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Controllability of Linear Systems with
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Abstract

A vector �eld on a connected Lie group is said to be linear if its

�ow is a one parameter group of automorphisms. A control-a�ne

system is linear if the drift is linear and the controlled vector �elds

right invariant.

The controllability properties of such systems are studied, mainly

in the case where the derivation of the group Lie algebra that can be

associated to the linear vector �eld is inner.

After some general considerations controllability properties on semi

simple, nilpotent and compact Lie groups are stated.

The paper ends by many examples.

Keywords: Lie groups; Linear systems; controllability; time opti-

mal control.
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1 Introduction

The aim of this paper is to study the controllability properties of linear
systems on Lie groups. By linear system is meant a controlled system

(Σ) ġ = Xg +
m∑
j=1

ujY
j
g
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on a connected group Lie G where X is a linear vector �eld, that is a vector
�eld whose �ow is a one parameter group of automorphisms, and the Yj's
are right invariant. Linear vector �elds on Lie groups are nothing else than
the so-called in�nitesimal automorphisms in the Lie group literature (see
for instance [3]). They were �rst considered in a control theory context by
Markus, on matrix Lie groups ([12]), and then in the general case by Ayala
and Tirao ([1]).

The motivation for dealing with such systems is twofold. On the one hand
they are natural extensions of invariant systems on Lie groups. On the other
hand they can be generalized to homogeneous spaces and appear as models
for a wide class of systems, on account of the Equivalence Theorem of [7].
This equivalence was used in [9] to establish new controllability criterions on
compact manifolds.

On Lie groups a few controllability properties of linear systems have al-
ready been proved ([1], [17], [4]):

1. On a compact and connected Lie group a linear system is controllable
if and only it satis�es the rank condition. It was proved in [17].

2. A criterion of local controllability (the so-called ad-rank condition, see
Section 3.4) was stated in [1] and [4].

3. If a linear system on a semisimple Lie group with �nite center is control-
lable from the identity, then a certain invariant system, closely related
to the linear one, is also controllable (see [17]).

A linear vector �eld acts on the Lie algebra g of G, via the adjoint rep-
resentation, as a derivation. A large part of this paper deals with the case
where this derivation is inner. A right invariant system is then associated to
the linear one in a natural way, di�erent from the one of [17] (see Section
4.1). The controllability properties of those two systems are compared and in
particular the controllability of the linear system is related to a time optimal
problem for the invariant one.

This analysis is applied to semisimple Lie groups in Section 5.1. First of
all it is stated in Theorem 2 that the invariant system is controllable as soon
as the linear one is controllable from the identity, or to the identity. This
statement is almost the same as the one of [17], the di�erence being due to
the simpler way an invariant system is associated to Σ. Theorem 3 contains
the following converse to Theorem 2:
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Let G be a semi-simple, connected Lie group with �nite center. The ad-
rank condition is assumed to hold. Then the linear system is controllable if
and only if the invariant one is.

Together with the classical result of [5], this theorem furnishes controlla-
bility criterions on semisimple Lie groups.

Section 5.2 deals with nilpotent Lie groups. Theorem 4 asserts that: on
a nilpotent connected Lie group, and whenever the derivation is inner, Σ is
controllable if and only if the algebra generated by Y 1, . . . , Y m is equal to
g. Some examples show that this theorem is no longer true on solvable Lie
groups.

Finally we consider a�ne systems (Section 6). An a�ne vector �eld is the
sum of a linear vector �eld and a right invariant one, and an a�ne system
is obtained by replacing the drift of a linear system by an a�ne vector �eld.
Both invariant and linear systems appear as particular cases of a�ne systems.
Their properties are studied in Section 6, and then applied to compact Lie
groups.

This allows to state Theorem 5 which generalizes the known results about
invariant and linear systems: An a�ne control system on a compact and
connected Lie group is controllable if and only if it satis�es the rank condition.

Section 7 is devoted to examples. Through these ones it is shown that
the ad-rank condition is neither a necessary nor a su�cient controllability
condition, and that a linear system can be controllable without being �nite
time controllable.

2 Linear vector �elds and linear systems

In this section the de�nition of linear vector �elds and some of their properties
are recalled. More details can found in [7].

A vector �eld on a connected Lie group G is said to be linear if its �ow
is a one parameter group of automorphisms. The following characterizations
will be useful in the sequel.

Let X be a vector �eld on a connected Lie group G. The following condi-
tions are equivalent:

1. X is linear;

2. X belongs to the normalizer of g in the algebra of analytic vector �elds
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of G, that is
∀Y ∈ g [X , Y ] ∈ g

and veri�es X (e) = 0;

3. X veri�es
∀g, g′ ∈ G Xgg′ = TLg.Xg′ + TRg′ .Xg (1)

On account of the second item the derivation D = −ad(X ) of the Lie
algebra g of G is associated to the linear vector �eld X .

In the case where this derivation is inner, that is D = −ad(X) for some
right invariant vector �eld X on G, the linear vector �eld splits into X =
X + I∗X, where I stands for the di�eomorphism g ∈ G 7−→ I(g) = g−1.
Thus X is the sum of the right invariant vector �eld X and the left invariant
one I∗X.

The �ow of a linear vector �eld X will be denoted by (ϕt)t∈R. In the inner
derivation case it is given by

ϕt(g) = exp(tX)g exp(−tX) (2)

De�nition 1 A linear system on a connected Lie group G is a controlled
system

(Σ) ġ = Xg +
m∑
j=1

ujY
j
g

where X is a linear vector �eld and the Y j's are right invariant ones. The
control u = (u1, . . . , um) takes its values in Rm.

The set U of admissible inputs is a subset of L∞loc([0,+∞[,Rm) which
contains the piecewise constant functions and is stable for concatenation,
that is if ω and ν belong to U, then the function w de�ned by

w(t) =

{
ω(t) t ∈ [0, T [
ν(t− T ) t ∈ [T,+∞[

belongs as well to U.
Such an input being given gu(t) (or brie�y g(t) when no confusion can

arrive) stands for the trajectory of Σ which veri�es gu(0) = g.

Finally, let us recall the de�nition of the so-called zero-time ideal. Let ẋ =
f(x) +

∑m
j=1 ujg

j(x) be a C∞ control-a�ne system on a connected manifold,
and let L be the Lie algebra of C∞ vector �elds generated by f, g1, . . . , gm.
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The zero-time ideal L0 of the system is the smallest ideal of L that con-
tains g1, . . . , gm. It satis�es the equality

L = Rf + L0.

3 General properties

3.1 The reachable sets

Proposition 1, that can be found in [4], is fundamental. Its proof is straight-
forward.

Proposition 1 ([4]) The input u being given, let us denote by e(t) the tra-
jectory of Σ issued from the identity e of G. For the initial condition g the
trajectory is then

g(t) = e(t)ϕt(g).

Remark. If the vector �elds Y j were left invariant we would have g(t) =
ϕt(g)e(t).

Notations. We denote by A(g, t) = {gu(t); u ∈ L∞[0, t]} (resp. A(g,≤ t))
(resp. A(g)) the reachable set from g in time t (resp. in time less than or
equal to t) (resp. in any time). In particular the reachable sets from the
identity e are denoted by

At = A(e, t) and A = A(e).

These sets are related by the following equalities and inclusions:

Proposition 2 1. ∀t ≥ 0 A(e,≤ t) = A(e, t) = At.

2. ∀ 0 ≤ s ≤ t As ⊂ At.

3. ∀g ∈ G A(g, t) = Atϕt(g).

4. ∀ s, t ≥ 0 At+s = Atϕt(As) = Asϕs(At).

Proof. The identity being an equilibrium of X , the �rst two items are stan-
dard and can be found for instance in [19].

The last two are consequences of Proposition 1.
�
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3.2 The system Lie algebra and the rank condition

Let h be the subalgebra of g generated by {Y 1, . . . , Y m}, and let us denote
by Dh the smallest D-invariant subspace of g that contains h, where D is
the derivation associated to X :

Dh = Sp{DkY ; Y ∈ h and k ∈ N}.

Let LA(Dh) stand for the g subalgebra generated by Dh.

Proposition 3 The subalgebra LA(Dh) is D-invariant. It is therefore equal
to the zero-time ideal L0, and the system Lie algebra L to

RX ⊕ LA(Dh) = RX ⊕ L0.

The rank condition is satis�ed by Σ if and only if L0 = g.

Proof.
First of all the algebra LA(Dh) is D-invariant. Indeed the elements of

Dh are linear combinations of DkY where Y ∈ h and k ≥ 0, and

∀Y, Z ∈ h D[DkY,DlZ] = [Dk+1Y,DlZ] + [DkY,Dl+1Z] ∈ LA(Dh).

The zero-time ideal being the ideal of L generated by Y 1, . . . , Y m, it is
clearly equal to LA(Dh). The system Lie algebra is consequently L =
RX ⊕ LA(Dh). As X (e) = 0, the rank at the point e is maximum if and
only if LA(Dh) = g. In that case the rank condition is everywhere satis�ed.

�

3.3 The Lie saturate

The Lie saturate LS(Σ) of Σ (resp. the strong Lie saturate LSS(Σ) of Σ)
is the set of vector �elds f belonging to the system Lie algebra L and whose
�ow (φt)t∈R satis�es

∀g ∈ G, ∀t ≥ 0 φt(g) ∈ A(g) (resp. φt(g) ∈ A(g,≤ t))

as soon as φt(g) is de�ned. The notion of Lie saturate as well as the proof of
Proposition 4 can be found in [11].
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Proposition 4 The algebra h is included in LSS(Σ), so that Σ can be en-
larged to the system

(Σ̃) ġ = Xg +

p∑
j=1

ujỸ
j
g ,

where Ỹ 1, . . . , Ỹ p is a basis of h, without modifying the sets A(g,≤ t).

Proof. Cf [11].
�

Assume now that the system satis�es the rank condition. Let H be the
connected Lie subgroup of G whose Lie algebra is h, and let us denote by h

the Lie algebra of the closure H of H in G.

Proposition 5 If Σ satis�es the rank condition, then the algebra h is con-
tained in LSS(Σ).

Proof.
According to Proposition 4, Hg ⊂ A(g,≤ t) for every g ∈ G and every

t > 0. Therefore Hg is as well included in A(g,≤ t). The rank condition
being satis�ed, h ⊂ g is contained in the Lie algebra L of Σ, and h ⊂ LSS(Σ).

�
The interest of this second enlargement is rather theoretical since it may

be hard to decide if the subgroup H is closed in G.

3.4 Local controllability and the ad-rank condition

It is well known that a system is locally controllable at an equilibrium point
as soon as the linearized system is controllable (see [13] for instance). In this
assertion "locally controllable" at a point g means that the set A(g, t) is a
neighbourhood of g for all t > 0.

In view of Proposition 4 it may be more interesting to consider the lin-
earization at the identity of the enlarged system Σ̃ rather than the one of
Σ.
Example (See Section 7). The linearized system at e of System L3 on the
Heisenberg group is not controllable. However the controlled vector �elds of
L3 generate the Lie algebra g and the linearization of the enlarged system is
controllable.

These remarks lead to de�ne a stronger rank condition, called "ad-rank
condition" in [1].
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De�nition 2 System (Σ) is said to satisfy the ad-rank condition if Dh =
g.

Proposition 6 (See [1]) If the ad-rank condition is satis�ed then for all
t > 0 the reachable set At is a neighbourhood of e.

In [4] the weaker result that under the ad-rank condition the attainable
set A is a neighbourhood of e is stated, using the theory of Lie semigroups.
The proof presented here is novel, and is actually an easy consequence of the
linearization principle.
Proof.

It is proved in [7] that the tangent mapping at e of the �ow of X is
Teϕt = etD. According to this equality the linearized vector �eld of X at e is
the endomorphism D of TeG ' g.

Thus the linearization of Σ̃ at e can be written in TeG

Ż = DZ +
m∑
j=1

ujỸ
j(e)

where (Ỹ 1, . . . , Ỹ m) is a basis of h. The ad-rank condition is therefore equiv-
alent to the Kalman rank condition for this linear system.

�

Important remark. The ad-rank condition is not a su�cient condition
of controllability. It is for instance satis�ed by Example 2 in Section 7.3
although the system is not controllable on SL2, not even from the identity.

3.5 Groups and semigroups

In this section we consider the polysystem {X} ∪ h instead of Σ. According
to Proposition 4 and to enlargement techniques ([11]), the closure of the sets
At is not modi�ed. The set of admissible inputs is restricted to the piecewise
constant ones, and the results are stated within this framework.

Lemma 1 For all t > 0 the set At is equal to

{ϕt1(h1)ϕt2(h2) . . . ϕtn(hn);
n ∈ N, h1, . . . , hn ∈ H, 0 ≤ t1 ≤ t2 ≤ · · · ≤ tn < t},

where H is the connected subgroup of G whose Lie algebra is h.
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Proof. For the system under consideration it is clear that H ⊂ As for all
s > 0.

The proposition is due to the fact that a point g of the form

g = ϕt1(h1)ϕt2(h2) . . . ϕtn(hn) , with 0 ≤ t1 ≤ t2 ≤ · · · ≤ tn,

can be written

g = ϕt1(h1ϕt2−t1(h2 . . . (hn−1ϕtn−tn−1(hn)))) , with ti+1 − ti ≥ 0.

�

Remark. In the previous statement the inequality tn < t always holds. The
points hi are indeed reached in an arbitrary but positive time (except in the
particular case where all the hi's are equal to e).

In the paper [1] it is conjectured that the set A is not a semigroup in
general. We show the stronger result that A cannot be a semigroup without
being a group.

Let S stand for the semigroup generated byA. It is clear that the elements
of S can be characterized in a similar way as the ones of A in Lemma 1, with
the condition t1, t2, . . . , tn ≥ 0 instead of 0 ≤ t1 ≤ t2 ≤ · · · ≤ tn. In order to
show that S is a group it is enough to prove that g ∈ S =⇒ g−1 ∈ S. Let

g = ϕt1(h1)ϕt2(h2) . . . ϕtn(hn) ∈ S , with t1, t2, . . . , tn ≥ 0.

Then
g−1 = ϕtn(h−1

n ) . . . ϕt2(h
−1
2 )ϕt1(h

−1
1 )

belongs as well to S. Moreover if Σ satis�es the rank condition, then S is a
subgroup of G that contains a nonempty open set, hence S = G. We have
proved:

Proposition 7 The reachable set A is a group if and only if it is a semi-
group. In particular if the rank condition is satis�ed then

A = G⇐⇒ A is a semigroup.

The following corollary can be easily deduced from Proposition 7. How-
ever it is of limited interest because of the di�culty to check its conditions.
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Corollary 1 If the rank condition is satis�ed, and if there exists T > 0 such
that AT = A, then Σ is controllable at time T .

Moreover the second condition holds as soon as there exist T > 0 and
ε > 0 such that AT = AT+ε.

Proof. As S = G, any g ∈ G can be written

g = ϕt1(h1)ϕt2(h2) . . . ϕtn(hn),

with hi ∈ H and ti ≥ 0. Denoting gi = ϕti(hi) ∈ A = AT we get

ϕT (g) = ϕT+t1(h1)ϕT+t2(h2) . . . ϕT+tn(hn)
= ϕT (g1)ϕT (g2) . . . ϕT (gn).

But ϕT (g1) ∈ A2T = AT . Hence ϕT (g1)ϕT (g2) ∈ ATϕT (AT ) = A2T = AT ,
and by an obvious induction ϕT (g) ∈ AT . This shows that G = ϕT (G) ⊂ AT .

The proof of the second assertion is standard (see [19]).
�

4 The inner derivation case

In this section the derivation ad(X ) is assumed to be inner. A right invariant
system is associated in a natural way to Σ and its controllability is related
to the one of the linear system.

4.1 The associated invariant system

Since the derivation D = ad(X ) is inner, the vector �eld X can be decom-
posed into

X = X + I∗X
where X is a right invariant vector �eld that satis�es ad(X) = ad(X ) (see
Section 2).

It is thus natural to de�ne on G the right invariant system:

(ΣI) ġ = Xg +
m∑
j=1

ujY
j
g

In order to avoid confusion the linear system will be denoted by ΣL in this
section.
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Proposition 8 Let t 7−→ u(t) be an admissible input. The absolutely con-
tinuous curve t 7−→ gL(t) is solution of the linear system ΣL for this input
if and only if the curve t 7−→ gL(t) exp(tX) is solution of the right invariant
system ΣI .

Proof. If t 7−→ gL(t) is solution of the linear system, then for almost every t:

d

dt
gL(t) exp(tX) = TLgL(t).Xexp(tX) + TRexp(tX).(XgL(t) +

∑m
j=1 uj(t)Y

j
gL(t))

= TLgL(t).Xexp(tX) + TRexp(tX).(XgL(t) + (I∗X)gL(t))

+
∑m

j=1 uj(t)Y
j
gL(t) exp(tX)

= TLgL(t)TRexp(tX).Xe +XgL(t) exp(tX) + TRexp(tX)(I∗X)gL(t)

+
∑m

j=1 uj(t)Y
j
g(t) exp(tX)

= XgL(t) exp(tX) +
∑m

j=1 uj(t)Y
j
gL(t) exp(tX)

since

TRexp(tX)(I∗X)gL(t) = −TRexp(tX)TLgL(t).Xe = −TLgL(t)TRexp(tX).Xe.

The converse is similar.
�

We will use the symbol S in place of A to denote the reachable sets of
the invariant system. A straightforward consequence of Proposition 8 is that
the set St of reachable points from e in time t veri�es

∀t ≥ 0 St = At exp(tX). (3)

The relation between the reachable sets in time less than or equal to
T > 0 is a bit more complicated:

S≤T =
⋃

0≤t≤T

At exp(tX).

It can also be noticed that both systems have the same zero-time ideal L0.
Indeed since D = ad(X ) = ad(X) this ideal is in both cases the smallest
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D-invariant subalgebra of g that contains Y 1, . . . , Y m. Consequently the Lie
algebras of the systems are

L(ΣL) = RX ⊕ L0 and L(ΣI) = RX ⊕ L0.

If the linear system satis�es the rank condition, then L0 = g and the invariant
one veri�es L(ΣI) = L0 = g.

4.2 Finite time controllability

The remarks made in the previous subsection about the Lie algebras of ΣL

and ΣI have consequences on �nite time controllability.
Let us recall that a control system is said to be �nite time controllable

(resp. exact time controllable) if there exists T > 0 such that any point x
can be steered to any point y in time less than or equal to T (resp. in time
T ).

It is shown in [8] that a Lie determined and �nite time controllable system
is exact time controllable if and only if its zero-time ideal satis�es the rank
condition. For a linear system �nite time and exact time controllability
are therefore always equivalent. This equivalence is not true in general for
invariant systems, but it holds whenever the associated linear system satis�es
the rank condition.

Proposition 9 Let T > 0. The following assertions are equivalent:

1. ΣL is controllable in time less than or equal to T ;

2. ΣL is controllable in time T ;

3. ΣL is controllable from the identity in time T ;

4. ΣI is controllable from the identity in time T ;

5. ΣI is controllable in time T ;

These conditions are moreover equivalent to: ΣI is �nite time controllable
and ΣL satis�es the rank condition.

Proof.
According to the following facts:
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1. ∀t ≥ 0, St = At exp(tX);

2. ∀g ∈ G, ∀t ≥ 0, S(g, t) = Stg;

3. ∀g ∈ G, ∀t ≥ 0, A(g, t) = Atϕt(g) = A(e,≤ t)ϕt(g);

the �ve conditions are equivalent to AT = G.
�

Remarks.

1. A linear system on a vector space cannot be controllable without being
exact time controllable. That property is no longer true in the general
case. An example of a controllable but not �nite time controllable on
the group Aff+(2) of a�ne transformations of the real line is exhibited
in Section 7.2. The associated invariant system is not controllable.

2. In particular Proposition 9 applies to compact groups. However the
controllability results on such groups can be extended to a�ne systems
and for this reason are postponed to Section 6.1.

4.3 Time optimal control of the invariant system

In this subsection the invariant system is assumed to be controllable. Under
this assumption, the controllability of the linear one is shown to be equivalent
to a time optimal problem. It will be said that the the time t > 0 is not
optimal for exp(tX) if the trajectory τ 7−→ exp(τX) does not minimize the
time necessary for the invariant system to steer the point e to the point
exp(tX).

Theorem 1 We assume the rank condition L0 = g to be satis�ed and the
right invariant system to be controllable. The following assertions are equiv-
alent:

(i) there exists a time t > 0 which is not optimal for exp(tX);

(ii) exp(RX) ⊂ A;

(iii) The linear system is controllable.

These conditions are satis�ed, and the linear system is controllable, as soon
as the set At is a neighbourhood of e for some t > 0, in particular whenever
the ad-rank condition holds.

13



Proof.

1. Let us �rst remark that the set {τ ∈ R; exp(τX) ∈ A} is a semigroup.
Indeed if exp(τ1X) ∈ At1 and exp(τ2X) ∈ At2 , then

exp(τ1X) exp(τ2X) = exp(τ1X)ϕt1(exp(τ2X)) ∈ Aτ1+τ2

because ϕt(g) = exp(tX)g exp(−tX) (see Section 2). On the other
hand ΣI being controllable and L0 equal to L, there exists t > 0 such
that St is a neighbourhood of e (see [8]). Therefore St exp(−tX) ∩
exp(RX), which is included in At, contains a neighbourhood (in the
set exp(RX)) of exp(−tX). Together with the semigroup property, this
gives:

exp(RX) ⊂ A ⇐⇒ ∃τ > 0 such that exp(τX) ∈ A.

2. (i)⇐⇒ (ii)

If t > 0 is not optimal for exp(tX), then there exists τ , with 0 <
τ < t, such that exp(tX) ∈ Sτ . Consequently exp((t − τ)X) ∈ A and
exp(RX) ⊂ A.
Conversely if exp(RX) ⊂ A, let us choose arbitrarily τ > 0. There
exists t > 0 such that exp(τX) ∈ At, hence such that exp((t+ τ)X) ∈
St. This shows that the time t+ τ is not optimal for exp((t+ τ)X).

3. (ii) =⇒ (iii)

Let us �rst show that the linear system is controllable from e.

Let g ∈ G. There exists t ≥ 0 such that g ∈ St, hence such that
g exp(−tX) ∈ At. By assumption there exists s > 0 such that exp(tX)
belongs to As, and thus:

g = g exp(−tX)ϕt(exp(tX)) ∈ Atϕt(As) = At+s.

Let us now show that ΣL is controllable to e. We have to prove that
e ∈ A(g) for all g ∈ G.
As there exists t ≥ 0 such that g−1 ∈ St, or in an equivalent way such
that g−1 exp(−tX) ∈ At, we have

exp(−tX) = g−1 exp(−tX) exp(tX)g exp(−tX)
= g−1 exp(−tX)ϕt(g)
∈ A(g, t).

14



By assumption there exists s > 0 such that exp(tX) ∈ As, and we
obtain

e = exp(tX)ϕs(exp(−tX)) ∈ A(exp(−tX), s).

This shows that e ∈ A(g).

(iii) =⇒ (ii) is obvious.

4. If the set At is a neighbourhood of e for some t > 0, then exp(RX)
is included in A, and according to Condition (ii) the linear system is
controllable.

�

5 Application to some classes of Lie groups

5.1 Semisimple Lie groups

Before applying Theorem 1 to semisimple groups, let us state Theorem 2
which is a reformulation of the main result of [17]. The idea of the proof,
based on the notion of reversibility of semigroups, is also due to [17]. However
the proof given here is simpler than the original one, thanks to the way we
associate an invariant system to the linear one.

Theorem 2 ([17]) The group G is assumed to be semisimple, connected,
with �nite center. Then the invariant system is controllable as soon as the
linear one is controllable from the identity, or to the identity.

Proof.
Let S be a generating subsemigroup of a group G. It is said to be left

reversible (resp. right reversible) if SS−1 = G (resp. S−1S = G). The
following statement can be found in [18]:

Let G be a connected and semisimple Lie group with �nite center. The
only subsemigroup of G with nonempty interior which is left or right reversible
is G.

The set S of reachable points from e for ΣI is a semigroup and, as the
rank condition is satis�ed, its interior is not empty. It is therefore su�cient
to show that it is left, or right, reversible.
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1. Let us prove that ΣL controllable from e implies S left reversible. Let
g ∈ G. There exists t ≥ 0 such that g ∈ At = St exp(−tX). This shows
that S exp(−R+X) = G and, as exp(R+X) ⊂ S, that SS−1 = G.

2. Let us prove that ΣL controllable to e implies S right reversible. Let g ∈
G. There exists t ≥ 0 such that e ∈ A(g−1, t), hence there exists x ∈ At
such that e = xϕt(g

−1). Consequently ϕt(g) = exp(tX)g exp(−tX) =
x ∈ At and exp(tX)g ∈ St. Finally exp(−R+X)S = G and S is right
reversible.

�
Remark. Theorem 2 is no longer true whenever the center of G is in�nite.
A counter-example is exhibited in the last section of [16].

The following corollary is a straightforward consequence of Theorems 1
and 2.

Corollary 2 The group G is assumed to be semisimple, connected and its
center to be �nite.

If the linear system ΣL is controllable from the identity e then it is con-
trollable.

Proof. According to Theorem 2 the invariant system is controllable. Since
A = G Theorem 1 applies.

�
Remark. We do not know if this result holds on more general Lie groups.

In the case where the ad-rank condition is satis�ed the controllability
of ΣL and ΣI are equivalent. Moreover the su�cient conditions established
by Rachida El Assoudi, Jean-Paul Gauthier and Ivan Kupka in [5] are valid
for both systems. These conditions make appeal to the rather technical
hypothesis of [5], that are detailed in Appendix 8.1.

Theorem 3 Let G be a semi-simple, connected Lie group with �nite center.
The ad-rank condition is assumed to hold.

Then the linear system is controllable if and only if the invariant one is.
In particular both systems are controllable whenever the following condi-

tions hold:

1. The algebra h contains a strongly regular element Y .
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2. Let X = X0 +
∑

a∈Sp(Y )Xa be the decomposition of X along the eigen

spaces of adC(Y ). Then Xa 6= 0 as soon as the eigenvalue a ∈ Sp(Y ) is
minimal or maximal.

3. If a ∈ Sp(Y ) is maximal, if its real part r = <(a) is a non zero eigen-
value of adC(Y ), and if gr and ga belong to the same simple ideal of gC,
then the trace of ad(Xr) ◦ ad(X−r) is negative.

Remark. In a semi-simple Lie algebra g the set of pairs (Y 1, Y 2) that
generate g is open and dense in g×g. Both systems ΣI and ΣL are therefore
generically controllable as soon as m ≥ 2.

5.2 Nilpotent Lie groups

The subalgebra of g generated by the �elds Y j, j = 1, . . . ,m is, as previously,
denoted by h.

Theorem 4 The group G is assumed to be nilpotent, and the derivation
associated to X to be inner. Then Σ is controllable if and only if h = g. In
that case it is controllable in exactly T unit of time for all T > 0.

Proof.
The su�ciency and the exact time controllability that follows are obvious.
For the converse assume the system to be controllable and let us denote

by (Cig)i≥1 the lower central series of g, that is C1g = g and Ci+1g = [g, Cig]
(see [2]).

Let X be a right invariant vector �eld such that ad(X) = ad(X ), and
let k be the largest index such that X ∈ Ckg. According to the de�nition of
the lower central series the inclusion ad(X)g ⊂ Ck+1g holds. On the other
hand, the rank condition being satis�ed, the smallest Lie subalgebra of g

that contains h and is ad(X)-invariant is equal to g.
Now h + Ck+1g is a subalgebra of g (because Ck+1g is an ideal), and is

ad(X)-invariant, because ad(X)(h) ⊂ ad(X)(g) ⊂ Ck+1g. This proves

h + Ck+1g = g.

Let us assume that h + Ck+rg = g for some integer r > 0. The �eld X can
be decomposed into X = Xh +Xr where Xh ∈ h and Xr ∈ Ck+rg. Therefore

ad(X)(h) = ad(Xh)(h) + ad(Xr)(h) ⊂ h + Ck+r+1g.
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This implies that h+Ck+r+1g is an ad(X)-invariant subalgebra that contains
h, hence equal to g.

We obtain by induction

∀r > 0 h + Ck+rg = g.

Since Ck+rg = {0} for r large enough, the conclusion is h = g.
�

Counterexamples

1. Theorem 4 is no longer true whenever the derivation is not inner, as
shown by the examples L2 and L4 on the group Heisenberg. Both
systems are controllable, though the algebra h has dimension 2 for L2

and 1 for L4.

2. This theorem is not true on solvable Lie groups either. Consider for
instance the 2-dimensional non Abelian Lie algebra, g = V ect{X, Y }
where [X, Y ] = Y . It is a solvable Lie algebra whose all derivations are
inner. Let h = RX and ad(X ) = ad(Y ). Then h 6= g but the algebra
L0 is equal to g since ad(X )X = ad(Y )X = −Y (see also the example
of Section 7.2).

6 A�ne vector �elds

In this section the drift of the system is an a�ne vector �eld F , that is the
sum of a linear vector �eld X and a left invariant one Z. The system under
consideration is:

(ΣF ) ġ = Fg +
m∑
j=1

ujY
j
g

Thanks to the decomposition F = X + Z the trajectories of ΣF can be
compared with the ones of

(Σ) ġ = Xg +
m∑
j=1

ujY
j
g .

Proposition 10 The input u being given, the solution of ΣF for the initial
condition g ∈ G is equal to g(t)z(t) where
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1. t 7→ g(t) is the solution of Σ that veri�es g(0) = g;

2. t 7→ z(t) is the solution of ġ = Xg + Zg that veri�es z(0) = e.

Proof. Let γ(t) = g(t)z(t). According to Formula (1) of Section 2, we have
for almost all t ≥ 0:

d
dt
γ(t) = TRz(t)(Xg(t) +

∑m
j=1 uj(t)Y

j
g(t)) + TLg(t)(Xz(t) + Zz(t))

= Xg(t)z(t) + Zg(t)z(t) +
∑m

j=1 uj(t)Y
j
g(t)z(t)

= Xγ(t) + Zγ(t) +
∑m

j=1 uj(t)Y
j
γ(t).

�

Let us now assume the rank condition to be satis�ed. Three cases have
to be distinguished, and Proposition 10 will have a true interest only in the
third one.

1. There exists g0 such that F (g0) = 0. The rank condition requires
L0 = g, and by the Equivalence Theorem, recalled in Section 8.2, this
case can be reduced to the one where the drift is linear. Actually the
equivalence can be shown by applying to the system the right trans-
lation Rg−1

0
, denoted by Φ for abbreviation. For all Y ∈ g we have

Φ∗Y = Y and

[Φ∗F, Y ] = [Φ∗F,Φ∗Y ] = Φ∗[F, Y ] = [F, Y ]

since [F, Y ] ∈ g. This proves that the �eld Φ∗F is a�ne, and henceforth
linear since Φ∗F (e) = 0. Moreover ad(Φ∗F ) = ad(F ) = ad(X ) and
Φ∗F is actually equal to X .
Conclusion. The system is equivalent to the linear system

ġ = X (g) +
m∑
j=1

ujY
j
g where X = Φ∗F .

2. ∀g ∈ G, F (g) 6= 0 but L0 6= g. The rank condition implies:

• The codimension of L0 in g is 1.

• At the point e we have TeG = L0(e)⊕ RF (e).
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Let G̃ be the connected and simply connected group whose Lie algebra
is isomorphic to RF ⊕L0. On account of the Equivalence Theorem, the
group G is di�eomorphic to the quotient of G̃ by a subgroupH (discrete

because G and G̃ have the same dimension) and ΣF is equivalent to an
invariant system on G/H. In the case where G is simply connected,

it is di�eomorphic to G̃ and ΣF cannot be controllable: it is indeed a
right invariant system whose vector �elds are contained in a half-space
bounded by the Lie subalgebra L0 (Hypersurface Principle, Cf [14]).

Furthermore Proposition 10 is of no help because the linear system Σ
does not satisfy the rank condition and is not controllable.

Conclusion. The system is equivalent to a right invariant one. It
cannot be controllable if G is simply connected.

3. ∀g ∈ G, F (g) 6= 0 and L0 = g. In application of Proposition 10, and in
a way similar to the one of Section 4.2, the system ΣF is controllable
as soon as Σ is �nite time controllable.

We can therefore state:

Proposition 11 With the previous notations it is assumed that the �eld F
does not vanish, and that the zero-time ideal L0 is equal to g. Then ΣF is
�nite time controllable if and only if Σ is.

6.1 Compact Lie groups

Thanks to the analysis of the previous section, a general result of controlla-
bility on compact groups can be stated.

Theorem 5 The group G is assumed to be compact.
System ΣF is controllable, hence �nite time controllable, if and only if it

satis�es the rank condition.
It is moreover exact time controllable if and only if L0 = g. That condition

is always satis�ed in the case where the vector �eld F is linear.

Proof.

1. Let us �rst prove the controllability statement in the case where F = X
is linear.
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The group G being compact its Lie algebra splits into g = z + s where
z is the center of g and s is a semisimple compact ideal. The deriva-
tion associated to X is equal to ad(X) where X can be choosen in s

(see [17] or [9]). The rank condition being satis�ed, it is also satis�ed
by the invariant system associated to Σ as in Section 4. According to
Theorems 7.1 and 7.2 of [10], this invariant system is �nite time con-
trollable, and on account of Proposition 9 the linear one is as well �nite
time controllable.

2. Let us now consider general drifts, and distinguish between the three
cases. Thanks to the �rst item of this proof we obtain that ΣF is �nite
time controllable in the �rst case, and according to Proposition 11, in
the third one. It is �nite time controllable in the second case by virtue
of the results of [10].

3. The last assertion is a consequence of a result of [8] recalled in Section
4.2.

�
Remarks.

1. Controllability of linear systems on compact Lie groups has already
been stated, with a di�erent proof, in [17] (but nor the exact time
controllability, neither the controllability of a�ne systems are proved
in that paper).

2. Theorem 5 does not extend without additional assumptions to linear
systems on compact homogeneous spaces: two counterexamples are
exhibited in [9].

3. An exact time controllable linear system on a compact Lie group is
not necessarily controllable in any time t > 0. In the paper [10] an
invariant system which is exact time controllable, but not in arbitrarily
small time, is exhibited on SO3 (Example 8.1). The Lie algebra so3

being semisimple, the zero-time ideal of the system must be equal to
so3. Consequently the linear system that can be associated satis�es also
the rank condition. According to Proposition 9 this linear system is as
well as the invariant one exact time controllable, but not in arbitrarily
small time.
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7 Examples

7.1 Examples on the Heisenberg group

The Heisenberg group is the matrix group

G =


1 y z

0 1 x
0 0 1

 ; (x, y, z) ∈ R

 .

Its Lie algebra g is generated by the right invariant vector �elds

X =

0 0 0
0 0 1
0 0 0

 , Y =

0 1 x
0 0 0
0 0 0

 , Z =

0 0 1
0 0 0
0 0 0

 ,

that verify [X, Y ] = Y X−XY = Z, and can be written in natural coordinates

X =
∂

∂x
, Y =

∂

∂y
+ x

∂

∂z
, Z =

∂

∂z
.

Example 1
To the derivation D of g de�ned by DX = Y , DY = X, and DZ = 0

one associates the vector �eld X de�ned by

X = y
∂

∂x
+ x

∂

∂y
+

1

2
(x2 + y2)

∂

∂z
.

A straightforward computation shows that this �eld is linear and veri�es
−ad(X ) = D. The system ġ = X (g) + uX(g) can be written in R3

(L1) =


ẋ = y + u
ẏ = x
ż = 1

2
(x2 + y2)

Since DX = Y and [X, Y ] = Z, it satis�es the rank condition, but not the
ad-rank one, because Dg = V ect{X, Y }.

It is clearly not controllable on G, not even from the identity. It can be
noticed that the equilibriums are the points (0, 0, z), with u = 0, and that
the linearized system is controllable at none of them.
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However the subgroup H of G de�ned by

H =


1 0 n

0 1 0
0 0 1

 ; n ∈ Z


is discret and central. The linear �eld X can be projected to the quotient
group G̃ = G/H, because H is included in the set of �xed points of X (see

[7]). The linear system thus de�ned on G̃ = G/H is clearly controllable.

Examples 2 and 3
With the same linear �eld X as in Example 1, consider the systems:

(L2) ġ = X (g) +uX(g) + vZ(g) and (L3) ġ = X (g) +uX(g) + vY (g).

In natural coordinates, they write:

(L2) =


ẋ = y + u
ẏ = x
ż = 1

2
(x2 + y2) + v

and (L3) =


ẋ = y + u
ẏ = x+ v
ż = 1

2
(x2 + y2) + vx

These two systems are controllable on G. It is obvious for L2, and the Lie
saturate of L3 contains ±X and ±Y , hence also ±Z = ±[X, Y ].

Both systems satisfy the ad-rank condition. Indeed let us denote as pre-
viously by h the subalgebra generated by the controlled �elds. In the �rst
case h contains X and Z, and also Y = DX. In the second one h contains
X and Y , hence also Z = [X, Y ].

Example 4
In order to exhibit a single input system that satis�es the ad-rank condi-

tion, let us consider the derivation

D =

0 0 0
1 0 0
0 1 0


The linear vector �eld associated to this derivation is

X = x
∂

∂y
+ (y +

1

2
x2)

∂

∂z

The system ġ = X (g) + uX(g) can be written in coordinates

(L4) =


ẋ = u
ẏ = x
ż = y + 1

2
x2
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Let us denote by Z the center of G, that is the closed subgroup {x = y = 0}.
As in Example 1 the linear �eld X can be projected to the quotient group
G̃ = G/Z, because Z is included in the set of �xed points of X ([7]). The
induced system on G/Z is equivalent to the linear, in the usual meaning,
system on R2: {

ẋ = u
ẏ = x

which is clearly controllable. On the other hand Z is included in A. Indeed
the linearized system of L4 at the identity is controllable, and in particular
the set At ∩ Z is a neighbourood of e in Z for all t > 0. As the restriction
of ϕt to Z is the identity, the set A ∩ Z is a semigroup: if g ∈ At ∩ Z and
g′ ∈ As ∩ Z, then

gg′ = gϕt(g
′) ∈ At+s ∩ Z.

Consequently A ∩ Z = Z. Taking into account the controllability on the
quotient, it is easy to see that the system is controllable from the identity.
In a similar way it is controllable to the identity, hence controllable.

7.2 An example on the group Aff+(2)

Let G be the connected component of e in the 2-dimensional a�ne group:

G = Aff+(2) =

{(
x y
0 1

)
; (x, y) ∈ R∗+ × R

}
Its Lie algebra g is identi�ed with the set of left invariant vector �elds. This
2-dimensional algebra is solvable and generated by

A =

(
1 0
0 0

)
and B =

(
0 1
0 0

)
with [A,B] = AB −BA = B. The matrices A and B are identi�ed with the
left invariant vector �elds:

gA =

(
x 0
0 0

)
and gB =

(
0 x
0 0

)
where g =

(
x y
0 1

)
.

Let X be the linear �eld de�ned by X (g) = gB − Bg =

(
0 x− 1
0 0

)
, and

consider the linear system ΣL: ġ = X (g) + ugA and the left invariant one
ΣI : ġ = gB + ugA.
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The linear system ΣL satis�es the rank condition, because DA = [A,B] =
B, hence both systems satisfy the rank condition. In natural coordinates they
write:

(ΣL) =

{
ẋ = ux
ẏ = x− 1

and (ΣI) =

{
ẋ = ux
ẏ = x

for (x, y) ∈ R∗+ × R.

The invariant system is not controllable: indeed x is positive, and for any
input y(t) ≥ y(0), ∀t ≥ 0.

Let us show that the linear system is controllable, and for this purpose
let us consider ΣL as a polysystem. The initial point (xi, yi) can be steered
to the �nal one (xf , yf ) in three steps:

1. Following the �eld ±gA the point (xi, yi) can be steered to (
1

2
, yi) if

yf < yi, or to (
3

2
, yi) if yf > yi, in arbitrarily small time;

2. the constant control u = 0 steers the point (
1

2
, yi) (resp. (

3

2
, yi)) to the

point (
1

2
, yf ) (resp. (

3

2
, yf )) in time 2 |yf − yi|.

3. The �eld ±gA leads to the �nal point.

7.3 Examples on the group SL2

Example 1
Consider the matrices A and B of sl2 de�ned by

A =

(
a 1
−1 −a

)
and B =

(
−1 0
0 1

)
.

The right invariant system ΣI and the linear one ΣL are de�ned by:

(ΣI) ġ = Ag + uBg
(ΣL) ġ = Ag − gA+ uBg

For all a ∈ R the invariant system is controllable on SL2 (see [15] for the
detailed proof).
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In order to analyse the controllability of the linear system we set X (g) =
Ag − gA, D = −ad(X ) = −ad(A), and we obtain (for the bracket [B,A] =
AB −BA)

DB =

(
0 2
2 0

)
et D2B = −4B + a

(
0 1
−1 0

)
.

• If a 6= 0 the rank of {B,DB,D2B} is equal to 3 so that the ad-rank
condition is satis�ed. The invariant system being controllable, Theorem
1 applies, and ΣL is controllable.

• If a = 0, the ad-rank condition is not satis�ed. However the one pa-
rameter group

exp(tA) =

(
cos t sin t
− sin t cos t

)
is periodic, and the �ow ϕt(g) = exp(tA)g exp(−tA) is as well periodic,
hence Poisson stable. The linear system is therefore controllable.

The case where a = 0 is an example of a controllable system that does
not satisfy the ad-rank condition. Notice however that the group SL2 is not
simply connected.

Example 2
This example can be found in [17].
Consider the matrices X and Y of sl2 de�ned by

X =

(
1 0
0 −1

)
and Y =

(
1 1
1 −1

)
.

They verify

[X, Y ] =

(
0 −2
2 0

)
and [X, [X, Y ]] =

(
0 4
4 0

)
,

hence {Y,DY,D2Y }, where D = −ad(X), is a basis of sl2. Henceforth the
linear system

(ΣI) ġ = Xg − gX + uY g

satis�es the ad-rank condition, and is locally controllable from the identity
in SL2.
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It is however not controllable, not even from e. Indeed if it was, then the
invariant system

(ΣI) ġ = Xg + uY g

would also be controllable in account of Theorem 2. In that case the bilinear
system ẋ = Xx+uY x induced by ΣI in R2 would be controllable on R2\{0}.
But that system has invariant orthants: the eigenspaces of Y , generated by
the vectors (1,

√
2− 1) and (1−

√
2, 1), de�ne four orthants in R2. The one

that contains the point (1, 0) is positively invariant for the bilinear system
which is therefore not controllable on R2 \ {0}.

8 Appendix

8.1 The theorem of [5]

The theorem of El Assoudi-Gauthier-Kupka deals with semisimple Lie groups
with �nite center. Its statement requires some de�nitions. The complexi�-
cation of the algebra g of the group is denoted by gC, and the adjoint repre-
sentation of gC by adC. The real part of a complex number z is denoted by
<(z), and its imaginary part by =(z).

De�nition. An element Y ∈ g is said to be strongly regular if:

(i) Y is a regular element of g.

(ii) All the non-vanishing, real or complex, eigenvalues of ad(Y ) are simple.

Let us denote by Sp(Y ) the set of non-vanishing, real or complex, eigenval-
ues of ad(Y ). For a ∈ Sp(Y ), let ga stand for the eigenspace of gC associated
to a (it is 1-dimensional). The algebra gC splits into:

gC = ker(adC(Y ))⊕
(
⊕
a∈Sp(Y )

ga

)
and the corresponding decomposition of Z ∈ gC is denoted by:

Z = Z0 +
∑

a∈Sp(Y )

Za
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De�nition Let us endow C with the lexicographic order: a < b if <(a) < <(b)
or if <(a) = <(b) and =(a) < =(b).

An eigenvalue a ∈ Sp(Y ) is said to be maximal (resp. minimal), if for all
b ∈ Sp(Y ) with 0 < b (resp. b < 0)

[ga, gb] = {0}.

The theorem can know be stated:

Theorem (El Assoudi, Gauthier, Kupka)
Let G be a real, connected, semisimple Lie group with �nite center, the

Lie algebra of which is denoted by g. The system

ġ = Xg +
m∑
j=1

ujY
j
g

where X, Y 1, . . . , Y m ∈ g, is controllable as soon as the following conditions
are satis�ed:

(H1) The vector �elds X, Y 1, . . . , Y m generate the Lie algebra g.

(H2) There exists in the Lie subalgebra h generated by Y 1, . . . , Y m a strongly
regular element Y .

(H3) Let X = X0+
∑

a∈Sp(Y )

Xa be the decomposition of X along the eigenspaces

of adC(Y ). Then Xa 6= 0 if the eigenvalue a ∈ Sp(Y ) is minimal or
maximal.

(H4) If a ∈ Sp(Y ) is maximal, if its real part r = <(a) is a non-vanishing
eigenvalue of adC(Y ), and if gr and ga belong to the same simple ideal
of gC, then the trace of ad(Xr) ◦ ad(X−r) is negative.

8.2 The Equivalence Theorem

Let us recall that an a�ne vector �eld F is obtained by adding a left invariant
vector �eld Z to a linear one X . It may be more suitable to see F as the
sum of a linear vector �eld and a right invariant one. This can be done by
writing:

F = X + Z = X + Z + I∗Z − I∗Z = X̃ − I∗Z
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where X̃ = X + Z + I∗Z is linear (recall that I is de�ned by I(g) = g−1).
Let H be a closed subgroup of G, and let F = X + Y , where Y is right

invariant, be an a�ne vector �eld. The projection of F onto the homogeneous
space G/H (manifold of left cosets of H) exists if and only if the subgroup
H is X -invariant. In that case it will be refered to as an a�ne vector �eld on
the homogeneous space G/H (see [7] for the characterization of such vector
�elds).

The de�nition of a linear system is generalized in the following way: a
linear system on a Lie group or a homogeneous space is de�ned as

ẋ = F (x) +
m∑
j=1

ujYj(x)

where F is an a�ne vector �eld and the Yj's are right invariant if the state
space is a Lie group, and projections of right invariant vector �elds if the
state space is a homogeneous space.

Let us consider the following smooth system, de�ned on a connected
manifold M :

(S) ẋ = f(x) +
m∑
j=1

ujgj(x)

Equivalence Theorem [7]
We assume the family {f, g1, . . . , gm} to be transitive. Then System S is

di�eomorphic to a linear system on a Lie group or a homogeneous space if
and only if the vector �elds f, g1, . . . , gm are complete and generate a �nite
dimensional Lie algebra.

More accurately, let G (resp. G0) be the connected and simply connected
Lie group whose Lie algebra is L (resp. L0). Under the previous conditions
the rank of L0 is constant, equal to dim(M) or dim(M)− 1, and:

(i) if rang (L0) = dim(M), in particular if there exists one point p0 ∈ M
such that f(p0) = 0, then S is di�eomorphic to a linear system on a
homogeneous space G0/H of G0;

(ii) if rang (L0) = dim(M) − 1, then S is di�eomorphic to an invariant
system on a homogeneous space G/H of G.
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