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The bounded geometry of the experimental setup used to measure the directivity and sensitivity of array 
elements may raise several difficulties. In order to obtain the frequency response of wideband elements, the most 
straightforward method would be to transmit short pulses, and then to derive the transfer functions by applying 
Fourier transforms to the received signals. Unfortunately this approach often leads to poor signal-to-noise ratios 
within each frequency band because the amplitude of the transmitted pulse is limited. The usual solution consists 
of measuring the frequency responses by means of successive harmonic pings. However, the duration of such 
signals is also limited because of the possible interference between the waves following the direct path and those 
occurring from reflection with the tank envelope. The delays between the times of arrival are as much shorter as 
the distance between the source and the array to be calibrated is large. On the other hand, this distance must be 
sufficient to have an acoustic field that is uniform in the receiving area, and also to limit the parallax effect. The 
balance between these competing parameters leads to configurations where the direct signal and the first specular 
echo are as close as possible before overlapping. In order to properly derive the transfer functions, it is therefore 
mandatory to be able to delineate precisely the boundaries of the signals received from the direct path. We 
present here a reliable method for tracking these signals. 

1  Introduction 
In the underwater acoustic domain, the determination of 

the directivity and sensitivity of array elements over a 
relatively large frequency bandwidth may raise practical 
difficulties associated with the geometry of the 
experimental setup. We consider here the characterization 
of a receiving antenna by using a small source, but the 
reciprocal problem consisting of the characterization of a 
transmitting array by using a hydrophone at receive is 
equivalent. 

In order to determine frequency transfer functions, a 
straightforward method consists of transmitting short, 
wideband pulses, and processing the received signals with 
the Fourier transform technique. However the amplitude of 
the transmitted signal being limited, this approach is often 
not suitable because leading to low signal-to-noise ratios in 
each frequency band. To get around this problem, the 
solution consists of making a series of measurements with 
narrow band quasi-harmonic signals, browsing the whole 
frequency range with successive pings. This method does 
not exclude to apply eventually narrower band-pass filters 
at post-processing, but the energetic content within each 
elementary band remains anyhow much larger than with the 
pulse method. 

The narrower is the transmitted frequency band, the larger 
is the signal-to-noise ratio, but also the larger is the signal 
duration. Given the distance between the transmitter and the 
receiving array, there is a minimum delay between the 
waves that fly the direct path and the waves that are 
reflected by the envelope of the tank (most often, the 
geometry is such that the first mirror of concern is the free 
surface). In order to avoid the emergence of interferences, 

this delay dictates the maximal duration of the signals that 
can be used. The larger is the distance between the source 
and the array, the shorter is the available delay. Yet this 
distance must be sufficient for the acoustic field to be 
uniform enough around the array (farfield requirement), and 
also to a lesser extent for limiting the parallax. The balance 
between these competing parameters leads to settings such 
that the direct signal is close to overlap the first mirror 
echo. On the other hand, it is mandatory to process the 
entire received signals occurring from the direct path in 
order to derive properly the transfer functions. The practical 
problem consists of outlining with accuracy the limits of 
these direct signals without encroaching on the mirrored 
signals. Note that when measuring the angular 
characteristics of the elements in the plane that contains the 
array, the time of flight varies with the orientation of the 
array much more than the signals durations. 

We present here a method that is reliable to track the 
exact positions of the direct signals in the records. The trick 
consists of using a set of signals at the different frequencies 
that are all centred in phase. At the post-processing stage, 
for each element and given the orientation of the array, the 
coherent sums of all the signals received at the different 
frequencies are computed. The envelope of these sums 
exhibits a narrow peak which is easy to detect. The 
positions of these maxima provide a set of arrival delays. 
The accuracy of these delays can be furthermore improved 
by fitting the estimates with a model based on the geometry 
of the setup. This process is described with an experimental 
example. 



 
2 Experimental setup 

2.1 Geometry 

The task consists of measuring the sensitivity and 
directivity of the elements of a receiving linear array. The 
frequency range is 80 kHz – 130 kHz. The total length of 

the antenna is L ≈ 1.9 m. There are 64 elements, with a 
pitch Δu = 29.5 mm. The actual size of the active face of 
each element is la = 28 mm × lb = 7 mm. 

The measurements are carried out in a large tank (B16) 
which is part of the naval facilities in Brest. The dimensions 
of the tank are: 80 m length, 10 m width, 8.4 m water 
column height (figure 1). 

 
Figure 1: Longitudinal section of the tank – Layout of the elements (horizontal arrangement of the receiving antenna). 

The sources are elements of another array (48 channels). 
This antenna is hung vertically, at the middle of one end of 
the tank. The upper side of this antenna is located at 
Hs ≈ 2.80 m depth under the surface. A single channel is 
active during each ping. The only channels #1, #12, #24, 
#36 and #48 (numbering increasing downwards) are used as 
sources. The geometrical distribution of these sources 
within the array is displayed in Table 1. 

Source (j ) 1 2 3 4 5

Channel #1 #12 #24 #36 #48

Δh j  (cm) 0 16.4 34.0 52.9 70.5  
Table 1: Relative location of sources Sj 

in the transmitting array (S1 as reference). 

The receiving antenna is deployed from a deck across the 
tank. The distance from the source is d ≈ 32 m. The 
suspension of the antenna includes a vertical axis of 
rotation. The mobile carriage that supports this axis is 
adjusted laterally on the deck so that the receiving antenna 
is located as much as possible at boresight of the sources. 
Two distinct configurations have been used to fasten the 
receiving antenna to the axis: horizontal and vertical 
positioning of the array. In order to illustrate the presented 
method, the only horizontal configuration is addressed here 
(figures 1 and 2). With this setting, the directivities of the 
elements are measured in the principal plane that contains 
the array. A hydrophone is also arranged for reference 
purpose a few decimetres above the array, close to its 
centre. 

One considers two left-hand reference frames. One frame 
is still; the second one is attached to the receiving antenna. 
The axis of rotation defines the z-axis that is common for 
both frames, pointing downwards. The antenna is assumed 
to be properly mounted perpendicularly to this axis. The 
origin is also the same for both frames. It is chosen so that 
the z-coordinates of all the array elements are null. It is also 
assumed that the sources are properly aligned vertically, i.e. 
parallel to the z-axis. The direction between this axis and 
the sources defines the y-axis of the fixed frame. 

 
Figure 2: Measurement in azimuth (top view). 

In this figure, ui > 0, θ < 0°  and  ψi > 0. Note that the 
angle of view |ψi| differs from the array orientation |θ|. 

Because of the limited length of the connecting cable, the 
receiving antenna could not be immersed at a depth larger 
than Hr = 1.8 m. The altitude difference between the array 
and the shallowest source is thus h0 = Hr − Hs ≈ 1 m. The 
coordinates of the sources Sj read 
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where Δhj are given in table 1. 



 
The antenna frame makes an angle θ with the fixed frame 

(θ < 0 in figure 2). The array is not exactly centred on the 
rotation axis: (δx, δy) denote the coordinates of the array 
centre in the antenna frame. The abscissa of element #i, 
referenced to the array centre, is denoted ui. Hence the 
coordinates of element #i read in the fixed frame: 
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with  ( )32.5iu i u= − Δ   and   i = 1…64. 

The orientation of the antenna is marked by means of a 
telemetry system. There is no absolute zero offset (manual 
setting). The difference between the indexed angle φ and 
the actual orientation θ is denoted δθ. During the 
measurement, a symmetrical 120° wide sector is swept with 
a pitch of Δθ = 2°. Hence, there are 61 scanned positions 
that correspond to the following actual orientations θn: 

 n n θθ φ δ= − , (3) 

with  ( )60 1n nφ θ= − ° + − Δ   and   n = 1,…,61. 

It must be noticed that for practical reasons, the 
parameters δθ, δx, δy, h0 and d are not accurately known. On 
the other hand, the parameters φn, Δhj and ui are well 
defined. 

2.2 Parallax 

Although the distance d is significantly larger than the 
array length L (0.5 L / d ≈ 1/16), the bias that is introduced 
by the parallax must be taken into account for in 
determining the directivity pattern of each element #i: the 
difference between the inverse −θ of the antenna orientation 
and the actual angle ψi from which each element #i views 
the sources is not negligible: 
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Figure 3. Parallax angle. 

The latter approximation is obtained by taken into account 
that d is much larger than δx, δy and ui. Figure 3 displays the 
parallax angles Δθi. It can be checked that this angle can be 
as large as 2°, i.e. equal to the angular sampling pitch. 

2.3 Distance sources-elements 

The orientation of the array being θ, the distance ( ),jr u θ  
between the source Sj and an element whose relative 
abscissa is u reads: 

 ( ) ( ) ( )2 2 2, cos sinj y x jr u d u d hθ θ δ δ θ= − + + − + . (6) 

Because these distances are much larger than the lateral 
dimension of the array, the Fresnel approximation holds. It 
allows developing the distances r as a quadratic form in u: 

 ( ) 2
, , ,,j j j jr u a u b u cθ θ θθ ≈ + + . (7) 

The abscissas ui and the parameters δx, δy and hj are 
altogether much smaller than the distance d, so that the 
development given in (6) can be made explicit according to: 
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The coefficients a, b et c can be then derived by equating 
each term in (7) with (8): 
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By the way, it can be noticed in the latter formulation that 
the coefficients a and b are the same for all sources, and 
that they depend only on the orientation θ of the array 
( ,ja aθ θ=  and ,jb bθ θ= ). Coefficient a accounts for the 
curvature of the wave front. Coefficient b is mainly dictated 
by the steering angle. Coefficient c is a close approximation 
of the distance between the sources and the centre of the 
receiving array. 

2.4 Delay between direct path and surface reflection 

The receiving elements #i and the sources Sj are located at 
depth Hr and (Hr + hj), respectively. From (2), the 
horizontal distance di,θ  between them reads: 
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and the travel difference Δri,θ,j between the direct path and 
the indirect path after reflection on the free surface is: 
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The shortest differences occur with the closest source 
from the surface (S1). Considering the central area of the 
receiving antenna, when steered toward the source (θ = 0), 
there is the following order of magnitude (Hr ≈ 1.8 m, 
d ≈ 32 m  et  h1 ≈ 1 m): 

 ( )1
12 20 cm 220 µsr d H H h t−Δ ≈ + ≈ ≡ Δ ≈ . (12) 

This delay corresponds to less than 18 periods at 
frequency 80 kHz, i.e. the lower bound of the bandwidth of 
interest. This small margin is furthermore reduced because 
of the enlargement that the transfer functions, both at 
transmit and at receive, induce in the recorded signals. On 
the other hand, the distances between the sources and most 
of the receiving elements vary much more that the delay 
given in (12) during the rotation of the antenna. It implies 
that a rigorous determination of the measuring windows is 
called for in such a configuration. 

3 Processing scheme 

3.1 Signals 

The discrimination between the signals coming from the 
direct path and from the surface reflection would not be a 
problem if a short, wideband signal was issued at transmit. 
Unfortunately, using such a pulse would result in a poor 
signal-to-noise ratio. 

Loosely said, an infinite sum of equal amplitude sinusoids 
covering all frequencies with the proper phasing is 
equivalent to a Dirac distribution. Less drastically, the sum 
of a finite number of sinusoids spanning a finite bandwidth, 
when properly phased, results in a sharp shaped function. 
One takes advantage of this simple evidence to track 
accurately the limits of harmonic signals received by the 
elements to be calibrated. 

At each ping, a 12-periods sinus signal is fed to a source. 
For each orientation of the antenna, a collection of 51 such 
signals is sequentially transmitted, spanning the 80 kHz – 
130 kHz frequency range with a 1 kHz pitch: 

 ( ) ( ) ( )rect sin 2ss t n tν ν πν= − ,  0kν ν= , (13) 

0 1 kHzν =   and  80 :130k = ,  ns = 12. 

    
Figure 4: Left: examples of signals used to drive the 
sources; Right: sum of the signals depicted by (13) (blue 
line); envelope of this sum (dashed line); approximation 
with a cardinal sinus (red line) - see (15). 

Notice that these signals are all centred with a null value 
in the transmit window (see for examples figure 4 - left). 

The coherent sum of the central part (i.e. without any 
truncation) of these signals reads: 
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Because there is 1
0t ν −� ( ≈ 1 ms) in the time domain of 

interest, (14) can be approximated with: 
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Hence, the envelope of the coherent sum of the 
synthesized signals is close to a cardinal sinus in its central 
part (figure 4 - right). The order of magnitude of the peak 
width is dictated by the total bandwidth, i.e. 
(kmax − kmin) ν0 = 50 kHz: 

 ( )( ) 1
max min 02 40t k k µsν −

Δ ≡ − ≈ . (16) 

This value is significantly smaller than the duration of the 
shortest synthesized signal (T130kHz = 92 µs). Moreover, this 
peak width is much smaller than the 220 µs estimated delay 
between the arrivals of the direct signal and of the surface 
reflection (see (12)). Hence, there is no risk to make any 
confusion with the peak associated with the indirect path. 
This technique has another interest when the orientation of 
the antenna corresponds to the sector between the main lobe 
and the first side lobe. Given an angle of view, the 
frequency bandwidth is large enough so that vanishing 
levels is of concern for a limited part of the band: the 
envelope of the sum features always a maxima that can be 
properly detected. 

3.2 Initial search for wave fronts 

In the presented experiment, the number of transmit 
cycles is therefore equal to 15,555 pings (5 sources × 51 
frequencies × 61 angles), which produces 995,520 recorded 
signals si, j, θ, ω (t) (64 elements). The index j is dropped in 
the remaining part of this section as the sets of data 
obtained with the different sources are processed 
independently of each other. 

The first step in the data processing consists of computing 
the sums 

 ( ), , ,THi iE t sθ θ ω
ω

⎛ ⎞
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⎝ ⎠
∑ , (17) 

where TH denotes the Hilbert transform (the continuous 
component that the signals may possibly contain is removed 
beforehand). The upper part of figure 5 exhibits the 
envelopes obtained with Source #1, at a few orientation 
angles. The wave-front corresponding to the direct path 
followed by the first multiple reflected by the free surface 
are clearly delineated. The algorithm that detects the 
instants of arrival is designed to scrutinize successively the 



 
different orientations of the array. The process is initialized 
by hand with an estimate of the delays 1,it θ%  at the starting 
position φ1 = −60°. For any given orientation φn, the 
location , nit θ  of the maximum value of the envelope is 

searched for each element #i within a window ΔT that is 
centred on the initial seed. 
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% % . (18) 
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Figure 5: Up: envelope of the sum of the signals received at 

all frequencies (each horizontal line normalized 
with maximal value). Down: location of maxima 
(blue dots) and polynomial fitting (red line). 

 
Figure 6: Distance between receiving elements 

and sources (blue dots in figure 5). 
Superimposed layers corresponding to 5 sources. 

A least square fitting in the form given in (7) is performed 
on the resulting delays ti. The smoothed delays , nit θ%  are 
used as seeds to centre the windows in the next search 
iteration n+1. The width of the search window 

(ΔT = 100 µs) is chosen so as to be large enough to support 
the shift in the arrival time between two adjacent orientation 
angles (23 µs with a 1 m arm level and a Δθ = 2° angular 
interval). On the other hand, ΔT is small enough, i.e. less 
than Δt (see (12)), so that there is no risk to catch the 
second wave-front. 

Figure 6 displays the set of distances between the sources 
and the elements that are eventually found. But for the 
initial smoothed seeds determined at the previous iteration 
to centre the detection windows, each value r is obtained 
independently of each other, within the limits of the 
windows size. Although this process is robust enough to 
identify the signals occurring from the direct path, 
fluctuations that the geometry of the setup cannot account 
for can be noticed. Such fluctuations can induce an 
incorrect adjustment of the windows that are eventually 
used to crop the records before computing the received 
levels. The quality of this adjustment is critical because the 
size of the windows must be as large as possible, although 
not encroaching upon the second wave fronts. Hence, the 
source-elements distances that are actually used are 
computed with (6) from the model described in the previous 
section 2.3. However, several parameters in this 
geometrical model are not known with accuracy.  

3.3 Direct model fitting 

These values (δθ, δx, δy, h0 and d) are derived by 
processing the first estimates of the distances with a 
classical least square fitting method. The model is given by 
(6). The data rexperiment are the raw results displayed figure 6, 
i.e. without any smoothing process (blue dots in figure 5). 
The minimization process reads: 

 ( )2 0C
p
∂ =
∂

 with ( )22
experimental model

, ,i ju S
C r r

θ
= −∑ , (19) 

where 0, , orx yp hθδ δ δ= . 

Implemented as an iterative process, the parameter d is 
corrected at each step so as to keep null the mean difference 
between the data and the model: 

 experimental model , ,i ju S
d r r

θ
δ = − . (20) 

The convergence yields: 

δθ = −0.20°,  δx = 15 mm,  δy = 319 mm, 
 h0 = 1.01 m  and  d = 31.871 m. (21) 

The differences Δr between the final model and the raw 
data are displays figure 7. The standard deviation C is 
around 10 mm, i.e. the same order of magnitude as the 
wavelength, which is not negligible taking into account that 
the signal length is only 12λ. It can be also observed that 
the largest differences occur around 30° on both sides of the 
main axis. These directions correspond to the transition 
areas between the main lobe and the first side lobe of the 
elementary directivity patterns (the theoretical transition 
occurs at ( )asin lθ λ= , e.g. 32θ = °  at 100 kHz with 
la = 28 mm). 

Notice that all the geometric parameters are counted with 
the natural dimension, i.e. length. Actually, the model is 
based on time measurements, and then converted as 



 
distances through the proportionality relation with the 
celerity (1490 m/s in the sea water at the ambient 
temperature). The relative accuracy of this parameter is at 
best about 1/1000. Displaying the value of d in millimetres 
is therefore not significant in terms of the actual, absolute 
accuracy on this parameter. 

 
Figure 7. Difference between first estimates and model. 

3.4 Results 

The process described in the previous section yields 
delays t0 i, j, θ = di, j, θ / c that correspond approximately to the 
middle of the signals received by the element #i (sent by the 
source Sj), the orientation of the antenna being θ. Given a 
particular frequency, the beginning of the reception can be 
retrieved by subtracting 2 contributions: the half duration of 
the synthesized signal; another small contribution that takes 
into account the signal spreading caused by the angle 
between the incoming wave front and the element face 
whose length is la: 

 init , , , 0 , ,
2 sin 2a

i j i j
lt t n
cω θ θ

π θ
ω

⎛ ⎞= − +⎜ ⎟
⎝ ⎠

, (22) 

where n = 12, la = 28 mm and c = 1490 m/s. 

The windows must not encroach on the surface echoes. 
Consequently, the upper limits tend are defined with (11): 

 end , , , init , , , , ,i j i j i jt t r cω θ ω θ θ= − Δ . (23) 

The windows are slightly shifted back in order to preserve 
a small safety margin δt: 
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t tt t
w t
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−⎜ ⎟⎜ ⎟
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. (24) 

 
Figure 8.  Example of a record and the estimated limits. 

The frequency and angular elementary responses are 
computed with the only contribution of the central 
frequencies of the synthesized signals. Hence, the following 
integral is computed for each received signal si,j,ω,θ: 

 ( ) ( ) ( ) ( ), , , , , , ,, exp di j i j i jA w t H t j t tω θ ω θω θ ω= −∫ , (25) 

where H denotes the Hilbert transform of s (figure 8). 

The signals received by the hydrophone that is located 
close to the receiving array centre undergo a process that is 
similar to (25), but for the dependency with the angle θ 
which is here meaningless. 

( ) ( ) ( ) ( )hydro, hydro, , hydro, , exp dj j jA w t H t j t tω ωω ω= −∫ . (26) 

Knowing the sensitivity at receive SH(ω) of the 
hydrophone, the angular and frequency response of each 
array element can be derived with 
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where the average of the results obtained with the 5 sources 
is performed. Such response is classically split in the on-
axis sensitivity SHi(ω) and the directivity Di(ω, ψ): 

 ( ) ( ) ( )SH , SH D ,i i iω ψ ω ω ψ= + , (28) 

with ( )D ,0 0 dBi ω ° = . From a practical point of view, the 
arrays derived from (27) must be re-sampled to obtain an 
angular basis that is common for all elements. This is 
especially needed to recover the on-axis sensitivity 

( ) ( )SH SH , 0i iω ω ψ= = ° . The only mean response of the 

elements ( )SH ,i i
ω ψ  is presented here (Figure 9). 

 
Figure 9: Mean response of the array elements. 

4 Conclusion 
The proposed method for tracking properly the received 

signals in a calibration process is simple to implement, 
provided the transmitted signals can be properly 
synthesized. 

In addition, a fitting of the obtained delays with a model 
based on the geometry of the setup enables to retrieve 
several ill-known offsets (e.g. mounting shifts and angles). 
It leads to furthermore improve the accuracy of the received 
signals tracking. 

Note that the determination of the missing parameters 
could be also performed by implementing a sophisticated 
high resolution based method, but at the expense of 
complexity which is not worth the specific, initial purpose. 


