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Imagerie laser

Nous élaborons une méthode originale d'imagerie directe d'un objet. Il s'agit d'une méthode de type dérivée topologique, destinée à inverser des mesures contenant l'amplitude des ondes rétrodiffusées à la suite d'illuminations laser.

Introduction

L'identification d'objets par un système d'imagerie laser est un sujet aux domaines d'application variés, comme la détection d'engins explosifs improvisés (IED) ou de tumeurs dans le derme. Dans ce contexte motivant, nous élaborons une méthode d'imagerie directe (non itérative) par un tel système. Ainsi, nous développons un algorithme d'inversion de mesures d'ondes rétrodiffusées par l'objet à identifier, à la suite d'illuminations laser. Cette technique est monofréquentielle : une seule fréquence est exploitée ; elle est monostatique : les sources d'illumination et les récepteurs sont confondus. Comme en pratique la vue est partielle (une partie de l'objet n'est pas illuminée), nous supposerons que les mesures sont prises sur une droite. Enfin, comme pour les applications, nous supposerons que les mesures contiennent l'amplitude (ou l'intensité), mais ne contiennent pas la phase. Comme les méthodes d'inversion directes usuelles (MUSIC [START_REF] Ammari | An Introduction to Mathematics of Emerging Biomedical Imaging[END_REF], backpropagation method, Kirchhoff migration) reposent sur la connaissance de la phase, le principal intérêt et l'originalité de notre méthode concerne ce point.

Pour ajouter de l'information, de façon non restrictive par rapport aux applications, nous supposons que l'on peut prendre les mesures sur une autre droite, parallèle à la première. Ainsi, pour chaque angle d'éclairage, nous disposons de deux mesures d'amplitude prises dans la même direction. En approximation haute fréquence, le passage d'une mesure d'amplitude à l'autre s'obtient par une équation de transport ; ceci cache une certaine notion de phase dans le rapport entre les deux mesures. L'idée est de trouver les petits disques, qui, éclairés, rétrodiffusent une onde dont la phase permet de ≪ transporter ≫ les premières mesures vers les deuxièmes. En plus d'utiliser directement les mesures, cette idée permet d'exploiter l'information cachée au sujet de la phase. Cette méthode peut être formulée à l'aide d'un coût que l'on cherche à rendre petit. La ≪ validité ≫ d'un point est alors testé par la valeur de la dérivée topologique du coût : un point est bien placé par rapport à l'objet recherché si cette dérivée est très négative. Il s'agit ainsi d'une approche par analyse asymptotique topologique, dans le même esprit que celle conduite dans [START_REF] Auroux | Image processing by topological asymptotic expansion[END_REF][START_REF] Ammari | Imaging schemes for perfectly conducting cracks[END_REF]. 

∇ • 1 µ * 1 1 D + 1 µ 0 1 1 R 2 \D ∇u + ω 2 (ε * 1 1 D + ε 0 1 1 R 2 \D )u = 0, avec une condition de radiation sortante sur l'onde diffractée u dif [D](η, x) := u[D](η, x) -u inc (η, x), x ∈ R 2 \ D.
Numériquement, ce problème est résolu par la méthode des équations intégrales, comme suggéré dans [START_REF] Bellet | Modèle électromagnétique d'objet dissimulé[END_REF].

1.2 Problème inverse. On fixe deux droites de mesures parallèles en champ lointain : Γ 0 : 

x 2 = γ 0 et Γ 1 : x 2 = γ 1 ,
A 1 [D ε (z)](x η ) = A 0 [D * ](p) γ 0 -z 2 γ 1 -z 2 1/2 1 -ε t η 4 |x η -z| |p η -z| + O ε 2 où x η = z + γ 1 -z 2 η 2 η = Γ 1 ∩ (z, η), et t η = -γ 1 -γ 0 η 2
est le temps de trajet.

Paramétrons par x = (x 1 , γ 1 ) : 

η(x) = z-x |z-x| , p(x) = z + γ 0 -z 2 γ 1 -z 2 (x -z), et posons a 0 (x, z) := A 0 [D * ](p(x)) γ 0 -z 2 γ 1 -z 2 1/2 , a 1 (x, z) := -1 4 a 0 (x, z) γ 1 -γ 0 γ 0 -z 2
(z) = 1 a 0 (•, z) -A 1 [D * ] a 0 (•, z) -A 1 [D * ], a 1 (•, z) .

1 Position du problème 1 . 1

 11 Problème direct. On considére l'espace libre R 2 avec permittivité ε 0 > 0 et perméabilité µ 0 > 0. On ajoute dans ce milieu une inclusion D de permittivité ε * > 0 et perméabilité µ * > 0. D est supposée près de l'origine. On éclaire D par un laser, i.e., une onde incidente plane d'angle unitaire η, de pulsation ω > 0 : u inc (η, x) = e ik 0 η•x . Le nombre d'onde associé est k 0 := ω √ ε 0 µ 0 , et la longueur d'onde du laser est λ := 2π k 0 . Le nombre d'onde associé à D est k * := ω √ ε * µ * . L'onde qui se propage est alors u[D](η, x) = u(x), solution de :

  où les constantes γ 0 , γ 1 > 0 sont grandes par rapport à la longueur d'onde, avec γ 0γ 1 raisonnable (ni trop grand, ni trop petit). En éclairant l'objet D avec l'angle x/ |x|, l'amplitude rétrodiffusée enx est A[D](x) = |u dif [D](x/ |x| , x)|, notée A 0 [D] et A 1 [D] respectivement sur Γ 0 et Γ 1 .On suppose qu'un objet D * est situé à proximité de l'origine, avec pour paramètres électromagnétiques ε * > 0 et µ * > 0 connus. On suppose que l'on mesure A 0 [D * ] et A 1 [D * ]. Le problème inverse que l'on souhaite résoudre consiste à retrouver l'objet D * à partir des mesures, en inversant A[D * ] par A, i.e. en résolvant A[D] = A[D * ], sur Γ 0 ∪ Γ 1 . 2 Méthode de dérivée topologique 2.1 Démarche. Par approximation haute fréquence, on approche l'amplitude A 1 [D * ] en transportant l'amplitude A 0 [D * ], avec une certaine phase ϕ[D * ] : si A satisfait l'équation de transport : ∇A • ∇ϕ[D * ] + 1 2 A∆ϕ[D * ] = 0, avec A = A 0 [D * ] sur Γ 0 , alors la trace de A sur Γ 1 approche A 1 [D * ]. D'autre part, en transportant A 0 [D * ], avec la phase connue ϕ[D ε (z)] issue de l'onde diffractée par un disque D ε (z) de centre z et de petit rayon ε > 0 : ∇A • ∇ϕ[D ε (z)] + 1 2 A∆ϕ[D ε (z)] = 0, avec A = A 0 [D * ] sur Γ 0 , alors on obtient sur Γ 1 une amplitude A 1 [D ε (z)]. On a alors l'intuition que z est un point bien positionné par rapport à l'objet D * lorsque l'amplitude transportée A 1 [D ε (z)] est proche de l'amplitude mesurée A 1 [D * ]. L'idée originale de reconstruction que nous proposons consiste à chercher les z qui rendent petite la quantité A 1 [D ε (z)] -A 1 [D * ] . Nous obtenons une expression asymptotique de A 1 [D ε (z)] par la méthode des caractéristiques. Puis un développement asymptotique de A 1 [D ε (z)] -A 1 [D * ] permet d'identifier une dérivée topologique à rendre très négative pour estimer D * . 2.2 Dérivée topologique. La résolution de l'équation de transport par la méthode des caractéristiques conduit au théorème suivant. Théorème 2.1 Pour tout p ∈ Γ 0 , en posant η = z-p |z-p| l'angle d'éclairage, le transport de la mesure A 0 [D * ](p) vers Γ 1 , le long de la direction de rétropropagation (z, η), avec phase ϕ[D ε (z)](η, •), conduit à l'amplitude :

1

  |x-z| . Pour un domaine D, notons A 1 [D] l'amplitude issue du transport de A 0 [D * ] sur Γ 1 , dans la direction de rétropropagation, avec la phase ϕ[D] de l'onde diffractée par D. Le théorème précédent justifie le résultat asymptotique suivant : Théorème 2.2 (Dérivée topologique) La dérivée topologique de l'applica-tion D -→ A 1 [D] -A 1 [D * ] , évaluée en z, dans la direction le disque unité, est : d

2. 3

 3 Méthode d'inversion directe. Si le petit disque D ε (z) est bien placé, i.e. ≪ près ≫ de D * alors la phase ϕ[D ε (z)] approche la phase ϕ[D * ], et donc A 1 [D ε (z)] approche A 1 [D * ]. L'approche originale que nous proposons pour reconstruire la forme D* consiste à minimiser D → A 1 [D] -A 1 [D * ] ,parmi les petits disques. Le développement asymptotique du théorème :A 1 [D ε (z)] -A 1 [D * ] = a 0 (•, z) -A 1 [D * ] + εd(z) + O ε 2 , suggère que A 1 [D ε (z)] -A 1 [D * ]est petit lorsque la dérivée topologique d(z) est négative et très grande en valeur absolue. Pour estimer D * , on trace ainsi les lignes de niveau de z -→ d(z), puis on en choisit une de niveau d 0 arbitraire. Celle-ci peut servir de point départ pour un algorithme itératif.
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