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Abstract

This paper addresses the important problem of efficiently mining numerical
data with formal concept analysis (FCA). Classically, the only way to apply
FCA is to binarize the data, thanks to a so-called scaling procedure. This
may either involve loss of information, or produce large and dense binary data
known as hard to process. In the context of gene expression data analysis,
we propose and compare two FCA-based methods for mining numerical data
and we show that they are equivalent. The first one relies on a particular
scaling, encoding all possible intervals of attribute values, and uses standard
FCA techniques. The second one relies on pattern structures without a
priori transformation, and is shown to be more computationally efficient
and to provide more readable results. Experiments with real-world gene
expression data are discussed and give a practical basis for the comparison
and evaluation of the methods.
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1. Introduction

Numerous classification problems can be formalized by means of formal
contexts. A context materializes a set of individuals (called objects), a set of
properties (called attributes), and a binary relation usually represented by a
binary table relating objects to attributes, where (g,m) = × (a cross) if the
object g has the property m [1, 9]. Considering a pair of mappings between
sets of all subsets of objects and attributes, called Galois connection, it is
possible to derive for each object g the set of all attributes that apply to g.
Similarly, it is possible to derive for each attribute m the set of all objects to
which m applies. As a consequence, one may classify within formal concepts
a set of objects sharing the same maximal set of attributes, and vice-versa.
Concepts are ordered within a lattice structure called concept lattice within
the Formal Concept Analysis (FCA) framework [9]. This mathematical struc-
ture supports potential knowledge discovery in databases that benefits of an
important set of techniques for building, visualizing and interpreting concept
lattices [9, 20]. Concept lattices are represented by diagrams giving nice vi-
sualization of classes of objects of a domain. At the same time, the edges of
these diagrams give essential knowledge about objects, by giving association
rules between attributes describing the objects [21]. FCA can also be used for
a number of purposes among which knowledge formalization and acquisition,
ontology design, and information retrieval [36, 38].

In real-world applications, e.g. in biology or chemistry, one rarely ob-
tains binary data directly, complex and heterogeneous data involving num-
bers, graphs, intervals, etc., are more typical. To apply FCA-based methods
to such data, the latter have to be binarized, i.e. scaled. Many types of
scaling are known in FCA literature [9], however, they do not always suggest
the most efficient implementation right away, and there are situations where
one would choose original data representation rather than scaled data [8].
Although scaling allows one to apply FCA tools, it may dramatically in-
crease the complexity of computation and representation, and make worse
the visualization of results.

Instead of scaling, one may work directly with initial data, i.e. complex
object descriptions, defining so-called similarity operators which induce a
semi-lattice on data descriptions. Several attempts were made for defining
such semi-lattices on sets of graphs [8, 17, 18, 22] and logical formulas [5, 7]
(see also [10, 37] for FCA extensions). Indeed, if one is able to order object
descriptions in complex data, e.g. with graph morphism when objects are
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described by labelled graphs, one may attempt to directly build a concept
lattice from such data. In [8], a general approach called pattern structures
was proposed, which allows one to apply standard FCA to any partially
ordered data descriptions.

This paper addresses the problem of FCA-based classification of numerical
data, where object descriptions are vectors of numbers, with pattern struc-
tures and a particular similarity operator. We focus on gene expression data
(GED), where gene expression profiles represent the “behaviour” of genes in
biological situations, and a situation corresponds to tissues at different time
points or cellular loci (different organs, healthy or cancerous tissues, etc.).
Genes with similar expression profiles are said to be co-expressed. It is now
widely accepted that co-expressed genes interact together within the same
biological process [34]. GED analysis is an important task and an active area
of research involving mainly data-mining methods: clustering [14], bicluster-
ing [23, 29]. FCA-based methods have been recently designed and applied in
this domain [4, 15, 26].

For analysing GEDs by means of FCA, one needs to build a formal context
from a GED, attribute values have to be discretized and intervals of entry
values have to be considered as binary attributes, implying possible loss of
actual data values [15]. In [9], interordinal scaling is defined and allows one to
build a formal context that encodes all possible intervals of attributes values,
without loss of information. However this scaling produces large and dense
binary data, which are hard to process with existing FCA algorithms [20].
This is probably one of the reasons why this scaling has never been used for
GED analysis. By contrast, the formalism of pattern structures, defined in
full compliance with the FCA framework in [8], allows one to build a concept
lattice without a priori scaling procedure. Accordingly, in this paper, we
introduce an interval convexification as a similarity operator for ordering
intervals within a semi-lattice, i.e. by taking the convex hull of any arbitrary
set of intervals. However, this operation between complex descriptions of
objects may be harder to process than classical set intersection and inclusion
test after a scaling. Then, a challenging question arises for numerical data
like GEDs: should one scale numerical attributes?

To discuss this question, we have experimented with both approaches,
comparing their computational efficiency, the respective results and their
representations. We show that both methods have equivalent outputs, but
the method based on pattern structures is more computationally efficient
than that based on interordinal scaling, and provides better readable and
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interpretable results.
The article is organized as follows. Firstly, gene expression data (GED)

are presented in Section 2. Section 3 recalls the basics of FCA and shows how
to build a concept lattice from GED using interordinal scaling to represent
value intervals. An approach based on pattern structures for building an
isomorphic lattice without transforming the data is detailed in Section 4.
Experiments with a real-world GED are discussed in Section 5, giving also
a practical basis for the comparison of the two methods. The conclusion
suggests further research directions.

2. Gene expression data

Gene expression is the mechanism that produces a protein from a gene
in two steps. Firstly transcription builds a copy of a gene called mRNA
which is then translated into a protein. This mechanism differs in different
biological situations: for each gene the concentration of mRNA and proteins
depends on the current cell, time, etc. and reflects the behaviour of the
gene. Indeed, biological processes of a living cell are based on chemical
reactions and interactions between proteins and mRNA. Thus, it is important
to measure and analyse mRNA and protein concentration to understand
biological processes activated in a cell.

Using microarray biotechnology, the concentration of mRNA is measured
into a numerical value called gene expression value, which characterizes the
behaviour of a gene in a particular cell. Microarrays can monitor simultane-
ously the expression of a large number of genes, possibly the complete coding
space of a genome. When several microarrays are considered, the expression
value of a gene is measured in multiple situations or environments, e.g. differ-
ent cells, time points, cells responding to particular environmental stresses,
etc. This characterizes the behaviour of the gene w.r.t. all these situations
and is represented by a vector of expression values called a gene expression
profile.

s1 s2 s3

g1 5 7 6
g2 6 8 4
g3 4 8 5
g4 4 9 8
g5 5 8 5

Table 1: Gene expression data

A gene expression data (GED) is generally
described as a table with n rows corresponding
to genes and m columns corresponding to sit-
uations. A table entry is called an expression
value. A row in the table denotes an expression
profile associated to a gene. For example, in Ta-
ble 1, the expression value of g1 in the situation
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s1 is 5. The expression profile of the gene g1 is denoted by the vector 〈5, 7, 6〉.
In this paper, we consider the NimbleGen Systems Oligonucleotide Arrays
technology1: expression values range from 0 (not expressed) to 65535 (highly
expressed).

Stating that co-expressed genes interact together within the same biolog-
ical process [34], various data-mining methods have applied to GEDs, among
which clustering, bi-clustering and FCA-based methods (see related work in
section 6). In the following, we use the FCA formalism to mine GEDs.

3. Mining GEDs by means of interordinal scaling

This section starts with classical definitions of FCA. Then a particular
scaling for representing value intervals from numerical datasets is presented
and illustrated for lattice-based classification of GEDs.

3.1. FCA: main definitions

Here we use standard definitions from [9]. Let G and M be arbitrary sets
and I ⊆ G×M be an arbitrary binary relation between G and M . The triple
(G,M, I) is called a formal context. Each g ∈ G is interpreted as an object,
each m ∈ M is interpreted as an attribute. The fact (g,m) ∈ I is interpreted
as “g has attribute m”. The two following derivation operators (·)′:

A′ = {m ∈ M | ∀g ∈ A : gIm} for A ⊆ G,

B′ = {g ∈ G | ∀m ∈ B : gIm} for B ⊆ M

define a Galois connection between the powersets of G and M . The op-
erators {(.)′, (.)′} put in relation elements of the lattices (2G,⊆) of objects
and (2M ,⊆) of attributes and vice-versa. A Galois connection induces a
closure operator (·)′′ and realizes a one-to-one correspondence between all
closed sets of objects and all closed sets of attributes, called concept extents
and intents. For A ⊆ G, B ⊆ M , a pair (A,B) such that A′ = B and
B′ = A, is called a (formal) concept. Concepts are partially ordered by
(A1, B1) ≤ (A2, B2) ⇔ A1 ⊆ A2 (⇔ B2 ⊆ B1). With respect to this partial
order, the set of all formal concepts forms a complete lattice called the con-
cept lattice of the formal context (G,M, I). For a concept (A,B) the set A
is called the extent and the set B the intent of the concept.

1Details on this biotechnology can be found at http://www.nimblegen.com/.
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3.2. Classical scalings for GEDs

To be represented in the form of a formal context numerical data require
transformation called conceptual scaling. For each attribute, a scale is defined
in accordance with the values of the attribute. The choice of a scale depends
on data and research goals, and affects the size and interpretation of the
resulting concept lattice.

Usually to apply FCA in GED analysis, an l-cut scaling is operated by
using a single threshold l on expression values determined for each object [26,
28, 29]. Expression values greater than this threshold are said to be over-
expressed and encoded by 1, otherwise by 0. Then formal concepts represent
sets of genes simultaneously over-expressed.

In [15], a generalization with an interval-based scaling of numerical data
is proposed, where interval number and size were chosen by experts. Given
a set of genes G, a set of situations S and a set of ordered intervals T ,
(g, (s, t)) ∈ I, where g ∈ G, s ∈ S, t ∈ T and I a binary relation, means that
the expression value of the gene g is the interval of index t for the situation s.
Formal concepts of the context (G,S×T, I) represent groups of genes whose
expression values are in same intervals for a subset of situations (maybe for
all situations). However these intervals are hard to determine adequately a
priori.

3.3. Interordinal scaling for GEDs

Interordinal scaling defined in [9] can help describing all value intervals
without loss of information. Let G be a set of genes, S a set of situations,
W ⊂ R a set of expression values and I1 a ternary relation defined on the
Cartesian product G × S × W . The fact (g, s, w) ∈ I1 or simply g(s) = w
means that gene g has expression value w for situation s (see for example
Table 1). K1 = (G,S,W, I1) is called a many-valued context representing
a GED. The objective is to extract formal concepts (A,B) from K1, where
A ⊆ G is a subset of genes sharing “similar values” of W , i.e. lying in a same
interval. An appropriate binarization (scaling) technique is used to build a
formal context K2 = (G,S2, I2) called derived context of K1.

A scale is a formal context (cross-table), objects being the attributes of
K1 and attributes being the derived ones of K2. As attributes do not take
necessarily the same values, each of them is scaled separately. Let Ws ⊆ W
be the set of all values of the attribute s. The following interordinal scale
(see pp. 42 in [9]) can be used to represent all possible intervals of attribute
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s1 ≤ 4 s1 ≤ 5 s1 ≤ 6 s1 ≥ 4 s1 ≥ 5 s1 ≥ 6

4 × × × ×
5 × × × ×
6 × × × ×

Table 2: Scale IN := (N,N,≤)|(N,N,≥) for s1, N = {4, 5, 6}.

values:

IWs
= (Ws,Ws,≤)|(Ws,Ws,≥).

The operation of apposition of two contexts with identical sets of objects,
denoted by |, returns the context with the same set of objects Ws and the
set of attributes being the disjoint union of attribute sets of the original
contexts. In our case, this operation is applied to two contexts (Ws,Ws,≤)
and (Ws,Ws,≥). As Ws is composed of real numbers, the relations ≤ and ≥
are natural. Table 2 gives an example for Ws1 = {4, 5, 6}. The intents given
by the interordinal scale are all possible value intervals.

Once a scale is chosen, conceptual scaling replaces each many-valued at-
tribute of K1 with a set of binary attributes, resulting in the context K2.
With interordinal scaling, each many-valued attribute s is replaced by 2·|Ws|
binary attributes with names “s ≤ w” and “s ≥ w”, for all w ∈ Ws. For
example, s1 is replaced by {s1 ≤ 4, s1 ≤ 5, s1 ≤ 6, s1 ≥ 4, s1 ≥ 5, s1 ≥ 6}.
Derived context K2 = (G,S2, I2) is given in Table 3 for the attribute s1 only.
This transformation is applied without loss of information: the many-valued
context can easily be reconstructed from the formal context. For example,
derived attributes for (g1, s1, 5) are s1 ≤ 5, s1 ≤ 6, s1 ≥ 4, s1 ≥ 5. The
unique value in Ws1 respecting these predicates is 5 which is the original
value.

The choice of an algorithm to build the concept lattice depends on the
size and density of the formal context to process (see Section 4.6). Density of
a formal context (G,M, I) is defined as the proportion of elements of I w.r.t.
the size of the Cartesian product G×M , i.e. density d = |I|/(|G|.|M |). In the

case of interordinal scaling, density of derived context K2 is d =
∑i≤p

i=1
(|Wi|+1)

2·
∑i≤p

i=1
|Wi|

,

where p is the number of attributes in K1. When |W | grows, d tends to-
wards 50%. Moreover, the number of derived attributes is 2 ·

∑i≤p

i=1 |Wi| and
|g′| = |W |+1 for all g ∈ G. This makes the derived contexts dense, large and
difficult to process. For comparison, density of binary data in [29] does not
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s1 ≤ 4 s1 ≤ 5 s1 ≤ 6 s1 ≥ 4 s1 ≥ 5 s1 ≥ 6

g1 × × × ×
g2 × × × ×
g3 × × × ×
g4 × × × ×
g5 × × × ×

Table 3: K2 = (G,S, I2) for the attribute s1.

Figure 1: Concept lattice of formal context K2 = (G,S, I2) drawn with the Concept
Explorer software (http://conexp.sourceforge.net/).

exceed 6% and the number of derived attributes remains the same after scal-
ing. As pointed in Section 4.6, these binary data show better computational
properties, but biases are introduced.

Let us now consider the concept lattice of K2 given in Figure 1. Concept
extents near the Bottom concept contain a few genes, since the corresponding
intents are related to the smallest intervals. The extent of the Top concept
contains all genes and its intent corresponds to intervals of maximal size. The
higher a concept lies in the diagram, the larger is the interval corresponding
to its intent. Concepts near the Top are not interesting: they allow almost
all possible values of attributes. The problem of selecting the best concepts
in GED analysis is addressed in Subsection 5.3.
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4. Mining GEDs by means of pattern structures

4.1. Introducing pattern structures

In this section, we present an alternative to scaling when a context in-
cludes many-valued attributes. This alternative is based on the idea of pat-
tern structures [8] which was motivated by research on learning with labelled
graphs and other complex descriptions [17, 18].

Intuitively, the similarity of two sets of labelled graphs X and Y , denoted
by X ⊓Y , is given by the maximal common subgraphs of graphs from X and
Y . Then a graph pattern may be defined as a set of graphs X such that
X ⊓X = X, i.e. X is “maximal” w.r.t. the similarity operation. It is easily
seen that the operation ⊓ is idempotent, associative and commutative. The
similarity operation ⊓ on sets of graphs is a sort of “attribute sharing”, as in
the binary case, where objects in extent share the maximal set of attributes
in the corresponding intent. Denote by D the set of all graph patterns,
then (D,⊓) is a semi-lattice with infimum (meet) operator ⊓. A natural
subsumption order on graph patterns is given by X ⊑ Y ⇔ X ⊓ Y = X.

More generally, a pattern structure is a triple (G, (D,⊓), δ) where G is a
set of objects, (D,⊓) is a meet-semi-lattice of object descriptions or patterns,
and δ : G −→ D is a mapping providing any object g ∈ G with a description
d ∈ (D,⊓). As (D,⊓) or equivalently (D,⊑) are semi-lattices, the following
Galois connection, denoted by {(.)�, (.)�}, between (2G,⊆) and (D,⊑) gives
rise to a complete lattice called the pattern concept lattice of (G, (D,⊓), δ) [8].

A� =
l

g∈A

δ(g) for A ⊆ G,

d� = {g ∈ G|d ⊑ δ(g)} for d ∈ (D,⊓).

The first derivation operator takes a set of objects and returns a maximal
description (pattern) shared by all objects. The second derivation opera-
tor takes a description and returns the maximal set of objects sharing this
description.

Pattern concepts of (G, (D,⊓), δ) are pairs of the form (A, d), A ⊆ G,
d ∈ (D,⊓), such that A� = d and A = d�. For a pattern concept (A, d)
the component d is called a pattern intent and is a description of all objects
in A, called pattern extent. For a pattern structure (G, (D,⊓), δ), a pattern
d ∈ (D,⊓) is closed if d�� = d. A set of objects A ⊆ G is closed if A�� = A.
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Obviously, pattern extents and intents are closed. When partially ordered by
(A1, d1) ≤ (A2, d2) ⇔ A1 ⊆ A2 (⇔ d2 ⊑ d1), the set of all pattern concepts
forms a complete lattice called a pattern concept lattice.

4.2. Intervals are patterns

To define a semi-lattice operation ⊓ for intervals that would be analogous
to the set-theoretic intersection or meet operator on sets of graphs, one should
realize that “similarity” between two real numbers (between two intervals)
may be expressed in the fact that they lie within some (larger) interval, this
interval being the smallest interval containing both two.

Then, we choose to define the meet of two intervals [a1, b1] and [a2, b2],
with a1, b1, a2, b2 ∈ R, as follows:

[a1, b1] ⊓ [a2, b2] = [min(a1, a2),max(b1, b2)].

This operation can be viewed as a convexification of its arguments, as it
returns the convex hull of two intervals. The choice of this operator seems
natural to have a more general description when considering more objects,
which would not be the case if considering a classical interval intersection as
attribute values are numbers. The ⊓ operator is idempotent, commutative,
and associative. This means that the meet of several intervals is the smallest
interval containing all intervals. Then, interval subsumption and interval
inclusion are related as follows:

[a1, b1] ⊑ [a2, b2]

⇔ [a1, b1] ⊓ [a2, b2] = [a1, b1]

⇔ [min(a1, a2),max(b1, b2)] = [a1, b1]

⇔ a1 ≤ a2 and b1 ≥ b2

⇔ [a1, b1] ⊇ [a2, b2].

The definition of ⊓ implies that smaller intervals subsume
larger intervals that contain them. For example, with D =
{[4, 4], [5, 5], [6, 6], [4, 5], [5, 6], [4, 6]}, the meet-semi-lattice (D,⊓) is given in
Figure 2. The interval labeling a node is the meet of all intervals labeling
its ascending nodes, e.g. [4, 5] = [4, 4] ⊓ [5, 5], and is also subsumed by these
intervals, e.g. [4, 5] ⊑ [5, 5] and [4, 5] ⊑ [4, 4].

We have shown how intervals can be seen as patterns. Now we can define
a pattern structure where each object is described by an interval. We show
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Figure 2: Meet-semi-lattice (D,⊓) with D = {[4, 4], [5, 5], [6, 6], [4, 5], [5, 6], [4, 6]}.

in the following how to generalize the process when considering vectors of
intervals. Furthermore, this is exactly what we need for analysing GED where
gene expression profiles are vectors of numbers (and [a, a] is an interval for
any a ∈ R).

4.3. Interval vectors are patterns

We call an interval vector a p-dimensional vector of intervals. When e and
f are vectors of p intervals, we write e = 〈[ai, bi]〉i∈[1,p] and f = 〈[ci, di]〉i∈[1,p].
The similarity operation ⊓ is defined by the meet of corresponding compo-
nents for vector of the same size (knowing that the order of the components
is canonical):

e ⊓ f = 〈[ai, bi]〉i∈[1,p] ⊓ 〈[ci, di]〉i∈[1,p]
⇔ e ⊓ f = 〈[ai, bi] ⊓ [ci, di]〉i∈[1,p].

Therefore, interval vectors are partially ordered by:

e ⊑ f
⇔ 〈[ai, bi]〉i∈[1,p] ⊑ 〈[ci, di]〉i∈[1,p]
⇔ [ai, bi] ⊑ [ci, di], ∀i ∈ [1, p].i ∈ [1, p],

meaning that each interval [ai, bi] of e is subsumed by the corresponding
interval [ci, di] of f . For example, 〈[2, 4], [2, 6]〉 ⊑ 〈[4, 4], [3, 4]〉 as [2, 4] ⊑ [4, 4]
and [2, 6] ⊑ [3, 4].

4.4. Mining a GED as a pattern structure

GED in Table 1 can be formalized as a pattern structure (G, (D,⊓), δ)
where G = {g1, . . . , g5} and D is a set of interval vectors or 3-dimensional
vectors, where each component corresponds to an attribute of the table. For
example, δ(g1) = 〈[5, 5], [7, 7], [6, 6]〉, where [a, a] stands for any a ∈ R. When
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A ⊆ G is a set of objects and d ∈ (D,⊓) is an interval vector, A� returns
an interval vector composed, for each dimension, of the smallest interval
containing all intervals in the description of each object in A, i.e. their convex
hull. On the other hand, d� returns the set of objects being described for
each dimension by an interval included in the corresponding interval of d.

For example, with data of Table 1, we have:

{g1, g2}
� =

l

g∈{g1,g2}

δ(g)

= δ(g1) ⊓ δ(g2)

= 〈[5, 5], [7, 7], [6, 6]〉 ⊓ 〈[6, 6], [8, 8], [4, 4]〉

= 〈[5, 5] ⊓ [6, 6], [7, 7] ⊓ [8, 8], [6, 6] ⊓ [4, 4]〉

= 〈[5, 6], [7, 8], [4, 6]〉

〈[5, 6], [7, 8], [4, 6]〉� = {g ∈ G|〈[5, 6], [7, 8], [4, 6]〉 ⊑ δ(g)}

= {g1, g2, g5}

Obviously, g1 and g2 belong to 〈[5, 6], [7, 8], [4, 6]〉�. g5 also belongs to this
set because 〈[5, 6], [7, 8], [4, 6]〉 ⊑ δ(g5).

Then, the pair (A, d) = ({g1, g2, g5}, 〈[5, 6], [7, 8], [4, 6]〉) is a pattern con-
cept meaning that A� = d and A = d�. The set of all pattern concepts gives
rise to a pattern concept lattice (see Figure 3).

4.5. Concept lattice and pattern concept lattice

The following proposition establishes an isomorphism between the con-
cept lattice of KI with the relation IWs

= (Ws,Ws,≤)|(Ws,Ws,≥), resulting
from the interordinal scaling as defined in Section 3.3, and the pattern con-
cept lattice of (G, (D,⊓), δ).

Proposition 1. Let A ⊆ G, then statements 1 and 2 are equivalent:
1. A is an extent of the pattern structure (G, (D,⊓), δ) and A� =

〈[mi,mi]〉i∈[1,p], where mi and mi respectively denote the minimum and max-
imum of values of the objects in A for the ith attribute.

2. A is a concept extent of the context KI so that for all i ∈ [1, p] mi is
the largest number n such that the attribute si ≥ n is in A′ and mi is the
smallest number n such that the attribute si ≤ n is in A′.

Proof. 1 → 2 Let A ⊆ G be a pattern extent. Given δi(g) the mapping
that returns the ith interval of the vector describing object g. Since A� =
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Figure 3: Pattern concept lattice of pattern structure from Table 1.

〈[mi,mi]〉i∈[1,p], for every object g ∈ A one has mi ≤ δi(g) ≤ mi and there
are objects g1, g2 ∈ A such that δi(g1) = mi, δi(g1) = mi. Hence, in context
KI one has

A′ = ∪i∈[1,p]{si ≥ nmin, . . . , si ≥ n1, si ≤ n2, . . . , si ≤ nmax}

where
nmin ≺ . . . ≺ n1 ≤ n2 ≺ . . . ≺ nmax

and n1 = mi, n2 = mi. Hence, mi is the largest number n such that the
attribute si ≥ n is in A′ and mi is the smallest number n such that the
attribute si ≤ n is in A′. Suppose that A is not an extent of KI . Hence,
A ⊂ A′′ and there is g ∈ A′′ \ A and g′ ⊇ A′. This means that for all i
mi ≤ δi(g) ≤ mi. Therefore, g ∈ A�� and A 6= A��, a contradiction. The
proof 2 → 1 is similar. �

Consider an example of pattern concept: ({g1, g2, g5}, 〈[5, 6], [7, 8], [4, 6]〉),
the equivalent concept of the interordinally scaled context is ({g1, g2, g5}, {s1 ≤
6, s1 ≥ 4, s1 ≥ 5, s2 ≥ 7, s2 ≤ 8, s2 ≤ 9, s3 ≤ 6, s3 ≤ 8, s3 ≥ 4}). Pattern
intents are concise representations of concept intents. Therefore, concept
intents are long descriptions, which can be turned to pattern intents by a
simple syntactic post-processing.
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4.6. Computation
Many algorithms for generating formal concepts from a formal context are

compared in [20]. Experimental results highlight Norris, CloseByOne and
NextClosure algorithms as the best algorithms when the context is dense and
large, which is the case of interordinally derived formal contexts (shown in
Section 3). Worst-case upper bound time complexity of the three algorithms
for computing a set of formal concepts from a formal context (G,M, I) is
O(|G|2 · |M | · |L|) with G the set of genes, M the set of attributes (here the
set of attributes of the scaled context), and L the set of generated concepts.

To compute interval pattern concepts, the selected FCA algorithms Nor-
ris, CloseByOne, and NextClosure, need only slight modifications. The worst-
case time complexity of computing the set of interval patterns is O(|G|2 · p ·
|L|), where p is the number of components in interval vectors, i.e. the number
of numerical attributes in the original numerical data.

In both cases, the sets G and L are the same, thus relative efficiency
of processing both data representations depends on the number of different
attribute values in the original many-valued numerical context.

We now propose an adaptation of the CloseByOne algorithm for process-
ing pattern structures such as vectors of intervals. This algorithm is the most
efficient in our case (see Section 5) and the original pseudo-code for process-
ing a formal context is given in Algorithms 1 and 2. It generates all concepts
in a bottom-up way (from minimal to maximal extents). It considers objects
one by one starting from the minimal one w.r.t. a linear order < on G, e.g.
a lexical order on object labels. Then it adds the next object w.r.t < and
applies the closure operator (·)′′ to generate the next concept. Testing < on
the obtained extent helps to easily determine if a concept extent was already
generated. Finally, recursiveness of the algorithm induces a tree structure on
the set of all concepts. More details on this algorithm can be found in [20, 33].
To adapt this algorithm for pattern structures, one has to replace each call to
a (.)′ operator by a call to the corresponding (.)� operator. Then, computing
A� for a set A ⊆ G is realized by taking min (respectively max) of all left
(respectively right) limits of the intervals of each object description. For a
pattern d ∈ (D,⊓), d� is computed by testing for each object g ∈ G if each
interval of its description is included in the corresponding interval of d.

By contrast, it is not that simple to adapt a depth-first search algorithm
such as Charm that searches for closed sets [39]. For this algorithm, the
binary representation of descriptions and their storage of particular data
structures are essential.
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Alg. 1 Close By One.

1: L = ∅
2: for each g ∈ G
3: process({g}, g, (g′′, g′))
4: L is the concept set.

Alg. 2 process(A, g, (C,D)) with C = A′′ and D = A′ and < the lexical
order on object names.

if {h|h ∈ C\A and h < g} = ∅ then

2: L = L ∪ {(C,D)}
for each f ∈ {h|h ∈ G\C and g < h}

4: Z = C ∪ {f}
Y = D ∩ {f ′}

6: X = Y ′

process(Z, f, (X, Y ))
8: end if

5. Biological experiments

This section shows how pattern structures are used for extracting biolog-
ical information from a real-world GED and how they outperform interordi-
nally scaled contexts in terms of processing time.

5.1. A real-world GED

Biologists at the UMR IAM (INRA) study interactions between fungi and
trees. They published the complete genome sequence of the fungus Laccaria
bicolor [24]. This fungus lives in symbiosis with many trees of boreal and
temperate forests. The fungus forms a mixed organ on tree roots and is able
to exchange nutrients with its host in a specific symbiotic structure called
ectomycorrhiza, contributing to a better tree growth and enhancing forest
productivity. On the other hand, the plant repays its symbiotic partner by
providing carbohydrates, allowing the fungus to complete its biological cycle
by producing fruit-bodies (e.g. mushrooms). It is thus of major interest to
understand how the symbiosis performs at the cellular level. The genome se-
quence of Laccaria bicolor contains more than 20,000 genes [24]. The study of
their expression in various biological situations helps to understand their roles
and functions in the biology of the fungus. Microarray techniques enable to
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compare expression values of all the genes between contrasted situations like
free-living cells of the fungus (i.e. mycelium), cells engaged in the symbiotic
association (i.e. ectomycorrhiza), and specialized cells forming the fruit-body
structure (i.e. mushroom). Laccaria bicolor gene expression data is available
at the Gene Expression Omnibus of the National Center for Biotechnology
Information (NCBI)2. It is composed of 22,294 genes in lines and 5 various
biological situations in columns, reflecting cells of the organism in various
stages of its biological cycle, i.e. free living mycelium (situation FLM), sym-
biotic tissues (situations MP and MD) or fruiting bodies (situations FBe and
FBl).

5.2. Preprocessing the data

First, a selection from the 22,294 genes is processed. Indeed, a gene that
shows similar expression values in all situations presents less interest to the
biologist than a gene with high differences of expression. One gene with a
constant expression does not indicate a particular contribution to a cellular
process (although its expression per se can be sufficient to participate to the
process). Besides, significant changes in gene expression may reflect a role in
a biological process and such genes help the biologist to draw hypotheses.

Filtering the genes consists in removing genes having no significant dif-
ference of expression across all situations. For each couple of situation, a
t-test is performed and a p-value is attributed. If the p-value > 0.05 (cut-off
classically applied in biology) for all couples of situations then the current
gene is removed from the dataset. The CyberT tool3 was used to filter the
dataset and obtain 11, 930 genes. Another classical pre-processing in GED
analysis is to transform expression values using log2. Indeed, it allows the
capture of small expression values into intervals that should be larger for
high expression values. Finally, for making computation possible, a last pre-
processing consists in rounding log2 expression values to one digit after the
comma, recalling that the more there are different attribute values, the more
they are concepts.

5.3. Methodology of mining GED

Before extracting concepts from the GED defined above, we should re-
mark that, given the definition of ⊓ as a convexification of intervals, the

2http://www.ncbi.nlm.nih.gov/geo/ as series GSE9784
3Available at http://cybert.microarray.ics.uci.edu/.
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following property of an (interval vector) pattern concept lattice is obvious.
The lowest concepts w.r.t. ≤ are generally composed of pattern extents with
few objects and “precise” descriptions, i.e. whose pattern intent is composed
of “small” intervals. Then, the higher a concept is, the more elements there
are in its extent, and the more intervals of its intent are large. For example,
the Top concept, i.e. the highest concept w.r.t. ≤, has an extent containing
all objects, and an intent composed of the largest intervals subsumed by all re-
spective intervals of the data. In the example, Top = (G, 〈[4, 6], [7, 9], [4, 8]〉).
However, the main goal of GED analysis is extracting homogeneous groups
of genes, i.e. groups of genes having similar expression values. Therefore,
descriptions of homogeneous groups should be composed of intervals with
“small” sizes where size([a, b]) = b− a.

Consider a parametermaxsize that specifies the maximal admissible size of
any interval composing an interval vector. Then pattern concepts of interest
have pattern intents d = 〈[ai, bi]〉i∈[1,p] ∈ (D,⊓) satisfying the constraint:
∃i ∈ [1, p] (bi−ai) ≤ maxsize, for any a, b ∈ R. A stronger constraint would be
∀i ∈ [1, p] (bi−ai) ≤ maxsize, meaning that only concepts representing genes
with “similar” expression values in at least one or all biological situations
are retained. Therefore, two values are said to be similar if their difference
does not exceed maxsize. Since both constraints are monotone (if an intent
does not satisfy it, then a subsumed intent does not satisfy it either), the
subsets of patterns satisfying any of these constraints are order ideals (w.r.t.
subsumption on intervals ⊑) of the lattice of pattern intents. In terms of
computation, this means that only some lower part of the pattern lattice is
computed, with patterns satisfying the constraints. CloseByOne can easily
consider these constraints as it generates concepts from minimal to maximal
extents.

The CloseByOne algorithm was run on the resulting pattern structure
with maxsize = 0.35. A concept is retained if it describes at least 7 co-
expressed genes in at least 5 situations, i.e. the intent has at least 5 intervals
whose size do not exceed the maxsize parameter. Indeed, let us recall that
concepts near the Bottom, i.e. in the lowest levels of the concept lattice, are
composed of a few genes described by small intervals. Processing time was
about 2 minutes and returns 2, 120 concepts (hardware details are given in
next section).
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Figure 4: Graphical visualisation of two extracted concepts. X-axis is composed of situ-
ations, Y-axis is the expression values axis. Each line denotes the expression profile of a
gene in the concept extent. Values are taken before the logarithmic transformation.

5.4. Biological results and interpretation

Here we present two extracted patterns selected as grouping genes with
high expression levels in the fruit-bodies situations, whereas their expression
remains similar between the mycelium and symbiosis situations (Figure 4).
These patterns have been extracted from the whole list of 2, 120 patterns for
the following characteristic: in both cases, the expression levels measured are
about two times higher in the fruit-body compared to the other situations.
It indicates that these genes correspond to biological functions of importance
at this stage. The expression measured in the mycelium and symbiosis situ-
ations tends to indicate that these genes are also involved in general cellular
processes as they are already expressed in all situations.

The pattern in Figure 4 (left) contains 7 genes, of which only 3 possess a
putative cellular function assignment based on similarity in international gene
databases at NCBI. Interestingly, these genes all encode enzymes involved
in distinct metabolic pathways. A gene encodes a 1-pyrroline-5-carboxylate
dehydrogenase which is involved in amino-acid metabolism, another corre-
sponds to an acyl-coA dehydrogenase, involved in fatty acid metabolism and
a last gene encodes a transketolase, an enzyme involved in the pentose phos-
phate pathway of carbohydrate metabolism. All these metabolic functions
are essential for the fungus and reflect that the fruit-body is a highly active
tissue. The fruit-body is a specific fungal organ that differentiate in order to
produce spores and that further ensure spore dispersal in nature [30]. Pre-
vious gene expression analyses of the fruit-body development conducted in
the ectomycorrhizal fungus Tuber borchii also reported the strong induction
of several genes involved in carbon and nitrogen metabolisms [13] as well as
in lipid metabolism [32]. The present results are consistent with these obser-
vations and supports an important mobilization of nutrient sources from the
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mycelium to the fruit-body. It seems obvious that the primary metabolism
requires to be adapted to use these sources in order to properly build spores
and provide spore-forming cells with nutrients [30].

The pattern on Figure 4 (right) also contains 7 genes, of which only 3 pos-
sess a putative biological function. Interestingly, one of these genes encodes
one pseudouridylate synthase, an enzyme involved in nucleotide metabolism
that might also be involved in remobilization of fungal components from the
mycelium to spore-forming cells and spores. The 2 other genes encode a
cytoskeleton protein (actin) and a protein related to autophagy (autophagy-
related 10 protein), a process that can contribute to the recycling of cellular
material in developing tissues. Both functions participate in re-constructive
cellular processes [30], which is consistent with the involvement of metabolic
enzymes in remobilization of fungal resources towards the new organ in de-
velopment.

Analysis of these two patterns that present a high expression level in
the fruit-body situation is highly informative, confirms existing knowledge in
the field and highlights the importance of remobilization in the developing
organ. These co-expressed genes share related roles in a particular process.
This could indicate that they are under the control of common regulators of
gene expression. Interestingly, these patterns also contained a total of 8 genes
of unknown functions, i.e. for which no functional assignment was possible
in international gene databases. There were 4 genes encoding hypothetical
proteins with a homology in databases but no detailed function and 4 genes
not previously described in fungi or other organism and which are considered
specific to Laccaria bicolor. There are about 30% of such genes specific
to this fungus and these may play specific roles in the biology of this soil
fungus [24]. All these genes show consistent profiles with those encoding
metabolic functions. Thus, these genes are interesting investigation leads as
they may contain new enzymes not previously described of the pathways or
eventual regulator of the cellular process. Altogether, these results contribute
to a better understanding of the molecular processes underlying the fruit-
body development.

As stated earlier, the expression of these genes was not specific to this
biological situation. Their expression levels was already high in the mycelium
and the symbiotic tissue indicating that these processes are essential not
only to the fruit-body development but also to general cellular processes
as previously described in expression studies of the tree-fungus symbiosis
development [31].
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5.5. Performance and efficiency study

Here we compare time performance of three algorithms for mining pattern
structures of interval vectors (Section 4) and equivalent interordinally scaled
contexts (Section 3). We have implemented the Norris, NextClosure, and
CloseByOne algorithms, for both processing formal contexts and pattern
structures. We have added the Charm algorithm [12] that extracts closed
itemsets, i.e. concept intents in a formal context. FCA algorithms have been
implemented in original versions as described in [20]. These algorithms are
run within the Coron System [35].4 All implementations are in Java: sets of
objects and binary attributes are described with the BitSet class and interval
descriptions with standard double arrays. The experiments were carried out
on an Intel Core2 Quad CPU 2.40 Ghz machine with 4 GB RAM running
under Ubuntu 8.10.

We began to compare algorithms on the data presented in biological ex-
periments, i.e. from a many-valued context (G,S,W, I1) where |G| = 10, 225
and |S| = 5. Even by reducing the number of attribute values, computation
is infeasible. Indeed we do not consider here constraints like the maximal in-
terval size. Then we randomly selected samples of the data, by increasing the
number of objects. As attribute values are real numbers with about five dig-
its after the comma, the size of W is large. In the worst case, |W | = |G|×|S|,
i.e. each attribute value is different in the dataset. This implies very large
formal contexts to process and a large number of concepts. The execution
times for this case are shown in Table 4. The Norris algorithm shows the
best results in formal contexts, meeting conclusions of [20] for large and dense
contexts. However, CloseByOne performs better for pattern structures, and
most importantly is the only one able to compute a very large collection of
concepts. When strongly reducing the size of W by rounding attribute val-
ues to the integer, i.e. |W | ≪ |G| × |S|, the Charm algorithm outperforms
the others. The Norris algorithm is still the best FCA-algorithm in formal
contexts and CloseByOne is the best in pattern structures (see Table 5).

To sum up, we can say the following: When the number of different
attribute values w.r.t. |G| × |S| is low, computing concepts from formal
contexts is the most efficient solution. For large datasets with many different
attribute values, it is much more efficient to compute with interval pattern

4The Coron System is freely available at http://coron.loria.fr and also integrates
a tool for applying interordinal scaling to numerical data.
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Datasets
|G| 10 20 30 40 50 75 100
|W | 50 100 150 199 249 374 252

density 51.00% 50.50% 50.33% 50.25% 50.20% 50.13% 50.20%

Generation time in formal contexts (in milliseconds)
Charm 60 916 16,469 N/A N/A N/A N/A

Next Closure 5 145 1,299 12,569 68,969 N/A N/A
Norris 2 90 609 5,180 28,831 N/A N/A

Close By One 3 106 906 7944 41,238 N/A N/A

Generation time in pattern structures (in milliseconds)
Next Closure 6 100 763 5,821 35,197 N/A N/A

Norris 6 172 1982 15,522 83,837 N/A N/A
Close By One 2 85 585 3,094 18,320 1,004,073 2,288,200

Concept set L
|L| 280 9,587 78,173 455,008 1,857,725 40,325,176 64,571,385

Table 4: Generation time in both data representations (no projection).

Datasets
|G| 25 50 75 100 125 150 200
|W | 34 37 44 53 58 62 66

Generation time for formal contexts (in milliseconds)
density 51.47% 51.35% 51.14% 50.94% 50.86% 50.81% 50.76%
Charm 55 154 184 243 394 936 1856

Next Closure 100 933 3,333 22,973 30,854 78,790 593,416
Norris 38 320 861 2,697 5,954 15,359 46,719

Close By One 84 483 2,424 8,452 22,173 59,070 227,432

Generation time for pattern structures (in milliseconds)
Next Closure 59 372 1,924 6,215 15,417 42,209 143,501

Norris 44 479 2,602 7,243 16,257 40,991 109,814
Close By One 40 220 1,084 3,832 9,289 23,989 89,804

Concept set L
|L| 1,165 5,928 23,962 48,176 73,463 163,316 252,515

Table 5: Generation time in both data representations. Attribute values are rounded.
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structures. One explanation is that for formal concepts the concept intent
representation is a bit string whose length increases with the growth of |W |.
Object descriptions in pattern structure are arrays of constant size w.r.t.
|W |.

6. Related Work

Numerous methods have been designed since the end of 90’s allowing the
discovery and description of biological processes in living cells [34]. These
methods may be divided into three categories: clustering, biclustering, and
FCA-based methods. Units extracted by these methods, i.e. clusters, biclus-
ters, and formal concepts, characterize biological processes. These methods
are unsupervised or supervised by domain knowledge. We restrict our dis-
cussion to unsupervised methods, as there is generally a few knowledge units
available when dealing with GEDs of species whose genome was very recently
sequenced (this is the case of the plant species Laccaria bicolor considered
in Section 5). We also do not discuss evolutionary computation of clusters,
see e.g. [11].

Clustering methods group genes into clusters w.r.t. a global similarity,
e.g. based on Euclidean distance, of their expression profiles. Here, “global”
means that the similarity is computed for whole numerical vectors represent-
ing gene expression profiles. Then, clustering may fail to detect biological
processes activated in some situations only [23].

To overcome this limitation, biclustering algorithms have been suggested [6,
23]. Biclusters in a GED are defined as groups of genes having similar expres-
sion values in a same group of situations, but not necessarily all. However,
it is known that most of the genes are involved in several processes [34],
i.e. biclusters should overlap. Then, it becomes difficult to extract homo-
geneous biclusters based for example on subtables of a GED and respecting
given constraints as their number grows exponentially. If constraints are
more “heuristic-like”, then interesting patterns may be missed [4]. This is
one of the reasons why only a few biclustering algorithms allow overlapping
of biclusters [23]. Our approach is close to that described in [27] where de-
scriptions of gene clusters are sought as interval vectors of gene expression
values. The authors of [27], however, do not use the semi-lattice on intervals
for systematically generating all interesting clusters of this kind, but adhere
to local optimum probabilistic approach by randomly generating a maximal
gene-expression bicluster at each iteration of a greedy algorithm that con-
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structs a cover of the set of all genes. The authors of [27] do not compare
their approach to equivalent approaches that use binarization of numerical
values.

For a binary object-attribute table, e.g. Table 2, a bi-cluster is a set of
objects having the same, or almost the same, set of attributes. In [29], au-
thors proposed the Bi-Max bi-clustering algorithm, which extracts inclusion-
maximal biclusters as follows. Given a set G of genes, a set M of situations,
and a binary table {egm}g∈G,m∈M such that egm = 1 or egm = 0, the pair
(A,B) ∈ 2G × 2M is called an inclusion-maximal bicluster if and only if (1)
∀a ∈ A, b ∈ B : eab = 1 and (2) ∄(C,D) ∈ 2G × 2M with (a) ∀c ∈ C, ∀d ∈ D:
ecd = 1 and (b) A ⊆ C ∧ B ⊆ D ∧ (C,D) 6= (A,B). Stated in this way, a
bicluster is nothing else than a formal concept.

Formal Concept Analysis (FCA) can be viewed as a kind of binary bi-
clustering method. It provides means for extracting patterns from a binary
relation, namely formal concepts. In application to GED analysis, concept
extents are maximal sets of genes related to a common maximal set of sit-
uations (not necessarily all). The ordering of concepts among a complete
lattice makes overlapping of concepts natural. Then a complete enumeration
of patterns respecting some constraints like closure and minimal frequency is
possible [4, 15]. Indeed, the subsets of patterns satisfying these constraints
is an order ideal of the lattice of patterns. Actually, in this paper, we payed
particular attention to scaling problems, such as boundary problems, and we
proposed monotone constraints to retain best concepts for a GED analysis.

7. Conclusion

In this paper, we addressed the problem of efficiently mining numerical
data with techniques based on Formal Concept Analysis (FCA). The stan-
dard way of dealing with numerical data in FCA is based on scaling. However,
the data may be scaled in a lot of different ways leading to different results
and interpretations. Most importantly, this usually leads either to loss of
information and precision, or to huge and dense binary datasets difficult to
process.

In the context of gene expression data analysis, we have compared two
mathematically equivalent methods for processing numerical data. The first
one uses interordinal scaling and classical FCA algorithms. It encodes all pos-
sible intervals of attribute values in a formal context that is processed with
classical FCA algorithms. The second method relies on pattern structures:
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it builds a concept lattice directly from the original data. We proved that
both resulting concept lattices are isomorphic. Most importantly, pattern
structures offer more concise representations, better scalability, and better
readability of the (pattern) concept lattice. Thus, we gave elements for an-
swering the challenging question, should one scale numerical attributes? We
also showed substantial results for GED analysis, highlighting the important
potential of pattern structures as a bi-clustering technique. It remains now
to compare this method with other gene expression data mining techniques
across a systematic comparative study.

Among other directions of further research, one may involve domain
knowledge. The semi-lattice of descriptions (D,⊓) may be viewed as an
attribute hierarchy, where domain knowledge may be encoded, e.g. in some
dimensions of a pattern vector. Domain knowledge can be given by text
annotations on genes, e.g. [25], for which a similarity operation ⊓ can be
defined.

Considering the similarity operation ⊓ as interval convexification gener-
ates too many patterns: some patterns and their sub-patterns w.r.t. ⊑ may
describe almost the same set of genes, i.e. a few genes differs in their extents.
Concept stability was introduced in [19] for measuring this phenomena. In
this paper, we solved the problem of un-interesting patterns thanks to a
monotone constraint. Recently, we embedded tolerance relations in pattern
structures to produce only concepts with similar objects, w.r.t. a distance
on their values [16]. Furthermore, one can also be interested to use pattern
structures in fuzzy settings, although FCA has already been extended in [2, 3]
where an object is associated with an attribute with a truth degree.

Finally, and most importantly, the use of interval pattern structures
should be of great interest for mining association rules in numerical data.
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