
HAL Id: hal-00541379
https://hal.science/hal-00541379

Submitted on 30 Nov 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Flow through simplified vocal tract geometries
Annemie van Hirtum

To cite this version:
Annemie van Hirtum. Flow through simplified vocal tract geometries. CFA 2010 - 10ème Congrès
Français d’Acoustique, Apr 2010, Lyon, France. pp.4. �hal-00541379�

https://hal.science/hal-00541379
https://hal.archives-ouvertes.fr


10ème Congrès Français d’Acoustique
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Flow through simplified vocal tract geometries

A. Van Hirtum

Gipsa-lab, UMR CNRS 5216, Grenoble Universities, France

Production of speech utterances such as fricatives involves a complex interaction of turbulent airflow
with the particular geometry of the vocal tract. The current study introduces simplified mechanical
rigid static vocal tract geometries consisting of a rectangular channel to which 1 or 2 constrictions are
inserted allowing to study flow-obstacle and jet-obstacle interaction. Different constriction geometries
and constriction degrees are considered. The flow through different geometries is predicted by simplified
flow models. Quantitative and qualitative comparison of modelled and measured values is assessed.

1 Introduction

Aero-dynamic and aero-acoustic principles are intro-
duced in speech production studies dealing with frica-
tives since the sixties [2]. The pioneering work is further
developed by experimental as well as modeling studies,
e.g. [10, 3]. As a result, the underlying mechanism of
fricative sound production is well understood as noise
produced due to the interaction of a turbulent jet, pro-
duced by a constriction somewhere in the vocal tract,
with a downstream wall or obstacle. Consequently, the
position and shape of articulators like tongue and teeth
will determine the generation and development of the
jet as well as its downstream interaction with a wall or
obstacle as is indeed observed on human speakers [6, 8].
Experimental and simulation studies are performed in
order to characterise and quantify the influence of ar-
ticulators position and shape on the sound produced
[10, 7]. Nevertheless, the mentioned studies focus on
the acoustics of fricative noise production. Therefore,
flow data providing a systematic characterisation issu-
ing from configurations relevant to human fricative pro-
duction, i.e. moderate Reynolds Re numbers covering
the range 2000 < Re < 104 and low Mach Ma number,
are few. Obviously, model validation would benefit from
additional flow data providing quantitative information
on the flow field as pointed out by a.o. [3] in the frame-
work of fricative production. The present study aims to
contribute to the systematic study of flow data relevant
to describe the jet-obstacle interaction occurring during
fricative production.
A rectangular rigid mechanical replica, inspired on the
work presented in [10], is prososed in order to mimic the
jet-obstacle interaction. The replica consists of a con-
stricted portion between the ‘tongue’ and the ‘palatal
plane’ upstream of an obstacle representing a ‘tooth’ for
which the constriction can be varied. Its dimensions are
taken to be relevant to the human physiology of an ‘av-
eraged’ male adult vocal tract [6, 8]: lenght ≈ 180mm,
unconstricted height ≈ 16mm, width ≈ 21mm, constric-
tion height between the tongue and the palatal plane
≈ 3mm, tooth length ≈ 3mm. The gap between the
constricted vocal tract portion and the obstacle as well

as the constriction degree at the obstacle are systemat-
ically varied. In addition, the flow conditions are var-
ied so that the relevant range of Reynolds numbers is
experimentally assessed. The flow is characterised by
measuring the volume flow rate and performing point
pressure measurements at different positions along the
replica. The gathered data are compared to the out-
come of one-dimensional flow models commonly used to
model the flow in physical models of phonation in or-
der to validate to which degree the applied models are
suitable to model the flow through the entire upper air-
way from the larynx up to the lips. Since it is obvious
that the studied flow is to complex to be represented by
a laminar flow model, assumed in Bernoullis equation,
several ‘ad-hoc’ corrections are assessed.

2 One-dimensional flow models

Considering a rectangular channel with two constric-
tions, see Fig. 1, the total pressure difference ∆Ptot is:

∆Ptot = ∆P1 + ∆P2 + ∆P3 + ∆P4 + ∆P5,

with:

∆P1 = P (x = 0) − P (x = i1)

∆P2 = P (x = i1) − P (x = is1)

∆P3 = P (x = is1) − P (x = i2)

∆P4 = P (x = i2) − P (x = is2)

∆P5 = P (x = is2) − P (x = i3).

It is assumed that no pressure loss occurs in the uniform
inlet portion so that P0 = P (x = 0) = P (x = i1) and
∆P1 = 0. The pressure losses ∆Pi in the remaining por-
tions with varying area Ai,si, with subscript i denoting
the upstream position and subscript si the downstream
position, can be modeled by application of a combina-
tion of the following terms from which the pressure dis-
tribution p(x) follows immediately [1]:
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Figure 1: Two-dimensional geometry h(x) with fixed
width w. The unconstricted channel height is denoted

h0 and two constrictions are inserted, ]i1 si1] and
]i2 si2]. The x-axis indicates the main flow direction.
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with volume flux φ, mean air density ρ, dynamic vis-
cosity coefficient µ, Reynolds number ReD based on the
corresponding hydraulic diameter which for a rectangu-
lar area A = w · h is definded as ReD = 2ρφ

µ(w+h) and the

set of corresponding model constants {Cben,Ccon}:

Ccon =

(

1 +
1

2

[
1 +

Asi

Ai

]
−1

)
−1/2

, (8)
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For the considered range of ReD, a typical value of Cben

yields Cben ≈ 2.2.
The first expression (1), denoted ∆P ber

i , assumes a
simplified one-dimensional quasi-stationary incompress-
ible and irrotational flow described by the stationary
Bernoulli’s equation. Several corrections to (1) can be
considered due to flow separation, viscosity or down-
stream pressure recovery. Since steady flow conditions
are considered no correction for unsteady flow is neces-
sary. For the geometry shown in Fig. 1 flow separation
is assumed to occur at locations xsi1 and xsi2 regard-
less upstream pressure P0 or volume flow rate φ so that

the position of flow separation is fixed and no correc-
tion for its changing position is needed. Viscous losses,
on the contrary, are known to be important in case of
low Reynolds numbers, i.e. low velocity or small height
h(x). Therefore the Bernoulli equation is corrected for
viscosity by adding a viscous pressure loss term (2) de-
noted ∆P pois

i . This term is obtained by assuming a
fully developed Poiseuille velocity profile. So far, pres-
sure recovery by flow reattachment upstream the flow
separation point is neglected. Pressure recovery is esti-
mated by evaluating the quasisteady momentum equa-
tion. The resulting expression (3) describes the pres-
sure recovery as a portion of the Bernoulli loss term (1).
The magnitude of the recovery depends on the area ra-
tio Ai/Asi at the position of flow separation Ai and the
expanded area Asi downstream the constriction. It is
clear that (3) assumes a uniform flow profile over area
Asi so that the pressure recovery becomes proportional
to 1 − (Ai/Asi)2. On the other hand zero pressure re-
covery is expected in case a narrow jet flow is assumed
to be maintained, so that Asi = Ai and the loss term
becomes zero since (1−Ai/Asi) = 0. In addition to the
extreme cases of no recovery or uniform flow, an inter-
mediate value for the pressure recovery is expected when
assuming an expanding jet geometry to which (1) can
be applied. A geometrical correction for jet expansion
is easily obtained by applying an expansion angle θjet

to the uniform narrow jet as:

Ajet = [hi + Cjet · tan(θjet) · (xis − xi)] · w, (10)

with expansion angle θjet ∼ 4.2◦ and model constant
Cjet set to 1 or 2 accounting for one-side or two-side
geometrical expansion of the narrow two-dimensional
jet [9].
The constricted portion indicated ]i2, si2] in Fig. 1 can
be seen as a thin square-edged contraction for which
separation might occur depending on the Reynolds
number at the leading edge, x = i2, instead of the
trailing edge, x = si2. In case separation occurs,
the flow through the constriction is accelerated and a
pressure loss occurs as reported in (5) where Ccon can
be seen as an discharge coefficient whose value can be
estimated from geometrical considerations (4), (8) or as
an ‘ad-hoc’ orifice coefficient (5) [1].
The expressions (1) up to (5) assume the main flow
direction to be along the x-axis. Although, in particular
when the distance between the down- and upstream
constriction is reduced, the main flow direction in the
gap between both obstacles is likely to be perpendicular
to the x-direction. In this case, the geometry can be
seen as a sharp 90◦ bend for which the pressure loss
can be described with (7) in which the coefficient Cben

is either estimated from the volume flow rate and the
geometry (9) or chosen as an ‘ad-hoc’ bending discharge
coefficient [1]. Alternatively, a change in flow direction
in the narrowed portion between both constrictions
can be simply accounted for by exchanging height and
length in this section of the channel and applying the
previous mentionned terms, (1) up to (5), in order to
determine the pressure distribution p(x) along the main
flow direction.
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Figure 2: Overview of rigid ‘in-vitro’ replica.

L1 or L and h2 [mm] Constriction degrees [%]
L1 L h2 1 − L/h0 1 − h2/h0

- - 16 0 0
33 24 6.8 0 58
25 16 5.5 0 66
19 10 2.6 38 84
14 5 1.5 69 91
12 3 0.6 81 96
1 - - - -

Table 1: Assessed geometrical configurations.

3 Mechanical replica and setup

The rigid ‘in-vitro’ replica consists of two constrictions,
C1 and C2, inserted in a uniform rectangular channel
as schematically depicted in Fig. 1 and detailed in Fig.
2. The unconstricted channel has length L0 = 180mm,
height h0 = 16mm, width w = 21mm and aspect ratio
w/h0 = 1.3. The shape of both constrictions C1 and
C2 is fixed. Their lengths in the x-direction yield l1 =
30mm for C1 and l2 = 3mm for C2. The aperture h1

is fixed to 3mm, which corresponds to a constriction
degree of 81%. The distance of the trailing edge of C2

to the channel exit, L2, is fixed to 6mm. The distance
of the trailing edge of C1 with respect to the channel
exit, L1, can be varied as well as aperture height h2

of constriction C2. Therefore, besides the inlet height
h0, the pressure distribution is determined by the set
of geometrical parameters {h1, L1, h2} of which L1 and
h2 can be varied. In order to validate the pressure drop
three pressure taps are assessed at positions p0 = 30mm,
p1 = 160mm and p2 = 173mm from the channel inlet.
Experimentally assessed combinations of {L1, h2} are
summarised in Table 1 and schematically illustrated in
Fig. 3. Since the position of the pressure tap p1 is fixed,
p1 is situated in the gap between C1 and C2 for large
L1 or along C2 in case L1 is closer to the channel exit.

4 Flow and pressure data

The geometrical configurations depicted in Fig. 2
and Fig. 3 are assessed for upstream pressures
P0 < 4000Pa. The associated bulk Reynolds numbers,
defined as Re = φ/(νw), are Re ∈ [0 15000]. Fig.
4 shows the measured values of Re and downstream
pressures (P1,P2) as function of P0 and the geometrical
parameters (L1, h2).
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Figure 3: Assessed geometrical configurations.

Fig. 4(a) illustrates the measured relationship Re(P0).
For h2 = 0.6mm corresponding to a constriction degree
of 96% the relationship Re(P0) is seen to be nearly inde-
pendent of L1 since the relative difference is inferior to
5% for all assessed volume airflows. For h2 = 1.5mm the
presence of both constrictions becomes notable since in-
creasing L1 from 12 to 33mm slightly decreases P0 with
8% and further down to 12% in absence of C1. The same
tendency is observed more clearly as the aperture h2 is
further increased. The relative pressure decrease with
increasing L1 from 12 down to 33mm yields 25%, 44%
and 51% for h2 = 2.6, h2 = 5.5 and h2 = 6.8mm and
decreases further to 38%, 78% and 87% in absence of
C1. Consequently, the pressure drop increases when the
gap between both constrictions is narrowed indicating
that pressure recovery is favored in case of a wide gap
between both constrictions.
In absence of C2, i.e. h2 = h0 = 16mm, pressure recov-
ery is mainly determined by constriction degree of 81%
due to the fixed aperture of h1 = 3mm. Consequently,
varying L1 from 33 up to 1mm results in a fairly constant
pressure drop P0 regardless the volume airflow rate. The
slight pressure increase, inferior to 4%, for increasing L1

is the result of a small pressure recovery in the channel.
Fig. 4(b) illustrates the pressures measured at p1 nor-
malised to the upstream pressure, P1/P0. As illustrated
in Fig. 3 the relative position of the pressure tap p1 with
respect to the trailing edge of constriction C1 depends
on L1. From Fig. 4(b) it is seen that in absence of
C1 the pressure ratio P1/P0 collapses to a single curve,
which is independent from h2 and the volume airflow
velocity φ. Nevertheless, the pressure loss is increas-
ing with input pressure up to 30% firstly due to friction
since the friction factor is Reynolds number dependent
and secondly due to the development of entry flow in the
uniform inlet portion of the channel with length 13cm
[4]. In addition, since the aspect ratio h0/w = 1.3 ≈ 1,
three-dimensional flow development is likely to occur [9].
Inserting constriction C1 in absence of constriction C2,
i.e. h2 = h0 = 16mm, leads to a pressure drop as ex-
pected from the terms discussed in section 2. For L1 = 1
up to L1 = 33mm the pressure tap p1 is situated con-
secutively along the converging portion of C1, at the
minimum constriction and finally in the gap between
both constrictions, so that the associated pressure drop
is seen to increase from ±40% up to ±100%, i.e. P1 ≈ 0.
The pressure drop P1/P0 measured in presence of both
constrictions C1 and C2 is intermediate to the previ-
ous configurations: a lower limit is reached in absence
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Figure 4: Overview of experimental results of Re(P0), P1/P0(P0) and P2/P0(P0) for all assessed geometrical (L1,h2)
and flow (P0) configurations: absence of the downstream obstacle C1 is indicated as L1 = none (∗), L1 = 33 (!),

L1 = 25 (♦), L1 = 19 (+), L1 = 14 (◦), L1 = 12 ( ), L1 = 1mm ((), h2 = 16 (blue), h2 = 6.8 (red), h2 = 5.5
(green), h2 = 2.6 (black), h2 = 1.5 (magenta) and h2 = 0.6mm (cyan).

of C1 and an upper limit in absence of C2. As for
Re(P0) shown in Fig. 4(a) the influence of L1 on pres-
sure P1 is most noticable for large h2 > h1 = 3mm,
i.e. 6.8 and 5.5mm, for which the pressure loss is seen
to decrease with 12% or more as the gap L1 becomes
wider. In addition, the pressure loss P1/P0 measured
for h2 > h1 = 3mm is more pronounced as for smaller
h2, i.e. h2 ≤ h1 = 3mm, for which the pressure loss
P1/P0 > 0.5. Consequently, the relative pressure drop
P1/P0 reduces as h2 decreases since the pressure drop
across C2 is increasing.
From the previous discussion of measured P1/P0 values
and from the model terms presented in section 2, ac-
counting for pressure recovery in the gap between both
constrictions is expected to be important for h2 in the
range h0 > h2 > h1 and much less for h2 < h1.Fig.
4(c) reports measured pressure losses P2/P0 observed
at pressure tap p2. The pressure drop for C2 is most
important for small apertures h2 resulting in negative
pressures for h2 ≤ 1.5mm with an order of magnitude
about 10% of P0. Nevertheless, the pressure drop is
more pronounced for h2 = 1.5mm than for h2 = 0.6mm.
This might be due 1) to viscosity as seen from (2), 2)
a consequence of the strong asymmetry resulting in a
downstream shift of the minimum pressure [5] or 3) re-
lated to a small recirculation zone at the position p2.
Varying L1 is seen to influence P2/P0 in particular for
small apertures h2 ≤ 1.5mm for which the presence of
C1 is seen to decrease the pressure drop for the assessed
flow conditions.

5 Validation of 1D flow models

The pressure distribution is estimated from models tak-
ing into account different terms, (1) up to (7), as dis-
cussed in section 2. Resulting models q and their prin-
ciple features are summarised in Table 2. The assessed
geometry and the total pressure difference correspond-
ing to the measured upstream pressure, i.e. assum-
ing ∆P = P0, are model input parameters from which
the volume airflow velocity and pressure distribution
along the ‘in-vitro’ replica geometry, parameterised by

Model terms of section 2
q (1) (2) (3) (4) (6) terms

Ber × Bernoulli
Poi × × viscosity
Exp × expansion
Con × contraction
Ben × bending

Table 2: Overview models formulated with terms (1)
up to (7). For each model q, the terms taken into

account are indicated by ×.

(L1, h2), are estimated.
Model estimations of the volume airflow velocity and
of the pressures at the positions of the pressure taps,
i.e. P̂1, P̂2 and φ̂, can be quantitatively compared
to experimentally observed values for each set of in-
put parameters (P0, L1, h2) in order to determine the
model accuracy. Consequently, the accuracy of the
model estimations for P̂1, P̂2 and φ̂ is sought as func-
tion of (P0, L1, h2) for each model q. Relative er-

ror functions ζ(q)
1 (P̂1, P0, L1, h2), ζ

(q)
1 (P̂2, P0, L1, h2) and

ζ(q)
2 (φ̂, P0, L1, h2) are obtained for each model, denoted

by superscript q, as:

ζ(q)
1 (P̂m, P0, L1, h2) =

|P̂m − Pm|

P0
, with m ∈ {1, 2}

(11)

ζ(q)
2 (φ̂, P0, L1, h2) =

|φ̂− φ|

φ
, (12)

where as before P0, Pm and φ indicate the measured

values. An error function ζ
(q)
k for all N0(L1, h2) assessed

P0-values is defined as:

ζ
(q)
k (·, L1, h2) =

1

N0

N0∑

r=1

(
ζ(q)
k (·, P0r

, L1, h2)
)

, (13)

for which the summation index r in P0r
sums over all

N0 assessed P0 values for each geometrical configura-

tion (L1, h2) whereas ζ(q)
k as well as the variable · are



defined by (11) for k = 1 (· = Pm) and (12) for k = 2
(· = φ). From (13) the overall best mean model error

ζ
(q̂)

(L1, h2) with respect to all assessed models q is than
straightforwardly quantified as the model q̂ minimising
the cost function J(q) as expressed in (14) and (15):

J(q, L1, h2) =
1

3

(
ζ
(q)
1 (P̂1, L1, h2)

+ ζ
(q)
1 (P̂2, L1, h2) + ζ

(q)
2 (φ̂, L1, h2)

)
,

(14)

q̂(L1, h2) = arg min
q

J(q, L1, h2). (15)

The overall best mean model errors J(q̂, L1, h2) are plot-
ted in Fig. 5. Fig. 6 depicts the corresponding averaged

errors ζ
(q̂)
k (·, L1, h2) (13) for P̂1, P̂2 and φ̂. In addition

to the error values (13), the errorbars in Fig. 6 illus-
trate the sensitivity of the model accuracy for varia-
tions of the upstream pressure P0. In general, the er-

ror sensitivity increases as the error values ζ
(q̂)
k (·, L1, h2)

increases. The overall best mean model error yields
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Figure 5: Overall best mean model error J(q̂, L1, h2)
(14) of the models q̂(L1, h2) summarised in Table 3

versus h2 as function of L1. Absence of the
downstream obstacle C1 is denoted L1 = none.

J(q̂, L1, h2) < 30% for all (L1, h2) except in absence of
C1, denoted L1 = none. In absence of C1, the errors for
h2 > 1.5 are significantly larger than in presence of C1,
so that the upper limit for the overall model accuracy
increases to J(q̂, L1, h2) < 50%. From Fig. 6 is observed
that in presence of C1 large overall errors J(q̂, L1, h2),
e.g. h2 = 5.5 compared to h2 = 1.5 in Fig. 5, are due

to large errors of ζ
(q̂)
1 (P̂2, L1, h2) and/or ζ

(q̂)
2 (q̂, L1, h2).

In absence of C1, the error ζ
(q̂)
1 (P̂1, L1, h2) is seen to

increase as well explaining the increased overall best
mean error upper limit of J(q̂, L1, h2) < 50% instead
of J(q̂, L1, h2) < 30%.
The models resulting in the overall best mean model
error J(q̂, L1, h2) (14), illustrated in Fig. 5, are sum-
marised in Table 3. From Table 3 is seen that for
h2 = 16 as well as h2 = 0.6 accounting for viscous
effects, i.e. q̂ = Poi, results in the sought errors
J(q̂, L1, h2) regardless the value of L1. For intermedi-
ate values, 0.6 < h2 < 16, the overall best mean model
errors J(q̂, L1, h2) are obtained for models q̂ = Con or
q̂ = Ben depending on (L1, h2). It is observed that
inserting L1 upstream from h2 and moving it further

downstream, i.e. decreasing L1, causes a model shift
from q̂ = Con to q̂ = Ben. So, in case of a large gap
L1 between both constrictions C1 and C2, the narrowed
passage at C2 can be modelled as a sudden constriction
whereas for smaller L1 the narrowed passage C2 can be
approximated as a bend in the geometry. The transi-
tion, i.e. constriction → bending, is seen to depend on
the value of the aperture h2.

6 Conclusion

A rigid ‘in-vitro’ replica is proposed in order to study
airflow through the human vocal tract during fricative
production. Two geometrical parameters are experi-
mentally studied: the position of an upstream ‘tongue’
shaped constriction in the main flow direction (L1) and
the constriction degree of a ‘tooth’ shaped downstream
obstacle (h2). The shape of both obstacles is extremely
simplified in order to limit the number of geometrical
and flow parameters to be taken into account.
Point pressure measurements (11mm upstream and at
the ‘tooth’ constriction) vary significantly over the range
of imposed L1 and h2. In addition, varying L1 while
maintaining h2 fixed is seen to influence the pressure at
the ‘tooth’ constriction. Consequently, besides h2, L1

influences the resulting airflow.
Measured pressures and volume airflow rates are com-
pared to the outcome of one-dimensional flow models
assuming a laminar incompressible irrotational and one-
dimensional flow governed by Bernoullis equation to
which corrections are applied for viscosity, sudden geo-
metrical expansion, sudden geometrical constriction and
a bending geometry. In presence of the ‘tongue’ shaped
constriction, the accuracy for each set of geometrical pa-
rameters (L1, h2) expressed as a mean error for all pre-
dicted quantities and all imposed upstream pressures
yields < 30%. The model resulting in the minimum
errors varies as function of (L1, h2). For very small
(≤ 58%) or very large (≥ 96%) constriction degrees at
the ‘tooth’ the most accurate model is obtained by ac-
counting for viscosity regardless the value of L1. For in-
termediate constriction degrees, in the interval [58 96]%,
narrowing the gap between both constrictions, i.e. de-
creasing L1, causes the most accurate model to shift
from constriction to bending. Therefore, the geomet-
rical parameter L1, although not explicitely appearing
as a parameter in the validated one-dimensional models,
does determine the appropriate corrective term in terms
of the applied cost function. In addition, it is interest-
ing to note that the best model accuracy is poorest for
‘tooth’ constriction degrees (≈ 60%) for which the influ-
ence of L1 on the measured pressures is most significant.
Consequently, one-dimensional flow models can be ap-
plied to describe the flow through the vocal tract when
accounting for the relevant corrections in order to com-
pensate, on geometrical considerations, for the non re-
alistic assumption of a laminar and irrotational flow.
This way the approach of one-dimensional flow model-
ing, commonly used in physical phonation models, can
be extended to the vocal tract. Nevertheless, several
topics for further research can be formulated. With re-
spect to modelling, more complex flow modeling is moti-
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Figure 6: Model errors ζ
(q̂)
k (·, L1, h2) (13) for P̂1, P̂2 and φ̂ for the models q̂(L1, h2) corresponding to J(q̂, L1, h2)

presented in Fig. 5 and summarised in Table 3 versus h2 as function of all assessed L1: a) ζ
(q̂)
1 (P̂1, L1, h2), b)

ζ
(q̂)
1 (P̂2, L1, h2) and c) ζ

(q̂)
2 (q̂, L1, h2). Absence of the downstream obstacle C1 is denoted L1 = none.

Decreasing L1

ϑ1(L1) 0 0 0 38 69 81
ϑ2(h2) h2!L1 L1 = none L1 = 33 L1 = 25 L1 = 19 L1 = 14 L1 = 12 terms

D
ec

re
as

in
g

h
2 0 16 Poi Poi Poi Poi Poi Poi viscosity

58 6.8 Con Ben Ben Ben Ben Ben constriction → bending
66 5.5 Con Con Con Ben Ben Ben constriction → bending
84 2.6 Con Con Con Con Con Ben constriction → bending
91 1.5 Con Ben Ben Ben Ben Ben constriction → bending
96 0.6 Poi Poi Poi Poi Poi Poi viscosity

Table 3: Overview of the selected models q̂(L1, h2) resulting in the overall best mean error J(q̂, L1, h2) (14) whose
value is plotted in Fig. 5. Models are referred to as outlined in Table 2. For completeness also the constriction

degree due to h2, i.e. ϑ2(h2) = 1 − h2/h0 [%], and the constriction degree of the gap between both constrictions due
to L1, i.e. ϑ1(L1) = 1 − (L1 − 9)/h0 [%], are indicated as well.

vated in order to describe the influence of the geometri-
cal parameter L1. In addition, further flow and acoustic
experimental characterisation needs to be assessed ei-
ther qualitative (flow visualisation) or/and quantitative
(Particle Image Velocimetry, anemometry, microphone).
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