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Université Bordeaux IV

Charles Bouveyron
Laboratoire SAMM
Université Paris 1
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Abstract

This paper presents the R package HDclassif which is devoted to the clustering
and the discriminant analysis of high-dimensional data. The classification methods
proposed in the package result from a new parametrization of the Gaussian mixture
model which combines the idea of dimension reduction and model constraints on the
covariance matrices. The supervised classification method using this parametrization
is called high dimensional discriminant analysis (HDDA). In a similar manner, the
associated clustering method is called high dimensional data clustering (HDDC) and
uses the expectation-maximization algorithm for inference. In order to correctly fit
the data, both methods estimate the specific subspace and the intrinsic dimension of
the groups. Due to the constraints on the covariance matrices, the number of pa-
rameters to estimate is significantly lower than other model-based methods and this
allows the methods to be stable and efficient in high dimensions. Two introductory
examples illustrated with R codes allow the user to discover the hdda and hddc func-
tions. Experiments on simulated and real datasets also compare HDDC and HDDA
with existing classification methods on high-dimensional datasets. HDclassif is a free
software and distributed under the general public license, as part of the R software
project.

Keywords: model-based classification, high-dimensional data, discriminant analysis, clus-
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1. Introduction

Classification in high-dimensional spaces is a recurrent problem in many fields of science,
for instance in image analysis or in spectrometry. Indeed, the data used in these fields
are often high-dimensional and this penalizes most of the classification methods. In this
paper, we focus on model-based approaches. We refer to Bock (1996) for a review on
this topic. In this context, popular classification methods are based on the Gaussian
mixture model (McLachlan and Peel 2000) and show a disappointing behavior when the
size of the dataset is too small compared to the number of parameters to estimate. This
well-known phenomenon is called the curse of dimensionality and was first identified by
Bellman (1957). We refer to Pavlenko (2003); Pavlenko and Rosen (2001) for a theoretical
study of the effect of dimension in the model-based classification. To avoid over-fitting, it
is necessary to find a balance between the number of parameters to estimate and the gen-
erality of the model. Recently, Bouveyron, Girard, and Schmid (2007a,b) have proposed a
new parametrization of the Gaussian mixture model which takes into account the specific
subspace around which each group is located. This parametrization therefore limits the
number of parameters to estimate while proposing a flexible modeling of the data. The
use of this re-parametrization in discriminant analysis has yield a new method called high
dimensional discriminant analysis (HDDA, Bouveyron et al. 2007b) and the associated
clustering method has been named high dimensional data clustering (HDDC, Bouveyron
et al. 2007a).

The R (R Development Core Team 2011) package HDclassif (currently in version 1.2) im-
plements these two classification methods for the clustering and the discriminant analysis
of high-dimensional data. This paper briefly reviews in Section 2 the methodology of the
HDDA and HDDC methods. Section 3 focuses on technical details of the learning and
predicting routines. The practical use of the package is illustrated and compared to well-
established classification packages in Section 4 on introductory and real-world datasets.
Section 5 presents applications of the package to optical character recognition and to
mass-spectrometry. Finally, some concluding remarks are provided in Section 6.

The package is available from the Comprehensive R Archive Network at http://CRAN.

R-projects.org/package=HDclassif.

2. Gaussian models for high-dimensional data classification

Classification is a statistical field which includes two techniques: supervised and unsuper-
vised classifications. Supervised classification, also called discriminant analysis, aims to
associate a new observation x with one of K known classes through a learning set of labeled
observations. Conversely, unsupervised classification aims to segment a set of unlabeled
observations into K homogeneous groups. Unsupervised classification is also known as
clustering. We refer to McLachlan (1992) for more details on the general classification
framework.

In both contexts, a popular approach is the use of the Gaussian mixture model which

http://CRAN.R-projects.org/package=HDclassif
http://CRAN.R-projects.org/package=HDclassif
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relies on the assumption that each class can be represented by a Gaussian density. This
approach assumes that the observations {x1, ..., xn} are independent realizations of a ran-
dom vector X ∈ Rp with density:

f(x, θ) =

K∑
k=1

πkφ(x;µk,Σk), (1)

where πk is the mixture proportion of the kth component and φ is the Gaussian den-
sity parametrized by the mean µk and the covariance matrix Σk. This model gives rise
in the supervised context to the well-known quadratic discriminant analysis (QDA). Un-
fortunately, this method requires the estimation of a very large number of parameters
(proportional to p2) and therefore faces to numerical problems in high-dimensional spaces.
Hopefully, due to the empty space phenomenon (Scott and Thompson 1983), it can be
assumed that high-dimensional data live around subspaces with a dimension lower than p.
Recently, Bouveyron et al. (2007a,b) have introduced a new parametrization of the Gaus-
sian mixture model which takes into account the specific subspace around which each
cluster is located and therefore limits the number of parameters to estimate.

2.1. The Gaussian model [akjbkQkdk] and its submodels

As in the classical Gaussian mixture model framework (McLachlan 1992), we assume
that class conditional densities are Gaussian Np(µk,Σk) with means µk and covariance
matrices Σk , for k = 1, ...,K. Let Qk be the orthogonal matrix with the eigenvectors of
Σk as columns and ∆k be the diagonal matrix which contains the eigenvalues of Σk such
that:

∆k = Qt
k ΣkQk. (2)

The matrix ∆k is therefore the covariance matrix of the kth class in its eigenspace. It is
further assumed that ∆k can be divided into two blocks:

∆k =



ak1 0
. . .

0 akdk

0

0

bk 0
. . .

. . .

0 bk



 dk

 (p− dk)

(3)

with akj > bk, j = 1, ..., dk, and where dk ∈ {1, . . . , p−1} is unknown. This Gaussian model
will be denoted to by [akjbkQkdk] in the sequel. With these notations and from a practical
point of view, one can say that the parameters ak1, ..., akdk model the variance of the actual
data of the kth class and the unique parameter bk can be viewed as modeling the variance
of the noise. The dimension dk can be considered as well as the intrinsic dimension of the
latent subspace of the kth group which is spanned by the dk first column vectors of Qk.
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Let us remark that if we constrain dk to be equal to (p− 1) for all k = 1, ...,K, the model
[akjbkQkdk] then reduces to the classical Gaussian mixture model with full covariance
matrices for each mixture component which yields QDA in the supervised framework.

By fixing some parameters to be common within or between classes, it is possible to obtain
particular models which correspond to different regularizations. Fixing the dimensions dk
to be common between the classes yields the model [akjbkQkd] which is the model proposed
in Tipping and Bishop (1999) in the unsupervised classification framework. As a conse-
quence, the modeling presented above encompasses the mixture of probabilistic principal
component analyzers introduced in Tipping and Bishop (1999) and extended in McLach-
lan, Peel, and Bean (2003). It is also important to notice that this modeling is closely
related with the recent works of McNicholas and Murphy (2008a,b); Baek, McLachlan, and
Flack (2009) and Bouveyron and Brunet (2011). Moreover, our approach can be combined
with a “parsimonious model” strategy to further limit the number of parameters to esti-
mate. It is indeed possible to add constraints on the different parameters to obtain more
regularized models. Fixing the first dk eigenvalues to be common within each class, we
obtain the more restricted model [akbkQkdk]. The model [akbkQkdk] often gives satisfying
results, i.e. the assumption that each matrix ∆k contains only two different eigenvalues,
ak and bk, seems to be an efficient way to regularize the estimation of ∆k. The good
practical behavior of this specific model can be explained by the fact that the variance in
the estimation of ak, which is the mean of the ak1, ..., akdk , is less than the variance in the
separate estimations of the ak1, ..., akdk . Therefore, the bias introduced by this assump-
tion on the model seems to be balanced by the limited variance in the estimation of model
parameters. Another type of regularization is to fix the parameters bk to be common be-
tween the classes. This yields the models [akjbQkdk] and [akbQkdk] which assume that the
variance outside the class specific subspaces is common. This can be viewed as modeling
the noise outside the latent subspace of the group by a single parameter b which could
be appropriate when the data are obtained in a common acquisition process. Among the
28 models proposed in the original articles (Bouveyron et al. 2007a,b), 14 models have
been selected to be included in the package for their good behaviors in practice. Table 1
lists the 14 models available in the package and their corresponding complexity (i.e. the
number of parameters to estimate). The complexity of classical Gaussian models is also
provided in a comparison purpose. The Full-GMM model refers to the classical Gaussian
mixture model with full covariance matrices, the Com-GMM model refers to the Gaussian
mixture model for which the covariance matrices are assumed to be equal to a common
covariance matrix (Sk = S, ∀k), Diag-GMM refers to the Gaussian mixture model for
which Σk = diag(s2k1, ..., s

2
kp) with s2k ∈ Rp

+ and Sphe-GMM refers to the Gaussian mix-

ture model for which Σk = s2kIp with s2k ∈ R+. Remark that the Com-GMM model is the
model of the popular linear discriminant analysis (LDA) in the supervised context.

2.2. High dimensional discriminant analysis

The use of the models presented in the previous paragraph has given birth to a method for
high-dimensional discriminant analysis called HDDA (Bouveyron et al. 2007b). HDDA is
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Model
Number of
parameters

Asymptotic
order

Nb of prms K = 4,
d = 10, p = 100

[akjbkQkdk] ρ+ τ̄ + 2K +D Kpd 4231
[akjbQkdk] ρ+ τ̄ +K +D + 1 Kpd 4228
[akbkQkdk] ρ+ τ̄ + 3K Kpd 4195
[abkQkdk] ρ+ τ̄ + 2K + 1 Kpd 4192
[akbQkdk] ρ+ τ̄ + 2K + 1 Kpd 4192
[abQkdk] ρ+ τ̄ +K + 2 Kpd 4189
[akjbkQkd] ρ+K(τ + d+ 1) + 1 Kpd 4228
[akjbQkd] ρ+K(τ + d) + 2 Kpd 4225
[akbkQkd] ρ+K(τ + 2) + 1 Kpd 4192
[abkQkd] ρ+K(τ + 1) + 2 Kpd 4189
[akbQkd] ρ+K(τ + 1) + 2 Kpd 4189
[abQkd] ρ+Kτ + 3 Kpd 4186
[ajbQd] ρ+ τ + d+ 2 pd 1360
[abQd] ρ+ τ + 3 pd 1351

Full-GMM ρ+Kp(p+ 1)/2 Kp2/2 20603
Com-GMM ρ+ p(p+ 1)/2 p2/2 5453
Diag-GMM ρ+Kp 2Kp 803
Sphe-GMM ρ+K Kp 407

Table 1: Properties of the HD models and some classical Gaussian models: K is the number
of components, d and dk are the intrinsic dimensions of the classes, p is the dimension of
the observation space, ρ = Kp + K − 1 is the number of parameters required for the
estimation of means and proportions, τ̄ =

∑K
k=1 dk[p− (dk +1)/2] and τ = d[p− (d+1)/2]

are the number of parameters required for the estimation of orientation matrices Qk, and
D =

∑K
k=1 dk. For asymptotic orders, the assumption that K � d� p is made.

made of a learning step, in which model parameters are estimated from a set of learning
observations, and a classification step which aims to predict the class belonging of new
unlabeled observations. In the context of supervised classification, the learning data are
complete, i.e. a label zi indicating the class belonging is available for each observation xi of
the learning dataset. The estimation of model parameters is therefore direct through the
maximum likelihood method and parameter estimators are closed-form. Estimators for
model parameters can be found in Bouveyron et al. (2007b). Once the model parameters
learned, it is possible to use HDDA for predicting the class of a new observation x using the
classical maximum a posteriori (MAP) rule which assigns the observation to the class with
the largest posterior probability. Therefore, the classification step mainly consists in com-

puting, for each class k = 1, ...,K, P(Z = k|X = x) = 1
/∑K

`=1 exp
(
1
2(Γk(x)− Γ`(x))

)
where the cost function Γk(x) = −2 log(πkφ(x;µk,Σk)) has the following form in the case
of the model [akbkQkdk]:

Γk(x) =
1

ak
‖µk − Pk(x)‖2 +

1

bk
‖x− Pk(x)‖2 + dk log(ak) + (p− dk) log(bk)− 2 log(πk), (4)
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where Pk is the projection operator on the latent subspace of the kth class. Let us notice
that Γk(x) is mainly based on two distances: the distance between the projection of x on
the latent subspace and the mean of the class and the distance between the observation
and the latent subspace. This function favors the assignment of a new observation to the
class for which it is close to the subspace and for which its projection on the class subspace
is close to the mean of the class. The variance terms ak and bk balance the importance of
both distances.

2.3. High dimensional data clustering

In the unsupervised classification context, the use of the models presented above have
given birth to a model-based clustering method called HDDC (Bouveyron et al. 2007b).
Conversely to the supervised case, the data at hand in the clustering context are not
complete (i.e. the labels are not observed for the observations of the dataset to cluster).
In such a situation, the direct maximization of the likelihood is an intractable problem
and the expectation-maximization (EM) algorithm (Dempster, Laird, and Rubin 1977)
can be used to estimate the mixture parameters by iteratively maximizing the likelihood.
The EM algorithm alternates between the following E and M steps at each iteration q:

• The E step computes the posterior probabilities t
(q)
ik = P(Z = k|X = xi) through

Equation (4) using the model parameters estimated at iteration q − 1,

• The M step updates the estimates of model parameters by maximizing the expec-

tation of the complete likelihood conditionally to the posterior probabilities t
(q)
ik .

Update formulas for model parameters can be found in Bouveyron et al. (2007b).

The EM algorithm stops when the difference between the estimated values of the likelihood
at two consecutive iterations is smaller than a given threshold.

3. Learning and predicting routines

This section first focuses on technical issues related to the inference in HDDA and HDDC.
In a second part, details are given about the inputs and outputs of both methods.

3.1. Implementation issues

We discuss here the implementation issues related to the determination of the hyper-
parameters and to the case where the number of observations n is smaller than the space
dimension p.

Estimation of the hyper-parameters

The use of maximum likelihood or the EM algorithm for parameter estimation makes the
methods HDDA and HDDC almost automatic, except for the estimation of the hyper-
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parameters d1, . . . , dk and K. Indeed, these parameters cannot be determined by max-
imizing the likelihood since they both control the model complexity. The estimation of
the intrinsic dimensions d1, . . . , dk is a difficult problem with no unique technique to use.
In Bouveyron et al. (2007b), the authors proposed a strategy based on the eigenvalues
of the class conditional covariance matrix Σk of the kth class. The jth eigenvalue of Σk

corresponds to the fraction of the full variance carried by the jth eigenvector of Σk. The
class specific dimension dk, k = 1, ..., K, is estimated through Cattell’s scree-test (Cattell
1966) which looks for a break in the eigenvalues scree. The selected dimension is the one
for which the subsequent eigenvalue differences are smaller than a threshold. The thresh-
old can be provided by the user, selected through cross-validation in the supervised case
or using BIC (Schwarz 1978) in the unsupervised case. In the clustering case, the number
of clusters K may have to be estimated as well and can be chosen thanks to the BIC
criterion. In the specific case of the models [akbkQkdk], [akbkQkd], [abQkdk] and [abQkd],
it has been recently proved by Bouveyron, Celeux, and Girard (2010) that the maximum
likelihood estimate of the intrinsic dimensions dk is asymptotically consistent.

Case nk < p

Furthermore, in the special case where the number of observations of a class, nk, is smaller
than the dimension p, the parametrization presented in the previous section allows to use
a linear algebra trick. Since the data do not live in a subspace larger than the number
of observations it contains, the intrinsic dimension dk cannot be larger than the number
of observations of the class. Then, there is no need to compute all the eigenvalues and
eigenvectors of the empirical covariance matrix Wk = X t

kXk, where Xk is the nk × p
matrix containing the centered observations of the kth class. Indeed, it is faster and more
numerically stable to calculate, when nk < p, the eigenvalues and eigenvectors of the inner
product matrix XkX t

k which is a nk × nk matrix. Let νkj be the eigenvector associated to
the jth eigenvalue λkj of the matrix XkX t

k, then for j = 1, . . . , dk:

XkX t
kvkj = λkjνkj .

Therefore, the eigenvector of Wk associated to the eigenvalue λkj can be obtained by
multiplying νkj by X t

k. Using this computational trick, it has been possible to classify a
dataset of 10 classes with 13 observations described in a 1024-dimensional space for each
class. Furthermore, it has been noticed in this case a reduction by a factor 500 of the
computing time compared to the classical approach.

3.2. Input options

The main routines hdda and hddc have the following common options:

• model: 14 models can be used in those functions: 12 models with class specific
orientation matrix (summarized in Table 2) and two models with common covariance
matrix: the models [ajbQd] and [abQd]. The list of all available models is given on
Table 1. The most general model is [akjbkQkdk], all the parameters are class-specific
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Free dimensions Common dimensions

Class specific noise Common noise Class specific noise Common noise

Free variances [akjbkQkdk] [akjbQdk] [akjbkQkd] [akjbQkd]

Isotropic variances [akbkQkdk] [akbQkdk] [akbkQkd] [akbQkd]

Homoscedastic variances [abkQkdk] [abQkdk] [abkQkd] [abQkd]

Table 2: Models with class specific orientation matrix.

and each class subspace has as many parameters as its intrinsic dimension, it is the
default model.

Both hdda and hddc can select, among all possible models, the most appropriate one
for the data at hand. The model with the largest BIC value is kept. It is possible
to run all models using the option model= "ALL".

• d: This parameter specifies how the choice of the intrinsic dimensions is done:

3 Cattell: Cattell’s scree-test is used to find the intrinsic dimension of each class.
This is the default value of d. If the model is with common dimensions, the
scree-test is done on the covariance matrix of the whole dataset.

3 BIC: The intrinsic dimensions are selected with the BIC criterion. See also Bou-
veyron et al. (2010) for a discussion of this topic.

3 CV: For hdda only. A V-fold cross-validation (CV) can be done in order to
select the best threshold or the best common dimension (for models with com-
mon dimension only). The V-fold CV is done for each dimension (respectively
threshold) in the argument cv.dim (resp. cv.threshold), then the dimension
(resp. threshold) that gives the best good classification rate is kept. The dataset
is split in cv.vfold (default is 10) random subsamples, then CV is done for
each sample: each of them is used as validation data while the remaining data
is used as training data. If cv.vfold is equal to the number of observations,
then this CV is equivalent to a leave-one-out.

• cv.dim, cv.threshold and cv.vfold: These parameters are only used if d = "CV".
The first two are vectors that specify the different dimensions (default is {1, . . . , 10})
or thresholds (default is {0.001, 0.005, 0.01, 0.05, 0.1, 0.2, . . . , 0.9}) for which the
cross-validations have to be done. The last one specifies the number of samples used
in the V-fold CV, its default value is 10.

• com_dim: It is used only for common dimensions models. The user can give the
common dimension he wants. If used, it must be an integer. Its default value is set
to NULL.

• threshold: The threshold used in Cattell’s scree-test. The default value is 0.2, which
corresponds to 0.2 times the highest difference between two successive eigenvalues.
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• scaling: Logical: whether to center and scale the variables of the dataset or not.
By default, the data are not scaled (scaling = FALSE).

• graph: It is for comparison sake only, when several estimations are run at the same
time (either when using several models, or when using cross-validation to select the
best dimension/threshold). If graph = TRUE, the plot of the results of all estimations
is displayed. Default value is FALSE.

• LOO: For hdda only. If TRUE, it returns results (classes and posterior probabilities)
for leave-one-out cross-validation.

The routine hddc has the additional following options:

• K: It designates the number of clusters for which the classification has to be done.
The algorithm selects the result with the maximum BIC value. Default is 1:10 which
means that the clustering is done for one to ten classes and then the solution with
the largest BIC value is kept.

• itermax: The maximum number of iterations, default is 60.

• eps: Defines the threshold value of the stopping criterion. The algorithm stops when
the difference between two successive log-likelihoods is below this threshold, default
is 10−3.

• algo: Three algorithms can be used:

3 EM: The default value. The standard EM algorithm is used.

3 CEM: Classification EM (Celeux and Govaert 1992) is used to have a faster
convergence: at each step, a cluster is allocated to each observation using the
maximum a posteriori rule.

3 SEM: Stochastic EM (Celeux and Diebolt 1985) is used to avoid initialization
problems and to try not to stop in a local maximum of the log-likelihood. At
each iteration, it allocates a cluster to each observation using a multinomial
distribution of probability tik (the posterior probability that the observation i
belongs to the group k).

• init: There are five initialization:

3 kmeans: The initial class of each observation is provided by the k-means al-
gorithm; it is done using the function kmeans with 50 maximum iterations, 4
starts and the default algorithm. This is the default initialization of hddc. Note
that the user can parametrize kmeans using the ... argument in hddc.

3 param: It is an initialization of the parameters. It was proposed by McLachlan
and Peel (2000), they suggest to set the proportions πk of the mixture to 1/K
and generate the means µk accordingly to a multivariate Gaussian distribution
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N (m,S) where m and S are respectively the empirical mean and the covariance
matrix of the whole dataset. The covariance matrices Σk are finally initialized
to S.

3 mini-em: The algorithm is run m times, doing each times nb iterations with a
random initialization; the default is 5 times with 10 iterations. Then the result
with the highest log-likelihood is kept as the initialization of the algorithm. The
parameters m and nb can be set with the mini.nb argument.

3 random: The group memberships are randomly sampled using a multinomial
distribution with equal prior probabilities.

3 A prior class vector : The user can also provide his own initialization by giving
a vector of group memberships.

• mini.nb: This parameter settles the mini-em initialization, it is a vector of length
2, containing m and nb, its default value is (5, 10).

The function predict.hdc, which computes the class prediction of a dataset with the
parameters previously obtained using either the function hdda or hddc, may also take
another argument:

• cls: This argument takes the original class vector of the dataset, it is optional and
only for comparison sake (see Section 3.3 for further explanations).

The function plot.hdc uses the parameters obtained using hdda or hddc. It may also take
two arguments:

• method: The method used to select the intrinsic dimension. It can be "BIC" or
"Cattell". By default it takes the method used when obtaining the parameters
using hdda or hddc.

• threshold: The threshold for Cattell’s scree-test. The default is the one used when
obtaining the parameters using hdda or hddc.

3.3. Output

The routines hdda and hddc have the following common outputs:

• All the estimated model parameters:

� a: The variance parameters within the class-specific subspaces.

� b: The variance parameters outside the class-specific subspaces.

� d: The intrinsic dimensions of the classes.

� prop: The proportions of the classes.

� mu: The means of the classes.

� ev: The eigenvalues of each Σk, the covariance matrix of the classes.

� Q: The orthogonal matrices defining the orientation of the classes.
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• scaling: Contains the mean and the standard deviation of the original dataset, if
scaled.

• BIC: The BIC value of the estimation.

Also, hddc has the following specific outputs:

• class: The cluster vector obtained with HDDC.

• posterior: The n×K matrix giving the posterior probability tik that the observa-
tion i belongs to the group k.

• loglik: The vector of the log-likelihood at each iteration.

The routine predict.hdc gives the following results:

• class: The vector of the classification result.

• posterior: The n×K matrix giving the posterior probability tik that the observa-
tion i belongs to the class k.

• If the initial class vector is given to the argument cls then:

3 The correct classification rate and this confusion matrix are shown on the R
console.

3 confusion: The confusion matrix of the classification is given in the output
object.

The function plot.hdc shows either the graph of Cattell’s scree-test or the graph of the
dimensions selection using the BIC criterion. Also, a print method has been implemented
to sum up the main parameters of the model.

4. Practical examples in R

This section aims to illustrate both the use and the main features of the methods HDDA
and HDDC through the package HDclassif. Two introductory examples, which can be
directly run from the package using the command demo(HDclassif), are first presented.
The last experiments of this section focus on the numerical advantages of both HDDA and
HDDC.

4.1. HDDA: an introductory example

To introduce the supervised classification method HDDA, we first use the wine dataset
that can be found in the package. This dataset is the result of a chemical analysis of
wines from the same region in Italy but derived from K = 3 different crops. There are
n = 178 observations and the p = 13 variables are constituents found in each of the three
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1 2 3 4 5 6 7 8 9 10 11 12 13 14

BIC for all models
(chosen model=AJBQD)

models

BI
C

−1
62

0
−1

58
0

−1
54

0
−1

50
0

−1
46

0
−1

42
0

Figure 1: This graph summarizes the results of the estimation of the learning sample
of the wine dataset. It gives the BIC values for all HDDA models. The match between
the numbers and the models is given in the outputs of the subsection First results in
Section 4.1.

categories of wine. As the variables are from very different nature, some being much larger
than others, we choose to center and scale the dataset, which consists to put the mean
to 0 and the standard deviation to 1 for each variable, using the option scaling = TRUE.
The following example can be run using the command demo(hdda).

First results

The dataset is split into two different samples. The first one is used to learn the model
while the second will be used to test the method performance. The learning dataset is
made of 40 randomly selected observations while the test is made of the 138 remaining
ones. The parameters are obtained using the function hdda on the learning dataset. We
use the option model = "all" to select the best model with respect to the BIC criterion
among all HDDA models. Also, in order to see clearly the BIC differences between the
different models, we use the option graph = TRUE to plot these results. They are showed on
Figure 1. Then, the prediction is done on the testing dataset using the function predict.
The R code used and the results of the classification are shown below:

R> data(wine)

R> w <- wine[, -1]

R> cls <- wine[, 1]

R> set.seed(1)

R> ind <- sample(178, 40)
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R> prms <- hdda(w[ind, ], cls[ind], scaling = TRUE,

+ model = "all", graph = TRUE)

# : Model BIC

1 : AKJBKQKDK -1481.539

2 : AKBKQKDK -1475.969

3 : ABKQKDK -1474.783

4 : AKJBQKDK -1481.384

5 : AKBQKDK -1475.814

6 : ABQKDK -1474.627

7 : AKJBKQKD -1572.024

8 : AKBKQKD -1572.666

9 : ABKQKD -1577.823

10 : AKJBQKD -1613.758

11 : AKBQKD -1614.4

12 : ABQKD -1619.557

13 : AJBQD -1419.712

14 : ABQD -1420.275

SELECTED: Model AJBQD, BIC=-1419.712.

First of all, one can see that for this sample, the model which best fits the data with
respect to the BIC criterion is one of the most constrained, with a covariance matrix being
common for all classes. Remark that another way to select the model would have been to
use cross-validation. Let us see the results on the testing dataset:

R> res <- predict(prms, w[-ind, ], cls[-ind])

Correct classification rate: 0.9782609.

Initial class

Predicted class 1 2 3

1 44 0 0

2 2 52 0

3 0 1 39

It appears that the method performs well with a correct classification rate of 97%, even
with a small learning dataset of 40 individuals. Moreover, the confusion matrix helps to
see clearly where are the mismatches.

Intrinsic dimension selection

We now use the full dataset in order to discuss the selection of the intrinsic dimensions,
since dk can be estimated using either Cattell’s scree-test or the BIC criterion. HDDA is
first used with the BIC criterion to determine the intrinsic dimension of each class-specific
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Figure 2: Selection of the intrinsic dimension of the classes in HDDA using the BIC
criterion for the wine dataset.

subspace, using d = "BIC". Once the parameters are obtained, we use the command plot

to see the result of the dimension selection.

R> prms <- hdda(w, cls, scaling = TRUE, d = "BIC")

R> plot(prms)

Figure 2 is the result of the command plot, it shows the selection of the intrinsic dimen-
sions of the classes using the BIC criterion and it selects 5 dimensions. Let us recall that
the dimensions can also be selected using Cattell’s scree-test. The same plot command
can be used with the option method = "Cattell" to see the results of Cattell’s scree-test.
We use the option threshold to first use a threshold of 0.2 and then one of 0.3:

R> plot(prms, method = "Cattell", threshold = 0.2)

R> plot(prms, method = "Cattell", threshold = 0.3)

Figure 3 shows the results of these two plots. An increase of the scree-test threshold, from
0.2 to 0.3, leads to a selection of less intrinsic dimensions. Then, with a higher threshold,
the BIC criterion and the scree-test both select the same number of dimensions for each
class. However, it is important to recall that the method HDDA always keeps all the
dimensions for the modeling and the classification. Indeed, besides the main variance
parameters (akj), there are also the noise variance parameters (bk) which model the data
outside the class-specific subspaces. Therefore, the method is robust to changes on the
intrinsic dimensions: a slight change in the intrinsic dimension estimation does not imply
a big modification of the classification results. We recommend to use a threshold between
0.1 and 0.3 to select a small number of dimensions (typically less than 10) and a threshold
around 0.01 for more dimensions.
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Figure 3: Effect of the Cattell’s threshold on the dimension selection for the wine dataset
with HDDA. These figures are the results of the command plot. Those at the top have a
threshold of 0.2 while the threshold is of 0.3 for those at the bottom.

2 4 6 8 10

−3
30

0
−3

20
0

−3
10

0
−3

00
0

−2
90

0

BIC criterion
d=5

Dimension

BI
C

●

2 4 6 8 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Cattell's Scree−Test
d=5

Dimension

th
re

sh
old

 =
 0

.2

●

2 4 6 8 10

92
94

96
98

10
0

Cross−Validation
d=5

Dimension

Go
od

 cl
as

sif
ica

tio
n 

re
su

lt

●

Figure 4: Intrinsic dimension selection with the BIC criterion, Cattell’s scree-test and
LOO-CV on the wine dataset with the common dimensions model [akjbkQkd] of HDDA.

Using common dimensions models

We now use a common dimension model, the model [akjbkQkd], to illustrate the dimension
selection. First we apply a cross-validation on the dataset using the option d = "CV",
with cv.vfold = 178 in order to make a leave-one-out CV (LOO-CV), and for different
common dimensions going from 1 to 10 (which is the default value). The graph which
allows to compare the results of the LOO-CV is displayed using graph = TRUE. We then
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compare the results of the CV with the dimensions selected by the two other criteria: BIC
and Cattell’s scree-test.

R> prms <- hdda(w, cls, scaling = TRUE, model = "AkjBkQkD", d = "CV",

+ cv.vfold = 178, graph = TRUE, show = FALSE)

R> plot(prms, method = "BIC")

R> plot(prms, method = "Cattell")

The results of dimension selection with the BIC criterion and Cattell’s scree-test are dis-
played on the first two graphs of Figure 4. Both criteria select 5 dimensions. The result
of the LOO-CV, displayed on the third graph, validates these results, as the best good
classification rate is obtained for 5 dimensions.

4.2. HDDC: an introductory example

The clustering method HDDC is now introduced using the Crabs dataset. We chose this
dataset as a first example of HDDC, as it is known to be hard to cluster. This dataset is
made of p = 5 measurements on n = 200 individuals split in K = 4 balanced classes: male
and female crabs with orange shell, male and female crabs with blue shell. For each crab,
the 5 variables are: the frontal lobe size, the rear width, the carapace length, the carapace
width and the body depth. This example can be run directly from the package using the
command demo(hddc).

First Results

The clustering of this dataset is done with HDDC, all the default settings are kept:

R> data(Crabs)

R> A <- Crabs[, -1]

R> cls <- Crabs[, 1]

R> set.seed(1)

R> prms <- hddc(A, 4)

Model k BIC

AKJBKQKDK 4 -2809.081

R> res <- predict(prms, A, cls)

Correct classification rate: 0.945.

Initial class

Predicted class BF BM OF OM

4 50 9 0 0

2 0 41 0 0

3 0 0 48 0

1 0 0 2 50
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Figure 5: Clustering of the Crabs dataset, visualization on the 2 first principal axis. The
segments represent the classes subspaces while the points are the means.

The results obtained show a correct classification rate of 94% and the confusion matrix
is again helpful to understand the clustering results: while the orange males (OM) are
totally well classified, the blue males (BM) seem to have characteristics similar to the blue
females (BF). Also, the two species are totally separated, as there is no mismatch between
them.

PCA representation

Figure 5 shows the projection of the data on the first and second principal axis, obtained
using the principal component analysis (PCA), as well as the PCA representation of the
clustering result obtained with HDDC. Furthermore, as the estimated dimension of the
intrinsic subspace of each class is equal to 1, this allows an easy representation of HDDC’s
subspaces using line segments. In order to illustrate the clustering process, we run HDDC
with the model [akjbkQkdk] using a k-means initialization, then, every 3 steps, we plot
the dataset on its 2 first principal axis. The clusters, the means and the orientation of
each class are also represented. The results are shown on Figure 6. This example can be
run interactively with the command demo(hddc) where the user can choose the algorithm,
the model and the initialization. It can be observed on Figure 6 that, even with an
initialization far from the original classes, HDDC updates sequentially the means and the
orientations of the classes to finally reach a classification close to the expected one.
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Figure 6: Clustering process of the Crabs dataset with HDDC. The initialization is done
with k-means.
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Cluster selection

Since HDDC is a model-based clustering method, we can also use the BIC criterion to
select the number of clusters K to keep. HDDC provides a simple way to do this: it
displays the BIC value for each clustering result for different number of classes and select
the model which maximizes it. Let us compute the clustering for 1 to 10 classes, which is
the default option:

R> set.seed(1)

R> prms <- hddc(A)

Model K BIC

ALL 1 -3513.071

AKJBKQKDK 2 -3299.155

AKJBKQKDK 3 -3138.566

AKJBKQKDK 4 -2809.081

AKJBKQKDK 5 -2842.08

AKJBKQKDK 6 -3099.988

AKJBKQKDK 7 -2949.258

AKJBKQKDK 8 -3007.329

AKJBKQKDK 9 -3045.638

AKJBKQKDK 10 -3089.492

SELECTED: model AKJBKQKDK with 4 clusters, BIC=-2809.081.

As discussed by Hennig (2010), the choice of the number of clusters is a complex question;
particularly with this dataset where the number of 4 clusters is not obvious and where
some other Gaussian mixture models may arguably select 9 clusters. However, one can see
here that with the model [akjbkQkdk] the BIC criterion points out the number of clusters
that was originally defined by the construction of this dataset, which is 4.

4.3. HDDA: the effect of the data dimension

We now experiment the effect of the dimensionality on different supervised classifica-
tion methods based on the Gaussian mixture model. To this end, we simulate three
classes modeled by Gaussian densities on Rp, p = 20, ... , 200, with respect to the model
[akbkQkdk]. The following parameters were used: {d1, d2,, d3} = {2, 5, 10}, {π1, π2, π3} =
{0.4, 0.3, 0.3}, {a1, a2, a3} = {150, 75, 50} and {b1, b2, b3} = {15, 10, 5}; with close
means: {µ1, µ2, µ3} = {(0, . . . , 0), (10, 0, . . . , 0), (0, . . . , 0, −10)}. Each orientation ma-
trix Qk was simulated as the orthogonal matrix of a QR factorization of a random mul-
tivariate normal distribution. The learning and testing datasets were respectively made
of 250 and 1000 points. The performance of each method was measured by the aver-
age of the correct classification rates on the test dataset for 50 replications on different
samples of the simulated learning and testing datasets. The model [akbkQkdk] is used in
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Figure 7: Boxplots of the supervised classification results for different methods on a simu-
lated dataset. This has been done with 250 observations for learning and 1000 observations
for testing, with an increasing dimensionality.

HDDA and is compared to three other methods: QDA, linear discriminant analysis (LDA)
and PCA+LDA (LDA on 15-dimensional data projected with PCA). The results of each
method are represented as boxplots in Figure 7.

Unsurprisingly, the QDA method shows its weakness with high dimensionality and its
performance sinks when the dimension rises. Moreover, when the dimension reached 50,
QDA began to fail because of singularity problems on the covariance matrices. In partic-
ular, QDA failed half of the time in dimension 70 and then did not work anymore with
dimension higher than 80. The LDA method is less sensitive to the dimension than QDA,
but its performance declines when the dimension gets beyond 60. The method PCA+LDA
improves LDA results and seems only little affected by the dimension but it cannot reach
more than 82% of average correct classification rate. Finally, as expected, HDDA appears
not to be sensible to large dimension as it provides good results in large as well as in low
dimension. Furthermore, Figure 7 clearly shows that the results of HDDA have a low
variance in comparison to the other methods and the rise of the dimension increases only
slightly the variance of its results.

4.4. HDDC: the effect of sample size

We study here the ability of HDDC models to deal with high-dimensional datasets of small
sizes. For this, three Gaussian densities in R60 are simulated in the same way as in the
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previous experiment. In order to investigate the effect of the sample size on clustering
results in high-dimensional spaces, we try to cluster the data for different dataset sizes
as this phenomenon occurs when the number of observations n is small compared to the
dimension p. The number of chosen observations varies from a small value (n = 100) to a
high value (n = 4000) compared to p.

Here we used HDDC with the model [akbkQkdk] and with the mini-em initialization which
a poplar estimation procedure. HDDC is also compared to three other clustering methods
based on the Gaussian mixture model which can be found in the R package mclust (Fraley
and Raftery 1999). The models used are (from the most complex to the simplest one):
ellipsoidal, varying volume, shape and orientation (VVV), diagonal, varying volume and
shape (VVI), diagonal, equal volume and shape (EEI). For each method and each number
of observations, the experiment is repeated 20 times, each time for a different simulated
dataset but with the same parameters.

The results of this experiment are presented in Figure 8. This figure combines the boxplots
of each method, the mean of the correct classification results when the algorithm converged
(red curves) and the number of times the algorithm failed for numerical reasons (black
curves). It appears that all tested models of the function Mclust are very sensitive to
both the high dimension of the data and the size of the dataset since their clustering
results have a high variance whatever the value of n. In particular, Mclust with its
most complex model (VVV) is unsurprisingly very sensitive to the size of the dataset
since it is highly over-parametrized in high-dimensional spaces. Indeed, models with non
constrained variances require the estimation of O(p2) parameters which is, in some cases
here, dramatically larger than the number of observations (p = 60). As one can see,
Mclust with the VVV model often fails for numerical reasons and does not work at all for
datasets smaller than 500 observations. The model VVI, which is a more parsimonious
model than VVV, seems well appropriate for this kind of data but presents a high variance
of its results and often fails for numerical reasons. It is also unable to cluster datasets
of sizes smaller than 300 observations. The model EEI is, conversely to the two previous
ones, a very parsimonious model. Using this model within Mclust allows the algorithm to
always provide a result. These results are however very sensitive to the dataset size and
have a large variance when n is larger than 1500. As expected, since the model used for
the simulation is one of the HDDC models, HDDC works well for a large range of dataset
sizes. It is however interesting to notice that HDDC is very stable (small variance of the
results) and that its robustness weakens only for datasets smaller than 300. In such cases,
it would be preferable to use a more parsimonious model of HDDC (the model [abQkdk]
for instance). Notice that a similar behavior is expected for the models of McNicholas and
Murphy (2008a); Baek et al. (2009) and Bouveyron and Brunet (2011).

4.5. HDDC: comparison with variable selection

We focus now on the comparison of HDDC with variable selection methods for clustering.
Recently, Raftery and Dean (2006) proposed a Bayesian approach for variable selection in
the model-based clustering context. Their approach recasts the variable selection problem
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Figure 8: Effect of the dimension on correct classification rates on simulated data with
the functions hddc (model [akbkQkdk]) and Mclust (models VVV, VVI and EEI). The red
lines represent the means of the correct classification rates (when the algorithm converged)
while the black lines represent the numbers of times that the algorithms could not be fitted
in the 20 simulations (its scale is at right).
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Function CCR Used model Computing time

Mclust 0.575 VEV on 5 var. 0.2 sec.
clustvarsel 0.925 EEV on 4 var. 4.4 sec.
hddc 0.945 [akjbkQkd] with d = 1 1.8 sec.

Table 3: Comparison between HDDC and variable selection (package clustvarsel) on the
Crabs dataset (n = 200, p = 5, K = 4). The results of Mclust are reported as reference
results.

Function CCR Used model Computing time

Mclust 0.555 EEE on 256 var. 1 028.7 sec.
clustvarsel 0.483 EEV on 6 var. 6 922.5 sec.
hddc 0.930 [akjbkQkdk] with d = {7, 7, 6} 301.2 sec.

Table 4: Comparison between HDDC and variable selection (package clustvarsel) on the
USPS358 dataset (n = 1756, p = 256, K = 3). The results of Mclust are reported as
reference results.

into a model selection problem and the BIC criterion is used to decide whether a variable
should be retained or not. The whole procedure is embedded in a backward-forward
algorithm to explore combinations of variables. The package clustvarsel implements this
method. For this experiment, we used the Crabs (also used in Raftery and Dean 2006)
and the USPS358 datasets and we compared on both datasets the clustering performances
of HDDC, clustvarsel and Mclust. The results of Mclust are reported as reference
results. The USPS358 dataset is a subset of the original USPS dataset which will be used
and described in detail in Section 5.1. The USPS358 dataset contains only the 1756 images
associated to the digits 3, 5 and 8 and each image is represented as 256-dimensional vector.

Table 3 and 4 present, for each studied method, the correct classification rate (CCR, 2nd
column), the model chosen by the procedure (3rd column) as well as the computing time
(4th column, in seconds) for the whole procedure (model selection and clustering). On
the one hand, regarding the Crabs dataset, one can notice that this apparently simple
dataset is difficult to cluster with traditional Gaussian mixture models since Mclust failed
to propose a good partition of the data. The selection of variables made by clustvarsel

allows to clearly improve the clustering performances of Mclust which reaches 92.5% of
adequacy with the known labels by selecting 3 among the 5 original variables. HDDC
selects using BIC the model [akjbkQkd] with d = 1 and provides a partition of the data
which has an adequacy rate with the known labels of 94%. On the other hand, the high-
dimensional USPS358 dataset seems to be as well a difficult dataset since Mclust again
failed to propose a good partition of the data. However, the selection of variables made by
clustvarsel in this case seems to be non discriminative since it deteriorates the clustering
results compared to Mclust. HDDC selects the model [akjbkQkdk] with {d1, d2, d3} =
{7, 7, 6} and reaches 93% of clustering accuracy. The results of this experiment suggest
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hddc Nb of observations

Dimensions 200 400 600 800 1000

50 0.16 0.40 0.52 0.67 0.86

100 0.52 0.91 1.15 1.22 1.34

150 0.61 1.40 2.11 2.35 2.72

200 0.69 1.79 3.70 3.82 4.48

Mclust Nb of observations

Dimensions 200 400 600 800 1000

50 0.50 2.06 4.21 8.30 11.29

100 1.19 4.92 10.59 17.80 27.37

150 2.02 9.56 20.92 35.76 54.20

200 2.88 14.36 34.19 62.05 96.10

Table 5: Average computation times of the functions hddc and Mclust on simulated
datasets with varying dimensions and observation numbers (in seconds).

that it is preferable to keep all variables in the model, with nevertheless different roles, than
discarding some of them. Finally, it is also important to notice that HDDC is significantly
less time consuming than clustvarsel, and particularly in high dimensions.

4.6. HDDC: computing time comparison

Here is finally tested the effect of the dimension and of the number of observations on
the computing time. In order to realize this experiment, a dataset has been simulated
according to the same protocol as before with different dimensions, p = 50, . . . , 200, and
number of observations, n = 200, . . . , 1000. HDDC is again compared here to the mclust
package. The experiment has been run on a laptop PC with a 2.10 GHz Intel core 2 duo
T4300 processor and 4 GB of RAM. Both methods are used with their default parameters
and the presented results are the average times on 20 replications.

The results, given in Table 5, show how the computing time rises with the dimension and
the number of observations. It clearly appears that the function hddc is faster than Mclust

for high-dimensional datasets. It is also interesting to remark that the impact of the rise
of dimension or of the number of observations is much less important on HDDC than on
Mclust. In particular, Mclust is 20 times slower than HDDC on a 200-dimensional dataset
with 1000 observations whereas it is only 3 times slower on a 50-dimensional dataset with
200 observations.

5. Applications

The methods HDDA and HDDC are now applied on two real-world datasets that have
in common to be in high dimension. The first one contains images represented as 256-
dimensional observations whereas the second one is made of spectra with more than 6,000
dimensions.

5.1. Optical character recognition

HDDA is first tested on the optical character recognition (OCR) dataset used for the



Journal of Statistical Software 25

Figure 9: Some examples of the USPS dataset used for the OCR experiment.

Method [akjbkQkdk] [ajbQd] LDA PCA+LDA SVM
Time 2.00 0.88 13.23 3.34 97.29

Table 6: Comparison of computing times (in seconds) of training and predicting on the
USPS learning and testing datasets.

study of the United States postal service (USPS)1, which consists in the recognition of
handwritten numbers as showed in Figure 9. There are 7,291 images for learning and
2,007 images for testing. The data is divided in 10 classes, each digit is a 16 × 16 gray
level image represented as a 256-dimensional vector. In this experiment, four supervised
classification methods are compared: HDDA, LDA, PCA+LDA and the support vector
machines (SVM) with the radial basis function (RBF) kernel. The aim of this experiment
is to see the effect of the size of the learning dataset on the prediction results. For this,
HDDA is computed with the model [akjbQkd] and with the threshold of Cattell’s scree-test
fixed at 0.05. Indeed a common noise is particularly efficient for this dataset and this low
threshold leads to keep an average of 15 dimensions which seems parsimonious enough
(compared to the 256 dimensions) and high enough to provide good classification results.
The performance of the methods is measured by the average correct classification rate
computed on 50 replications, for different sizes of the learning dataset, n = 100, ..., 2000.
Figure 10 shows the results of the experiment and highlights that HDDA works very well
compared to the other methods when the size of the learning dataset is small. One can
see that a PCA step improves the prediction results of LDA and allows this method to
work with small learning dataset. This experiment illustrates that HDDA provides very
satisfying results in high-dimensional space and with small learning datasets. Table 6
shows in addition the computation time of the four methods on the whole training and
testing datasets. The presented results are the average times on 20 replications. It appears
that HDDA is again faster compared to the other methods due to its parsimonious model.
The computing time of HDDA with the model [ajbQd] has been also added to Table 6 in
order to show that a linear method with only one covariance matrix to estimate can again
faster the computation.

5.2. Maldi mass-spectrometry

In this last experimental section, the two methods HDDA and HDDC are applied to the
problem of cancer detection using Maldi mass spectrometry. Maldi mass spectrometry is

1This dataset can be found on the site of the university of Aachen: http://www-i6.informatik.

rwth-aachen.de/~keysers/usps.html.

http://www-i6.informatik.rwth-aachen.de/~keysers/usps.html
http://www-i6.informatik.rwth-aachen.de/~keysers/usps.html
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Figure 10: Influence of the size of the learning dataset on prediction results obtained
with HDDA and other classification methods on the USPS dataset.

a non invasive biochemical technique which is useful in searching for disease bio-markers,
assessing tumor progression or evaluating the efficiency of drug treatment, to name just
a few applications. In particular, a promising field of application is the early detection
of the colorectal cancer, which is one of the principal causes of cancer-related mortality,
and Maldi imaging could in few years avoid in some cases the colonoscopy method which
is invasive and quite expensive. The Maldi2009 dataset has been provided by Theodore
Alexandrov from the Center for Industrial Mathematics (University of Bremen, Germany)
and is made of 112 spectra of length 16 331. Figure 11 shows the mean spectra of the
cancer and control (healthy people) classes on the mass-to-charge (m/z) interval 900–
3500 Da. Among the 112 spectra, 64 are spectra from patients with the colorectal cancer
(referred to as cancer hereafter) and 48 are spectra from healthy persons (referred to as
control). Each of the 112 spectra is a high-dimensional vector of 16 331 dimensions which
covers the m/z ratios from 960 to 11 163 Da. Following the experimental protocol of
Alexandrov, Decker, Mertens, Deelder, Tollenaar, Maass, and Thiele (2009), only 6 168
dimensions corresponding to m/z ratios between 960 and 3 500 Da are used since there is
no discriminative information on the reminder.

Supervised classification of the spectra

Here HDDA is tested in terms of effectiveness and computation time. The method is
used with two different models: the less constrained model, [akjbkQkdk], and the most



Journal of Statistical Software 27

1000 1500 2000 2500 3000 3500

0
2

0
6

0
1

0
0

m/z value

In
te

n
s
it
y

Cancer

1000 1500 2000 2500 3000 3500

0
2

0
6

0
1

0
0

m/z value

In
te

n
s
it
y

Control

1000 1500 2000 2500 3000 3500
0

2
0

6
0

1
0

0

m/z value

In
te

n
s
it
y

Cancer

1000 1500 2000 2500 3000 3500

0
2

0
6

0
1

0
0

m/z value

In
te

n
s
it
y

Control

Figure 11: Mean spectra of the cancer class (up) and of the control class (bottom) on the
m/z interval 900–3500 Da.

Method CCR Computing time

[akjbkQkdk] 0.955 26.37
[ajbQd] 0.973 32.52

LDA 0.524 24.01
SVM 1.000 457.36

Table 7: Correct classification rates of LOO-CV on the Maldi2009 dataset, and computing
times (in seconds).

constrained one, [ajbQd], each time the intrinsic dimensions are selected thanks to the
BIC criterion. Then it is compared to LDA and SVM with a RBF kernel. A LOO-
CV is done for each classification method; we used the option LOO = TRUE to do the
LOO-CV with HDDA. The results are shown on Table 7. First is to notice that LDA is
totally inefficient on this dataset that has a large number of parameters. SVM works very
well with no miss-classification but with a prohibitive computation time. HDDA gives
satisfying results, upper than 95% of good classification for the two models, and has fast
computation time as the LOO-CV for HDDA is more than 17 times faster than SVM. So
HDDA combines a computing time close to LDA with performances close to SVM.

Unsupervised classification of the spectra

HDDC is now applied on this dataset to test its effectiveness on very high dimensional



28 HDclassif: An R Package for high-dimensional classification

PCA-EM Mixt-PPCA HDDC

cluster cluster cluster

class cancer control class cancer control class cancer control

cancer 48 16 cancer 62 2 cancer 62 6

control 1 47 control 10 38 control 0 45

Miss-classification rate = 0.15 Miss-classification rate = 0.11 Miss-classification rate = 0.05

Table 8: Confusion matrices of the three studied clustering methods on the Maldi2009

dataset.

datasets (with n � p). For comparison sake, Mclust with the VVV model on principal
components (PCA-EM) and mixture of probabilistic principal component analysis (Mixt-
PPCA, Tipping and Bishop 1999) have been applied to this subset as well. It has been
asked to all methods to cluster the dataset into 2 groups. HDDC is set with the most un-
constrained model [akjbkQkdk] and with a scree-test threshold of 0.1. The results are shown
in Table 8. All the methods present good results for such a complex problem, although the
best level of classification has been obtained with HDDC with a miss-classification rate of
5%.

6. Conclusion

This paper has presented the R package HDclassif which is devoted to the clustering and
the discriminant analysis of high-dimensional data. The package provides the classification
functions HDDA and HDDC associated to a new Gaussian mixture model first proposed
by Bouveyron et al. (2007b) which takes into account that high-dimensional data live in
low-dimensional subspaces. The proposed models are more parsimonious than other Gaus-
sian mixture models available in other R packages. After having presented the theoretical
aspects of the methods and illustrated their use within the package HDclassif, this paper
has shown the efficiency of both methods through comparisons with reference methods on
simulated and real datasets.

Among the possible extensions of this work, it would be first interesting to allow HDDA
and HDDC to deal with semi-supervised problems (mixture of labeled and unlabeled data).
This extension is planned for the next release of the package. Another interesting extension
would be to add a `1 penalty on the loading matrices Qk within HDDA and HDDC to
be able to select the original variables which are the most useful for the considered task.
This would allow the practitioner to better understand the classification results provided
by the method. Finally, it would be also interesting to gather in a unique package all
discriminant analysis and clustering techniques based on the factor analysis model. This
would include the methods based on the models of McNicholas and Murphy (2008a), Baek
et al. (2009) and Bouveyron and Brunet (2011).
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