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Abstract. This paper presents a complete methodology for designing
practical and highly-undetectable stegosystems for real digital media.
The main design principle is to minimize a suitably-defined distortion
by means of efficient coding algorithm. The distortion is defined as a
weighted difference of extended state-of-the-art feature vectors already
used in steganalysis. This allows us to “preserve” the model used by ste-
ganalyst and thus be undetectable even for large payloads. This frame-
work can be efficiently implemented even when the dimensionality of the
feature set used by the embedder is larger than 10”. The high dimen-
sional model is necessary to avoid known security weaknesses. Although
high-dimensional models might be problem in steganalysis, we explain,
why they are acceptable in steganography. As an example, we introduce
HUGO, a new embedding algorithm for spatial-domain digital images
and we contrast its performance with LSB matching. On the BOWS2
image database and in contrast with LSB matching, HUGO allows the
embedder to hide 7x longer message with the same level of security level.

1 Introduction

The main goal of a passive-warden steganographic channel [10] (stegosystem)
between Alice and Bob is to transmit a secret message hidden in an innocuously
looking object without any possibility for the warden Eve to detect such com-
munication. A stegosystem is called perfectly secure [2] if the cover distribution
exactly matches the stego distribution. Although this problem has been solved
by the so-called “cover generation” [1,29,24], this solution requires ezact knowl-
edge of the probability distribution on cover objects, which is hard (if possible
at all) to obtain for real digital media in practice. The most common practical
solution is to hide the message by making small perturbations with the hope
that these perturbations will be covered by image noise.

One of the most popular embedding methods used with digital images is the
Least Significant Bit (LSB) replacement, where the LSBs of individual cover
elements are replaced with message bits. It has been quickly realized that the



asymmetry in the embedding operation* is a potential weakness opening doors
to the development of highly accurate targeted steganalyzers (see [17] and ref-
erences therein) pushing the secure payload almost to zero.

A trivial modification of the LSB replacement method is LSB matching (of-
ten called +1 embedding). This algorithm randomly modulates pixel values by
+1 so that the LSBs of pixels match the communicated message. Despite the
similarity to LSB replacement, LSB matching is much harder to detect, because
the embedding operation is no longer unbalanced. In fact, LSB matching has
been shown to be near optimal [5] when only information from a single pixel
can be utilized. The biggest weakness of LSB matching is the assumption that
image noise is independent from pixel to pixel. It has been shown that this is not
true in natural images, which was in different ways exploited by LSB matching
detectors [16,14,22].

From the short overview of spatial domain steganography above, it is clearly
seen that the embedding algorithms are not secure. This is mainly because their
image model is not general enough and some marginal or joint image statistics
are not preserved. In this paper, we propose a novel method for designing new
steganographic algorithms allowing to use very general and high-dimensional
models covering various dependencies in natural images in order to create more
secure steganographic algorithms. The method follows and extends the best prin-
ciples known in steganography and steganalysis so far.

The proposed method relies on the principle of minimal impact embed-
ding [11], which is revisited in Section 2. This principle allows decomposition
of the design of steganographic algorithms into the design of the image model
and the coder. By virtue of this principle, steganographic algorithms can be im-
proved either by using a better coder, or by using a better model. Thus, the
image model becomes one of the most important parts of the design. Section 3 is
devoted to this problem. We explain why steganalytic features can be used as a
good start to design a steganographic model, if they are extended to avoid over-
fitting to a particular steganalyzer. Although such steganographic models can be
very large (we give an example of a model with dimension 107), we argue that for
steganographic purposes such large dimension does not pose a problem. In Sec-
tion 4, we practically demonstrate the presented method by constructing a new
steganographic algorithm for the spatial domain based on the SPAM (Subtrac-
tive Pixel Adjacency Matrix) features [22]. The security of the proposed scheme
and the effect of individual design elements on the security is experimentally
verified. The paper is concluded in Section 5.

The ideas presented in this paper can been seen in prior art. (a) Virtually all
steganographic algorithms aim to minimize distortion to preserve some image
model. The image model is derived either from the image itself (e.g., F5 algo-
rithm [30] and its improvement [13], Model Based Steganography [26], etc.), or
the distortion is defined by means of error introduced by quantization. The lat-
ter class of algorithms (MMX [19] and its improvement [25], PQ [12], etc.) uses
“side information” in the form of a higher quality image, which is not available

4 Even cover elements are never decreased whereas odd ones are never increased.



to the recipient (and Eve). (b) Many algorithms (F5 [30], nsF5 [13], MMX [19],
and [25]) already utilized various coding schemes (matrix embedding) to mini-
mize the distortion. While early schemes (e.g., F5 or LSB matching) used coding
to minimize the number of embedding changes, a significant departure was pro-
posed in MMX, which allowed more embedding changes than optimal (with given
coding), in order to decrease the overall distortion. Thus, MMX can be inter-
preted as making local content-adaptive embedding by means of coding, which
is close to the proposed scheme.

With respect to the above prior work, the main contributions of this work are
as follows. (a) We promote and advocate the use of high-dimensional image mod-
els in steganography that cannot be used in steganalysis (yet). (b) We separate
the image model from coding, which allows simulating optimal coding and thus
comparing image models without the effect of coding. Moreover, the message
can be hidden in parts of the image difficult for steganalysis while considering
all pizels simultaneously during the embedding.

Although the proposed steganographic scheme might be considered as an
adaptive, it is not adaptive in the usuall approach, when first good pixels are
selected [14,9,8] (e.g. pixels in noisy and textured areas) and than the message
is inserted in the image while modifying only the selected pixels (e.g by using
wet paper codes). Our scheme always uses all pixels for the embedding, but it
changes them with probability inversely proportional to the detectability of their
change.

In the rest, we use the following notation. Small-case boldface symbols are
used for vectors and capital-case boldface symbols for matrices and possibly
tensors. Symbols X = (z;;) € X = {0,...,255}™*"™ and Y = (y;;) € X are
exclusively used to represent intensities of n = nins-pixel cover and stego image.
For the sake of simplicity, we sometimes index the pixels with a single number,
X = (z;)_; and similarly for stego image Y = (y;)™;.

2 Minimizing Embedding Impact

Virtually all practical steganographic algorithms for digital media strive to min-
imize an ad hoc embedding impact [11,6], which, if properly defined, is correlated
with detectability. In its simplest form, embedding impact is simply the number
of changes (known as matrix embedding). However, more general ways, as al-
ready suggested by Crandal [4], should be considered. In general, the embedding
impact is captured by a non-negative distortion measure D : X x X — [0, c0].
During embedding, the algorithm should find a stego image Y, which (a) com-
municates a given message and (b) achieves minimal value of D(X,Y). Unfor-
tunately, this problem is generally very difficult in practice.

From this reason, we constrain ourselves to a well-studied special (but still
powerful enough) case assuming (a) binary embedding changes®, i.e., |z;—v;| < 1,

5 Extensions to ternary case can be done by the “e+ 1” construction described in [31].



i€{l,...,n}, and (b) additive distortion measure in the form
D(X,Y) =Y pilzi —uil- (1)
i=1

The constants 0 < p; < oo are fixed parameters expressing costs of (or distortion
caused by) pixel changes. The case p; = oo corresponds to the so-called wet
pizel not allowed to be modified during embedding. Notice that the additivity
of the distortion function D implies that that the embedding changes do not
interact between each other. This is a reasonable assumption, especially if we
assume low embedding rates and embedding changes being far from each other.
Unfortunately, there are cases of important distortion measures which cannot be
written in this form. One such case will be introduced in Section 4.

For additive distortion functions (1), the following theorem taken from [11]
gives the minimal expected distortion obtained by hiding m bits in an n-pixel
cover object.

Theorem 1. Let p = (p;), 0 < p; < 00, be the set of constants defining
the additive distortion measure (1) for i € {1,...,n}. Let 0 < m < n be the
number of bits we want to communicate by using a binary embedding operation.
The minimal expected distortion has the following form

Dmin(mv n, P) = szpza
i=1

where
ef)‘pi

1 + e~ Api

(2)

Di

is the probability of changing the ith pizel. The parameter \ is obtained by solving

n

- Z (pi logy pi + (1 — pi) logy(1 —Pi)) =m. (3)
i1

The importance of Theorem 1 is in the separation of the image model (needed
for calculating constants p;) and the coding algorithm used in a practical imple-
mentation. By virtue of this separation, better steganographic algorithms can be
derived by using better coding or by using a better image model. One important
consequence is that, in order to study the effect of the image model on stegano-
graphic security, no coding algorithm is needed at all! The optimal coding can
be simulated by flipping each pixel with probability p; as defined in (2).

We use this separation principle in Section 4 to find a good image model used
to derive the costs p;. The study of the loss introduced by a practical coding
method is also included.



3 From Steganalysis to Steganography

Almost all state-of-the-art statistical steganalyzers (with the exception of ste-
ganalyzers for LSB replacement) are based on a combination of steganalytic fea-
tures and pattern recognition algorithms. In steganalysis, steganalytic features
are used to reduce the dimension of a space of all cover objects, so that the pat-
tern recognition algorithms can learn (if possible) the difference between cover
and stego objects in this reduced feature space. Using such a low-dimensional
model for designing steganography usually leads to overtraining to a particular
feature set (this issue of feature set completeness is discussed in [20,27]). Keeping
this in mind, we believe that the features can serve as a good precursor of the
image model to determine the embedding costs p;. Although we show this tran-
sition from steganalytic features to a steganographic model on spatial domain
steganography, we believe that the ideas and tools presented here can be used
in other domains and with other steganalytic features as well.

We start by reviewing the recently proposed SPAM features [22] proposed
to detect steganographic algorithms in spatial and transformed domains. Then,
we discuss the problem of overfitting the steganographic model to steganalytic
features as well as the remedy by expanding the model beyond the capabilities
of contemporary pattern recognition algorithm. Finally, we propose a simple
method to identify parts of the model that are more important for steganalysis.

3.1 SPAM features

It is well known that values of neighboring pixels in natural images are not
independent. This is not only caused by the inherent smoothness of natural
images, but also by the image processing (de-mosaicking, sharpening, etc.) in the
image acquisition device. This processing makes the noise, which is independent
in the raw sensor output, dependent in the final image. The latter source of
dependencies is very important for steganalysis because steganographic changes
try to hide themselves within the image noise.

The SPAM [22] features model dependencies between neighboring pixels by
means of higher-order Markov chains. They have been designed to provide a low-
dimensional model of image noise that can be used for steganalytic purposes. The
calculation of differences can be viewed as an application of high-pass filtering,
which effectively suppresses the image content and exposes the noise. The success
of SPAM features in detecting wide range of steganographic algorithms [21]
suggests this model to be reasonable for steganalysis and steganography.

The SPAM features model transition probabilities between neighboring pix-
els along 8 directions {—,—,],T,\,\,,./s./'}. Below, the calculation of the
features is explained on horizontal left-to-right direction, because for the other
directions the calculations differ only by different indexing. All direction-specific
variables are denoted by a superscript showing the direction.

Let I € X be an image of size n; X ns. The calculation starts by computing
the difference array D*®, which is for a horizontal left-to-right direction

-
Dyj =Lij = Lijt1,



fori e {1,...,nm}, j € {1,...,n2 — 1}. Depending on the desired order of the
features, either the first-order Markov process is used,

Md_;dQ :PT(D:j+1 :d1|DU :dg), (4)
or the second-order Markov process is used,

M(Zd2d3 = Pr(Dsz-i—Q = d1|D:j+1 = an D; = d3)a (5)
where d; € {—T,...,T}. The calculation of the features is finished by separate
averaging of the horizontal and vertical matrices and the diagonal matrices to
form the final feature sets. With a slight abuse of notation, this averaging can
be written as

F$  o=- My +Mg +M+M]],

o

Flinon =7 MO+ MO+ M + M, (6)

where k = (27 + 1)? for the first-order features and k = (27 + 1)3 for the
second-order features. In [22], the authors used 7' = 4 for the first-order features
(leading to 162 features) and T' = 3 for the second-order features (leading to 686
features).

3.2 Decomposing SPAM features

Although the second-order SPAM features use conditional probabilities to model
pixel differences, their essential components are actually co-occurrence matrices

Ciia, = Pr(D;j =d1,D; 44 = da), (7)
C;ldgd3 = PT(D; =dy, D:j-i-l = do, D:j+2 =d3). (8)

It is easy to show that the second order SPAM features with 7' = 3 can be directly
obtained® from the set {C} , ,Ck | . |k € {—,1,~\,/},—3 < d; < 3}. In fact,
we observed that this set of 4 x (343+49) = 1568 co-occurrence features has only
slightly inferior performance in detecting LSB matching, which we attribute to
a smaller ratio of training samples per dimension (known as curse of dimension-
ality). From this point of view, the distortion measure used to derive embedding
costs p; should be designed to preserve the co-occurrence matrices (7) and (8),
because their preservation implies the preservation of second-order SPAM fea-
tures.

Although the idea of preservation of SPAM features is tempting, the distor-
tion measure would not be general enough. The new scheme would be so tied to
a particular steganalytic method that it can be expected to be detectable by a
slight modification of the features. This problem of “overfitting” the distortion

6 - - - _ = -
Observe that Cy 40, = CTuy —ay,—ay> and Mgy g = Cylooa, /Canay -



measure to a particular steganalytic method together with the need for a com-
plete feature set has been already described [20,27] for the DCT domain. Here,
we propose to resolve the issue of overfitting to a particular model by expanding
it beyond practical limits of steganalysis (for this model). This can be easily
done in the case of co-occurrence matrices by increasing the range of covered
differences T

At this point, it is important to clarify the difference between the effects of
model dimensionality for steganography and for steganalysis. The high-dimensional
models in steganalysis present a serious problem for subsequent machine learning
due to the curse of dimensionality and related overfitting. Although the actual
ratio between the number of training samples and the model dimensionality
depends on the used machine learning algorithm and the problem, the rule of
thumb is to have ten times more samples than the model dimensionality (num-
ber of features). These drawbacks prevent the use of high-dimensional models
in steganalysis. By contrast, high-dimensional models in steganography do not
cause problems, because there is no statistical learning involved. The cover im-
age provides the exact model to be preserved and, consequently, there is no
curse of dimensionality, which justifies the use of high-dimensional models in
steganography.

An additional important practical detail is that updating the co-occurrence
matrices to reflect one pixel change is much easier than updating the conditional
probabilities (the former involves only addition and subtraction of a few items
of the matrices, while the latter involves division of the large part of the ma-
trices). The efficient update of co-occurrence matrices enables modeling a wide
range of differences between pixels (the use of large T') resulting in modeling
most differences (and pixels) in the image (and better preservation of the SPAM
features).

3.3 Identification of detectable parts of the models

Unfortunately, the ideal case, when the image model is fully preserved during the
embedding, is virtually impossible to realize in practice. It is therefore important
to identify parts of the model important for steganalysis and set appropriate costs
of pixel changes p;.

The association of costs p; to the modification of the model is in general very
difficult because we do not know which parts of the model are important. Here,
we suggest to evaluate the individual elements of the model independently of
each other (any method for feature ranking can be used [15]) and set the costs
p; to reflect this ranking. The advantage of individual evaluation is that it can
be done quickly even for a large number of features. On the other hand, the indi-
vidual evaluation of the model elements is certainly not optimal, especially from
the machine learning point of view. However, we believe (and our experiments
confirm that) that the costs derived this way can be used as a good starting
point. There is no doubt that other (and better) methods of deriving costs p;
exist.
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Fig. 1: Left: Values of FLD criteria (9) between the feature C,, calculated from cover
images and stego images obtained by LSB matching with full payload. Right: mean of
the feature C; 4, over the set of cover images from the BOWS2 database.

Our approach works as follows. First, we create a set of images embedded
with a simulated maximum payload by a given embedding operation (in our
case of spatial domain steganography, this amounts to randomly increase or
decrease the pixel value by one with probability 50%). Then, we use the criteria
optimized in Fisher Linear Discriminant (FLD criteria) (9) to evaluate, how
good are individual features for detecting given embedding changes. The values
of FLD criteria (9) of individual elements may be either used directly to set
the costs of embedding changes p;, which might be dangerous due to the already
discussed problem of overfitting. Alternatively, they can be used to obtain insight
into the problem and set the costs heuristically, which is recommended. In the
rest of this section, we use the analysis of the FLD criteria to identify parts of
the co-occurrence model that can be used for embedding.

For co-occurrence matrices introduced in the previous subsection, the values
of FLD criteria for a single feature C7’; (for fixed d; and dz) can be written as

(B[CYy,] - ElCY )’
B[CY,, - BICT 1 + B[CY ) — EICY,1)

(9)

where E[-] stands for the empirical mean (obtained in our case over all images
in the BOWS27 image database), and Ci’tg, CZ’;Q stand for a single element
of the co-occurrence matrix Cg’, calculated from the cover and stego image,
respectively. The higher the value, the better the feature when used alone for
detecting the LSB matching algorithm. Figure 1 shows the values estimated
from cover and stego images obtained by embedding a full payload with LSB
matching. We can see that the most influential features are CZ; , and C3_,
corresponding to regions containing noisy pixels in a smooth area. Also, it is
interesting to see that regions having the same color (such as saturated pixels)

" See http://bows2.gipsa-lab.inpg. fr/BOWS20rigEp3. tgz



represented by Cgy, or pixels in smooth transitions represented by C;’;, do not
constitute a good/ single feature. This is most probably caused by their high
variance, which makes features C—, , and C;_, more stable and more suitable
for steganalysis. Although not easy to visualize, similar results and interpretation
can be obtained from higher-order co-occurrence matrices C3_ 4, .-

This analysis shows which parts of the image model should be preserved.
We stress again that this analysis was performed from the evaluation of a sin-
gle feature and its direct application may lead to overtraining. As was already
mentioned above, we consider this analysis as a good guide to derive heuristics
to build the embedding costs p;.

4 From Theory to Practice

In this section, all pieces and ideas presented above are put together, in order to
give life to a new steganographic algorithm called HUGO (Highly Undetectable
steGO). The individual steps of this algorithm are depicted in Figure 2.

High dimensional model \

Model
correction

Distortion

Cover —> .
computation
~ J

e B
T\
—>| Coding \—»‘ ‘—» Stego
- J
AN J

Fig. 2: High-level diagram of HUGO.

4.1 Evaluation setting

The scheme was assessed using the BOWS2 image database, containing approx-
imately 10800 images of fixed size 512 x 512. Thanks to the fixed size, all images
have the same number of usable elements, which means that we do not have to
take the Square Root Law [18,7] into the account. Prior to all experiments, the
images were divided into two sets of equal size, one used exclusively for training,
the other exclusively for evaluation of the accuracy. The chosen accuracy mea-
sure is the minimal average decision error under equal probability of cover and
stego images, defined as

1
Pr = min 3 (Prp + Prn),

where Ppp, and Ppy, stand for the probability of false alarm or false positive (de-
tecting cover as stego) and probability of missed detection (false negative). To
observe the effect of over-fitting for a particular feature set, we create blind ste-
ganalyzers employing four different feature sets (first- and second-order SPAM



features [22] with 7' = 4 and T = 3 respectively, WAM [14], and recently pro-
posed Cross Domain Features® (CDF) [21]).

All steganalyzers were realized as soft-margin SVMs [28] with Gaussian ker-
nel®, k(z,y) = exp(—v || — y||*). The parameters y and C were set to values cor-
responding to the least error estimated by five-fold cross-validation on the train-
ing set on the grid (C,7) € {(10%,29)|k € {-3,...,4},j € {—-d —3,—d + 3}},
where d is the logarithm at the base 2 of the number of features.

Besides the SVM-based blind steganalyzers, we also use the Maximum Mean
Discrepancy [23] (MMD) to quickly compare the security of different versions of
the algorithm.

4.2 Co-occurrence model in steganography

Section 3.2 motivated the use of co-occurrence matrices (SPAM features) as a
reliable model for steganography and explained, why the distortion function D
(not just constants p;) is derived directly from them. In order to stress those
parts of the co-occurrence matrices that are more important for steganalysis,
the distortion function D is defined as a weighted sum of differences

T
N k
D(X,Y) = Z w(dlv d?v d3) Z C()iildgd3 - CdY1d2d3 +
di,d2,ds=—T ke{—>,<—,T,l}
X,k Y,k
+w(dy, dz, d3) Z Coldasds — Cdldayds | | (10)

ke{\oN\o Y

where w(dy,ds,ds) is a weight function quantifying the detectability of the
change in the co-occurrence matrix'?. The weight function w(dy, da,d3) has the
following simple form

1
R
[ﬁ+@+@+4

w(dy,dz,d3) = (11)

where 0,7 > 0 are parameters that can be tuned in order to minimize the de-
tectability. This very conservative choice mimics the average number of samples
available to Eve to estimate the individual features C§ , ;. from a single im-
age (see the right part of Figure 1). Motivated by the analysis performed in
Section 3.3, the rationale of this choice is simple: the more samples Eve has,
the better estimate of individual feature she can obtain and the more she can

8 CDF combines second-order SPAM features (T = 3) and cartesian calibrated fea-
tures proposed originally for DCT domain. To extract the DCT domain features, we
compressed the image with quality factor 100.

9 We did some experiments with linear SVMs and never obtained better results. For
a discussion related to linear SVMs, see [22].

Y0 1f the w(di,d2,ds) = 1 for all d; and T = 255, then all p; would be the same and
the whole scheme would just minimize the number of embedding changes.
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for (i,j) in PIXELS { //function D is taken from (10)
Yp = X; Yp(i,j)++; rho_p(i,j) = D(X,Yp); //calculate emb. impact

Ym = X; Ym(i,j)--; rho_m(i,j) = D(X,Ym); //for each pizel
}
rho_min = min(rho_p, rho_m); //elementwise; use minimum for embedding
PIXELS_TO_CHANGE = minimize_emb_impact (LSB(X), rho_min, message)
Y =X, //start making changes in cover image

for (i,j) in PIXELS_TO_CHANGE { //order given by the NC wvisit. strategy
if ( model_correction_step_enabled ) {
Yp = Y; Yp(i,j)++; dp = D(X,¥p); Ym = Y; Ym(i,j)--; dm = D(X,¥m);
if ( dp<dm ) { Y(i,j)++; } else { Y(i,j)--; }
} else {
if ( rho_p(i,j)<rho_m(i,j) ) { Y(i,j)++; } else { Y(i,j)--; %
}

Fig. 3: Pseudo-code of the HUGO embedding algorithm as described in Section 4.3.

utilize it for steganalysis. By penalizing highly-populated features (in this case
features extracted from pixels with low differences d;,ds, and ds), we drive the
algorithm to hide the message into parts of the image difficult for Eve to model.
In practice, our choice of w(dy, da, ds) correlates the distribution of the message
bits with the local texture of the image.

Note that the distortion measure (10) is not additive in the sense of (1). This
is a significant deviation from the assumptions of Theorem 1, because for this
more general case near-optimal practical algorithms for minimizing such embed-
ding impact do not exist yet. To make this measure additive, we approximate
the costs of embedding change as

pij = DX, Y"), (12)

where Y%/ is the stego image obtained by changing the (i, j)th pixel of cover
image X. As will be seen later, this approximation has a crucial impact on the
detectability of the scheme.

4.3 Implementation details of HUGO

Figure 3 shows the pseudo-code of our implementation. On lines 1-5, the
algorithm calculates distortions corresponding to modifying each pixel by +1
and sets the embedding cost of pixel change (p; ;) to the minimum of these two
numbers (for saturated pixels, there is only one choice).

Once the positions of pixel changes are determined (either by simulating the
embedding by virtue of Theorem 1, or by using a practical algorithm, such as
the syndrome-trellis codes [6], (function minimize_emb_impact on line 6 of the
code)), there are two ways to ensure that the pixel’s LSB communicates the
message.



Without model correction: This version assumes that the assumption of
the Theorem 1 holds, which means that we cannot do any better than change
pixels to values determined in lines 1-5 (line 13 of the pseudo-code). The order
in which the pixels are changed does not matter.

With model correction (MC): Since our distortion measure D (10) does
not satisfy the assumptions of Theorem 1, we can further decrease the distortion
by changing pixels to values (remember that there are two ways to match pixels’
LSB to the desired bit) minimizing the overall distortion D(X,Y?), where Y
denotes the cover image X after changing the ith pixel (see lines 10-11 in the
pseudo-code). As will be seen in the experimental part below, the impact of
model correction on the security is significant. In this case of model correction,
the order in which the pixels requiring change of LSB are processed is important.
In the next subsection, we experimentally evaluate the following strategies: (S1)
top left to bottom right, (S2) from highest p; ; to lowest p; j, (S3) from lowest
pi; to highest p; ;, (S4) random order.

Finally we note that our implementation of HUGO in C++ with T' = 90,
the model correction step, and practical Syndrome-Trellis Code (STC) embeds
message with relative length 0.25bpp to image of size 512 x 512 in approximately
5s on Intel Core 2 Duo 2.8 GHz processor. We consider this time more than suit-
able for real applications. In practice, the algorithm may need to communicate a
small number of parameters in order to be able to decode the message correctly.
In HUGO, we need to communicate the size of the message in order to construct
the same STC code at the receiver side. This is usually done by reserving a
small portion of the image based on the stego key, where a known code is used
for embedding.

4.4 HUGO’s maturing

The HUGO algorithm has several parameters: the range of modeled differences
T, the parameters of the weight function v and o, and utilization of the model
correction step. All these parameters need to be set before the actual use of
the algorithm. Since we are not aware of any general guidance, we set them
experimentally while comparing different versions of the algorithm by blind ste-
ganalysis. Although it can be argued that the parameters will be tied to the
database, we prefer to see this step as tuning the algorithm to image source used
by Alice and Bob.

The parameter setting proceeds as follows: (a) set the parameter T', (b) find
suitable values of ¢ and v in (11), (c) set the the strategy of pixel visits. In
all experiments aimed to tune HUGO, the coding was simulated by virtue of
Theorem 1.

The parameter T’ was set to 7' = 90 (the model has more then 107 features),
causing more than 99% of the co-occurrences in the typical image to be covered
by the model. By this choice of T, we strongly believe that the detectability
of HUGO by SPAM features cannot be improved by increasing the range of
modeled differences. In fact, our experiments showed that the increase of the
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Fig. 4: Value of MMD (lower is better) plotted against parameters v and o for HUGO
with model correction and S1 visiting strategy. Results for other features and even
when MC step was not used were similar and are omitted due to space constraints.

range of modeled differences was not followed by a decrease of the classifier error
(most probably due to the curse of dimensionality).

The search for suitable parameters of the weight function (11) was performed
on a grid (o,7) € {(10%,29)|k € {-3,...,1},j € {—1,2}} for both versions of
the algorithm (with and without MC). The embedding payload was fixed to
0.25bpp. In order to reduce the complexity of the search, the detectability was
evaluated by means of the Maximum Mean Discrepancy [23]. Figure 4 shows
the MMD values for HUGO with the MC step and S1 visiting strategy. Due to
space constraints, we report graphs only for SPAM and WAM features with MC
step S1. All other graphs even for the case of Hugo without MC step were of
similar shape suggesting the choice parameters v and o to be reasonable. For all
experiments presented in the rest of this section, we chose v =4 and o = 10.

As we have already mentioned, the effect of the model correction on the
security is substantial. For fixed classification error Pg = 40% of an SVM-based
steganalyzer utilizing second-order SPAM features, HUGO with model correction
step increases the secure payload from 0.25bpp to 0.4bpp. This difference is
entirely due to the fact that our distortion measure is not additive. Since we do
not know yet how to do optimal coding for non-additive measures, the model
correction step is in this case a reasonably good remedy.

Finally, we have compared the strategies of pixel visits S1-S4 in the model
correction step by training SVM-based steganalyzer utilizing second order SPAM
features. From Figure 5 (a), strategy S2 seems to be the most secure wrt the
SPAM features. Model correction strategies S3 and S4 were performing slightly
worse than S2 and are not displayed. These results show that the model cor-
rection step should perform embedding changes from pixels causing the largest
distortion to pixels causing the least distortion.
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Fig. 5: (a) Comparison of security of different versions of HUGO by means of error Pg
of steganalyzers utilizing second-order SPAM features with 7" = 3. (b) Comparison
of different steganalytic features for detecting ordinary LSB matching with optimal
ternary coding and HUGO with MC step S2. All steganalyzers are targeted to a given
algorithm and message length.

4.5 HUGO'’s security

Figure 5 (a) compares the security of HUGO with simulated optimal coding
utilizing different model correction strategies. For S2, which seems to be the
best, we also report its practical implementation using syndrome-trellis code
with constraint height h = 10 (STC) [6]. All algorithms are compared to ordi-
nary LSB matching with optimal (simulated) ternary matrix embedding. The
reported quantity Pg is the error of SVM-based steganalyzers. We did not com-
pared HUGO to adaptive ternary LSB matching [14], or to MPSteg [3], because
the reported improvement in the security of both schemes over standard LSB
matching were not significant.

The impact of switching from the optimal (simulated) coding to the STC
coder (STC) on the detectability of HUGO is also interesting and interpretable.
Ideally, we would like to have code which would change each pixel with proba-
bility (2). To compare the effect of a practical coder for fixed distortion d, we
evaluate the coding loss I(d) = (copT — aacT)/@opT, Where appr is the pay-
load embedded by the optimal coder and asct is the payload embedded by a
practical algorithm while both of them achieve the same distortion d. Coding
loss 0 < I(d) < 1 tells us what portion of the ideal payload we are loosing due
to practical embedding algorithm. For STCs, I(d) was often around 3% — 7%
depending on p and h. This finding is consistent with Figure 5 (a).

According to Figure 5 (b), HUGO offers very high security. Even for payloads
as large as 0.30bpp, the error of all four steganalyzers targeted to detect HUGO
with optimal coding and MC step is above 40%. It is expected that secure payload



may be higher for cover sources without such strong pixel dependencies as present,
in BOWS2 database from scaling the original images.

Even though the improvement obtained from CDF features is significant
when compared to second-order SPAM, the relative payload for which the scheme
remains undetectable stays essentialy the same. This threshold may point to
amount of pixels that are not modeled by either feature set (SPAM or DCT
based). However, including such pixels in the steganalytic model may not be
as beneficial as including them into steganographic model due to the statistical
learning problem. Such pixels are expected to be part of very noisy end textured
areas which will be challenging for steganalysis.

Last, but not least, if we compare HUGO with MC step S2 to the state-
of-the-art LSB matching with optimal ternary coding, we can see that by using
HUGO, Alice gains more than 700% of the capacity at Pz = 40% on the BOWS2
database.

5 Conclusion

This paper presented a complete method for designing practical and secure
steganographic schemes for real digital media. The main design principle is to
minimize a suitably-defined distortion caused by the embedding. Since the dis-
tortion function is an essential input of the method, a large part of the paper was
devoted to its design. We recommended to use weighted difference of extended
state-of-the-art feature vectors already used in steganalysis. The extension of
the feature sets, which can contain even 107 features, is important to avoid
overfitting to a particular steganalyzer. The use of such large feature sets was
justified by explaining the fundamental difference of their role in steganography
and steganalysis.

The whole approach was demonstrated by designing a new steganographic
algorithm for spatial domain (called HUGO), where the image model was de-
rived from SPAM features. Parts of the model, i.e., the weights, responsible for
detection of LSB matching were identified using criteria optimized in Fisher
Linear Discriminant, which motivated the construction of an ad hoc distortion
measure. The coding itself was performed using the syndrome-trellis codes which
enable very fast implementation of the scheme in practice for arbitrary set of
embedding costs p.

The security of HUGO was verified and compared to prior art (LSB match-
ing) on a wide range of payloads for four different features sets. In contrast with
LSB matching, HUGO allows the embedder to hide 7x longer message with
the same level of security level. By concrete numbers, the payload of HUGO at
detection error 40% is 0.3bpp, while for LSB matching it is 0.04bpp.
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