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A vector eld on a connected Lie group is said to be linear if its ow is a one parameter group of automorphisms. A control-ane system is linear if the drift is linear and the controlled vector elds right invariant.

The controllability properties of such systems are studied, mainly in the case where the derivation of the group Lie algebra that can be associated to the linear vector eld is inner.

After some general considerations controllability properties on semi simple, nilpotent and compact Lie groups are stated.

The paper ends by many examples.

Introduction

The aim of this paper is to study the controllability properties of linear systems on Lie groups. By linear system is meant a controlled system

(Σ) ġ = X g + m j=1
u j Y j g * Lab. R. Salem, CNRS UMR 6085, Université de Rouen, avenue de l'université BP 12, 76801 Saint-Étienne-du-Rouvray France. E-mail: Philippe.Jouan@univ-rouen.fr 1 on a connected group Lie G where X is a linear vector eld, that is a vector eld whose ow is a one parameter group of automorphisms, and the Y j 's are right invariant. Linear vector elds on Lie groups are nothing else than the so-called innitesimal automorphisms in the Lie group literature (see for instance [START_REF] Bourbaki | Groupes et algèbres de Lie[END_REF]). They were rst considered in a control theory context by Markus, on matrix Lie groups ( [START_REF] Markus | Controllability of multitrajectories on Lie groups, Dynamical systems and turbulence[END_REF]), and then in the general case by Ayala and Tirao ( [START_REF] Ayala | Tirao Linear control systems on Lie groups and Controllability[END_REF]).

The motivation for dealing with such systems is twofold. On the one hand they are natural extensions of invariant systems on Lie groups. On the other hand they can be generalized to homogeneous spaces and appear as models for a wide class of systems, on account of the Equivalence Theorem of [START_REF] Ph | Jouan Equivalence of Control Systems with Linear Systems on Lie Groups and Homogeneous Spaces ESAIM: Control Optimization and Calculus of Variations[END_REF]. This equivalence was used in [START_REF] Ph | Jouan Invariant measures and controllability of nite systems on compact manifolds[END_REF] to establish new controllability criterions on compact manifolds.

On Lie groups a few controllability properties of linear systems have already been proved ( [START_REF] Ayala | Tirao Linear control systems on Lie groups and Controllability[END_REF], [START_REF] San Martin | Controllability properties of a class of control systems on Lie Groups Nonlinear control in the year[END_REF], [START_REF] Cardetti | Mittenhuber Local controllability for linear control systems on Lie groups[END_REF]):

1. On a compact and connected Lie group a linear system is controllable if and only it satises the rank condition. It was proved in [START_REF] San Martin | Controllability properties of a class of control systems on Lie Groups Nonlinear control in the year[END_REF].

2. A criterion of local controllability (the so-called ad-rank condition, see Section 3.4) was stated in [START_REF] Ayala | Tirao Linear control systems on Lie groups and Controllability[END_REF] and [START_REF] Cardetti | Mittenhuber Local controllability for linear control systems on Lie groups[END_REF].

3. If a linear system on a semisimple Lie group with nite center is controllable from the identity, then a certain invariant system, closely related to the linear one, is also controllable (see [START_REF] San Martin | Controllability properties of a class of control systems on Lie Groups Nonlinear control in the year[END_REF]).

A linear vector eld acts on the Lie algebra g of G, via the adjoint representation, as a derivation. A large part of this paper deals with the case where this derivation is inner. A right invariant system is then associated to the linear one in a natural way, dierent from the one of [START_REF] San Martin | Controllability properties of a class of control systems on Lie Groups Nonlinear control in the year[END_REF] (see Section 4.1). The controllability properties of those two systems are compared and in particular the controllability of the linear system is related to a time optimal problem for the invariant one.

This analysis is applied to semisimple Lie groups in Section 5.1. First of all it is stated in Theorem 2 that the invariant system is controllable as soon as the linear one is controllable from the identity, or to the identity. This statement is almost the same as the one of [START_REF] San Martin | Controllability properties of a class of control systems on Lie Groups Nonlinear control in the year[END_REF], the dierence being due to the simpler way an invariant system is associated to Σ. Theorem 3 contains the following converse to Theorem 2:

Let G be a semi-simple, connected Lie group with nite center. The adrank condition is assumed to hold. Then the linear system is controllable if and only if the invariant one is.

Together with the classical result of [START_REF] Assoudi | On subsemigroups of semisimple Lie groups[END_REF], this theorem furnishes controllability criterions on semisimple Lie groups. Section 5.2 deals with nilpotent Lie groups. Theorem 4 asserts that: on a nilpotent connected Lie group, and whenever the derivation is inner, Σ is controllable if and only if the algebra generated by Y 1 , . . . , Y m is equal to g. Some examples show that this theorem is no longer true on solvable Lie groups.

Finally we consider ane systems (Section 6). An ane vector eld is the sum of a linear vector eld and a right invariant one, and an ane system is obtained by replacing the drift of a linear system by an ane vector eld. Both invariant and linear systems appear as particular cases of ane systems. Their properties are studied in Section 6, and then applied to compact Lie groups.

This allows to state Theorem 5 which generalizes the known results about invariant and linear systems: An ane control system on a compact and connected Lie group is controllable if and only if it satises the rank condition.

Section 7 is devoted to examples. Through these ones it is shown that the ad-rank condition is neither a necessary nor a sucient controllability condition, and that a linear system can be controllable without being nite time controllable.

Linear vector elds and linear systems

In this section the denition of linear vector elds and some of their properties are recalled. More details can found in [START_REF] Ph | Jouan Equivalence of Control Systems with Linear Systems on Lie Groups and Homogeneous Spaces ESAIM: Control Optimization and Calculus of Variations[END_REF].

A vector eld on a connected Lie group G is said to be linear if its ow is a one parameter group of automorphisms. The following characterizations will be useful in the sequel.

Let X be a vector eld on a connected Lie group G. The following conditions are equivalent:

1. X is linear; 2. X belongs to the normalizer of g in the algebra of analytic vector elds of G, that is

∀Y ∈ g [X , Y ] ∈ g
and veries X (e) = 0;

3. X veries ∀g, g ∈ G X gg = T L g .X g + T R g .X g (1) 
On account of the second item the derivation D = -ad(X ) of the Lie algebra g of G is associated to the linear vector eld X .

In the case where this derivation is inner, that is D = -ad(X) for some right invariant vector eld X on G, the linear vector eld splits into X = X + I * X, where I stands for the dieomorphism g ∈ G -→ I(g) = g -1 . Thus X is the sum of the right invariant vector eld X and the left invariant one I * X.

The ow of a linear vector eld X will be denoted by (ϕ t ) t∈R . In the inner derivation case it is given by

ϕ t (g) = exp(tX)g exp(-tX) (2) 
Denition 1 A linear system on a connected Lie group G is a controlled system

(Σ) ġ = X g + m j=1 u j Y j g
where X is a linear vector eld and the Y j 's are right invariant ones. The control u = (u 1 , . . . , u m ) takes its values in R m .

The set U of admissible inputs is a subset of L ∞ loc ([0, +∞[, R m ) which contains the piecewise constant functions and is stable for concatenation, that is if ω and ν belong to U, then the function w dened by

w(t) = ω(t) t ∈ [0, T [ ν(t -T ) t ∈ [T, +∞[ belongs as well to U.
Such an input being given g u (t) (or briey g(t) when no confusion can arrive) stands for the trajectory of Σ which veries g u (0) = g.

Finally, let us recall the denition of the so-called zero-time ideal. Let ẋ = f (x) + m j=1 u j g j (x) be a C ∞ control-ane system on a connected manifold, and let L be the Lie algebra of C ∞ vector elds generated by f, g 1 , . . . , g m .

The zero-time ideal L 0 of the system is the smallest ideal of L that contains g 1 , . . . , g m . It satises the equality

L = Rf + L 0 .
3 General properties

3.1

The reachable sets Proposition 1, that can be found in [START_REF] Cardetti | Mittenhuber Local controllability for linear control systems on Lie groups[END_REF], is fundamental. Its proof is straightforward.

Proposition 1 ([4]) The input u being given, let us denote by e(t) the trajectory of Σ issued from the identity e of G. For the initial condition g the trajectory is then

g(t) = e(t)ϕ t (g).
Remark. If the vector elds Y j were left invariant we would have g(t) = ϕ t (g)e(t).

Notations. We denote by

A(g, t) = {g u (t); u ∈ L ∞ [0, t]} (resp. A(g, ≤ t))
(resp. A(g)) the reachable set from g in time t (resp. in time less than or equal to t) (resp. in any time). In particular the reachable sets from the identity e are denoted by A t = A(e, t) and A = A(e).

These sets are related by the following equalities and inclusions:

Proposition 2 1. ∀t ≥ 0 A(e, ≤ t) = A(e, t) = A t . 2. ∀ 0 ≤ s ≤ t A s ⊂ A t . 3. ∀g ∈ G A(g, t) = A t ϕ t (g). 4. ∀ s, t ≥ 0 A t+s = A t ϕ t (A s ) = A s ϕ s (A t ).
Proof. The identity being an equilibrium of X , the rst two items are standard and can be found for instance in [START_REF] Sontag | Mathematical Control Theory[END_REF].

The last two are consequences of Proposition 1.

3.2

The system Lie algebra and the rank condition Let h be the subalgebra of g generated by {Y 1 , . . . , Y m }, and let us denote by Dh the smallest D-invariant subspace of g that contains h, where D is the derivation associated to X :

Dh = Sp{D k Y ; Y ∈ h and k ∈ N}.
Let LA(Dh) stand for the g subalgebra generated by Dh.

Proposition 3 The subalgebra LA(Dh) is D-invariant. It is therefore equal to the zero-time ideal L 0 , and the system Lie algebra L to

RX ⊕ LA(Dh) = RX ⊕ L 0 .
The rank condition is satised by Σ if and only if L 0 = g.

Proof.

First of all the algebra LA(Dh) is D-invariant. Indeed the elements of Dh are linear combinations of D k Y where Y ∈ h and k ≥ 0, and

∀Y, Z ∈ h D[D k Y, D l Z] = [D k+1 Y, D l Z] + [D k Y, D l+1 Z] ∈ LA(Dh).
The zero-time ideal being the ideal of L generated by Y 1 , . . . , Y m , it is clearly equal to LA(Dh). The system Lie algebra is consequently L = RX ⊕ LA(Dh). As X (e) = 0, the rank at the point e is maximum if and only if LA(Dh) = g. In that case the rank condition is everywhere satised.

3.3

The Lie saturate

The Lie saturate LS(Σ) of Σ (resp. the strong Lie saturate LSS(Σ) of Σ) is the set of vector elds f belonging to the system Lie algebra L and whose ow

(φ t ) t∈R satises ∀g ∈ G, ∀t ≥ 0 φ t (g) ∈ A(g) (resp. φ t (g) ∈ A(g, ≤ t))
as soon as φ t (g) is dened. The notion of Lie saturate as well as the proof of Proposition 4 can be found in [START_REF]Jurdjevic Geometric control theory[END_REF].

Proposition 4 The algebra h is included in LSS(Σ), so that Σ can be enlarged to the system

( Σ) ġ = X g + p j=1 u j Y j g ,
where Y 1 , . . . , Y p is a basis of h, without modifying the sets A(g, ≤ t).

Proof. Cf [START_REF]Jurdjevic Geometric control theory[END_REF].

Assume now that the system satises the rank condition. Let H be the connected Lie subgroup of G whose Lie algebra is h, and let us denote by h the Lie algebra of the closure H of H in G.

Proposition 5 If Σ satises the rank condition, then the algebra h is con- tained in LSS(Σ).

Proof.

According to Proposition 4, Hg ⊂ A(g, ≤ t) for every g ∈ G and every t > 0. Therefore Hg is as well included in A(g, ≤ t). The rank condition being satised, h ⊂ g is contained in the Lie algebra L of Σ, and h ⊂ LSS(Σ).

The interest of this second enlargement is rather theoretical since it may be hard to decide if the subgroup H is closed in G.

3.4

Local controllability and the ad-rank condition

It is well known that a system is locally controllable at an equilibrium point as soon as the linearized system is controllable (see [START_REF] Nijmeijer | Schaft Nonlinear Dynamical Control Systems[END_REF] for instance). In this assertion "locally controllable" at a point g means that the set A(g, t) is a neighbourhood of g for all t > 0.

In view of Proposition 4 it may be more interesting to consider the linearization at the identity of the enlarged system Σ rather than the one of Σ.

Example (See Section 7). The linearized system at e of System L 3 on the Heisenberg group is not controllable. However the controlled vector elds of L 3 generate the Lie algebra g and the linearization of the enlarged system is controllable.

These remarks lead to dene a stronger rank condition, called "ad-rank condition" in [START_REF] Ayala | Tirao Linear control systems on Lie groups and Controllability[END_REF].

Denition 2 System (Σ) is said to satisfy the ad-rank condition if Dh = g.

Proposition 6 (See [START_REF] Ayala | Tirao Linear control systems on Lie groups and Controllability[END_REF]) If the ad-rank condition is satised then for all t > 0 the reachable set A t is a neighbourhood of e.

In [START_REF] Cardetti | Mittenhuber Local controllability for linear control systems on Lie groups[END_REF] the weaker result that under the ad-rank condition the attainable set A is a neighbourhood of e is stated, using the theory of Lie semigroups. The proof presented here is novel, and is actually an easy consequence of the linearization principle.

Proof.

It is proved in [START_REF] Ph | Jouan Equivalence of Control Systems with Linear Systems on Lie Groups and Homogeneous Spaces ESAIM: Control Optimization and Calculus of Variations[END_REF] that the tangent mapping at e of the ow of X is T e ϕ t = e tD . According to this equality the linearized vector eld of X at e is the endomorphism D of T e G g.

Thus the linearization of Σ at e can be written in

T e G Ż = DZ + m j=1 u j Y j (e)
where ( Y 1 , . . . , Y m ) is a basis of h. The ad-rank condition is therefore equivalent to the Kalman rank condition for this linear system.

Important remark. The ad-rank condition is not a sucient condition of controllability. It is for instance satised by Example 2 in Section 7.3 although the system is not controllable on SL 2 , not even from the identity.

Groups and semigroups

In this section we consider the polysystem {X } ∪ h instead of Σ. According to Proposition 4 and to enlargement techniques ( [START_REF]Jurdjevic Geometric control theory[END_REF]), the closure of the sets A t is not modied. The set of admissible inputs is restricted to the piecewise constant ones, and the results are stated within this framework.

Lemma 1 For all t > 0 the set A t is equal to

{ϕ t 1 (h 1 )ϕ t 2 (h 2 ) . . . ϕ tn (h n ); n ∈ N, h 1 , . . . , h n ∈ H, 0 ≤ t 1 ≤ t 2 ≤ • • • ≤ t n < t},
where H is the connected subgroup of G whose Lie algebra is h.

Proof. For the system under consideration it is clear that H ⊂ A s for all s > 0.

The proposition is due to the fact that a point g of the form

g = ϕ t 1 (h 1 )ϕ t 2 (h 2 ) . . . ϕ tn (h n ) , with 0 ≤ t 1 ≤ t 2 ≤ • • • ≤ t n ,
can be written

g = ϕ t 1 (h 1 ϕ t 2 -t 1 (h 2 . . . (h n-1 ϕ tn-t n-1 (h n )))) , with t i+1 -t i ≥ 0.
Remark. In the previous statement the inequality t n < t always holds. The points h i are indeed reached in an arbitrary but positive time (except in the particular case where all the h i 's are equal to e).

In the paper [START_REF] Ayala | Tirao Linear control systems on Lie groups and Controllability[END_REF] it is conjectured that the set A is not a semigroup in general. We show the stronger result that A cannot be a semigroup without being a group.

Let S stand for the semigroup generated by A. It is clear that the elements of S can be characterized in a similar way as the ones of A in Lemma 1, with the condition

t 1 , t 2 , . . . , t n ≥ 0 instead of 0 ≤ t 1 ≤ t 2 ≤ • • • ≤ t n . In order to show that S is a group it is enough to prove that g ∈ S =⇒ g -1 ∈ S. Let g = ϕ t 1 (h 1 )ϕ t 2 (h 2 ) . . . ϕ tn (h n ) ∈ S , with t 1 , t 2 , . . . , t n ≥ 0. Then g -1 = ϕ tn (h -1 n ) . . . ϕ t 2 (h -1 2 )ϕ t 1 (h -1
1 ) belongs as well to S. Moreover if Σ satises the rank condition, then S is a subgroup of G that contains a nonempty open set, hence S = G. We have proved: Proposition 7 The reachable set A is a group if and only if it is a semigroup. In particular if the rank condition is satised then

A = G ⇐⇒ A is a semigroup.
The following corollary can be easily deduced from Proposition 7. However it is of limited interest because of the diculty to check its conditions.

Corollary 1 If the rank condition is satised, and if there exists T > 0 such that A T = A, then Σ is controllable at time T .

Moreover the second condition holds as soon as there exist T > 0 and > 0 such that A T = A T + .

Proof. As S = G, any g ∈ G can be written

g = ϕ t 1 (h 1 )ϕ t 2 (h 2 ) . . . ϕ tn (h n ), with h i ∈ H and t i ≥ 0. Denoting g i = ϕ t i (h i ) ∈ A = A T we get ϕ T (g) = ϕ T +t 1 (h 1 )ϕ T +t 2 (h 2 ) . . . ϕ T +tn (h n ) = ϕ T (g 1 )ϕ T (g 2 ) . . . ϕ T (g n ). But ϕ T (g 1 ) ∈ A 2T = A T . Hence ϕ T (g 1 )ϕ T (g 2 ) ∈ A T ϕ T (A T ) = A 2T = A T ,
and by an obvious induction ϕ T (g) ∈ A T . This shows that

G = ϕ T (G) ⊂ A T .
The proof of the second assertion is standard (see [START_REF] Sontag | Mathematical Control Theory[END_REF]).

The inner derivation case

In this section the derivation ad(X ) is assumed to be inner. A right invariant system is associated in a natural way to Σ and its controllability is related to the one of the linear system.

The associated invariant system

Since the derivation D = ad(X ) is inner, the vector eld X can be decomposed into

X = X + I * X
where X is a right invariant vector eld that satises ad(X) = ad(X ) (see Section 2).

It is thus natural to dene on G the right invariant system:

(Σ I ) ġ = X g + m j=1 u j Y j g
In order to avoid confusion the linear system will be denoted by Σ L in this section.

Proposition 8 Let t -→ u(t) be an admissible input. The absolutely continuous curve t -→ g L (t) is solution of the linear system Σ L for this input if and only if the curve t -→ g L (t) exp(tX) is solution of the right invariant system Σ I .

Proof. If t -→ g L (t) is solution of the linear system, then for almost every t:

d dt g L (t) exp(tX) = T L g L (t) .X exp(tX) + T R exp(tX) .(X g L (t) + m j=1 u j (t)Y j g L (t) ) = T L g L (t) .X exp(tX) + T R exp(tX) .(X g L (t) + (I * X) g L (t) ) + m j=1 u j (t)Y j g L (t) exp(tX) = T L g L (t) T R exp(tX) .X e + X g L (t) exp(tX) + T R exp(tX) (I * X) g L (t) + m j=1 u j (t)Y j g(t) exp(tX) = X g L (t) exp(tX) + m j=1 u j (t)Y j g L (t) exp(tX) since T R exp(tX) (I * X) g L (t) = -T R exp(tX) T L g L (t) .X e = -T L g L (t) T R exp(tX) .X e .
The converse is similar.

We will use the symbol S in place of A to denote the reachable sets of the invariant system. A straightforward consequence of Proposition 8 is that the set S t of reachable points from e in time t veries

∀t ≥ 0 S t = A t exp(tX). (3) 
The relation between the reachable sets in time less than or equal to T > 0 is a bit more complicated:

S ≤T = 0≤t≤T A t exp(tX).
It can also be noticed that both systems have the same zero-time ideal L 0 . Indeed since D = ad(X ) = ad(X) this ideal is in both cases the smallest D-invariant subalgebra of g that contains Y 1 , . . . , Y m . Consequently the Lie algebras of the systems are

L(Σ L ) = RX ⊕ L 0 and L(Σ I ) = RX ⊕ L 0 .
If the linear system satises the rank condition, then L 0 = g and the invariant one veries L(Σ I ) = L 0 = g.

Finite time controllability

The remarks made in the previous subsection about the Lie algebras of Σ L and Σ I have consequences on nite time controllability.

Let us recall that a control system is said to be nite time controllable (resp. exact time controllable) if there exists T > 0 such that any point x can be steered to any point y in time less than or equal to T (resp. in time T ).

It is shown in [START_REF] Ph | Finite Time and Exact Time Controllability on Compact Manifolds to appear[END_REF] that a Lie determined and nite time controllable system is exact time controllable if and only if its zero-time ideal satises the rank condition. For a linear system nite time and exact time controllability are therefore always equivalent. This equivalence is not true in general for invariant systems, but it holds whenever the associated linear system satises the rank condition.

Proposition 9 Let T > 0. The following assertions are equivalent:

1. Σ L is controllable in time less than or equal to T ; 2. Σ L is controllable in time T ; 3. Σ L is controllable from the identity in time T ; 4. Σ I is controllable from the identity in time T ; 5. Σ I is controllable in time T ;

These conditions are moreover equivalent to: Σ I is nite time controllable and Σ L satises the rank condition.

Proof.

According to the following facts:

1. ∀t ≥ 0, S t = A t exp(tX);

2. ∀g ∈ G, ∀t ≥ 0, S(g, t) = S t g; 3. ∀g ∈ G, ∀t ≥ 0, A(g, t) = A t ϕ t (g) = A(e, ≤ t)ϕ t (g);
the ve conditions are equivalent to A T = G.

Remarks.

1. A linear system on a vector space cannot be controllable without being exact time controllable. That property is no longer true in the general case. An example of a controllable but not nite time controllable on the group Af f + (2) of ane transformations of the real line is exhibited in Section 7.2. The associated invariant system is not controllable.

2. In particular Proposition 9 applies to compact groups. However the controllability results on such groups can be extended to ane systems and for this reason are postponed to Section 6.1.

Time optimal control of the invariant system

In this subsection the invariant system is assumed to be controllable. Under this assumption, the controllability of the linear one is shown to be equivalent to a time optimal problem. It will be said that the the time t > 0 is not optimal for exp(tX) if the trajectory τ -→ exp(τ X) does not minimize the time necessary for the invariant system to steer the point e to the point exp(tX).

Theorem 1 We assume the rank condition L 0 = g to be satised and the right invariant system to be controllable. The following assertions are equivalent:

(i) there exists a time t > 0 which is not optimal for exp(tX);

(ii) exp(RX) ⊂ A;

(iii) The linear system is controllable.

These conditions are satised, and the linear system is controllable, as soon as the set A t is a neighbourhood of e for some t > 0, in particular whenever the ad-rank condition holds.

Proof.

1. Let us rst remark that the set {τ ∈ R; exp(τ X) ∈ A} is a semigroup.

Indeed if exp(τ 1 X) ∈ A t 1 and exp(τ 2 X) ∈ A t 2 , then exp(τ 1 X) exp(τ 2 X) = exp(τ 1 X)ϕ t 1 (exp(τ 2 X)) ∈ A τ 1 +τ 2
because ϕ t (g) = exp(tX)g exp(-tX) (see Section 2). On the other hand Σ I being controllable and L 0 equal to L, there exists t > 0 such that S t is a neighbourhood of e (see [START_REF] Ph | Finite Time and Exact Time Controllability on Compact Manifolds to appear[END_REF]). Therefore S t exp(-tX) ∩ exp(RX), which is included in A t , contains a neighbourhood (in the set exp(RX)) of exp(-tX). Together with the semigroup property, this gives:

exp(RX) ⊂ A ⇐⇒ ∃τ > 0 such that exp(τ X) ∈ A.

(i) ⇐⇒ (ii)

If t > 0 is not optimal for exp(tX), then there exists τ , with 0 < τ < t, such that exp(tX) ∈ S τ . Consequently exp((t -τ )X) ∈ A and exp(RX) ⊂ A.

Conversely if exp(RX) ⊂ A, let us choose arbitrarily τ > 0. There exists t > 0 such that exp(τ X) ∈ A t , hence such that exp((t + τ )X) ∈ S t . This shows that the time t + τ is not optimal for exp((t + τ )X).

(ii) =⇒ (iii)

Let us rst show that the linear system is controllable from e.

Let g ∈ G. There exists t ≥ 0 such that g ∈ S t , hence such that g exp(-tX) ∈ A t . By assumption there exists s > 0 such that exp(tX) belongs to A s , and thus:

g = g exp(-tX)ϕ t (exp(tX)) ∈ A t ϕ t (A s ) = A t+s .
Let us now show that Σ L is controllable to e. We have to prove that e ∈ A(g) for all g ∈ G.

As there exists t ≥ 0 such that g -1 ∈ S t , or in an equivalent way such that g -1 exp(-tX) ∈ A t , we have exp(-tX) = g -1 exp(-tX) exp(tX)g exp(-tX) = g -1 exp(-tX)ϕ t (g) ∈ A(g, t).

By assumption there exists s > 0 such that exp(tX) ∈ A s , and we obtain e = exp(tX)ϕ s (exp(-tX)) ∈ A(exp(-tX), s).

This shows that e ∈ A(g).

(iii) =⇒ (ii) is obvious.

4. If the set A t is a neighbourhood of e for some t > 0, then exp(RX) is included in A, and according to Condition (ii) the linear system is controllable.

5 Application to some classes of Lie groups

Semisimple Lie groups

Before applying Theorem 1 to semisimple groups, let us state Theorem 2 which is a reformulation of the main result of [START_REF] San Martin | Controllability properties of a class of control systems on Lie Groups Nonlinear control in the year[END_REF]. The idea of the proof, based on the notion of reversibility of semigroups, is also due to [START_REF] San Martin | Controllability properties of a class of control systems on Lie Groups Nonlinear control in the year[END_REF]. However the proof given here is simpler than the original one, thanks to the way we associate an invariant system to the linear one.

Theorem 2 ([17]

) The group G is assumed to be semisimple, connected, with nite center. Then the invariant system is controllable as soon as the linear one is controllable from the identity, or to the identity.

Proof.

Let S be a generating subsemigroup of a group G. It is said to be left reversible (resp. right reversible) if SS -1 = G (resp. S -1 S = G). The following statement can be found in [START_REF] San Martin | Tonelli Semigroup actions on homogeneous spaces[END_REF]:

Let G be a connected and semisimple Lie group with nite center. The only subsemigroup of G with nonempty interior which is left or right reversible is G.

1. Let us prove that Σ L controllable from e implies S left reversible. Let g ∈ G. There exists t ≥ 0 such that g ∈ A t = S t exp(-tX). This shows that S exp(-R + X) = G and, as exp(R + X) ⊂ S, that SS -1 = G.

2. Let us prove that Σ L controllable to e implies S right reversible. Let g ∈ G. There exists t ≥ 0 such that e ∈ A(g -1 , t), hence there exists x ∈ A t such that e = xϕ t (g -1 ). Consequently ϕ t (g) = exp(tX)g exp(-tX) =

x ∈ A t and exp(tX)g ∈ S t . Finally exp(-R + X)S = G and S is right reversible.

Remark. Theorem 2 is no longer true whenever the center of G is innite.

A counter-example is exhibited in the last section of [START_REF] Martin | Nonreversibility of Subsemigoups of Semi-Simple Lie Groups Semigroup Forum[END_REF].

The following corollary is a straightforward consequence of Theorems 1 and 2.

Corollary 2 The group G is assumed to be semisimple, connected and its center to be nite.

If the linear system Σ L is controllable from the identity e then it is controllable.

Proof. According to Theorem 2 the invariant system is controllable. Since A = G Theorem 1 applies.

Remark. We do not know if this result holds on more general Lie groups.

In the case where the ad-rank condition is satised the controllability of Σ L and Σ I are equivalent. Moreover the sucient conditions established by Rachida El Assoudi, Jean-Paul Gauthier and Ivan Kupka in [START_REF] Assoudi | On subsemigroups of semisimple Lie groups[END_REF] are valid for both systems. These conditions make appeal to the rather technical hypothesis of [START_REF] Assoudi | On subsemigroups of semisimple Lie groups[END_REF], that are detailed in Appendix 8.1.

Theorem 3 Let G be a semi-simple, connected Lie group with nite center. The ad-rank condition is assumed to hold.

Then the linear system is controllable if and only if the invariant one is.

In particular both systems are controllable whenever the following conditions hold:

1. The algebra h contains a strongly regular element Y .

2. Let X = X 0 + a∈Sp(Y ) X a be the decomposition of X along the eigen spaces of ad C (Y ). Then X a = 0 as soon as the eigenvalue a ∈ Sp(Y ) is minimal or maximal.

3. If a ∈ Sp(Y ) is maximal, if its real part r = (a) is a non zero eigenvalue of ad C (Y ), and if g r and g a belong to the same simple ideal of g C , then the trace of ad(X r ) • ad(X -r ) is negative.

Remark. In a semi-simple Lie algebra g the set of pairs

(Y 1 , Y 2 ) that
generate g is open and dense in g × g. Both systems Σ I and Σ L are therefore generically controllable as soon as m ≥ 2.

Nilpotent Lie groups

The subalgebra of g generated by the elds Y j , j = 1, . . . , m is, as previously, denoted by h.

Theorem 4

The group G is assumed to be nilpotent, and the derivation associated to X to be inner. Then Σ is controllable if and only if h = g. In that case it is controllable in exactly T unit of time for all T > 0.

Proof.

The suciency and the exact time controllability that follows are obvious.

For the converse assume the system to be controllable and let us denote by (C i g) i≥1 the lower central series of g, that is C 1 g = g and C i+1 g = [g, C i g] (see [START_REF] Bourbaki | Groupes et algèbres de Lie[END_REF]).

Let X be a right invariant vector eld such that ad(X) = ad(X ), and let k be the largest index such that X ∈ C k g. According to the denition of the lower central series the inclusion ad(X)g ⊂ C k+1 g holds. On the other hand, the rank condition being satised, the smallest Lie subalgebra of g that contains h and is ad(X)-invariant is equal to g. Now h + C k+1 g is a subalgebra of g (because C k+1 g is an ideal), and is ad(X)-invariant, because ad(X)(h) ⊂ ad(X)(g) ⊂ C k+1 g. This proves

h + C k+1 g = g.
Let us assume that h + C k+r g = g for some integer r > 0. The eld X can be decomposed into X = X h + X r where X h ∈ h and X r ∈ C k+r g. Therefore

ad(X)(h) = ad(X h )(h) + ad(X r )(h) ⊂ h + C k+r+1 g.
This implies that h + C k+r+1 g is an ad(X)-invariant subalgebra that contains h, hence equal to g.

We obtain by induction

∀r > 0 h + C k+r g = g.
Since C k+r g = {0} for r large enough, the conclusion is h = g. Then h = g but the algebra L 0 is equal to g since ad(X )X = ad(Y )X = -Y (see also the example of Section 7.2).

Ane vector elds

In this section the drift of the system is an ane vector eld F , that is the sum of a linear vector eld X and a left invariant one Z. The system under consideration is:

(Σ F ) ġ = F g + m j=1 u j Y j g
Thanks to the decomposition F = X + Z the trajectories of Σ F can be compared with the ones of

(Σ) ġ = X g + m j=1 u j Y j g .

Proposition 10

The input u being given, the solution of Σ F for the initial condition g ∈ G is equal to g(t)z(t) where

1. t → g(t)
is the solution of Σ that veries g(0) = g;

2. t → z(t) is the solution of ġ = X g + Z g that veries z(0) = e.
Proof. Let γ(t) = g(t)z(t). According to Formula (1) of Section 2, we have for almost all t ≥ 0:

d dt γ(t) = T R z(t) (X g(t) + m j=1 u j (t)Y j g(t) ) + T L g(t) (X z(t) + Z z(t) ) = X g(t)z(t) + Z g(t)z(t) + m j=1 u j (t)Y j g(t)z(t) = X γ(t) + Z γ(t) + m j=1 u j (t)Y j γ(t) .
Let us now assume the rank condition to be satised. Three cases have to be distinguished, and Proposition 10 will have a true interest only in the third one.

1. There exists g 0 such that F (g 0 ) = 0. The rank condition requires L 0 = g, and by the Equivalence Theorem, recalled in Section 8.2, this case can be reduced to the one where the drift is linear. Actually the equivalence can be shown by applying to the system the right translation R g -1 0 , denoted by Φ for abbreviation. For all Y ∈ g we have

Φ * Y = Y and [Φ * F, Y ] = [Φ * F, Φ * Y ] = Φ * [F, Y ] = [F, Y ]
since [F, Y ] ∈ g. This proves that the eld Φ * F is ane, and henceforth linear since Φ * F (e) = 0. Moreover ad(Φ * F ) = ad(F ) = ad(X ) and Φ * F is actually equal to X . Conclusion. The system is equivalent to the linear system

ġ = X (g) + m j=1 u j Y j g where X = Φ * F . 2. ∀g ∈ G, F (g) = 0 but L 0 = g. The rank condition implies: • The codimension of L 0 in g is 1.
• At the point e we have T e G = L 0 (e) ⊕ RF (e).

Let G be the connected and simply connected group whose Lie algebra is isomorphic to RF ⊕L 0 . On account of the Equivalence Theorem, the group G is dieomorphic to the quotient of G by a subgroup H (discrete because G and G have the same dimension) and Σ F is equivalent to an invariant system on G/H. In the case where G is simply connected, it is dieomorphic to G and Σ F cannot be controllable: it is indeed a right invariant system whose vector elds are contained in a half-space bounded by the Lie subalgebra L 0 (Hypersurface Principle, Cf [START_REF]Sachkov Controllability of Invariant Systems on Lie Groups and Homogeneous Spaces[END_REF]). Furthermore Proposition 10 is of no help because the linear system Σ does not satisfy the rank condition and is not controllable. Conclusion. The system is equivalent to a right invariant one. It cannot be controllable if G is simply connected.

3. ∀g ∈ G, F (g) = 0 and L 0 = g. In application of Proposition 10, and in a way similar to the one of Section 4.2, the system Σ F is controllable as soon as Σ is nite time controllable.

We can therefore state: Proposition 11 With the previous notations it is assumed that the eld F does not vanish, and that the zero-time ideal L 0 is equal to g. Then Σ F is nite time controllable if and only if Σ is.

Compact Lie groups

Thanks to the analysis of the previous section, a general result of controllability on compact groups can be stated.

Theorem 5 The group G is assumed to be compact. System Σ F is controllable, hence nite time controllable, if and only if it satises the rank condition.

It is moreover exact time controllable if and only if L 0 = g. That condition is always satised in the case where the vector eld F is linear.

Proof.

1. Let us rst prove the controllability statement in the case where F = X is linear.

The group G being compact its Lie algebra splits into g = z + s where z is the center of g and s is a semisimple compact ideal. The derivation associated to X is equal to ad(X) where X can be choosen in s (see [START_REF] San Martin | Controllability properties of a class of control systems on Lie Groups Nonlinear control in the year[END_REF] or [START_REF] Ph | Jouan Invariant measures and controllability of nite systems on compact manifolds[END_REF]). The rank condition being satised, it is also satised by the invariant system associated to Σ as in Section 4. According to Theorems 7.1 and 7.2 of [START_REF] Jurdjevic | Control Systems on Lie Groups[END_REF], this invariant system is nite time controllable, and on account of Proposition 9 the linear one is as well nite time controllable.

2. Let us now consider general drifts, and distinguish between the three cases. Thanks to the rst item of this proof we obtain that Σ F is nite time controllable in the rst case, and according to Proposition 11, in the third one. It is nite time controllable in the second case by virtue of the results of [START_REF] Jurdjevic | Control Systems on Lie Groups[END_REF].

3. The last assertion is a consequence of a result of [START_REF] Ph | Finite Time and Exact Time Controllability on Compact Manifolds to appear[END_REF] recalled in Section 4.2.

Remarks.

1. Controllability of linear systems on compact Lie groups has already been stated, with a dierent proof, in [START_REF] San Martin | Controllability properties of a class of control systems on Lie Groups Nonlinear control in the year[END_REF] (but nor the exact time controllability, neither the controllability of ane systems are proved in that paper).

2. Theorem 5 does not extend without additional assumptions to linear systems on compact homogeneous spaces: two counterexamples are exhibited in [START_REF] Ph | Jouan Invariant measures and controllability of nite systems on compact manifolds[END_REF].

3. An exact time controllable linear system on a compact Lie group is not necessarily controllable in any time t > 0. In the paper [START_REF] Jurdjevic | Control Systems on Lie Groups[END_REF] an invariant system which is exact time controllable, but not in arbitrarily small time, is exhibited on SO 3 (Example 8.1). The Lie algebra so 3 being semisimple, the zero-time ideal of the system must be equal to so 3 . Consequently the linear system that can be associated satises also the rank condition. According to Proposition 9 this linear system is as well as the invariant one exact time controllable, but not in arbitrarily small time. The Heisenberg group is the matrix group

G =      1 y z 0 1 x 0 0 1   ; (x, y, z) ∈ R    .
Its Lie algebra g is generated by the right invariant vector elds

X =   0 0 0 0 0 1 0 0 0   , Y =   0 1 x 0 0 0 0 0 0   , Z =   0 0 1 0 0 0 0 0 0   ,
that verify [X, Y ] = Y X-XY = Z, and can be written in natural coordinates

X = ∂ ∂x , Y = ∂ ∂y + x ∂ ∂z , Z = ∂ ∂z .

Example 1

To the derivation D of g dened by DX = Y , DY = X, and DZ = 0 one associates the vector eld X dened by

X = y ∂ ∂x + x ∂ ∂y + 1 2 (x 2 + y 2 ) ∂ ∂z .
A straightforward computation shows that this eld is linear and veries -ad(X ) = D. The system ġ = X (g) + uX(g) can be written in R 3

(L 1 ) =    ẋ = y + u ẏ = x ż = 1 2 (x 2 + y 2 )
Since DX = Y and [X, Y ] = Z, it satises the rank condition, but not the ad-rank one, because Dg = V ect{X, Y }.

It is clearly not controllable on G, not even from the identity. It can be noticed that the equilibriums are the points (0, 0, z), with u = 0, and that the linearized system is controllable at none of them.

However the subgroup H of G dened by

H =      1 0 n 0 1 0 0 0 1   ; n ∈ Z  
 is discret and central. The linear eld X can be projected to the quotient group G = G/H, because H is included in the set of xed points of X (see [START_REF] Ph | Jouan Equivalence of Control Systems with Linear Systems on Lie Groups and Homogeneous Spaces ESAIM: Control Optimization and Calculus of Variations[END_REF]). The linear system thus dened on G = G/H is clearly controllable.

Examples 2 and 3

With the same linear eld X as in Example 1, consider the systems:

(L 2 ) ġ = X (g) + uX(g) + vZ(g) and (L 3 ) ġ = X (g) + uX(g) + vY (g).
In natural coordinates, they write: Both systems satisfy the ad-rank condition. Indeed let us denote as previously by h the subalgebra generated by the controlled elds. In the rst case h contains X and Z, and also Y = DX. In the second one h contains X and Y , hence also Z = [X, Y ].

(L 2 ) =    ẋ = y + u ẏ = x ż = 1 2 (x 2 + y 2 ) + v and (L 3 ) =    ẋ = y + u ẏ = x + v ż = 1 2 (x 2 + y 2 ) +

Example 4

In order to exhibit a single input system that satises the ad-rank condition, let us consider the derivation

D =   0 0 0 1 0 0 0 1 0  
The linear vector eld associated to this derivation is

X = x ∂ ∂y + (y + 1 2 x 2 ) ∂ ∂z
The system ġ = X (g) + uX(g) can be written in coordinates

(L 4 ) =    ẋ = u ẏ = x ż = y + 1 2 x 2
Let us denote by Z the center of G, that is the closed subgroup {x = y = 0}.

As in Example 1 the linear eld X can be projected to the quotient group G = G/Z, because Z is included in the set of xed points of X ( [START_REF] Ph | Jouan Equivalence of Control Systems with Linear Systems on Lie Groups and Homogeneous Spaces ESAIM: Control Optimization and Calculus of Variations[END_REF]). The induced system on G/Z is equivalent to the linear, in the usual meaning, system on R 2 : ẋ = u ẏ = x which is clearly controllable. On the other hand Z is included in A. Indeed the linearized system of L 4 at the identity is controllable, and in particular the set A t ∩ Z is a neighbourood of e in Z for all t > 0. As the restriction of ϕ t to Z is the identity, the set A ∩ Z is a semigroup: if g ∈ A t ∩ Z and g ∈ A s ∩ Z, then gg = gϕ t (g ) ∈ A t+s ∩ Z.

Consequently A ∩ Z = Z. Taking into account the controllability on the quotient, it is easy to see that the system is controllable from the identity.

In a similar way it is controllable to the identity, hence controllable.

7.2

An example on the group Af f + (2)

Let G be the connected component of e in the 2-dimensional ane group:

G = Af f + (2) = x y 0 1 ; (x, y) ∈ R * + × R
Its Lie algebra g is identied with the set of left invariant vector elds. This 2-dimensional algebra is solvable and generated by Let X be the linear eld dened by X (g) = gB -Bg = 0 x -1 0 0 , and consider the linear system Σ L : ġ = X (g) + ugA and the left invariant one Σ I : ġ = gB + ugA.

In order to analyse the controllability of the linear system we set X (g) = Ag -gA, D = -ad(X ) = -ad(A), and we obtain (for the bracket

[B, A] = AB -BA) DB = 0 2 2 0 et D 2 B = -4B + a 0 1 -1 0 .
• If a = 0 the rank of {B, DB, D 2 B} is equal to 3 so that the ad-rank condition is satised. The invariant system being controllable, Theorem 1 applies, and Σ L is controllable.

• If a = 0, the ad-rank condition is not satised. However the one parameter group exp(tA) = cos t sin t -sin t cos t is periodic, and the ow ϕ t (g) = exp(tA)g exp(-tA) is as well periodic, hence Poisson stable. The linear system is therefore controllable.

The case where a = 0 is an example of a controllable system that does not satisfy the ad-rank condition. Notice however that the group SL 2 is not simply connected.

Example 2

This example can be found in [START_REF] San Martin | Controllability properties of a class of control systems on Lie Groups Nonlinear control in the year[END_REF]. Consider the matrices X and Y of sl It is however not controllable, not even from e. Indeed if it was, then the invariant system (Σ I ) ġ = Xg + uY g would also be controllable in account of Theorem 2. In that case the bilinear system ẋ = Xx+uY x induced by Σ I in R 2 would be controllable on R 2 \{0}.

But that system has invariant orthants: the eigenspaces of Y , generated by the vectors (1, √ 2 -1) and (1 -√ 2, 1), dene four orthants in R 2 . The one that contains the point (1, 0) is positively invariant for the bilinear system which is therefore not controllable on R 2 \ {0}.

Appendix

8.1

The theorem of [START_REF] Assoudi | On subsemigroups of semisimple Lie groups[END_REF] The theorem of El Assoudi-Gauthier-Kupka deals with semisimple Lie groups with nite center. Its statement requires some denitions. The complexication of the algebra g of the group is denoted by g C , and the adjoint representation of g C by ad C . The real part of a complex number z is denoted by (z), and its imaginary part by (z).

Denition. An element Y ∈ g is said to be strongly regular if:

(i) Y is a regular element of g.

(ii) All the non-vanishing, real or complex, eigenvalues of ad(Y ) are simple.

Let us denote by Sp(Y ) the set of non-vanishing, real or complex, eigenvalues of ad(Y ). For a ∈ Sp(Y ), let g a stand for the eigenspace of g C associated to a (it is 1-dimensional). The algebra g C splits into: X a be the decomposition of X along the eigenspaces of ad C (Y ). Then X a = 0 if the eigenvalue a ∈ Sp(Y ) is minimal or maximal.

(H4) If a ∈ Sp(Y ) is maximal, if its real part r = (a) is a non-vanishing eigenvalue of ad C (Y ), and if g r and g a belong to the same simple ideal of g C , then the trace of ad(X r ) • ad(X -r ) is negative.

The Equivalence Theorem

Let us recall that an ane vector eld F is obtained by adding a left invariant vector eld Z to a linear one X . It may be more suitable to see F as the sum of a linear vector eld and a right invariant one. This can be done by writing: F = X + Z = X + Z + I * Z -I * Z = X -I * Z

  vx These two systems are controllable on G. It is obvious for L 2 , and the Lie saturate of L 3 contains ±X and ±Y , hence also ±Z = ±[X, Y ].

  [A, B] = AB -BA = B. The matrices A and B are identied with the left invariant vector elds:

  hence {Y, DY, D 2 Y }, where D = -ad(X), is a basis of sl 2 . Henceforth the linear system (Σ I ) ġ = Xg -gX + uY g satises the ad-rank condition, and is locally controllable from the identity in SL 2 .

g

  C = ker(ad C (Y )) ⊕ ⊕ a∈Sp(Y ) g a and the corresponding decomposition of Z ∈ g C is denoted by: Z = Z 0 + a∈Sp(Y ) Z a Denition Let us endow C with the lexicographic order: a < b if (a) < (b) or if (a) = (b) and (a) < (b).An eigenvalue a ∈ Sp(Y ) is said to be maximal (resp. minimal), if for allb ∈ Sp(Y ) with 0 < b (resp. b < 0) [g a , g b ] = {0}.The theorem can know be stated: Theorem (El Assoudi, Gauthier, Kupka)Let G be a real, connected, semisimple Lie group with nite center, the Lie algebra of which is denoted by g. The systemġ = X g + m j=1 u j Y j gwhere X, Y 1 , . . . , Y m ∈ g, is controllable as soon as the following conditions are satised: (H1) The vector elds X, Y 1 , . . . , Y m generate the Lie algebra g. (H2) There exists in the Lie subalgebra h generated by Y 1 , . . . , Y m a strongly regular element Y . (H3) Let X = X 0 + a∈Sp(Y )

  Counterexamples 1. Theorem 4 is no longer true whenever the derivation is not inner, as shown by the examples L 2 and L 4 on the group Heisenberg. Both systems are controllable, though the algebra h has dimension 2 for L 2 and 1 for L 4 .

2. This theorem is not true on solvable Lie groups either. Consider for instance the 2-dimensional non Abelian Lie algebra, g = V ect{X, Y } where [X, Y ] = Y . It is a solvable Lie algebra whose all derivations are inner. Let h = RX and ad(X ) = ad(Y ).

The set S of reachable points from e for Σ I is a semigroup and, as the rank condition is satised, its interior is not empty. It is therefore sucient to show that it is left, or right, reversible.

The linear system Σ L satises the rank condition, because DA = [A, B] = B, hence both systems satisfy the rank condition. In natural coordinates they write:

The invariant system is not controllable: indeed x is positive, and for any input y(t) ≥ y(0), ∀t ≥ 0.

Let us show that the linear system is controllable, and for this purpose let us consider Σ L as a polysystem. The initial point (x i , y i ) can be steered to the nal one (x f , y f ) in three steps:

1. Following the eld ±gA the point (x i , y i ) can be steered to ( 1 2 , y i ) if

3. The eld ±gA leads to the nal point.

7.3

Examples on the group SL 2 Example 1

Consider the matrices A and B of sl 2 dened by

The right invariant system Σ I and the linear one Σ L are dened by:

For all a ∈ R the invariant system is controllable on SL 2 (see [START_REF]Sachkov Control Theory on Lie groups[END_REF] for the detailed proof).

where X = X + Z + I * Z is linear (recall that I is dened by I(g) = g -1 ).

Let H be a closed subgroup of G, and let F = X + Y , where Y is right invariant, be an ane vector eld. The projection of F onto the homogeneous space G/H (manifold of left cosets of H) exists if and only if the subgroup H is X -invariant. In that case it will be refered to as an ane vector eld on the homogeneous space G/H (see [START_REF] Ph | Jouan Equivalence of Control Systems with Linear Systems on Lie Groups and Homogeneous Spaces ESAIM: Control Optimization and Calculus of Variations[END_REF] for the characterization of such vector elds).

The denition of a linear system is generalized in the following way: a linear system on a Lie group or a homogeneous space is dened as

where F is an ane vector eld and the Y j 's are right invariant if the state space is a Lie group, and projections of right invariant vector elds if the state space is a homogeneous space.

Let us consider the following smooth system, dened on a connected manifold M :

Equivalence Theorem [START_REF] Ph | Jouan Equivalence of Control Systems with Linear Systems on Lie Groups and Homogeneous Spaces ESAIM: Control Optimization and Calculus of Variations[END_REF] We assume the family {f, g 1 , . . . , g m } to be transitive. Then System S is dieomorphic to a linear system on a Lie group or a homogeneous space if and only if the vector elds f, g 1 , . . . , g m are complete and generate a nite dimensional Lie algebra.

More accurately, let G (resp. G 0 ) be the connected and simply connected Lie group whose Lie algebra is L (resp. L 0 ). Under the previous conditions the rank of L 0 is constant, equal to dim(M ) or dim(M ) -1, and:

(i) if rang (L 0 ) = dim(M ), in particular if there exists one point p 0 ∈ M such that f (p 0 ) = 0, then S is dieomorphic to a linear system on a homogeneous space G 0 /H of G 0 ;

(ii) if rang (L 0 ) = dim(M ) -1, then S is dieomorphic to an invariant system on a homogeneous space G/H of G.