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CHERN CLASSES OF TENSOR PRODUCTS

LAURENT MANIVEL

Abstract. We prove explicit formulas for Chern classes of tensor products of vector
bundles, with coefficients given by certain universal polynomials in the ranks of the two
bundles.

1. Introduction

Chern classes are ubiquitous in algebraic topology, differential geometry [Ch] or alge-
braic geometry [Gr, Fu]. They have nice formal properties like the Whitney sum formula,
expressing the total Chern class of the direct sum of two complex vector bundles as the
product of the total Chern classes of the two bundles. The situation is much more com-
plicated for the other universal operation on vector bundles given by the tensor product:
the Chern character is of course well behaved with respect to products, but computing
the Chern classes of the tensor product of two vector bundles is often a painful task.

In this note we express the total Chern class of a tensor product in terms of the Schur
classes of the two bundles. Recall that the Schur classes are certain universal polynomials
in the Chern classes. They are indexed by partitions λ = (λ1 ≥ · · · ≥ λr), and the
Giambelli formula expresses them as determinants in the usual Chern classes:

sλ(E) = det
(

cλ∗
i
−i+j(E)

)

1≤i,j≤s
,

with the convention that ck(E) = 0 for k < 0. Here λ∗ denotes the conjugate partition of
λ, defined by λ∗

i = #{k, λk ≥ j}, and s can be any integer greater or equal to λ1. The
Schur classes form an integral additive basis of the universal algebra generated by Chern
classes, in particular there must be a universal formula of type

c(E ⊗ F ) =
∑

λ,µ

Pλ,µ(e, f)sλ(E)sµ(F )

for vector bundles E, F of respective ranks e, f , the coefficients Pλ,µ(e, f) being integers.
In fact, the splitting principle allows to translate this identity into an identity of symmetric
functions in two sets of variables, of size e and f respectively.

An expression of this type has already been given by A. Lascoux in [La] (see also
[Mc, Ex.5 p.67]), the coefficients Pλ,µ(e, f) being expressed as determinants of binomial
coefficients. Explicitly:

Pλ,µ(e, f) = det
(

(

f − µ∗
e+1−i + e− i

λj + e− j

)

)

1≤i,j≤e
.

Unfortunately, these determinants seem quite difficult to evaluate in practice. Moreover,
their dependence in e and f appears quite unclear, while one can easily convince oneself
that this dependence must be polynomial. Building on the work of Okounkov and Olchan-
ski on shifted Schur functions [OO], we obtain a polynomial formula for Pλ,µ(e, f). This
formula is very explicit, except maybe that it involves Littlewood-Richardson coefficients.
Fortunately, our understanding of these fundamental coefficients has greatly improved
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2 L. MANIVEL

in the recent years. In particular, many very nice algorithms are known that allow to
compute them quite efficiently.

2. The main result

For any two partitions λ and µ, consider the polynomial

(1) Pλ,µ(e, f) =
∑

ν

cν
∗

λ∗,µ(e|ν − λ)(f |ν∗ − µ)/h(ν).

The notation is the following. The partition λ∗ is the conjugate partition of λ: when
partitions are represented as Young diagrams, the lengths of the lines of λ∗ are the lengths
of the columns of λ. The coefficient cν

∗

λ∗,µ is a Littlewood-Richardson coefficient [Mc]. It
can be non-zero only when ν∗ ⊃ λ∗, or equivalently ν ⊃ λ, and ν∗ ⊃ µ. The integer
h(ν) is the product of the hook-lengths of the partition ν, where the hook-length of a box
α = (i, j) in ν is h(α) = νi + ν∗

j − i− j + 1. Finally, for a partition ρ, we let

(2) (e|ρ) =
∏

α∈ρ

(e+ c(α)),

where c(α) = j − i is the content of the box α = (i, j). This is the content polynomial of
[Mc, Ex.11 p.15]. In particular (e|k) = e(e− 1) · · · (e− k + 1). This definition extends to
skew-partitions: if ρ ⊃ σ, we simply let (e|ρ− σ) = (e|ρ)/(e|σ) =

∏

α∈ρ/σ(e+ c(α)).

Examples. Suppose that λ = (ℓ) and µ = (m) have only one non-zero part. Then
λ∗ = (1ℓ) has all its non-zero parts equal to one. The Littlewood-Richardson coefficient
cνλ∗,µ is non-zero only if ν = (m, 1ℓ) or ν = (m+ 1, 1ℓ−1), and in both cases it is equal to
one. We thus get

P(ℓ),(m)(e, f) = (f−1)···(f−ℓ)(e+ℓ)(e−1)···(e−m+1)
ℓ!(m−1)!(ℓ+m)

+ (f+m)(f−1)···(f−ℓ+1)(e−1)···(e−m)
(ℓ−1)!m!(ℓ+m)

,

P(ℓ),(m)(e, f) =

(

e− 1

m− 1

)(

f − 1

ℓ− 1

)

ef − ℓm

ℓm
.

Suppose now that λ = (1ℓ) and µ = (1m) have no part bigger than one. By the previous
computation and the symmetry properties stated in Proposition 1, we get that

P(1ℓ),(1m)(e, f) =

(

e +m− 1

m− 1

)(

f + ℓ− 1

ℓ− 1

)

ef − ℓm

ℓm
.

The mixed case is more complicated. Suppose that λ = (ℓ) and µ = (1m). Using
the symmetry properties of our polynomials we may suppose that ℓ ≥ m. Then the
Littlewood-Richardson coefficient cν

∗

λ∗,µ is non-zero only if ν = (ℓ +m − n, n) for some n
such that 0 ≤ n ≤ m, in which case it is equal to one. We deduce the following formula:

P(ℓ),(1m)(e, f) =

m
∑

n=0

(

e+n−2
n

)(

e+ℓ+m−n−1
m−n

)(

f+1
n

)(

f−m
ℓ−n

)

(

ℓ+m−n+1
n

)(

ℓ+m−2n
m−n

) .

For a last example, suppose that λ = µ = (2, 1). Then ν is one of the partitions
(4, 2), (4, 1, 1), (3, 3), (3, 2, 1), (3, 1, 1, 1), (2, 2, 2), (2, 2, 1, 1). The corresponding Littlewood-
Richardson coefficients are one, except for ν = (3, 2, 1), for which it is two. We get

P(2,1),(2,1)(e, f) = e(e−2)(e−3)f(f+2)(f+3)+e(e+2)(e+3)f(f−2)(f−3)
80

+ (e−3)(e−2)(e+2)(f−2)(f+2)(f+3)+(e−2)(e+2)(e+3)(f−3)(f−2)(f+2)
72

+ e(e−1)(e−2)f(f+1)(f+2)+e(e+1)(e+2)f(f−1)(f−2)
144

+ 2 e(e−2)(e+2)f(f−2)(f+2)
45

,

P(2,1),(2,1)(e, f) = e(e2−1)f(f2−1)
9

− e2f 2 + e2 + 2ef + f 2 − 4.
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Theorem 1. Let E, F be two vector bundles of respective ranks e, f . The total Chern

class of their tensor product is

c(E ⊗ F ) =
∑

λ,µ

Pλ,µ(e, f)sλ(E)sµ(F ).

Proof. By the splitting principle (see e.g. [Fu, Remark 3.2.3]), we are reduced to proving
an identity between symmetric functions in two sets of variables x1, . . . , xe and y1, . . . , yf .
In the right hand side of the main formula, sλ(E) and sµ(F ) must then be replaced by
the Schur functions sλ(x1, . . . , xe) and sµ(y1, . . . , yf) in these variables.

In order to compute the right hand side, we start as in [La] with the Cauchy formula:

(3)
∏

1≤i≤e,
1≤j≤f

(1 + xiyj) =
∑

λ⊂e×f

sλ(x1, . . . , xe)sλ∗(y1, . . . , yf),

Replacing formally each xi by x−1
i and multiplying by (x1 . . . xe)

f yields

(4)
∏

1≤i≤e,
1≤j≤f

(xi + yj) =
∑

λ⊂e×f

sλ(x1, . . . , xe)se×f−λ̃(y1, . . . , yf).

Here the notation is the following: the sum is over all partitions λ whose Young diagram
fits into the rectangle e × f , which means that λ1 ≤ f and λ∗

1 ≤ e. Moreover we have

denoted by e× f − λ̃ the partition (e− λ∗
f , . . . , e− λ∗

1). We deduce a first formula for the
total Chern class of a tensor product:

∏

1≤i≤e,
1≤j≤f

(1 + xi + yj) =
∑

λ⊂e×f

sλ(x1, . . . , xe)se×f−λ̃(1 + y1, . . . , 1 + yf).

Now we use the binomial theorem [OO, Theorem 5.1] to obtain

se×f−λ̃(1 + y1, . . . , 1 + yf) = dimGL(f)(e× f − λ̃)
∑

µ

s∗µ(e× f − λ̃)

(f |µ)
sµ(y1, . . . , yf).

Hence the following expression for the coefficient Pλ,µ(e, f) of sλ(E)sµ(F ) in c(E ⊗ F ):

Pλ,µ(e, f) = dimGL(f)(e× f − λ̃)
s∗µ(e× f − λ̃)

(f |µ)
.

As in [OO], we have denoted by dimGL(f)(e× f − λ̃) the dimension of the Schur module
Se×f−λ̃C

f . It is given by the formula [Mc, Ex.4 p.45]:

(5) dimGL(f)(e× f − λ̃) =
(f |e× f − λ̃)

h(e× f − λ̃)
.

On the other hand s∗µ denotes the shifted Schur function introduced in [OO]. Its evaluation
on a partition can be expressed in terms of representations of symmetric groups. Indeed,
[OO, Theorem 8.1] yields

s∗µ(e× f − λ̃) =
dim[(e× f − λ̃)/µ]

dim[e× f − λ̃]
(|e× f − λ̃| | |µ|).

Here [ρ] denotes the irreducible representation of the symmetric group S|ρ| associated to
the partition ρ. Its dimension is given by the celebrated hook-length formula [Mc, Ex.2
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p.74]: letting |ρ| = ρ1 + · · ·+ ρr,

(6) dim[ρ] =
|ρ|!

h(ρ)
.

On the other hand (e × f − λ̃)/µ is not a partition but only a skew-partition, therefore
the corresponding representation of the symmetric group is not irreducible and there is
no generalization of the hook-length formula that would give its dimension. Nevertheless,
its decomposition into irreducible representations is known to be given by Littlewood-
Richardson coefficients [Mc, Ex.7 p.117]:

(7) [(e× f − λ̃)/µ] =
⊕

ρ

ce×f−λ̃ρ,µ [ρ].

For this Littlewood-Richardson coefficient to be non-zero, we need that ρ be contained
in e× f − λ̃. We can therefore write it as ρ = e× f − ν̃ for some partition ν containing

λ. The coefficient ce×f−λ̃ρ,µ is, by definition, equal to the multiplicity of the Schur module

Se×f−λ̃C
f inside the tensor product SρC

f ⊗ SµC
f . By [Ma, Lemma 1], it is also equal to

the multiplicity of Sf×eC
f = (detCf )e inside the triple tensor product SρC

f ⊗ SµC
f ⊗

Sλ∗C
f . But then for the same reason, it is also equal to the multiplicity of Sν∗C

f inside
SµC

f ⊗ Sλ∗C
f . In other words, we have proved that

ce×f−λ̃ρ,µ = cν
∗

λ∗,µ.

Therefore we get from (7) the identity

dim[(e× f − λ̃)/µ]

dim[e× f − λ̃]
=

∑

ν⊂e×f

cν
∗

λ∗,µ

dim[e× f − ν̃]

dim[e× f − λ̃]
.

Using the hook-length formula (6) for dim[e× f − ν̃] and dim[e× f − λ̃], we deduce that

(8) Pλ,µ(e, f) =
(f |e× f − λ̃)

(f |µ)

∑

ν⊂e×f

cν
∗

λ∗,µ

h(e× f − ν̃)
.

Lemma 1. (f |e× f − λ̃)(e|λ) = (f |e× f) = h(e× f).

Proof. The quotient (f |e× f)/(f |e× f − λ̃) is the product of the f + c(α) for α a box in

e × f but not in e × f − λ̃. Such a box has coordinates α = (f − j + 1, e − i + 1) with
1 ≤ j ≤ λi, and f + c(α) = f + (e− i+ 1)− (f − j + 1) = e + j − i = e + c(β), where β

is a box in λ. Hence (f |e× f)/(f |e× f − λ̃) = (e|λ). The next identity is clear. �

This leads for our coefficient Pλ,µ(e, f) to the following expression:

(9) Pλ,µ(e, f) =
1

(e|λ)(f |µ)

∑

ν⊂e×f

cν
∗

λ∗,µ

h(e× f)

h(e× f − ν̃)
.

Our next task will be to evaluate the quotient h(e× f)/h(e× f − ν̃). In order to do this
we will divide the rectangle e×f into four sub-rectangles NO, NE, SO, SE, in such a way
that NO∪ NE is the set of boxes α = (i, j) with i ≤ f − ν1, while NO∪ SO is the set
of boxes α = (i, j) with j ≤ e − ν∗

1 . We will denote by hNO(e × f − ν̃), and so on, the
product of the hook-lengths of the boxes of e× f − ν̃ belonging to the rectangle NO.
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Lemma 2. The quotient h(e× f)/h(e× f − ν̃) is the product of the following four partial

quotients:

hNO(e× f)/hNO(e× f − ν̃) = 1,
hNE(e× f)/hNE(e× f − ν̃) = (e|ν)/(ν∗

1 |ν),
hSO(e× f)/hSO(e× f − ν̃) = (f |ν∗)/(ν1|ν

∗),
hNO(e× f)/hNO(e× f − ν̃) = h(ν1 × ν∗

1)/h(ν̄),

where ν̄ denotes the partition ν1 × ν∗
1 − ν̃.

Proof. Straightforward. �

We deduce a polynomial expression for our coefficient Pλ,µ(e, f):

(10) Pλ,µ(e, f) =
∑

ν⊂e×f

cν
∗

λ∗,µ(e|ν − λ)(f |ν∗ − µ)
h(ν1 × ν∗

1)

(ν∗
1 |ν)(ν1|ν

∗)h(ν̄)
.

Indeed, this expression is really polynomial in e and f since we can omit the condition
that ν be contained inside the rectangle e × f . If it is not, that is for example, if ν∗

1 is
bigger than e, then the box α = (e + 1, 1) is contained in ν and has content c(α) = −e,
which implies that (e|ν − λ) = 0.

In order to complete the proof of Theorem 1, there just remains to establish the following
combinatorial lemma:

Lemma 3. For any partition ν,

(ν∗
1 |ν)(ν1|ν

∗)h(ν̄) = h(ν1 × ν∗
1)h(ν).

Proof. As SL(ν∗
1)-modules, the Schur modules SνC

ν∗
1 and Sν̄C

ν∗
1 are dual one to each

other. In particular they have the same dimension, which means that

(ν∗
1 |ν)

h(ν)
=

(ν∗
1 |ν̄)

h(ν̄)
.

What remains to notice is the identity (ν∗
1 |ν̄) = h(ν1 × ν∗

1)/(ν1|ν
∗), which is equivalent to

Lemma 1. �

Remark. Each term in Lemma 3 is defined as a certain product of integers, and it seems
that each integer p appears the same number of times in the left and right hand sides of
the identity. What is the combinatorial explanation?

There is also a dual version of Theorem 1. Recall that total Segre class of a vector
bundle E is defined as the formal inverse to the Segre class. More precisely, if we define
the polynomial total Chern class of E as

ct(E) =
∑

k≥0

tkck(E) =
e
∏

i=1

(1 + txi),

where x1, . . . , xe are the formal Chern roots, then the polynomial total Segre class of E is

ht(E) =
∑

k≥0

tkhk(E) =
e
∏

i=1

(1− txi)
−1.

The total Segre class is h(E) = h1(E).
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Theorem 2. Let E, F be two vector bundles of respective ranks e, f . The total Segre class
of their tensor product is

h(E ⊗ F ) =
∑

λ,µ

(−1)|λ|Pλ,µ∗(e,−f)sλ(E)sµ(F ).

The coefficient Qλ,µ(e, f) = (−1)|λ|Pλ,µ∗(e,−f) of sλ(E)sµ(F ) in this formula is

(11) Qλ,µ(e, f) =
∑

ν

cνλ,µ(e|ν − λ)(f |ν − µ)/h(ν),

and is clearly symmetric.

Proof. A completely formal argument shows that Theorem 1 is also valid for formal bun-
dles. Indeed, first observe that the identity c(E⊗ (G⊕H)) = c(E⊗G)/c(E⊗H) implies
that the polynomials Pλ,µ(e, f) verify the relations

(12)
∑

µ

cµϕψPλ,µ(e, g + h) =
∑

α,β

cλαβPα,ϕ(e, g)Pβ,ψ(e, h).

This is a straightforward consequence of the fact that Littlewood-Richardson coefficients
also govern the decomposition of Schur classes of direct sums [Mc, I, (5.9)]:

(13) sµ(G⊕H) =
∑

ϕ,ψ

cµϕψsϕ(G)sψ(H).

Now suppose that the formal bundle F = G − H , of rank f = g − h, is the formal
difference of two vector bundles G, H of ranks g, h. Here f = g − h can be negative.
Then E ⊗ F = E ⊗ G− E ⊗H , hence c(E ⊗ F ) = c(E ⊗ G)/c(E ⊗H). Theorem 1 for
F = G−H is thus equivalent to the identity

∑

Pλ,µ(e, f)sλ(E)sµ(F ) =
∑

Pα,β(e, f − g)sα(E)sβ(F −G)Pγ,δ(e, g)sγ(E)sδ(G)
=

∑

Pα,β(e,−h)Pγ,δ(e, g)c
θ
α,γsθ(E)sβ(F −G)sδ(G).

But (12) being a polynomial identity, remains valid if we replace h by −h, and therefore
the previous identity can be rewritten as

∑

Pλ,µ(e, f)sλ(E)sµ(F ) =
∑

Pǫ,η(e, g − h)cηβ,δsǫ(E)sβ(F −G)sδ(G),

which clearly holds true since (13) is also valid for formal bundles, meaning that

∑

β,δ

cηβ,δsβ(F −G)sδ(G) = sη(F ).

There just remains to apply Theorem 1, instead of F , to the formal bundle −F , of rank
−f . We have ct(−F ) = h−t(F ), and more generally sµ(−F ) = (−1)|µ|sµ∗(F ). Therefore
h(E ⊗ F ) = c−1(E ⊗ (−F )) is given by

h(E ⊗ F ) =
∑

λ,µ(−1)|λ|+|µ|Pλ,µ(e,−f)sλ(E)sµ(−F )

=
∑

λ,µ(−1)|λ|Pλ,µ(e,−f)sλ(E)sµ∗(F ).

This conclude the proof. �
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3. Properties

3.1. Symmetries.

Proposition 1. Pλ,µ(e, f) is an integer valued polynomial of degree |µ| in e and degree

|λ| in f , with the following symmetries:

Pλ,µ(e, f) = Pµ,λ(f, e) = (−1)|λ|+|µ|Pλ∗,µ∗(−e,−f).

Proof. The first assertion is obvious. To prove the first symmetry property we just need
to notice that cν

∗

λ∗,µ = cνλ,µ∗ and h(ν) = h(ν∗). To prove the second one we observe that
if α is a box of ν − λ, then the corresponding box α∗ in the conjugate skew-partition
ν∗ − λ∗ has opposite content. This implies that (e|ν − λ) = (−1)|ν|−|λ|(−e|ν∗ − λ∗), and
the conclusion easily follows. �

3.2. Vanishing.

Proposition 2. One has Pλ,µ(e, f) = 0 whenever λ∗
1 ≤ e < µ1 or µ∗

1 ≤ f < λ1.

Proof. If cν
∗

λ∗,µ 6= 0, the Littlewood-Richardson rule implies that the first column of ν has
length at least equal to µ1. If λ

∗
1 < µ1, this implies that the intersection of ν−λ with the

first column contains the boxes which belong to the lines numbered from λ∗
1 + 1 to µ1.

These boxes have content −λ∗
1, . . . ,−µ1+1, hence (e|ν−λ) is divisible by (e−λ∗

1) · · · (e−
µ1 + 1). Hence the first half of the claim, the second one following by symmetry. �

3.3. Recursion. Consider two complex vector bundles E, F of respective rank e, f and
apply Theorem 1 to E ′ = E⊕O and F , where O denotes the trivial line bundle. Then E ′

and E have the same Chern and Schur classes. Since E ′ ⊗ F = E ⊗ F ⊕ F , the Whitney
sum formula gives c(E ′ ⊗ F ) = c(E ⊗ F )c(F ). Hence the relation

Pλ,µ(e+ 1, f) =
∑

µ→θ

Pλ,θ(e, f),

where µ → θ means that θ can be obtained from µ by suppressing some vertical strip.
We can rewrite this as

Proposition 3. The polynomials Pλ,µ(e, f) obey the following recursion rule:

Pλ,µ(e+ 1, f)− Pλ,µ(e, f) =
∑

µ→θ,
µ6=θ

Pλ,θ(e, f).

We can use the same idea to obtain more recursion formulas. Indeed, suppose that
E = M ⊕ Oe−m and F = P ⊕ Of−p for some vector bundles M,P or rank m ≤ e and
p ≤ f , respectively. Then E and M have the same Chern and Schur classes, as well as F
and P . The relation

c(E ⊗ F ) = c(M ⊗ P )c(M)f−pc(P )e−m

implies the following recursion formula, which is explicitly polynomial in e and f :

Pλ,µ(e, f) =
∑

α,β

Pα,β(m, p)
∑

σ,τ

dλα,σd
µ
β,τ

(e−m|τ1 + · · ·+ τp)

τ1! · · · τp!

(f − p|σ1 + · · ·+ σm)

σ1! · · ·σm!
.

Here we have denoted by dλα,σ the generalized Kostka coefficient defined as the multiplicity
of sλ inside the product sαe

σ1
1 . . . eσmm .
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3.4. Leading term.

Proposition 4. The leading term of Pλ,µ(e, f) is e|µ|f |λ|/h(λ)h(µ).

Proof. Consider the previous formula for Pλ,µ(e, f). The term corresponding to the
quadruple α, β, σ, τ has degree |τ | = τ1 + · · · + τp in e and |σ| = σ1 + · · · + σm in f .
But for dλα,σ and dµβ,τ to be non-zero we must have the relations |λ| = |α|+σ1+ · · ·+mσm
and |µ| = |β|+ τ1+ · · ·+ pτp. Hence |τ | and |σ| will be maximal when α, β are empty and
τu, σv = 0 for u, v > 1. But then the coefficient dλα,σ is just the Kostka number Kλ, the
number of standard tableaux of shape λ. This is also the dimension of [λ], and we can
conclude the proof by applying the hook-length formula (6) once again. �

Comparing with the definition of Pλ,µ we deduce the following intriguing formula.

Corollary 1. For any three partitions λ, µ, ν, let hλ,µν = h(λ)h(µ)/h(ν). Then
∑

ν

hλ,µν cνλ,µ = 1.

Is there any combinatorial interpretation ?
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