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Steganalysis by Subtractive Pixel Adjacency

Matrix
Tomáš Pevný and Patrick Bas and Jessica Fridrich, IEEE member

Abstract

This paper presents a method for detection of steganographic methods that embed in the spatial domain by

adding a low-amplitude independent stego signal, an example of which is LSB matching. First, arguments are

provided for modeling the differences between adjacent pixels using first-order and second-order Markov chains.

Subsets of sample transition probability matrices are then used as features for a steganalyzer implemented by

support vector machines.

The major part of experiments, performed on four diverse image databases, focuses on evaluation of detection

of LSB matching. The comparison to prior art reveals that the presented feature set offers superior accuracy in

detecting LSB matching.

Even though the feature set was developed specifically for spatial domain steganalysis, by constructing

steganalyzers for ten algorithms for JPEG images it is demonstrated that the features detect steganography in the

transform domain as well.

I. INTRODUCTION

A large number of practical steganographic algorithms performs embedding by applying a mutually indepen-

dent embedding operation to all or selected elements of the cover [8]. The effect of embedding is equivalent

to adding to the cover an independent noise-like signal called the stego noise. A popular method falling under

this paradigm is the Least Significant Bit (LSB) replacement, in which LSBs of individual cover elements

are replaced with message bits. In this case, the stego noise depends on cover elements and the embedding

operation is LSB flipping, which is asymmetrical. It is exactly this asymmetry that makes LSB replacement

easily detectable [16], [18], [19]. A trivial modification of LSB replacement is LSB matching (also called

Tomáš Pevný and Patrick Bas are supported by the National French projects Nebbiano ANR-06-SETIN-009, ANR-RIAM Estivale, and

ANR-ARA TSAR. The work of Jessica Fridrich was supported by Air Force Office of Scientific Research under the research grants

FA9550-08-1-0084 and FA9550-09-1-0147. The U.S.Government is authorized to reproduce and distribute reprints for Governmental

purposes notwithstanding any copyright notation there on. The views and conclusions contained herein are those of the authors and should

not be interpreted as necessarily representing the official policies, either expressed or implied of AFOSR or the U.S.Government.

The authors would like to thank Mirek Goljan for providing code for extraction of WAM features, Gwenaël Doërr for sharing the code

to extract ALE features, and Jan Kodovský for providing the database of stego images for YASS.

Tomáš Pevný is presently a researcher at Czech Technical University in Prague, FEE, Department of Cybernetics, Agent Technology

Center (e-mail: pevnak@gmail.com). The majority of the work presented in this paper has been done during his post-doctorant stay at

Gipsa-Lab, INPG - Gipsa-Lab , Grenoble, France

Patrick Bas is a senior researcher at Gipsa-lab, INPG - Gipsa-Lab , Grenoble, France (e-mail:patrick.bas@gipsa-lab.inpg.fr)

Jessica Fridrich is a Professor at the Department of Electrical and Computer Engineering, Binghamton University, NY 13902 USA

(607-777-6177; fax: 607-777-4464; e-mail: fridrich@binghamton.edu)

January 13, 2010 DRAFT



2

±1 embedding), which randomly increases or decreases pixel values by one to match the LSBs with the

communicated message bits. Although both steganographic schemes are very similar in that the cover elements

are changed by at most one and the message is read from LSBs, LSB matching is much harder to detect.

Moreover, while the accuracy of LSB replacement steganalyzers is only moderately sensitive to the cover

source, most current detectors of LSB matching exhibit performance that varies significantly across different

cover sources [20], [4].

One of the first heuristic detectors of embedding by noise adding used the center of gravity of the Histogram

Characteristic Function [11], [17], [26] (HCF). A rather different heuristic approach was taken in [36], where

the quantitative steganalyzer of LSB matching was based on maximum likelihood estimation of the change rate.

Alternative methods used features extracted as moments of noise residuals in the wavelet domain [13], [10]

and statistics of Amplitudes of Local Extrema in the graylevel histogram [5] (further called the ALE detector).

A recently published experimental comparison of these detectors [20], [4] shows that the Wavelet Absolute

Moments (WAM) steganalyzer [10] is the most accurate and versatile, offering an overall good performance

on diverse images.

The heuristic behind embedding by noise adding is based on the fact that during image acquisition many

noise sources are superimposed on the acquired image, such as the shot noise, readout noise, amplifier noise, etc.

In the literature on digital imaging sensors, these combined noise sources are usually modeled as an iid signal

largely independent of the content. While this is true for the raw sensor output, subsequent in-camera processing,

such as color interpolation, denoising, color correction, and filtering, introduces complex dependences into the

noise component of neighboring pixels. These dependences are violated by steganographic embedding where

the stego noise is an iid sequence independent of the cover image, opening thus door to possible attacks. Indeed,

most steganalysis methods in one way or another try to use these dependences to detect the presence of the

stego noise.

The steganalysis method described in this paper exploits the independence of the stego noise as well. By

modeling the differences between adjacent pixels in natural images, the method identifies deviations from this

model and postulates that such deviations are due to steganographic embedding. The steganalyzer is constructed

as follows. A filter suppressing the image content and exposing the stego noise is applied. Dependences between

neighboring pixels of the filtered image (noise residuals) are modeled as a higher-order Markov chain. The

sample transition probability matrix is then used as a vector feature for a feature-based steganalyzer implemented

using machine learning algorithms.

The idea to model differences between pixels by Markov chains was proposed for the first time in [37].

In [41], it was used to attack embedding schemes based on spread spectrum and quantization index modulation

and LSB replacement algorithms. The same technique was used in [34] to model dependences between DCT

coefficients to attack JPEG steganographic algorithms. One of the major contribution of our work is the use

of higher-order Markov chains, exploiting of symmetry in natural images to reduce the dimensionality of the

extracted features, proper justification of the model, and exhaustive evaluation of the method. Although the

presented steganalytic method is developed and verified for grayscale images, it can be easily extended to color

images by creating a specialized classifier for each color plane and fusing their outputs by means of ensemble

methods.
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This paper expands on our previously published work on this topic [28]. The novel additions include

experimental evaluation of the proposed steganalytic method on algorithms hiding in the transform (DCT)

domain, comparison of intra- and inter-database errors, steganalysis of YASS [35], [33], and a more thorough

theoretical explanation of the benefits of using the pixel-difference model of natural images.

This paper is organized as follows. Section II starts with a description of the filter used to suppress the image

content and expose the stego noise. It continues with the calculation of the features as the sample transition

probability matrix of a higher-order Markov model of the filtered image. Section III briefly describes the rest

of the steganalyzer construction, which is the training of a support vector machine classifier. The subsequent

Section IV presents the major part of experiments consisting of (1) comparison of several versions of the feature

set differing in the range of modeled differences and the degree of the Markov model, (2) estimation of intra-

and inter-database errors on four diverse image databases, and (3) comparison to prior art. In Section V it is

shown that the presented feature set is also useful for detecting steganography in block-transform DCT domain

(JPEG images). The paper is concluded in Section VI.

II. SUBTRACTIVE PIXEL ADJACENCY MATRIX

A. Rationale

In principle, higher-order dependences between pixels in natural images can be modeled by histograms of

pairs, triples, or larger groups of neighboring pixels. However, these histograms possess several unfavorable

aspects that make them difficult to be used directly as features for steganalysis:

1) The number of bins in the histograms grows exponentially with the number of pixels. The curse of

dimensionality may be encountered even for the histogram of pixel pairs in an 8-bit grayscale image

(2562 = 65536 bins).

2) The estimates of some bins may be noisy because they have a very low probability of occurrence, such

as completely black and completely white pixels next to each other.

3) It is rather difficult to find a statistical model for pixel groups because their statistics are influenced by

the image content. By working with the noise component of images, which contains the most energy of

the stego noise signal, we increase the SNR and, at the same time, obtain a tighter model. 1

The second point indicates that a good model should capture those characteristics of images that can be robustly

estimated. The third point indicates that some pre-processing, such as denoising or calibration, should be applied

to increase the SNR. An example of this step is working with a noise residual as in WAM [10].

Representing a grayscale m× n image with a matrix

{Ii,j |Ii,j ∈ {0, 1, 2, . . . , 255},

i ∈ {1, . . . ,m}, j ∈ {1, . . . , n}}

Figure 1 shows the probability Pr(Ii,j , Ii,j+1) of occurrence of two horizontally adjacent pixels (Ii,j , Ii,j+1)

estimated from approximately 10700 8-bit grayscale images from the BOWS2 database. Due to high spatial

correlation in natural images, the colors of neighboring pixels are similar, a fact that shapes the probability

1Here, “signal” is the stego noise and “noise” is the image content.
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Figure 1. Distribution of two horizontally adjacent pixels (Ii,j , Ii,j+1) in 8-bit grayscale images estimated from approximately 10700

images from the BOWS2 database (see Section IV for more details about the database). The degree of gray at (x, y) is the probability

Pr(Ii,j = x ∧ Ii,j+1 = y) at the logarithmic scale.
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Figure 2. Probability Pr(Ii,j − Ii,j+1|Ii,j) (horizontal cuts of the graph shown in Figure 1) for Ii,j = 64, Ii,j = 128, and Ii,j = 196

in 8-bit grayscale images estimated from approximately 10700 images from the BOWS2 database (see Section IV for more details about

the database).

distribution into a ridge that follows the major diagonal. A close inspection of Figure 1 suggests that the profile

of the ridge along the major diagonal does not change much with the pixel value. This observation is confirmed

in Figure 2 showing the ridge profile at three locations Ii,j = {64, 128, 196}. The fact that the profile shape

is approximately constant (it starts deviating only for high intensity pixels Ii,j = 196) suggests that the pixel

difference Ii,j+1 − Ii,j is approximately independent of Ii,j . We quantified this statement by evaluating the

mutual information I(Ii,j+1 − Ii,j , Ii,j) from a corpus of 10700 grayscale images from the BOWS2 database.
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Because

I(Ii,j+1 − Ii,j , Ii,j) = H(Ii,j+1 − Ii,j)−H(Ii,j+1 − Ii,j |Ii,j)

= H(Ii,j+1 − Ii,j)−H(Ii,j+1|Ii,j),

the mutual information can be estimated by evaluating the two entropy terms from their corresponding defini-

tions:

H(Ii,j+1 − Ii,j) = 4.6757

H(Ii,j+1|Ii,j) = 4.5868,

yielding to I(Ii,j+1 − Ii,j , Ii,j) = 8.89 · 10−2
. Thus, knowing Ii,j the entropy of the difference Ii,j+1 − Ii,j

decreases only by 0.0889/4.68 = 2%, which shows that any dependence between the pixel differences Ii,j+1−

Ii,j and pixel values Ii,j is fairly small. 2

The arguments above allow us to model the pixels in natural images by working with the differences Ii,j+1−

Ii,j instead of the co-occurrences (Ii,j+1, Ii,j), which greatly reduces the model dimensionality from 65536

to 511 in an 8-bit grayscale image. It is, however, still impossible to model the differences using a Markov

chain as the transition probability matrix would have 5112 elements. Further simplification and reduction can

be achieved by realizing that, for the purpose of blind steganalysis, the statistical quantities estimated from

pixels have to be estimable even from small images. Hence, only pixel pairs close to the ridge, alternatively,

with pairs with a small difference Ii,j+1 − Ii,j ∈ [−T, T ], are relevant for steganalysis. This approach was

already pursued in [37], where probabilities of selected pixel pairs were used as steganalytic features.

B. The SPAM features

We now explain the Subtractive Pixel Adjacency Model (SPAM) that will be used to compute the features

for steganalysis. The reference implementation is available for free download on http://dde.binghamton.edu/

download/spam/. First, the transition probabilities along eight directions are computed.3 The differences and

the transition probability are always computed along the same direction. We explain further calculations only on

the horizontal direction as the other directions are obtained in a similar manner. All direction-specific quantities

will be denoted by a superscript {←,→, ↓, ↑,�,�,�,�} showing the direction of the calculation.

The calculation of features starts by computing the difference array D·
. For a horizontal direction left-to-right

D→i,j = Ii,j − Ii,j+1,

i ∈ {1, . . . ,m}, j ∈ {1, . . . , n− 1}.

As introduced in Section II-A, the first-order SPAM features, F1st
, model the difference arrays D by a

first-order Markov process. For the horizontal direction, this leads to

M→
u,v = Pr(D→i,j+1 = u|D→i,j = v),

2Following a similar reasoning, Huang et al. [15] estimated the mutual information between Ii,j − Ii,j+1and Ii,j + Ii,j+1 to 0.0255.

3There are four axes: horizontal, vertical, major and major diagonal, and two directions along each axis, which leads to eight directions

in total.
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Order T Dimension

1st 4 162

1st 8 578

2nd 3 686

Table I

DIMENSION OF MODELS USED IN OUR EXPERIMENTS. THE COLUMN “ORDER” SHOWS THE ORDER OF THE MARKOV CHAIN AND T IS

THE RANGE OF DIFFERENCES.

where u, v ∈ {−T, . . . , T}. If Pr(D→i,j = v) = 0 then M→
u,v = Pr(D→i,j+1 = u|D→i,j = v) = 0.

The second-order SPAM features, F2nd
, model the difference arrays D by a second-order Markov process.

Again, for the horizontal direction,

M→
u,v,w = Pr(D→i,j+2 = u|D→i,j+1 = v,D→i,j = w),

where u, v, w ∈ {−T, . . . , T}. If Pr(D→i,j+1 = v,D→i,j = w) = 0 then M→
u,v,w = Pr(D→i,j+2 = u|D→i,j+1 =

v,D→i,j = w) = 0.

To decrease the feature dimensionality, we make a plausible assumption that the statistics in natural images

are symmetric with respect to mirroring and flipping (the effect of portrait / landscape orientation is negligible).

Thus, we separately average the horizontal and vertical matrices and then the diagonal matrices to form the

final feature sets, F1st
, F2nd

. With a slight abuse of notation, this can be formally written:

F·
1,...,k =

1
4

�
M→

· + M←
· + M↓

· + M↑
·
�
,

F·
k+1,...,2k =

1
4

�
M�

· + M�
· + M�

· + M�
·

�
, (1)

where k = (2T +1)2 for the first-order features and k = (2T +1)3 for the second-order features. In experiments

described in Section IV, we used T = 4 and T = 8 for the first-order features, obtaining thus 2k = 162,

2k = 578 features, and T = 3 for the second-order features, leading to 2k = 686 features (c.f., Table I).

Figure 3 summarizes the extraction process of SPAM features. The features are formed by the average sample

Markov transition probability matrices (1) in the range [−T, T ]. The complexity of the model is determined by

the order of the Markov model and by the range of differences T .

The calculation of the difference array can be interpreted as high-pass filtering with the kernel [−1,+1],

which is, in fact, the simplest edge detector. The filtering suppresses the image content and exposes the stego

noise, which results in a higher SNR. The idea of using filtering to enhance signal to noise ratio in steganalysis

has been already used, for example, in the WAM features calculating moments from noise residual in Wavelet

domain and it implicitly appeared in the construction of Farid’s features [6] and in [40]. The filtering can

also be seen as a different form of calibration [7]. From this point of view, it would make sense to use more

sophisticated filters with a better SNR. Interestingly, none of the filters we tested4 provided consistently better

4We experimented with the adaptive Wiener filter with 3 × 3 neighborhood, the wavelet filter [27] used in WAM, and discrete filters,2

664

0 +1 0

+1 −4 +1

0 +1 0

3

775 , [+1,−2, +1], and [+1, +2,−6, +2, +1].
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Difference filter Markov chain Features

Threshold T Chain order

Figure 3. Schema of extraction of SPAM features.

performance. This is likely due to the fact that the averaging caused by more sophisticated filters distorts the

statistics of the stego noise, which results in worse detection accuracy. The [−1, 1] filter is also a projection of

the pixel values co-occurrence matrix on one of the independent directions — the anti-diagonal.

III. EVALUATION PROCEDURE

The construction of steganalyzers based on SPAM features relies on pattern-recognition classifiers. All ste-

ganalyzers presented in this paper were constructed by using soft-margin Support Vector Machines (SVMs) [38]

with the Gaussian kernel k(x, y) = exp
�
−γ�x− y�22

�
, γ > 0. Since the construction and subsequent evaluation

of steganalyzers always followed the same procedure, the procedure is described here to avoid tedious repetition

later.

Let us assume that the set of stego images available for the experiment was created from some set of cover

images and that both sets of images are available for the experiment. Prior to all experiments, the images are

divided into a training and testing set of equal size, so that the cover image and the corresponding stego image

is either in the training or in the testing set. In this way, it is ensured that images in the testing set used to

estimate the error of steganalyzers were not used in any form during training.

Before training the soft-margin SVM on the training set, the value of the penalization parameter C and the

kernel parameter γ need to be set. These hyper-parameters balance the complexity and accuracy of the classifier.

The hyper-parameter C penalizes the error on the training set. Higher values of C produce classifiers more

accurate on the training set but also more complex with a possibly worse generalization.5 On the other hand,

a smaller value of C produces simpler classifiers with worse accuracy on the training set but hopefully with

better generalization. The role of the kernel parameter γ is similar to C. Higher values of γ make the classifier

more pliable but likely prone to over-fitting the data, while lower values of γ have the opposite effect.

The values of C and γ should be chosen to give the classifier the ability to generalize. The standard approach

is to estimate the error on unknown samples using cross-validation on the training set on a fixed grid of values

and then select the value corresponding to the lowest error (see [14] for details). In this paper, we used five-fold

cross-validation with the multiplicative grid

C ∈ {0.001, 0.01, . . . , 10000},

γ ∈ {2i|i ∈ {−d− 3, . . . ,−d + 3},

5The ability of classifiers to generalize is described by the error on samples unknown during the training phase of the classifier.

January 13, 2010 DRAFT



8

where d is the number of features in the subset.

The steganalyzer performance is always evaluated on the testing set using the minimal average decision error

under equal probability of cover and stego images

PErr =
1
2

(PFp + PFn) , (2)

where PFp and PFn stand for the probability of false alarm or false positive (detecting cover as stego) and

probability of missed detection (false negative).

IV. DETECTION OF LSB MATCHING

To evaluate the performance of the proposed feature sets, we subjected them to extensive tests on a well-

known archetype of embedding by noise adding – the LSB matching. First, we constructed and compared

steganalyzers using first-order Markov chain features with differences in the range [−4,+4] and [−8,+8]

(further called first-order SPAM features) and second-order Markov chain features with differences in the range

[−3,+3] (further called second-order SPAM features) on four different image databases. Then, we compared

the SPAM steganalyzers to prior art, namely to detectors based on WAM [10] and ALE [5] features. We also

investigated the problem of training the steganalyzer on images coming from a different database than images

in the testing set (inter-database error).

1) Image databases: It is a well known fact that the accuracy of steganalysis may vary significantly across

different cover sources. In particular, images with a large noise component, such as scans of photographs, are

much more challenging for steganalysis than images with a low noise component or filtered images (JPEG

compressed). In order to assess the SPAM models and compare them to prior art under different conditions,

we measured their accuracy on the following four databases

1) CAMERA contains approximately 9200 images with sizes in the range between 1Mpix and 6Mpix

captured by 23 different digital cameras in the raw format and converted to grayscale.

2) BOWS2 contains approximately 10700 grayscale images with fixed size 512×512 coming from rescaled

and cropped natural images of various sizes. This database was used during the BOWS2 contest [3].

3) NRCS consists of 1576 raw scans of film converted to grayscale with fixed size 2100× 1500 [1].

4) JPEG85 contains 9200 images from CAMERA compressed by JPEG with quality factor 85.

5) JOINT contains images from all four databases above, approximately 30800 images.

In each database, two sets of stego images were created with payloads 0.5 bits per pixel (bpp) and 0.25 bpp.

According to the recent evaluation of steganalytic methods of LSB matching [4], these two embedding rates

are already difficult to detect reliably. These two embedding rates were also used in [10].

A. Order of Markov Chains

This paragraph compares the accuracy of steganalyzers created as described in Section III employing the

first-order SPAM features with T = 4 and T = 8, and second-order SPAM features with T = 3. The reported

errors (2), measured on images from the testing set, are intra-database errors, which means that the images in

the training and testing set came from the same database.

January 13, 2010 DRAFT
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T bpp CAMERA BOWS2 JPEG85 NRCS

1st SPAM 4 0.25 0.097 0.098 0.021 0.216

1st SPAM 8 0.25 0.103 0.123 0.033 0.226

2nd SPAM 3 0.25 0.057 0.055 0.009 0.167

1st SPAM 4 0.5 0.045 0.040 0.007 0.069

1st SPAM 8 0.5 0.052 0.052 0.012 0.093

2nd SPAM 3 0.5 0.027 0.024 0.002 0.069

Table II

MINIMAL AVERAGE DECISION ERROR (2) OF STEGANALYZERS IMPLEMENTED USING SVMS WITH GAUSSIAN KERNELS ON IMAGES

FROM THE TESTING SET. THE LOWEST ERROR FOR A GIVEN DATABASE AND MESSAGE LENGTH IS IN BOLDFACE.

T bpp CAMERA BOWS2 JPEG85 NRCS

1st SPAM 4 0.25 11:44:16 17:55:21 05:56:57 00:21:18

1st SPAM 8 0.25 23:30:26 32:23:38 19:16:44 00:40:10

2nd SPAM 3 0.25 20:10:26 23:50:38 14:47:40 00:47:54

1st SPAM 4 0.5 07:50:51 10:02:11 03:58:16 00:14:02

1st SPAM 8 0.5 21:44:36 20:18:07 12:44:56 00:31:25

2nd SPAM 3 0.5 19:01:15 19:25:09 09:55:02 00:42:10

Table III

TIME IN HH:MM:SS TO PERFORM THE GRID-SEARCH TO FIND SUITABLE PARAMETERS FOR TRAINING OF SVM CLASSIFIERS.

The results, summarized in Table II, show that steganalyzers employing the second-order SPAM features that

model the pixel differences in the range [−3,+3] are always the best. First, notice that increasing the model

scope by enlarging T does not result in better accuracy as first-order SPAM features with T = 4 produce more

accurate steganalyzers than first-order SPAM features with T = 8. We believe that this phenomenon is due

to the curse of the dimensionality, since first-order SPAM features with T = 4 have dimension 162, while

first-order SPAM features with T = 8 have dimension 578. The contribution to the classification of additional

features far from the center of the ridge is probably not very large and it is outweighted by the increased

number of features. It is also possible that the added features are simply not informative and deceptive. On the

other hand, increasing the order of the Markov chain (using second-order SPAM features) proved to be highly

beneficial as the accuracy of the resulting steganalyzers has significantly increased, despite having the highest

dimension.

In the rest of this paragraph, we discuss the time needed to train the SVM classifier and to perform the

classification. In theory, the complexity of training an SVM classifier grows with the cube of the number of

training samples and linearly with the number of features. On the other hand, state-of-the-art algorithms train

SVMs using heuristics to considerably speed up the training. In our experiments, we have observed that the

actual time to train a SVM greatly depends on the complexity of the classification problem. SVMs solving

an easily separable problem require a small number of support vectors and are thus trained quickly, while

training an SVM for highly overlapping features requires a large number of support vectors and is thus very

time consuming. The same holds for the classification, whose complexity grows linearly with the number of
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T bpp CAMERA BOWS2 JPEG85 NRCS

1st SPAM 4 0.25 09:37 09:38 07:25 00:49

1st SPAM 8 0.25 18:05 14:55 13:22 00:48

2nd SPAM 3 0.25 13:36 18:25 10:39 00:40

1st SPAM 4 0.5 06:33 06:15 04:07 00:16

1st SPAM 8 0.5 11:13 11:28 10:38 00:26

2nd SPAM 3 0.5 15:41 18:30 13:24 00:29

exact

Table IV

TIME IN MM:SS TO TRAIN THE SVM CLASSIFIER AND TO CLASSIFY ALL SAMPLES FROM THE RELEVANT DATABASE (ALL EXAMPLES

FROM THE TRAINING AND TESTING SET).

support vectors and the number of features.

Tables III, IV show the actual times6 to perform grid-search, and to train and evaluate accuracy of the

classifiers. We can observe a linear dependency on the number of features – the running time of steganalyzers

using the first-order SPAM features is approximately two times shorter than the rest. A similar linear dependence

is observed for the number of training samples. (Note that the times for the smaller NRCS database are shorter

than for the rest.)

B. Inter-database Error

It is well known that steganalysis in the spatial domain is very sensitive to the type of cover images. This

phenomenon can be observed in the results presented in the previous section as steganalysis is more accurate

on less noisy images (previously JPEG compressed images) than on very noisy images (scanned images from

the NRCS database). We can expect this problem to be more pronounced if the images in the training and

testing sets come from different databases (inter-database error). The inter-database error reflects more closely

the performance of the steganalyzer in real life because the adversary rarely has information about the cover

source. This problem was already investigated in [4] using the WAM and ALE features and the HCF detector.

In our experiments, we used images from CAMERA, BOWS2, JPEG85, and NRCS. These image sources

are very different: NRCS images are very noisy, while JPEG85 images are smoothed by the lossy compression.

BOWS2 images are small with a fixed size, while images in CAMERA are large and of varying dimensions.

The training set of steganalyzers consists of 5000 cover and 5000 stego images randomly selected from three

databases. The accuracy was evaluated on images from the remaining fourth database, which was not used

during training. For testing purposes, we did not use all images from the fourth database, but only images

reserved for testing as in the previous two sections to allow fair comparison with the results presented in

Table II. All steganalyzers used second-order SPAM features with T = 3 and were created as described in

Section III. The error is shown in rows denoted as “Disjoint” in Table V.

The error rates of all eight steganalyzers are summarized in Table V in rows captioned “Disjoint.” Comparing

the inter-database errors to the intra-database errors in Table II, we observe a significant drop in accuracy. This

drop is expected because of the mismatch between the sources for testing and training as explained above.

6All experiments were performed on one core of AMD opteron 2.2Ghz with 2Gb of ram per core.
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bpp CAMERA BOWS2 JPEG85 NRCS

Disjoint 0.25 0.3388 0.1713 0.3247 0.3913

Disjoint 0.5 0.2758 0.1189 0.2854 0.3207

Joint 0.25 0.0910 0.0845 0.0198 0.2013

Joint 0.5 0.0501 0.0467 0.0102 0.08213

Table V

INTER-DATABASE ERROR PErr OF STEGANALYZERS EMPLOYING SECOND-ORDER SPAM FEATURES WITH T = 3. THE CAPTION OF

COLUMNS DENOTES THE SOURCE OF TEST IMAGES. THE ROWS CAPTIONED “DISJOINT” SHOW THE ERROR OF STEGANALYZERS

ESTIMATED ON IMAGES FROM THE DATABASE NOT USED TO CREATE THE TRAINING SET (EIGHT STEGANALYZERS IN TOTAL). THE

ROWS CAPTIONED “JOINT” SHOW THE ERROR OF STEGANALYZERS TRAINED ON IMAGES FROM ALL FOUR DATABASES (TWO

STEGANALYZERS IN TOTAL).

If the adversary does not know anything about the cover source, her best strategy is to train the steganalyzer

on as diverse image database as possible. To investigate if it is possible to create a steganalyzer based on

the SPAM features capable of reliably classifying images from various sources, we created two steganalyzers

targeted to a fixed message length trained on 5000 cover and 5000 stego images randomly selected from the

training portions of all four databases. The errors are shown in Table V in rows captioned by “Joint.” Comparing

their errors to the inter-database errors, we observe a significant increase in accuracy, which means that it is

possible to create a single steganalyzer with SPAM features capable of handling diverse images simultaneously.

Moreover, the errors are by 0.04 higher than the errors of steganalyzers targeted to a given database (see

Table II), which tells us that this approach to universal steganalysis has a great promise.

An alternative approach to constructing a steganalyzer that is less sensitive to the cover image type is to

train a bank of classifiers for several cover types and equip this bank with a forensic pre-classifier that would

attempt to recognize the cover image type and then send the image to the appropriate classifier. This approach

is not pursued in this paper and is left as a possible future effort.

C. Comparison to Prior Art

Table VI shows the classification error (2) of the steganalyzers using the second-order SPAM features (686

features), WAM [10] (contrary to the original features, we calculate moments from 3 decomposition levels

yielding to 81 features), and ALE [5] (10 features) on all four databases for two relative payloads. We have

created a special steganalyzer for each combination of database, features, and payload (total 5 × 3 × 2 = 30

steganalyzers). The steganalyzers were implemented by SVMs with a Gaussian kernel as described in Section III.

In all cases, the steganalyzers employing the second-order SPAM features perform the best, the WAM

steganalyzers are second with about three times higher error, and ALE steganalyzers are the worst. Figure 4

compares the steganalyzers in selected cases using the Receiver Operating Characteristic (ROC) curve, plotted

by varying the threshold of trained SVMs with a Gaussian kernel. The dominant performance of SPAM

steganalyzers is quite apparent.
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bpp 2nd SPAM WAM ALE

CAMERA 0.25 0.057 0.185 0.337

BOWS2 0.25 0.054 0.170 0.313

NRCS 0.25 0.167 0.293 0.319

JPEG85 0.25 0.008 0.018 0.257

JOINT 0.25 0.074 0.206 0.376

CAMERA 0.50 0.026 0.090 0.231

BOWS2 0.50 0.024 0.074 0.181

NRCS 0.50 0.068 0.157 0.259

JPEG85 0.50 0.002 0.003 0.155

JOINT 0.50 0.037 0.117 0.268

Table VI

ERROR (2) OF STEGANALYZERS FOR LSB MATCHING WITH MESSAGE LENGTH 0.25 AND 0.5 BPP. STEGANALYZERS WERE

IMPLEMENTED AS SVMS WITH GAUSSIAN KERNEL. THE LOWEST ERROR FOR A GIVEN DATABASE AND MESSAGE LENGTH IS IN

BOLDFACE.
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Figure 4. ROC curves of steganalyzers using 2nd order SPAM, WAM, and ALE features calculated on CAMERA and JOINT databases.
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V. STEGANALYSIS OF JPEG IMAGES

Although the SPAM features were primarily developed for blind steganalysis in the spatial domain, it is

worth to investigate their potential to detect steganographic algorithms hiding in transform domains, such as

the block DCT domain of JPEG. The next paragraph compares the accuracy of SPAM-based steganalyzers to

steganalyzers employing the Merged features [29], which represent the state-of-the-art for steganalysis of JPEG

images today. We do so on ten different steganographic algorithms. Interestingly enough, the SPAM features are

not always inferior to the Merged features despite the fact that the Merged features were developed specifically

to detect modifications to JPEG coefficients.

We note that the SPAM features were computed in the spatial domain from the decompressed JPEG image.

A. Steganography Modifying DCT Coefficients

The database used for the comparison contained approximately 6000 single-compressed JPEG images with

quality factor 70 and sizes ranging from 1.5 to 6Mpix, embedded by the following ten popular steganographic

algorithms for JPEG images: F5 [39], F5 with shrinkage removed by wet paper codes [24] (nsF5), Model Based

Steganography without deblocking (MB1) [32], JP Hide&Seek [2], MMx [21], Steghide [12], and perturbed

quantization [9] (PQ) and its variants PQe and PQt [24] with payloads 5%, 10%, 15%, and 20% of bits per

non-zero AC coefficient (bpac). The total number of images in the database was 4×11×6000 = 264, 000. The

quality factor of JPEG images was fixed because steganalyzers employing Merged features, which are used as

a reference, are sensitive to the mismatch between quality factors of the training and testing images. In fact, as

reported in [30], JPEG images should be steganalyzed by classifiers separately designed for each quality factor.

For each steganographic algorithm and payload, a steganalyzer embodied by an SVM with a Gaussian kernel

(total number of steganalyzers was 2× 10× 4 = 80) was created using the procedure described in Section III.

For ease of comparison, the error rates PErr of steganalyzers estimated from the testing set are displayed in

Figure 5. Generally, the accuracy of steganalyzers using the SPAM features is inferior to steganalyzers that

use the Merged features, but still their performance is far from random guessing except for small payloads of

5% and the PQe algorithm. Surprisingly, for small payloads of 5% and 10%, the SPAM features are better in

detecting JP Hide&Seek and the variation of perturbed quantization PQt.

B. Detecting YASS

YASS steganography for JPEG images published in [35] and further improved in [33] was developed to

evade calibration-based steganalysis. Indeed, the accuracy of steganalysis with Merged features, where the

calibration plays the central role, is very poor. Kodovský et al. [22] showed that YASS is more detectable using

an uncalibrated version of Merged features. Since YASS significantly distorts the image due to repeated JPEG

compression and robust embedding, it makes sense to use SPAM features to detect this distortion.

Although it would be valuable to compare the error rates of detection of YASS on the same payloads as

in the previous subsection, the implementation of the algorithm (kindly provided by authors of [33]) does not

allow setting an exact payload or hide a particular message. The implementation always hides the maximum

embeddable message whose length significantly varies with image content and is also a function of the hiding

block size, the hiding and the advertising quality factors, and the error correction phase. The embedding rates
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Figure 5. Error rates PErr of steganalyzers employing the second-order SPAM features with T = 3 and the Merged features.

shown in Table VII are average payloads over the corpus of the images. This is why we have estimated the

detectability of five different YASS settings (see Appendix A for the settings) on 6500 JPEG images using the

second-order SPAM features with T = 3, calibrated, and uncalibrated Merged features. Since the implementation

of YASS is rather slow, we resized all images in the database so that their smaller side was 512 pixels. Note

that this is exactly the same database that was used in [23].

As in all previous sections, we divided all images evenly into the training and testing set and created 3× 5

SVM-based steganalyzers following the methodology described in Section III. The errors PErr are summarized in

Table VII. We can see that steganalyzers based on the second-order SPAM features are superior to steganalyzers

based on the Merged feature set and its uncalibrated version. The important aspect of the presented attack is that

it is blind in the sense that it is not based on any implementation shortcoming of the specific implementation
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YASS setting 1 2 3 4 5

Cal. Merged 0.324 0.348 0.133 0.300 0.229

Non-cal. Merged 0.170 0.200 0.134 0.152 0.095

2nd SPAM 0.130 0.151 0.111 0.134 0.094

Table VII

ERRORS PErr OF STEGANALYZERS EMPLOYING THE CALIBRATED MERGED (CAL. MERGED), NON-CALIBRATED MERGED (NON-CAL.

MERGED), AND THE SECOND-ORDER SPAM FEATURES ON YASS STEGANOGRAPHY. THE ERRORS ARE CALCULATED ON THE

TESTING SET.

of YASS, unlike the targeted attack reported in [25].

VI. CONCLUSION

Majority of steganographic methods can be interpreted as adding independent realizations of stego noise to

the cover digital media object. This paper presents a novel approach to steganalysis of such embedding methods

by utilizing the fact that the noise component of typical digital media exhibits short-range dependences while the

stego noise is an independent random component typically not found in digital media. The local dependences

between differences of neighboring cover elements are modeled as a Markov chain, whose empirical probability

transition matrix is taken as a feature vector for steganalysis.

The accuracy of the presented feature sets was carefully examined by using four different databases of

images. The inter- and intra-database errors were estimated and the feature set was compared to prior art. It

was also shown that even though the presented feature set was developed primarily to attack spatial domain

steganography, it reliably detects algorithms hiding in the block DCT domain as well.

In the future, we would like to investigate the accuracy of regression-based quantitative steganalyzers [31] of

LSB matching with second-order SPAM features. We also plan to investigate third-order Markov chain features,

where the major challenge would be dealing with high feature dimensionality.
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APPENDIX

We use five different configurations for YASS, including both the original version of the algorithm published

in [35] as well as its modifications [33]. Using the same notation as in the corresponding original publications,

QFh is the hiding quality factor(s) and B is the big block size. Settings 1, 4, and 5 incorporate a mixture-based

modification of YASS embedding with several different values of QFh based on block variances (the decision

boundaries are in the column “DBs”). Setting 3 uses attack-aware iterative embedding (column rep). Since

the implementation of YASS we used in our tests, did not allow direct control over the real payload size,

we were repetitively embedding in order to find minimal payload that would be reconstructed without errors.

Payload values obtained this way are listed in Table VIII in terms of bits per non-zero AC DCT coefficient

(bpac), averaged over all images in our database. In all experiments, the advertising quality factor was fixed at
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QFa = 75 and the input images were in the raw (uncompressed) format. With these choices, YASS appears to

be the least detectable [22].

Awerage

Notation QFh DBs B rep payload

YASS 1 65,70,75 3,7 9 0 0.110

YASS 2 75 - 9 0 0.051

YASS 3 75 - 9 1 0.187

YASS 4 65,70,75 2,5 9 0 0.118

YASS 5 50,55,60,65,70 3,7,12,17 9 0 0.159
Table VIII

SETTINGS FOR YASS AS TESTED IN THE PAPER.
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