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INTRODUCTION

Inspired by concepts and practices borrowed from digital circuit design and automatic control, the synchronous hypothesis has been proposed in the late '80s to facilitate the specification and analysis of control-dominated systems. Nowadays, synchronous languages are commonly used in the European industry, especially in avionics, to rapidly prototype, simulate, verify embedded software applications.

In this spirit, synchronous data-flow programming languages, such as Lustre [START_REF] Halbwachs | The synchronous dataflow programming language Lustre[END_REF], Lucid Synchrone [9] and Signal [START_REF] Le Guernic | Polychrony for system design[END_REF], implement a model of computation in which time is abstracted by symbolic synchronization and scheduling relations to facilitate behavioral reasoning and functional correctness verification. While block diagrammatic modeling concepts are best suited for data-flow dominated applications, control-dominated processes may sometimes be preferably modeled using imperative formalisms, such as Esterel [3], Statecharts [START_REF] Harel | Statecharts: a visual approach to complex systems[END_REF], or SyncCharts [START_REF] André | Representation and analysis of reactive behaviors: a synchronous approach[END_REF].

Design methodology

In the particular case of the Polychrony workbench, on which Signal is based, time is represented by partially ordered synchronization and scheduling relations, to provide an additional capability to model high-level abstractions of system paced by multiple clocks: globally asynchronous systems. This gives the opportunity to seamlessly model heterogeneous and complex distributed embedded systems at a high level of abstraction, while reasoning within a simple and formally defined mathematical model.

In Polychrony, design proceeds in a compositional and refinement-based manner. It first consists of considering a weakly timed data-flow model of the system under consideration. Then, partial timing relations are provided to gradually refine the synchronization and scheduling structure of the application.

Finally, the correctness of refined specification is checked with respect to initial requirement specifications. That way, Signal favors the progressive design of systems that are correct by construction using well-defined model transformations that preserve the intended semantics of early requirement specifications and that provide a functionally correct deployment on the target architecture.

Model-driven design framework

Taking advantage of recent works extending Polychrony with a meta-model, Signal-Meta [6], in the model-driven engineering framework of Gme (Generic modeling environment [START_REF] Ledeczi | The Generic Modeling Environment[END_REF]), we position our problem as extending the metamodel on which Signal is based with an inherited meta- model of multi-clocked mode automata to finally demonstrate how the latter can be translated into the former by operating a model transformation. We put an emphasis on simplicity both for the specification (one third of a page, Fig. 4) and for the formalization (five rules, Section 5.3) of mode automata. The framework of mode automata presented in this article was specified and implemented in the matter of one month, thanks to the facilities offered by the Gme environment. It is currently being ported to Eclipse [5].

A modeling paradigm

The modeling of integrated modular avionics (IMA) architectures are a typical case in which both the polychronous model of computation and the need for mixed data-flow and control-flow formalisms (as offered by mode automata) are particularly well-suited.

As an example, consider the following diagram, Fig. 1, from the Signal-Meta environment1 . It represents a simple avionic application within Gme. Its main function consists of computing the current position of an airplane and its fuel level and reporting that information. It is decomposed into three processes:

• Position indicator produces information about the current position of the aircraft.

• Fuel indicator produces information about the level of kerosene in the aircraft.

• Parameter refresher refreshes the parameters used by other processes.

To illustrate the use of mode automata at the processlevel of this application, we focus on Position indicator, Fig. 2 

Overview

The scope of this article is to present the definition of polychronous mode automata within the model-driven engineering framework Signal-Meta. It consists of an extension of the synchronous data-flow formalism Signal with multiclocked mode automata. To this end, the remainder of this paper is organized as follows.

Section 2 firsts presents related works. Section 3 gives an informal presentation of the Signal formalism and of its extension. Section 4 outlines the meta-model of Signal, defines its extension with mode automata and outlines the use of Gme to define the transformation of mode automata into Signal. Section 5 formalizes the model transformation by considering the intermediate representation of Signal. Section 6 provides operational semantics of mode automata framework. Concluding remarks are given in Section 7.

RELATED WORKS

The hierarchical combination of heterogeneous programming models is a notion whose introduction dates back to early models and formalisms for the specification of hybrid discrete/continuous systems.

The most common example is Matlab [START_REF]The Mathworks. Matlab's Simulink and Stateflow[END_REF], which supports the Stateflow notation to describe modes in event-driven and continuous systems. Similarly, Ptolemy [7] allows for the hierarchical and modular specification of finite state machines hosting heterogeneous models of computation. Worth noticing is Hyscharts [START_REF] Bender | Model-based development of hybrid systems: specification, simulation, test case generation[END_REF], which integrates discrete and continuous modeling capabilities within the same model-driven engineering framework.

In the same vein, mode automata were originally proposed by Maraninchi et al. [START_REF] Maraninchi | Mode-automata: a new domain-specific construct for the development of safe critical systems[END_REF] to gathering advantages of declarative and imperative approaches to synchronous programming and extend the functionality-oriented data-flow paradigm of Lustre with the capability to model transition systems easily and provide an additional imperative flavor. Similar variants and extensions of the same approach to mix multiple programming paradigms or heterogeneous models of computation [7,[START_REF] Liu | Heterogeneous Modeling and Design of Control Systems[END_REF] have been proposed until recently, the latest advance being the combination of stream functions with automata [START_REF] Colaço | A conservative extension of synchronous data-flow with state machines[END_REF]. Nowadays, commercial toolsets such as the Esterel Studio's Scade or Matlab/Simulink's Stateflow are largely inspired by similar concepts.

In previous work, the introduction of preemption mechanism in the multi-clocked data-flow formalism Signal was previously studied by Rutten et al. [START_REF] Rutten | Signal GTI: implementing task preemption and time intervals in the synchronous data flow language Signal[END_REF]. This was done by associating data-flow processes with symbolic activation periods. However, no attempt has been made to extend mode automata with the capability to model multi-clocked systems, which is the aim of this article.

The main advantage of the multi-clocked approach over previous installments of mode automata principles lies in the capabilities gained for rapid prototyping: not only may functionalities and components be abstracted with multiclocked specifications but mode describing early control requirements may then allow rapid prototyping of the system, while offering automated program transformation and code generation facilities to synthesis the foreseen implementation in a correct-by-construction manner.

POLYCHRONY

We position the problem by considering partially synchronized (or polychronous) specifications using the data-flow formalism Signal [START_REF] Le Guernic | Polychrony for system design[END_REF].

Polychronous data-flow equations

A Signal process consists of the simultaneous composition of equations on signals. A signal consists of an infinite flow of values that is discretely sampled according to the pace of its clock, noted x. An equation partially relates signals with respect to an abstract timing model. Signal defines the following primitive constructs:

• A functional equation x = f(y,z) defines an arith-metic or boolean relation f between its operands y,z and the result x.

• A delay equation x = y pre v initially defines the signal x by the value v and then by the value of the signal y from the previous execution of the equation. In a delay equation, the signals x and y are assumed to be synchronous, i.e. either simultaneously present or simultaneously absent at all times.

• A sampling x = y when z defines x by y when z is true and both y and z are present. In a sampling equation, the output signal x is present iff both input signals y and z are present and z holds the value true.

• A merge x = y default z defines x by y when y is present and by z otherwise. In a merge equation, the output signal is present iff either of the input signals y or z is present.

• The synchronous composition (| P | Q |) of the processes P and Q consists of simultaneously considering a solution of the equations in P and Q at any time.

• The equation P / x restricts the lexical scope of a signal x to a process P.

Mode automata

To express mode automata, we consider an extension of Signal which comprises the following base syntactic elements. init s specifies the initial state (mode) of an automaton a. s : p associates the behavior p with the mode s. e ⇒ s → t gives the clock e (or guard) of the next transition, from mode s to mode t, while e ⇒ s ։ t immediately transits from mode s to mode t upon the condition e (most likely a condition on input signals such as an alarm). The support of both weak preemption, noted e ⇒ s → t, and strong preemption, noted e ⇒ s ։ t, greatly enhance modeling capabilities to facilitate design. Synchronous composition of automata is noted a

| | b. a, b ::= init s | (s : p) | (e ⇒ s → t) | (e ⇒ s ։ t) | a | | b

Example of a crossbar switch

To support the presentation of our modeling techniques, we consider the example of a simple crossbar switch. Its interface is composed of two input data signals y1 and y2 and a reset input signal r. r

$ $ H H H H H y1 y2 / / switch / / x2 x1
Data signals are routed along the output data signals x1 and x2 depending upon the internal state s of the switch. The state is toggled using the reset signal by the functionality s = toggle(r). Data is routed along an output signal x from two possible input sources y1 or y2 depending on the value of s by two instances of the functionality x = route(s, yi, yj) with i = j and i, j ∈ {1, 2}. Remember that Signal equations partially synchronize input and output signals. In the route process, this implies that none of the signals y1, y2 and s are synchronized, and that the output signal xi, i ∈ {1, 2} is present iff either of yi are present and s true or y j =i is present and s false.

(x1, x2) = switch(y1, y2, r) def = 0 @ s = toggle(r) | | x1 = route(s, y1, y2) | | x2 = route(s, y2, y1) 1 A /s
xi = route(s, yi, yj) def = xi = (yi when s) default (yj when not s), ∀0 < i = j ≤ 2
The switch is a typical example of specification where an imperative automata-like structure is superimposed on a native data-flow structure gives a shorter and more intuitive description of the system's behavior.

The mode automaton of the switch consists of two states flip and flop, in which routing is performed from y1,2 to either x1,2 or x2,1 depending on the current mode of the automaton. The mode toggles from flip to flop, or conversely, when the event r occurs.

(x1, x2) = switch(y1, y2, r) def = 0 B B @ init flip : (x1 = y1 | | x2 = y2) | | flop : (x1 = y2 | | x2 = y1) | | r ⇒ flip ։ flop | | r ⇒ flop ։ flip 1 C C A

A META-MODELING APPROACH

To develop our meta-modeling approach, we have used the Gme environment [START_REF] Ledeczi | The Generic Modeling Environment[END_REF], Fig 3 . Gme is a configurable Umlbased toolkit that supports the creation of domain-specific modeling and program synthesis environments. Gme uses meta-models to describe modeling paradigms for specific domains. The modeling paradigm of a given application domain consists of the basic concepts that represent its intended meaning from a syntactic and relational viewpoint.

The Signal meta-model

The definition of a meta-model in Gme is realized using the MetaGME modeling paradigm. First, modeling paradigm concepts are described in an Uml class diagram. To achieve it, MetaGME offers some predefined Uml-stereotypes [START_REF]Gme User Man[END_REF], among which FCO, Atom, Model, and Connection. FCO (First Class Object) constitutes the basic stereotype in the sense that all the other stereotypes inherit from it. It is used for expressing abstract concepts. Atoms are elementary objects that cannot include any sub-part. On the contrary, models may be composed of several FCOs.

Containment and Inheritance relations are represented as in Uml. All the other types of relations are specified through Connections. Some of these stereotypes are used in the class diagram represented in Fig. 4. For the Signal meta-model, called Signal-Meta [6], class diagrams describe all syntactic elements defined in Signal v4 [4]. Among these concepts, there are an Atom for each Signal operator (e.g. numeric, clock relations, constraints), a Model for each Signal "container" (e.g. process declaration, module), and a Connection for each relation between Signal operators (e.g. definition, dependence).

With these class diagrams, Gme provides a mean to express the visibility of FCOs within a model through the notion of Aspect (i.e. one can decide which parts of the de- Finally, OCL Constraints can be added to class diagrams in order to check some "parametric" properties on a model designed with this paradigm (e.g. the type of connections linked to an FCO according to the value of a FCO attribute). A parametric property depends on values given during the edition of a model. In Signal-Meta, OCL constraints check for example the validity of attribute values, such as the uniqueness of names inside a Model.

Refinement of the meta-model with modes

To manage mode automata, we extend Signal-Meta with a new class diagram represented in Fig. 4. An Automaton is a Model composed of states, transitions, local signals, and StateObservers. As for classical Statecharts [START_REF] Harel | Statecharts: a visual approach to complex systems[END_REF], or Sync-Charts [START_REF] André | Representation and analysis of reactive behaviors: a synchronous approach[END_REF], there are three kinds of states: AndState, Automaton, and State. The two former are Models composed of other states (CompoundState), whereas the latter is a terminal state describing Signal equations. An AndState consists of several states composed in parallel.

An Automaton can be added to another Automaton as a state (to create hierarchical automata), or to one of the Signal-Meta Models (represented in the class diagram by the ModelsWithDataflow Model). Thus, mode automata can be composed of Signal programs or of sub-mode automata. This abstract concept represents Models including the two Aspects mentioned in the previous section and all operators described in Signal-Meta. State inherits from this Model to be able to describe Signal equations. Finally, the InitState Atom is intended to be connected to the initial state of the Automaton.

The automata transitions are represented as Connections in the meta-model. Two kinds of transitions are considered: StrongTransition, and WeakTransition. StrongTransitions are used to compute the current state of the Automaton (before entering the state), whereas WeakTransitions are used to compute the state for the next instant.

More precisely, the guards of the WeakTransitions are evaluated to estimate the state for the next instant, and the guards of the StrongTransitions whose source is the state estimated at the previous instant, are evaluated to determine the current state. However, note that for each Automaton, at most one StrongTransition can be taken at each instant. To distinguish both kinds of transitions, a StrongTransition is denoted by light arrow in the graphical representation (see Fig. 5(a)), whereas WeakTransition is represented by a bold one.

Contrarily to SyncCharts [START_REF] André | Representation and analysis of reactive behaviors: a synchronous approach[END_REF], in which as many transitions as possible can be taken, in our model, at most two transitions can be taken during one reaction: one StrongTransition and/or one WeakTransition. It is also the case in [START_REF] Colaço | A conservative extension of synchronous data-flow with state machines[END_REF]. This guarantees that there is no infinite loop when determining the current state of an automaton. For example, the determination of the current state for the Atm Automaton represented in Fig. 5(a) when the event r is emitted would be impossible if we allowed to take as many transitions as possible. Note also that the guard of a StrongTransition should not depend on signals defined in the state connected to this transition.

Both kinds of transitions link, inside an Automaton, a state to another one, or to the History Atom of one of the CompoundState sub-state of this Automaton. If the transition taken to arrive at a CompoundState is connected to the state itself, this CompoundState is automatically reinitialized. This reinitialization corresponds, for an Automaton, to execute it from its initial state, and for an Andstate, to reinitialize all its sub-states. On the contrary, the Com-poundState retains its previous state if the transition is connected to its History.

Each kind of transition has two attributes: Guard, in which the guard of the transition is expressed, and Tran-sitionPriority, in which an integer expresses the priority of this transition among all transitions of the same kind (Weak-Transition or StrongTransition) with the same source state. The smaller the value associated with the transition is, the higher the priority of the transition is. Thus, we can guarantee the determinism of the automaton. An OCL constraint checks that for each state, all outgoing WeakTransitions (resp. StrongTransitions) have different priorities. A third kind of Connection (InitialTransition) has been added to link the InitState of an Automaton to any state that corresponds to the initial one. There can be only one such Connection in an Automaton.

To observe the state of an automaton, we add a StateObserver Atom, which allows to call a process having the current state of the automaton as input signal. The name of this process is provided through the attribute ProcessName. If this attribute is not defined, the current state is written on the standard output. Basically, the clock of an automaton depends on the clocks of the signals used in all its transitions and states. Alternatively, the clock of an automaton can be explicitly specified. In the meta-model, this is expressed by the inheritance of Automaton from ConstraintInput.

Modeling of the crossbar switch

We illustrate the use of the mode automata extension in the example of the switch. Fig. 5 

Implementation in Gme

Gme offers different means to extend its environment with tools, such as the MetaGME Interpreter, which, like a compiler, checks the correctness of the meta-model, generates the paradigm file, and registers it into Gme. This file is then used by Gme to configure its environment for the newly defined paradigm.

In a similar way as the MetaGME Interpreter, we have developed a Gme Interpreter to analyze Signal-Meta Models and produce the corresponding Signal programs. We extend this Interpreter to produce the Signal equations corresponding to mode automata descriptions. The code in Fig. 6 is that generated by the Interpreter for the switch example specified in Fig. 5 (note that in the concrete Signal syntax: y$ init v is the real notation for y pre v; x^=y stands for x = ŷ; ^+ designates the union of clocks; x::=... and x:=... represent respectively a partial definition and a complete definition of x). The transformation works as follows.

For each automaton:

• One enumeration type is built (line 21). Each value of the enumeration is the name of a state (the uniqueness of names is checked).

• Four signals of this type are created. They correspond to the current state (currentState), the previous state (previousState), the next state (nextState) of the Automaton (lines 22-23) and its previous value (zNextState).

• an event is created for each transition of the Automaton (line 20). For a WeakTransition (resp. Strong-Transition), this event is present when its guard is true and when the currentState (resp. zNextState) is equal to the source state of the transition. In this example, we have only StrongTransitions (lines 5-6).

• If the Automaton contains CompoundStates (it is not the case in our example), then two boolean signals are added: history, and nextHistory. They are true if the StrongTransition (resp. WeakTransition) taken to determine the currentState (resp. nextState) is connected to the History Atom of the destination Com-poundState.

• The previousState and zNextState are defined respectively by the last value of currentState (line 12) and nextState (line 13).

• To define the nextState (line 8) (resp. currentState (lines 9-11)), the destinations of all WeakTransitions (resp. StrongTransitions) are conditioned by the event of the corresponding transition. The default values Automaton is a sub-state of another one, the cur-rentState is defined by the initial state of this Automaton if the history signal of the upper level Automaton is false. In our example, there is no Weak-Transition, thus nextState is always defined by the currentState. Note that the order of the transitions is not important, except for states with several outgoing transitions. In this case, transitions are ordered according to their priority.

• Mode changes are expressed according to the value of currentState (lines 14-17).

In a given Automaton, the clock of currentState is synchronized to that of nextState. Nonetheless, it may be defined by that of another Automaton. At the top-level, the clock of currentState is synchronized (line 7) only if there is some explicit synchronization in the Model, such as the Connection to Atm on the right of Fig. 5(d). For AndStates, the Interpreter has just to compose the equations of all substates. Finally, for States, equations are produced as for any Signal-Meta Model [6].

FORMALIZATION

We use the Polychrony workbench to perform formal verification (model checking and controller synthesis are provided with the Sigali tool [START_REF] Marchand | Formal verification of programs specified with SIGNAL : application to a power transformer station controller[END_REF]) and sequential and distributed code generation (in C, C++ or Java) starting from models with mode automata. Taking advantage of the metamodeling framework provided by Gme, we define the necessary generation of Signal code from the meta-model for mode automata. A clock c expresses a discrete sample of time by a set of instants. It defines the condition upon which (or the time at which) a data-flow relation is executed. The clock x means that the signal x is present (its value is available). The clocks [x] and [¬x] mean that x is present and is true (resp. false). A clock expression e is a boolean expression and 0 is the clock that means never (or the empty set of instant).

An intermediate representation

c ::= x | [x] | [¬x] (clock) e ::= 0 | c | e1 \ e2, | e1 ∨ e2 | e1 ∧ e2 (expression)
The decomposition of a process into the synchronous composition of clock and signal nodes is defined by induction on the structure of p. Each equation is decomposed into a data-flow function and is guarded by a condition, that is usually the clock x of the output signal.

G[[x = y pre v]] def = (x ⇒ x = y pre v) | | (x = ŷ) G[[x = y when z]] def = (x ⇒ x = y) | | (x = ŷ ∧ [z]) G[[x = y default z]] def = (ŷ ⇒ x = y) | | (ẑ \ ŷ ⇒ x = z) | | (x = ŷ ∨ ẑ) G[[p | | q]] def = G[[p]] | | G[[q]] G[[p/x]] def = G[[p]]/x

Application to the crossbar switch

Let us construct the graph of the crossbar switch. It can modularly be defined by one instance of the toggle function-ality and two instances of the router. Each functionality is decomposed into a set of guarded data-flow relations: its signal nodes, and its specific timing model, expressed by clock nodes.

G[[switch]]

def = (G[[toggle]] | | G[[route1]] | | G[[route2]]) /st G[[toggle]] def = (ŝ ⇒ s = t pre true ) | | ([r] ⇒ t = not s) | | ( t \ r ⇒ t = s) | | ( t = ŝ) G[[routei]] def = ([s] ⇒ xi = yi) | | ([¬s] ⇒ xi = yj) 0 < i = j ≤ 2

Compilation of mode automata

The compilation of a mode automaton into multi-clocked data-flow equations consists of its structural translation into partial equations modeling guarded commands and of the addition of the necessary synchronization relations described by clock equations. The top level rule C[[a]] defines the current state of a, represented by a signal x (its next value being synchronously carried by the x ′ ).

The clock of the mode automaton is hence x. It is synchronized to the clock expression ex, the activity clock of the automaton: if at least one signal y defined by the automaton has an active clock ŷ, the automaton is activated to compute it and to possibly perform some transition.

The rule C x [[ init s0]] defines x initially by the initial state s and then by the previous value of the next state x ′ unless one of the conditions c of strongly preemptive transitions prevails. The rule C x [[c ⇒ s → t]] defines the next state x ′ by t if the current state s is x and the condition c holds.

The rule

C x [[c ⇒ s ։ t]
] defines the current state x by t when the condition c holds upon entering state s (i.e. when the previous value of the next state x ′ is s). The rule C x [[s : p]] defines a mode s by guarding the process p with the condition [x = s]. The condition [x = s] can equally be regarded as the clock [y] where the signal y is defined by the equation y = eq (x, s).

C[[a]]

def = (C x [[a]] | | (x = x′ ) | | (x = ex)) /x, x ′ with ex def = W y∈defs(a) ŷ C x [[ init s0]] def = x \ fx ⇒ x = x ′ pre s0 with fx def = W (c⇒s։p)∈a c C x [[c ⇒ s → t]] def = [x = s] ∧ c ⇒ x ′ = t C x [[s : p]] def = [x = s] ⇒ G[[p]] C x [[c ⇒ s ։ t]] def = [(x ′ pre s0) = s] ∧ c ⇒ x = t C x [[a | | b]] def = C x [[a]] | | C x [[b]]
The notation [x = s] ⇒ G conditions G, the behavior of an automaton in the mode s, by the condition [x = s]. It can be decomposed into a set of core Signal equations by application of the following translation rules:

c ⇒ (G | | H) def = (c ⇒ G) | | (c ⇒ H) c ⇒ (x = e) def = (c ∧ x) = (c ∧ e) c ⇒ (G/x) def = (c ⇒ G)/x, x ∈ vars(c) c ⇒ (d ⇒ x = f (y1..n)) def = (c ∧ d) ⇒ x = f (y1..n)

SEMANTICS OF MODE AUTOMATA

We complete the formalization of our extension to the Signal meta-model by the definition of the operational se-mantics of polychronous automata. It starts with the exposition of a micro-step automata theory and continues with the specification of the micro-step automata admitted by polychronous modes.

Micro-step automata

We first consider the theory of synchronous micro-step automata proposed by Potop et al. [START_REF] Potop-Butucaru | Correct-by-construction asynchronous implementation of modular synchronous specification[END_REF]. As already demonstrated for Signal in [22], this framework accurately renders concurrency and causality for synchronous (multi-clocked) specifications.

Micro-step automata communicate through signals x ∈ X. The labels l ∈ LX generated by the set of names X are represented by a partial map of domain from a set of signals X noted vars(l) to a set of values V ⊥ = V ∪ {⊥}. The label ⊥ denotes the absence of communication during a transition of the automaton. We write supp(l) = {x ∈ X | l(x) = ⊥} for the support of a label l and ⊥X for the empty support. We write l ′ ≤ l iff there exists l ′′ disjoint from l ′ and such that l = l ′ ∪ l ′′ .

An automaton A = (s 0 , S, X, →) is defined by an initial state s 0 , a finite set of states S noted s or x = v, labels LX and by a transition relation → on S × LX × S. The product A1 ⊗ A2 of Ai = (s 0 i , Si, Xi, →i) for 0 < i ≤ 2 is defined by

((s 0 1 , s 0 2 ), S1 × S2, X1 ∪ X2, →) where (s1, s2) → l (s ′ 1 , s ′ 2 ) iff si → l| X i s ′
i for 0 < i ≤ 2 and l|X i the projection of l on Xi. An automaton A = (s 0 , S, X, →) is concurrent iff s → ⊥ s for all s ∈ S and if s → l s ′ and l ′ ≤ l then there exists s ′′ ∈ S such that s → l ′ s ′′ and s ′′ → l\l ′ s ′ .

A synchronous automaton A = (s 0 , S, X, c, →), of clock c ∈ X, consists of a concurrent automaton (s 0 , S, X, →) s.t. 1. if s → l s then l = c or c ∈ l : a clock transition always happens alone.

2. if s 0 → c s 0 and s → c s ′ then s ′ → c s ′ : a clock transition can stutter.

3. if si-1 → l i si, ∀i ∈]0, n] and li = c for i < n and ln = c, then vars(li) ∩ vars(lj) = ∅ for all 0 < i = j < n : a reaction is composed of transitions on disjoint supports.

The composition of automata is defined by synchronized product and synchronous communication using 1-place synchronous FIFO buffers. The synchronous FIFO of clock c and channel x is noted sfifo(x, c). It serializes the emission event !x = v followed by the receipt event ?x = v within the same transition (the clock tick c occurs afterwards). sfifo(x, c) def = 0 @ s0, {s0..2}, {?x, !x, c}, c, s0 

Clocks

A clock expression e corresponds to a transition system T s,t e from s to t which evaluates the presence of signals in accordance to e.

T s,t c def = " s lc -→t " T s,t c∨d def = `T s,t c∧d ∪ T s,t c ∪ T s,t d T s,t c∧d def = 0 B B B @ s ′ l d " " F F F F s lc ; ; x x x x l d # # F F F F lcl d / / t t ′ lc < < x x x x 1 C C C A /s ′ t ′
We write lc for the label l that corresponds to the clock c and canonically denote vx the generic value of the signal x : l x= def (?x = vx), lx= def (?x = 1) and l¬x= def (?x = 0)

Relations

A synchronization relation x = e accepts the events x and e in any order, or none of them, and then performs a clock transition c. Hence, the conditions expressed by x and e need to occur at the same time. 

Equations

A partial equation c ⇒ x = f (y) synchronizes x with the value of f (y) at the clock c. But x may also be present when either c or y is absent. Therefore, the automaton requires x to be emitted with the value f (vy) only after the events y and c have occurred. If at least one of either c or y is present, then x may or may not be present with some value u computed by another partial equation. The semantics (combinatorially) generalizes to the case of c ⇒ 

x = f (y1..n) with n ≥ 0. A[[c ⇒ x = f (y)]] def = s 0 , {s 0..1 , s 2..4 vy | vy ∈ V }, {x, y} ∪ vars(d), τ, S vz ∈V | z∈vars(c) vx,vy ∈V 0 B B B B B B B B B @ s 1 τ } } { { { { { { { ?y=vy " " D D D D D D D ?x=vx s 0 τ , , ?x=vx 2 
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Structuring constructs

Composition p | | q and restriction p/x are defined by structural induction starting from the previous axioms with

A[[p | | q]] def = A[[p]] | | c A[[q]] A[[p/x]] def = (A[[p]])/x
Example 1. Consider the transition system for the switch process (the notation yjxi stands for two steps • → ?y j =v • → !x i =v •). The switch automaton consists of two mirrored structures that allow for concurrently receiving y1 and y2 and transmitting them along x1 or x2 according to the mode s1 or s2, toggled using the signal r. 
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Operational semantics of mode automata

The operational semantics of a mode automaton is described using one equation, Fig. 7, to define the micro-step automaton A[[a]] corresponding to the mode declaration a. To this end, a mode automaton a is considered as a set of synchronously composed modes and transitions. Hence, we write (s : p) ∈ a and (c ⇒ s → t) ∈ a for the modes and transitions it contains.

The semantics of a mode automaton a consists of a transition system that is the union of the transition systems of all modes (s : p) ∈ a. The transition system of a mode (s : p) consists of Tp (that of the process p) where sp (the initial state) is substituted by s (the mode state). For all mode transitions c ⇒ s → t ∈ a, the transition system is completed with the transitions from the final states u of Tp to the mode state t.

We write init (T ) and final (T ) = {t | t → τ s ∈ T } for the initial and final states of T (the sources and sinks of clock transitions τ in T ) and Sa = {s | (s : p) ∈ a} for the states of a. As usual, sa denotes the initial state of a and, referring to automaton A[[p]] of a process p, sp its initial state, Sp its states, Xp its variables and Tp its transition system.

Example 2. In the case of the switch, this amounts to superimposing two transitions of condition r to the transition systems of the flip and flop modes.

T switch = T flip • r + + •T flop r k k !

CONCLUSIONS

We have presented a model of multi-clocked mode automata defined by extending the meta-model of the synchronous data-flow specification formalism Signal in the tool Gme. A salient feature of our presentation is the simplicity incurred by the separation of concerns between dataflow (that expresses structure) and control-flow (that expresses a timing model) that is characteristic to the design methodology of Signal.

From a user point of view, this simplicity translates into the ease of hierarchically and modularly combining dataflow blocks and imperative modes and significantly accelerates specification by making its structure closer to design intuitions. an example is the 28 lines long encoding of state transitions in the crossbar switch, While the specification of mode automata in related works requires a primary address on the semantics and on compilation of control, the use of Signal as a foundation allows to transfer this specific issue to its analysis and code generation engine Polychrony. Furthermore, it exposes the semantics and transformation of mode automata in a much simpler way by making use of clearly separated concerns expressed by guarded commands (data-flow relations) and by clock equations (control-flow relations).

Figure 1 :

 1 Figure 1: A Mimad model of On flight.

Figure 2 :

 2 Figure 2: The Position indicator process.

  (a)-2(b). It is composed of two main aspects: the ImaAspect includes the computational part and the ImaPro-cessControl contains the control flow part. The computational part (see Fig. 2(a)) consists of a data-flow graph. It contains Blocks of data-flow equations. The control-flow part is best described in an imperative manner by a mode automaton, shown in Fig. 2(b). Each time the partition is active, the current state of the automaton indicates which of the Blocks in the computational part is executed. From the above descriptions, a corresponding Signal program is automatically generated allowing one to use the functionalities of Polychrony to formally analyze, transform and verify the application model.

Figure 3 :

 3 Figure 3: The Signal meta-model in GME.

Figure 4 :

 4 Figure 4: Extension of the Signal meta-model with mode automata.

Figure 5 :

 5 Figure 5: Description of the Atm Automaton in Gme.

  (a) represents the modeling of the mode automaton of the switch in Gme. Atm contains two terminal states (flip and flop). StrongTransitions are guarded by the value of the event r, as labeled on the middle of transitions. The 0 indicates the transition priority (it can be omitted here). The content of flip (resp. flop) state is represented in Fig. 5(b) (resp. 5(c)). In these figures, dotted arrows correspond to partial definitions in Signal. x1, x2, y1, y2 are references to signals from an upper Model. The upper Model is that of the switch, and Atm and all the signals it uses are declared there. In this Model, y1, y2, and r are input signals, and x1 and x2 are output signals. In Fig. 5(d), the clock of Atm is fixed to the union of the clocks of y1, y2, and r. The clocks of x1 and x2 have to be specified explicitly because they are defined using partial definitions: a MinClock operator is used to define the clock of x1 and x2 as the union of clocks of their partial definitions. The DATA TYPE parameter is used to associate a generic type with input and output signals.

Figure 6 :

 6 Figure 6: The code generated from the switch model by the Signal Interpreter

  The data-flow synchronous formalism Signal supports an intermediate representation of multi-clocked specifications that exposes control and data-flow properties for the purpose of analysis and transformation. In this structure, noted G, a node g is a data-flow relation that partially defines a clock or a signal. A signal node c ⇒ x = f (y, z) partially defines x by f (y, z) at the clock c. A clock node x = e defines a relation between two particular signals or events called clocks. G, H ::= g | (G | | H) | G/x (graph) g, h ::= x = e | c ⇒ x = f (y, z) (nodes)

1 A 1 AFigure 7 :

 117 Figure 7: Semantics of a mode automaton

  {s, t}, {c, x} ∪ vars(e), c,

Fig 6 ,

 6 as opposed to its 4 lines specification, end of Section 3. The same remark applies and scales to the more realistic on-flight example, Fig2(b), by simplifying the specification of the mode transitions using implicit states.
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Signal-Meta is the model-driven front-end of Polychrony designed with Gme