference on

Embedded Software (EMSOFT’02), J. Sifakis and A. Sangiovanni-Vincentelli,

Eds, LNCS 2491, Springer Verlag, p. 138-152, 2002.

[16] P. Conmy and J. McDermid. High Level Failure Analysis for Integrated Mod-

ular Avionics. In Proceedings of the 6th Australian Workshop on Industrial

Experience with Safety Critical Systems and Software, Brisbane, Australia,

June 2001.

[17] B.L. Di Vito. A Model of Cooperative Noninterference for Integrated Modular

Avionics. In Proceedings of Dependable Computing for Critical Applications

(DCCA-7), San Jose, CA, January 1999.

[18] Esterel Technologies. Scade language reference manual. 2004.

http://www.esterel-technologies.com.

[19] P.H. Feiler, B. Lewis, and S. Vestal. The SAE Avionics Architecture De-

scription Language (Aadl) Standard: A Basis for Model-Based Architecture-

Driven Embedded Systems Engineering. In Proceedings of Workshop on Model-

Driven Embedded Systems, Washington D.C., USA, May 2003.

36

[20] A. Gamatié. Modélisation polychrone et évaluation de systèmes temps réel.

PhD thesis, Université de Rennes I, Rennes, France, May 2004.

[21] A. Gamatié and T. Gautier. Synchronous modeling of modular avionics archi-

tectures using the Signal language. Technical Report 4678, INRIA, December

2002. Available at http://www.inria.fr/rrrt/rr-4678.html.

[22] A. Gamatié and T. Gautier. Synchronous modeling of avionics applications

using the Signal language. In Proc. of the 9th IEEE Real-time/Embedded

technology and Applications symposium (RTAS’03). Washington D.C., USA,

May 2003.

[23] A. Gamatié, T. Gautier, and P. Le Guernic. An example of synchronous

design of embedded real-time systems based on IMA. In Proceedings of the

10th International Conference on Real-time and Embedded Computing Systems

and Applications (RTCSA’04). Gothenburg - Sweden, August 2004.

[24] T. Gautier and P. Le Guernic. Code generation in the Sacres project.

In Safety-critical Systems Symposium (SSS’99), Springer. Huntingdon, UK,

February 1999.

[25] T. Grandpierre and Y. Sorel. From algorithm and architecture specifications

to automatic generation of distributed real-time executives: a seamless flow of

graphs transformations. In Formal Methods and Models for Codesign Confer-

ence (MEMOCODE’03), Mont Saint-Michel, France, June 2003.

[26] N. Halbwachs, F. Lagnier, and C. Ratel. Programming and verifying real-

time systems by means of the synchronous data-flow programming language

Lustre. IEEE Trans. on Software Engineering, 18(9):785–793, Sep. 1992.

[27] A. Kountouris and P. Le Guernic. Profiling of Signal programs and its ap-

plication in the timing evaluation of design implementations. In IEE Colloq.

37

on HW-SW Cosynthesis for Reconfigurable Systems, IEE, pages 6/1–6/9. HP

Labs, Bristol, UK, February 1996.

[28] P. Le Guernic, J.-P. Talpin, and J.-C. Le Lann. Polychrony for system design.

Journal for Circuits, Systems and Computers, 12(3):261–304, April 2003.

[29] A. Ledeczi and al. The Generic Modeling Environment. In Proc. of the IEEE

Workshop on Intelligent Signal Processing (WISP’01), May 2001. For more

details, see www.isis.vanderbilt.edu/Projects/gme.

[30] Y.-H. Lee et al. Resource Scheduling in Dependable Integrated Modular Avion-

ics. In Proceedings of the International Conference on Dependable Systems and

Networks, April 2000.

[31] B. Lewis, S. Vestal, and D. McConnell. Modern avionics requirements for

the disbuted system annex. In Ada-Europe’98, L. Asplund, Ed, LNCS 1411,

Springer Verlag, p. 201-212, 1998.

[32] A. Pnueli. Embedded Systems: Challenges in Specification and Verification.

In 2002 Conference on Embedded Software, J. Sifakis and A. Sangiovanni-

Vincentelli, Eds, LNCS 2491, Spr. Verlag., p. 252-265, 2002.

[33] P. Puschner and A. Burns. A review of worst-case execution-time analysis.

Journal of Real-Time Systems, 18(2/3):115–128, May 2000.

[34] J. Rushby. Partitioning in avionics architectures: Require-

ments, mechanisms, and assurance. Technical Report CR-1999-

209347, NASA Langley Research Center, June 1999. Available at

http://www.csl.sri.com/users/rushby/partitioning.html.

[35] M.A. Sánchez-Puebla and J. Carretero. A new Approach for Distributed Com-

puting in Avionics Systems. In Proceedings of the 1st International Symposium

on Information and Communication Technologies, Dublin, Ireland, 2003.

38

[36] S. Vestal. MetaH Support for Real-Time Multi-Processor Avionics. In Pro-

ceedings of the IEEE Workshop on Parallel and Distributed Real-Time Sys-

tems, April 1997.

39

Fig. 1: Example of IMA infrastructure for the Boeing B777.

Fig. 2: Example of IMA infrastructure for the Airbus A380.

Fig. 3: A sketch of the model-based development with Scade.

40

Fig. 4: Abstract Signal description of read blackboard.

Fig. 5: Refined description of read blackboard and clock relations between
signals.

Fig. 6: Interface of the partition level OS model.

Fig. 7: IMA process model.

Fig. 8: An example of partition model composed of three processes.

Fig. 9: A component-oriented modeling framework for IMA design.

Fig. 10: Decomposition of a Signal process into two s-tasks Q1 and Q2.

Fig. 11: Decomposition of an s-task into two clusters L1 and L2.

Fig. 12: Modeling rules for IMA partitions.

Fig. 13: A process model resulting from the transformation of Q1.

41

42

cabinet1 cabinet2

CPM1 CPM2 GWM CPM’1 CPM’2 GWM

internal ARINC 659 businternal ARINC 659 bus

external ARINC 629 bus

43

44

CPM1 CPM2 GWM CPM’1 CPM’2 GWM’

GWM"

CPM"2

CPM"1

SW3

SW2SW1
Ethernet bus

external environment

45

46

Requirements
& Design
Document

Graphical Simulation
Proof &

Model
Software

Qualifiable Source Code

47

48

process READ_BLACKBOARD =

{ ProcessID_type process_ID; }

(? Comm_ComponentID_type board_ID;

SystemTime_type timeout;

! MessageArea_type message;

MessageSize_type length;

ReturnCode_type return_code;)

(| (| { {board_ID, timeout} -->

return_code } when C_return_code (d.1)

| { {board_ID, timeout} --> {message, length} }

when (return_code = #NO_ERROR) (d.2)

|)

| (| board_ID ^= timeout ^= C_return_code (s.1)

| return_code ^= when C_return_code (s.2)

| message ^= length ^= when (return_code = #NO_ERROR) (s.3)

|)

|) where boolean C_return_code

49

50

board_ID

timeout

message

length

present

board

CHECK_BOARD_ID{}

outofrange

available

CHECK_TIMEOUT{}

timeout

message

length

is_err_handler

empty

preemp_enabled

PERFORM_READ{}

return_code

GET_RETURN_CODE{}

(| board_ID ^= timeout ^= present ^= outofrange ^= available

^= C_return_code

| board ^= empty ^= when present

| message ^= length ^= when (not empty)

| is_err_handler ^= when empty when available

| preemp_enabled ^= when (not is_err_handler)

| C_return_code := (when ((not present) or outofrange)) default

(when empty when (not available)) default

(when ((not preemp_enabled) default is_err_handler)) default

(when (not empty)) default

false

| return_code ^= when C_return_code

|)

51

52

Active_partition_ID

dt

Timedout

Active_process_ID

Partition−level OSinitialize

53

54

....

....

....

.....

Outputs

dt

Active_process_ID

timedout

Inputs

CONTROL

COMPUTE

Block

Block

Block

Block

55

56

57

58

GME

MIMAD

XML, GME facilities ...

feedback
after analysis

Mimad2Sig

...

POLYCHRONY

IMA components

Interoperability

Object−oriented

Synchronous data−flow

59

60

P11

P23

P24

P22
P12

P14

P13

P2P1

P21

Q1 ≡ s-task1

P

Q2 ≡ s-task2

61

62

P11

P22

P12

P21

Q1 ≡ s-task1

L1
L2

63

64

p − OS (partition-level OS)

conti (“control“ part of a process pi)

bij (block)

compi ::= bi1 | ... | bimi
(“compute” part of a process pi)

pi ::= conti | compi (process)

p ::= p − OS | p1 | ... | pn (partition)

65

66

L1

L2

s

w

s

r

67

