

Passage in egg culture is a major cause of apparent positive selection in influenza B haemagglutinin.

Derek Gatherer

► To cite this version:

Derek Gatherer. Passage in egg culture is a major cause of apparent positive selection in influenza B haemagglutinin.. Journal of Medical Virology, 2009, 82 (1), pp.123. 10.1002/jmv.21648 . hal-00541147

HAL Id: hal-00541147 https://hal.science/hal-00541147

Submitted on 30 Nov 2010

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Journal of Medical Virology

Passage in egg culture is a major cause of apparent positive selection in influenza B haemagglutinin.

Journal:	Journal of Medical Virology
Manuscript ID:	JMV-09-1369.R1
Wiley - Manuscript type:	Research Article
Date Submitted by the Author:	29-Jul-2009
Complete List of Authors:	Gatherer, Derek; University of Glasgow, MRC Virology Unit
Keywords:	N-glycosylation , non-synonymous substitution, codeml, immune evasion, adaptation

TABLE I

Site 197-199	Egg-cultured	Egg-free
With N-glycosylation	14	50
Without N-glycosylation	49	9

Site 233-235	Egg-cultured	Egg-free
With N-glycosylation	29	22
Without N-glycosylation	34	37

Table I: Presence or absence of N-glycosylation site at positions 197-199 and 233-235 in egg-cultured and egg-free strains. Chi-square test significant only for site 197-199 (p < 0.0001).

TABLE II

Site 197-199	Yamagata	Victoria
With N-glycosylation	46	18
Without N-glycosylation	33	25

Site 233-235	Yamagata	Victoria
With N-glycosylation	13	38
Without N-glycosylation	66	5

Table II: Presence or absence of N-glycosylation sites at positions 197-199 and 233-235 in Yamagata and Victoria strains. Chi-square test significant only for site 233-235 (*p* < 0.0001).

TABLE III

		EGG-CULTURED		
M8	Site	Pr(omega>1)	omega	SE
	75	0.994*	9.843	1.092
	116	0.774	7.793	3.827
	129	0.916	9.115	2.638
	197	1.000*	9.902	0.820
	199	1.000*	9.902	0.820
M2	75	0.952*	9.797	2.043
	197	1.000*	10.246	0.522
	199	1.000*	10.246	0.522

		EGG-FREE		Y
M8	Site	Pr(omega>1)	omega	SE
	48	0.801	1.523	0.613
	56	0.908	1.657	0.527
	73	0.857	1.595	0.583
	75	0.977*	1.729	0.462
	116	0.821	1.549	0.602
	129	0.884	1.629	0.559
	146	0.817	1.544	0.604
	199	0.994*	1.743	0.445
M2	56	0.727	1.662	0.651
	75	0.879	1.835	0.720
	129	0.725	1.676	0.692
	199	0.944	1.880	0.699

Table III: Positive selection in influenza B HA in egg-cultured and egg-free strains. Pr(omega>1): probability that the site in question is subject to positive selection; SE: standard error of omega. Sites 197 and 199 are part of the Nglycosylation site commonly lost in egg-cultured strains. All sites with a Pr(omega>1) of greater than 0.7 are listed. Asterisks indicate Pr(omega>1) of >0.95

TABLE IV

M2 <i>p</i> >= 0.5		p >= 0.75	p >= 0.95	p >= 0.99	Max.
					omega
Egg-cultured	4	3	3	2	10.246
Egg-free	16	2	0	0	1.880

M8	p >= 0.5	p >= 0.75	<i>p</i> >= 0.95	p >= 0.99	Max.
					omega
Egg-cultured	5	5	3	3	9.902
Egg-free	22	8	2	1	1.743

Table IV: Summary of number of candidate positively selected sites and the strength of selection, in egg-cultured and egg-free strains. Model M2 allows for 3 selective categories, namely constraint, neutrality and positive selection, and M8 for a beta distribution of 10 constrained or neutral categories plus an eleventh category of positive selection. $p \ge x$: number of sites positively selected at probability of greater than *x*. *Max. omega*: largest sitewise omega value found in the data.

2		
3 4	1	Passage in egg culture is a major cause of apparent positive selection in
5	2	influenza B haemagglutinin.
7	3	
8 9		
10	4	Derek Gatherer
12	5	MRC Virology Unit
13 14	6	University of Glasgow
15 16	7	Church Street
17	/	
18 19	8	Glasgow
20	9	G11 5JR, UK
21	10	
23 24	11	Correspondence to:
25 26	10	
27	12	Derek Gatherer, MRC Virology Unit, Institute of Virology, Church Street, Glasgow G11
28 29	13	5JR, UK.
30 31	14	Tel: +44 141 330 6268
32 33	15	Fax: +44 141 337 2236
34 35	16	email: <u>d.gatherer@mrcvu.gla.ac.uk</u>
36 37	17	
38 39 40	18	Running title: Positive selection in Influenza B
41 42		
43		
44 45		
46		
47 48		
49		
50		
51 52		
53		
54 55		
52 53 54 55		

1		
2 3 4	19	
4 5 6	20	Abstract
7 8	21	
9 10	22	Several studies have identified residues apparently under positive selection in influenza
11 12	23	B virus haemagglutinin. Host immune evasion is the main mechanism proposed to exert
13 14	24	this selection pressure. However, these reports have not considered the culture history
15 16	25	of the strains used to calculate positive selection. This paper shows that passage of
17 18 10	26	influenza B virus through egg culture is a strong contributory factor to the strength and
19 20 21	27	statistical significance of positive selection on haemagglutinin. Non-synonymous
22 23	28	mutations resulting in the loss of the N-glycosylation site at positions 197-199 of
24 25	29	haemagglutinin have been positively selected to a far greater degree in egg-cultured
26 27	30	strains than in other strains. Once egg-cultured strains are removed from the analysis,
28 29	31	positive selection is found to be far weaker, less statistically significant and more
30 31	32	diffusely localised along the protein. Caution should therefore be exercised both in
32 33	33	claims for the existence of positive selection in influenza B haemagglutinin, and in
33 34 35 26	34	attribution of host immune evasion as its cause. The major cause of molecular
36 37	35	adaptation in influenza B haemagglutinin proteins may well be laboratory eggs rather
38 39	36	than natural hosts.
40 41 42	37	
42 43 44	38	Keywords: N-glycosylation, immune evasion, non-synonymous substitution, codeml,
44 45 46	39	omega, adaptation
47 48	40	
49 50	41	
51 52 53 54 55		
56 57 58		
59 60		

42 Introduction

Influenza A (Family Orthomyxoviridae, Genus Influenzavirus A, Species Influenza A *virus*) and the related influenza B (Family Orthomyxoviridae, Genus Influenzavirus B,
Species Influenza B virus) are major public health concerns. A lack of lifelong immunity
in human hosts results in seasonal epidemics, with annual vaccination the best current
strategy for limiting mortality and the economic impact of these viruses.

The earliest viral isolates confirmed as influenza B by haemagglutinin (HA) gene sequencing date from 1940 (strains B/Lee/0/1940 to B/Lee/3/1940). Other isolates document the continued presence of the virus during the subsequent two decades (strains B/Maryland/0/59 and B/Russia/0/69). Since the late 1980s, systematic seasonal sequencing of new strains has been performed, revealing that all influenza B HA gene sequences of the last 20 years belong to one or other of two lineages, designated Yamagata and Victoria after their original isolates (B/Yamagata/16/88 and B/Victoria/2/87 respectively). HA protein sequences within each of the two lineages are more than 97% identical, with sequence identity in inter-lineage comparisons at 88-90% on average. The original Lee strain HA from 1940 is approximately 91% identical to modern samples of either lineage. By comparison, influenza A HA sequences are only 22-23% identical to influenza B HA.

It has been proposed that influenza B, like influenza A, achieves host immune evasion by rapid evolution of HA. Mutations causing amino acid substitutions at certain residues of HA are hypothesised to afford a selective advantage to the virus, resulting in a statistically significant excess of non-synonymous over synonymous substitutions at the codons corresponding to these residues [Shen et al., 2009]. Positive selection is the term given to such selection for non-synonymous substitutions. The ratio of the rates of non-synonymous to synonymous substitution is termed omega. An omega of less than 1 indicates selective constraint and suppression of non-synonymous substitutions. In

Journal of Medical Virology

neutrally evolving proteins omega will be close to 1, and positive selection produces
omegas which may be considerably greater than 1. PAML [Yang, 1997] provides a suite
of tools for the calculation of omega and determination of its statistical significance.
Omega may be calculated as an average over the whole length of a gene, or in a
sitewise manner. The latter has proved useful for identifying individual residues that are
under selective pressure.

Previous studies have detected codons with omega significantly greater than 1 in HA genes from influenza B, and attribute this positive selection to immune evasion on the grounds that the detected sites are within HA epitope regions [Nunes et al., 2004; Nunes et al., 2008; Pechirra et al., 2005; Shen et al., 2009]. However, some of the candidate positively selected residues are associated with an N-glycosylation site, and mutations causing the loss of that site are often found in laboratory strains passaged in embryonated hen eggs [Robertson et al., 1985; Saito et al., 2004], where the absence of the site can result in increased binding to the plasma membranes of chorio-allantoic cells [Gambaryan et al., 1999]. By contrast, loss of this N-glycosylation site can also occur in strains cultured only in Madin Darby canine kidney (MDCK) cells [Ikonen et al., 2005] and some egg-cultured strains can retain it [Rota et al., 1992]. A full survey of the association of N-glycosylation site presence with egg culture has not been undertaken so far.

The possibility therefore remains that host immune evasion is being confused with egg culture adaptation as a cause of positive selection in influenza B HA genes. This study analyses positive selection in an extensive set of influenza B HA genes, separating genes from egg-cultured strains from those of cell-cultured strains. Studies published previously of positive selection in influenza B HA genes have not performed this analysis. A survey of the association of N-glycosylation site presence with egg culture is also described. The relative contribution of egg culture to detected positive selection may therefore be more fully understood.

1 2		
3 4	100	
5 6 7 8	101	Materials & Methods
	102	
9 10	103	Identification of culture history
11 12	104	259 full length non-redundant influenza B HA coding sequences, dating from 1940 to
13 14	105	2007, were retrieved in GenBank format from the NCBI Influenza Virus Resource
15 16	106	(http://www.ncbi.nlm.nih.gov/genomes/FLU/FLU.html). GenBank format includes the
17 18	107	"/lab_host" tag, annotating the culture history of the strain. Of the 259 sequences, 133
19 20 21	108	had a "/lab_host" tag. Of these, 63 sequences were listed as having had contact with
21 22 23	109	egg culture (Supplementary Data Table 1). For instance, entry CY018373
23 24 25	110	(B/Michigan/04/2006) has "/lab_host" tag: "Egg 2 passage(s)". 70 sequences had no
26 27	111	mention of eggs, for example CY018301 (B/Houston/B720/2004) has "/lab_host" tag:
28 29 30 31 32 33 34 35 36 37 38 39	112	"RhMK 1 passage(s)", indicating the use of a rhesus monkey kidney cell line. This initial
	113	set of 70 sequences was reduced to 59 by removal of those with unknown or ambiguous
	114	history (Supplementary Data Table 2). For example, entry CY018725
	115	(B/Paraguay/636/2003) has "/lab_host" tag: "Unknown 1 MDCK 2 passage(s)", and was
	116	therefore omitted from the final set of 59 putative egg-free sequences, on the grounds
	117	that "Unknown" could indicate previous egg culture. The egg-cultured strains range in
40 41	118	date from 1987 to 2006 and the egg-free strains from 1992 to 2006. The proportions of
42 43	119	egg-cultured and egg-free strains are roughly equal for most years after 1997. The
44 45 46	120	lineages of the egg-free strains are 23 Victoria and 36 Yamagata strains. For egg-
40 47 48	121	cultured strains, there are 20 Victoria and 43 Yamagata strains.
49 50	122	
51 52	123	N-glycosylation site analysis
53 54	124	Due to indels in HA, the N-glycosylation site discussed in the present paper may
55 56	125	elsewhere be referred to as occurring at residues 197 to 199 [Ikonen et al., 2005;
57 58	126	Kinnunen et al., 1992; Nunes et al., 2004; Nunes et al., 2008; Pechirra et al., 2005;
59 60	127	Rota et al., 1992; Rota et al., 1990; Shaw et al., 2002], 196 to 198 [Robertson et al.,
	128	1985; Saito et al., 2004] or 194 to 196 [Shen et al., 2009]. In this study, the majority

Journal of Medical Virology

system is adopted: 197-199. For each HA, the presence or absence of the N-glycosylation consensus sequence (NxS/T, where x is any amino acid) was recorded at 197-199 and the nearby 233-235, which has no previous association with positive selection and therefore serves as a control. A 2x2 chi-square test was used to determine the statistical significance of the proportion of N-glycosylation sites in the egg-cultured and egg-free sets, and also the proportion of N-glycosylation sites in the Yamagata and Victoria lineages. Quantitation of positive selection Sequences were translated using transeq (EMBOSS) [Rice et al., 2000], then aligned using MAFFT [Katoh et al., 2005]. The protein alignment was then used as a basis for alignment of the DNA sequences. PAML's CODEML mode [Yang, 1997] was used to quantify positive selection in these alignments. Comparisons between models M1 (2 discrete categories: constraint plus neutrality only) and M2 (3 discrete categories: constraint, neutrality and positive selection), between models M7 (10 beta-distributed categories: constraint plus neutrality only) and M8 (11 categories: as M7 with 1 further discrete category for positive selection), and between models M8 and M8a (as M8 but with maximum omega fixed at 1), were used to assess the statistical significance of detected positive selection. Results N-glycosylation and egg culture The presence or absence of N-glycosylation sites at positions 197-199 and 233-235 was examined in HA sequences annotated as egg-cultured and those annotated as mammalian cell-cultured with no mention of "unknown" culture conditions (the "egg-free" strains). The first null hypothesis is that culture conditions do not affect the presence or absence of N-glycosylation sites at either position. Table I shows the

statistics for the occurrence of the relevant N-glycosylation sites. A 2x2 chi-square test is significant only for site 197-199. Thus the null hypothesis, that culture conditions do not affect N-glycosylation state, can be rejected for site 197-199 only. Egg culture is therefore demonstrated to be a likely cause of loss of N-glycosylation site 197-199 but to be unlikely to have any effect on site 233-235. The second null hypothesis is that a strain's ancestry does not affect the presence or absence of N-glycosylation sites at either position. Table II similarly shows the N-glycosylation site statistics divided between Yamagata and Victoria strains. This time, a 2x2 chi-square test is significant only for site 233-235. Although N-glycosylation is slightly less common in Victoria strains at position 197-199, this is not statistically significant. The second null hypothesis, that lineage does not affect N-glycosylation state, can be rejected for site 233-235 only. At that site, Victoria strains are predominantly N-glycosylated, whereas Yamagata strains are predominantly non-N-glycosylated. Therefore, the presence of the N-glycosylation site of HA at position 233-235 is mainly an aspect of the ancestry of the HA sequence and is not affected by culture conditions. The converse applies for the site at position 197-199 where the relative absence of the N-glycosylation site is a result of selective pressure from culture conditions and there is no correlation with ancestry of the strain. The possibility that the absence of the N-glycosylation site at positions 197-199 is merely a result of greater presence of one or other of the 2 lineages in egg culture is also thereby excluded.

45 178

47 179 Positively selected sites on HA48

Table III shows the PAML output for egg-cultured and egg-free strains. Each set was analysed using Bayes Empirical Bayes (BEB) [Yang et al., 2005], under models M2 (3 discrete categories, omega <1, omega=1 and omega >1) and M8 (10 beta-distributed rate categories from omega of zero to 1, plus 1 discrete category of omega >1). Table IV summarizes the frequency and intensity of positively selected sites for the two models in egg-cultured and egg-free strains.

Page 13 of 16

1

Journal of Medical Virology

2		
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	187	For egg-cultured strains, position 75 and the N-glycosylation site 197-199 are strongly
	188	positively selected (omega >9) at high probability ($p > 0.99$), using model M8. Positions
	189	116 and 129 have slightly weaker selection (omegas > 7.5) at lower statistical
	190	probabilities ($p>0.7$ for 116 and $p>0.9$ for 129). Model M2 detects only positions 75,
	191	197 and 199. This confirms previous results [Nunes et al., 2004; Nunes et al., 2008;
	192	Pechirra et al., 2005]. However, in egg-free strains detected positive selection is far
	193	weaker. Using model M8, positions 75 and 199 have weak positive selection only
	194	(omega < 1.8). With model M2, statistical probabilities of positive selection are also
	195	weakened. The apparent positive selection detected in previous studies evaporates to a
21 22	196	large degree when egg-cultured strains are excluded from the analysis.
23 24 25	197	
25 26 27	198	One intriguing further observation (Table IV) is that egg-free strains have more
∠7 28 20	199	candidate positively selected sites at lower significance levels ($0.5).$
30 31	200	Although caution must be exercised in interpretation of this weaker signal, it may
32 33	201	indicate more subtle positive selection going on at a wider variety of HA sites in
34 35	202	mammalian cell culture or in the human host. In egg-culture, very strong positive
36 37	203	selection focuses on a rather small number of sites, of which N-glycosylation site 197-
38 39	204	199 is prominent.
40 41	205	
42 43	206	Discussion
44 45	207	
46 47	208	Detection of the actual N-glycosylation state of an HA protein requires laboratory
48 49 50	209	analysis that is not performed here. However, the assumption is made that the N-
50 51 52	210	glycosylation consensus sequence is a direct indicator of a true N-glycosylation site.
52 53 54	211	
55 56	212	The N-glycosylation site at position 197-199 was chosen as it has previously been
57 58	213	described as suppressed in strains cultured in eggs, and also to be a site subject to
59 60	214	positive selection. A neighbouring N-glycosylation site at positions 233-235 was also

chosen as a control since it has not been implicated in either positive selection or culture-dependent loss. The sites detected in the present study as positively selected at p>0.95: namely 75, 197 and 199, are exactly the same as those detected by Nunes et al. [2004; 2008] and Pechirra et al. [2005], but differ to some extent from those of Shen et al. [2009]. These latter authors point out that their study divides the data set into Yamagata and Victoria lineages, and into time series windows. The residues identified as positively selected differ in each data set as a result of the lineage-specific and time-variable selective pressures. The possibility cannot be excluded that the egg-free dataset contains some contaminating egg-cultured sequences that have been incorrectly annotated. Therefore, even the residual levels of positive selection seen in egg-free sequences (Table III) may be misleadingly high. If a truly egg-free set were to be obtainable, it is predicted that the signal of positive selection would be even weaker. In summary, caution is necessary to avoid over-interpretation of positive selection scores in influenza B HA sequences. Although positive selection has now been demonstrated by several studies, it may be considerably weaker and less significant once a correction is made for egg-culture. The correction made in the present study may even be only a partial one, as it cannot be guaranteed that all strains without annotation for egg culture or unknown culture conditions are truly egg-free in their culture history. Recent papers on positive selection in influenza B have failed to address this important issue. Really strong omega values (around 9 or 10) are only found in egg-cultured strains. Inclusion of egg-cultured strains in an analysis may elevate overall significance levels and omega values. Under such conditions it is easy to erroneously attribute a high positive selection score to conditions in the host organism, particularly immune evasion. Perhaps the biggest factor in apparent positive selection in influenza B

2		
3 4	244	HA is adaptation to egg culture rather than to any host. It is suggested that future
5 6	245	analysis of positive selection should only be carried out on sequences free from culture
7 8	246	conditions of any kind, e.g. directly amplified by PCR from clinical material. Only then
9 10	247	will a true picture be seen of positive selection and its relation to host immune evasion in
11 12	248	influenza B.
13 14	249	
15 16	250	Acknowledgments
17 18	251	The author thanks Prof. Duncan McGeoch (MRC Virology Unit, Glasgow) for sustained
19 20	252	encouragement and support over the last 6 years, and also Prof. Bill Carman and Dr Joy
21 22 22	253	Kean (West of Scotland Specialist Virology Centre, Glasgow) for pointing him in the
23 24 25	254	direction of influenza B.
26 27	255	
28 20	256	Gambaryan AS, Robertson JS, Matrosovich MN. 1999. Effects of egg-adaptation on the
30	257	receptor-binding properties of human influenza A and B viruses. Virology
31	258	258(2):232-239.
32	259	Ikonen N, Pyhala R, Axelin T, Kleemola M, Korpela H. 2005. Reappearance of influenza
33	260	B/Victoria/2/87-lineage viruses: epidemic activity, genetic diversity and vaccination
34	261	efficacy in the Finnish Defence Forces. Epidemiol Infect 133(2):263-271.
35	262	Katoh K. Kuma K. Toh H. Miyata T. 2005. MAFFT version 5: improvement in accuracy of
36	263	multiple sequence alignment. Nucleic Acids Res 33(2):511-518.
১। २८	264	Kinnunen I. Ikonen N. Povry T. Pyhala R. 1992. Evolution of influenza B/Victoria/2/87-like
39	265	viruses: occurrence of a genetically conserved virus under conditions of low enidemic
40	265	activity I Gen Virol 73 (Pt 3):733-736
41	260	Nunes B. Pechirra P. Canto e Castro I. Rebelo-de-Andrade H. 2004. Adaptive evolution on
42	267	HA1 subunit of influenza B virus International Congress Series 1263:601-604
43	200	Nunes B. Dechirra D. Coelho A. Bibeiro C. Arraiolos A. Bebelo de Andrade H. 2008
44 45	209	Haterogeneous selective pressure esting on influenze P Victoria, and Vemageta like
45 46	270	homogeneous selective pressure acting on influenza D victoria- and Tainagata-like
47	271	Deshime D. Numes D. Coelles A. Diheire C. Comestus D. Dedre S. Costro I.C. Dehele de
48	272	Pechinta P, Nunes B, Coeino A, Ribeiro C, Goncaives P, Pedro S, Castro LC, Rebeio-de-
49	273	Andrade H. 2005. Molecular characterization of the HA gene of influenza type B
50	274	viruses. J Med Virol $//(4)$:541-549.
51	275	Rice P, Longden I, Bleasby A. 2000. EMBOSS: the European Molecular Biology Open
52	276	Software Suite. Trends Genet 16(6):276-277.
つづ 51	277	Robertson JS, Naeve CW, Webster RG, Bootman JS, Newman R, Schild GC. 1985.
55	278	Alterations in the hemagglutinin associated with adaptation of influenza B virus to
56	279	growth in eggs. Virology 143(1):166-174.
57	280	Rota PA, Hemphill ML, Whistler T, Regnery HL, Kendal AP. 1992. Antigenic and genetic

58

59

60

Rota PA, Hemphill ML, Whistler T, Regnery HL, Kendal AP. 1992. Antigenic and genetic 280 characterization of the haemagglutinins of recent cocirculating strains of influenza B 281 virus. J Gen Virol 73 (Pt 10):2737-2742. 282

1		
2 3	283	Rota PA Wallis TR Harmon MW Rota IS Kendal AP Nerome K 1990 Cocirculation of
4 5	283	two distinct evolutionary lineages of influenza type B virus since 1983. Virology
6	285	175(1):59-68.
7	286	Saito T, Nakaya Y, Suzuki T, Ito R, Saito H, Takao S, Sahara K, Odagiri T, Murata T, Usui
8 9	287	T, Suzuki Y, Tashiro M. 2004. Antigenic alteration of influenza B virus associated
10	288	with loss of a glycosylation site due to host-cell adaptation. J Med Virol $74(2):336-242$
11	209	545. Shaw MW Xu X Li Y Normand S Lleki RT Kunimoto GY Hall H Klimov A Cox NI
12 13	291	Subbarao K. 2002. Reappearance and global spread of variants of influenza
14	292	B/Victoria/2/87 lineage viruses in the 2000-2001 and 2001-2002 seasons. Virology
15	293	303(1):1-8.
17	294	Shen J, Kirk BD, Ma J, Wang Q. 2009. Diversifying selective pressure on influenza B virus
18	295	hemagglutinin. J Med Virol 81(1):114-124.
19 20	290 207	Comput Appl Biosci 13(5):555-556
20	298	Yang Z. Wong WS. Nielsen R. 2005. Bayes empirical bayes inference of amino acid sites
22	299	under positive selection. Mol Biol Evol 22(4):1107-1118.
23 24	300	
25	301	
26 27		
28		
29		
30 31		
32		
33 34		
35 35		
36		
37 38		
39		
40 41		
41		
43		
44 45		
46		
47		
40 49		
50		
51 52		
53		
54		
วว 56		
57		
58 59		
60		