
HAL Id: hal-00541076
https://hal.science/hal-00541076v1

Submitted on 30 Nov 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Breaking Paths in Atomic Flows for Classical Logic
Alessio Guglielmi, Tom Gundersen, Lutz Strassburger

To cite this version:
Alessio Guglielmi, Tom Gundersen, Lutz Strassburger. Breaking Paths in Atomic Flows for Classical
Logic. Proceedings of the 25th Annual IEEE Symposium on Logic in Computer Science, LICS 2010,
Jul 2010, Edinburgh, United Kingdom. pp.284-293, �10.1109/LICS.2010.12�. �hal-00541076�

https://hal.science/hal-00541076v1
https://hal.archives-ouvertes.fr

April 29, 2010 — Final version for proceedings of LICS’10 1

Breaking Paths in Atomic Flows for Classical Logic

Alessio Guglielmi
INRIA Nancy – Grand Est, LORIA and

University of Bath

A.Guglielmi AT bath.ac.uk

Tom Gundersen
INRIA Saclay – Île-de-France and

École Polytechnique, LIX

teg AT jklm.no

Lutz Straßburger
INRIA Saclay – Île-de-France and

École Polytechnique, LIX

lutz AT lix.polytechnique.fr

Abstract

This work belongs to a wider effort aimed at eliminating
syntactic bureaucracy from proof systems. In this paper,
we present a novel cut elimination procedure for classical
propositional logic. It is based on the recently introduced
atomic flows: they are purely graphical devices that ab-
stract away from much of the typical bureaucracy of proofs.
We make crucial use of thepath breaker, an atomic-flow
construction that avoids some nasty termination problems,
and that can be used in any proof system with sufficient
symmetry. This paper contains an original 2-dimensional-
diagram exposition of atomic flows, which helps us to con-
nect atomic flows with other known formalisms.

1 Introduction

The investigation of the cut elimination property of log-
ical systems is a central topic in current proof theory, and,
as pointed out by Girard [9], thelack of modularityis one
of its main technical limitations. More precisely, the argu-
ment for showing cut elimination is usually based on heavy
syntactic arguments and a tedious case analysis depending
on the shape of the inference rules. A slight change in de-
sign makes the whole proof break down, and if one wishes
to add some rules, one usually has to redo the whole cut
elimination proof from scratch.

Our work in this paper suggests that the source of this
“lack of modularity” might not be in the nature of the cut
elimination property, but in the method that is used for prov-
ing it. We present here a cut elimination procedure for clas-
sical propositional logic that is independent from the shape
of the logical rules. It is not based on the permutation of in-
ference rules but on the manipulation ofatomic flows[10].

Atomic flows capture the structural skeleton of a proof
and ignore the logical content. Due to their “graphical
nature”, atomic flows can be seen as relatives of Girard’s
proof nets[8, 6] and Buss’logical flow graphs[5]. Proof
nets have originally been proposed only for linear logic,
but there have been various proposals for proof nets for
classical logic with different purpose and design, e.g., by

Laurent [17], by Robinson [19] and by Lamarche and
Straßburger [16]. Logical flow graphs have only been de-
fined for classical logic, but their definition for linear logic
would be literally the same. In fact, for the multiplicative
fragment of linear logic (MLL) the two notions essentially
coincide. This, however, is no longer the case for classical
logic, which can be obtained from MLL by adding the rules
for contraction and weakening. Atomic flows can be seen as
a development that takes the best out of both worlds. Like
proof nets they simplify proof normalization because they
avoid unnecessary bureaucracy due to trivial rule permuta-
tions, and like logical flow graphs they precisely capture the
information flow inside the proof. In this respect, they are
very similar to the variant of proof nets discussed in [23].
Since atomic flows contain for each atom occurrence every
contraction and weakening that is applied to it, they can be
used for controlling the size of proofs, and thus can also
play a role in proof complexity (see [3]).

Atomic flows are also very similar tostring diagramsfor
representing morphisms in monoidal categories (see [20]
for a survey). However, in (classical) logic one usually finds
two dual monoidal structures and not just one. Thus, atomic
flows are, in spirit, more closely related tocoherence graphs
in monoidal closed categories [13]. Nonetheless, it should
be stressed that atomic flows do not form a monoidal closed
category. The following two flows arenot the same

and (1)

although, during the normalization process, we wish to re-
duce the atomic flow on the left (a cut connected to an iden-
tity) to the atomic flow on the right (a single edge). In linear
logic one can simply "pull the edges" and directly reduce
the left atomic flow in (1) to the right one, whereas in clas-
sical logic this step might involve duplication of large parts
of the proof. The main insight coming from atomic flows
is that this duplication and the whole normalization process
is independent from the logical content of the proof and in-
dependent from the design of the logical rules in use, as is
discussed in [10].

This paper is structured into three parts:

• In the first part (Sections 2 and 3) we introduce atomic
flows. For doing so, we use the language of two-
dimensional diagrams [15], originally due to Penrose
(see also [11]). The atomic flows as they are defined
here are different from those defined in [10], but the
differences can be easily reconciled. We chose this
slightly different definition for the sake of convenience
when composing and manipulating atomic flows inde-
pendently from their associated derivations.

• In the second part (Sections 4 and 5) we first define lo-
cal transformations on atomic flows that are similar to
the reduction steps in linear logic proof nets or in inter-
action nets [14], and that have the goal to normalize the
proof. However, due to the presence of contractions, the
atomic flows can contain cycles that prevent these lo-
cal reductions from terminating. To solve this problem,
we define a global transformation on the atomic flows,
called thepath breaker, that treats the proof as a black
box; it simply duplicates the whole proof and combines
the copies. Note that this is conceptually different from
the cut elimination in standard proof nets [8, 17, 19],
where cut reduction steps are mixed local/global: A
single step involves a local cut reduction and some du-
plication of a part of a proof (a box or an empire). In
our case the procedure consists of two phases, a purely
global one followed by a purely local one. However it
remains an important research objective to investigate
the computational meaning of these reductions.

• In the third part (Sections 6 and 7) we show how for-
mal proofs in a deductive system are mapped to atomic
flows, and how the operations on atomic flows that we
defined before can be lifted to the deductive system,
and thus can be used to provide a cut elimination pro-
cedure. This can be done because the symmetry of the
deductive system we use allows to reduce the cut to its
atomic form, in the same as it is done for the identity
rule in traditional systems.

2 Atomic Flows

We start from a countable setA of atomic types,
equipped with an involutive bijection̄(·) : A → A, such
that for all a ∈ A, we haveā 6= a and ¯̄a = a. A (flow)
type is a finite list of atomic types, denoted byp, q, r, . . .,
and we writep | q for the list concatenation ofp andq, and
we write0 for the empty list. Anatomic flowφ : p→ q is a
two-dimensional diagram [15], written as

p
︷ ︸︸ ︷

· · ·
φ
· · ·

︸ ︷︷ ︸

q

ai↓ ac↓ aw↓ ae aw↑ ac↑ ai↑

a ā

a a

a a a b

b a a

a a

a a ā

Figure 1: Generators for atomic flows

wherep is theinput typeandq is theoutput type. The num-
ber of edges corresponds to the lengths of the lists, and each
edge is labelled by the corresponding list element. For each
typeq, we have theidentity flowidq:

· · ·

We can compose atomic flows horizontally: forφ : p → q

andφ′ : p′ → q′, we getφ | φ′ : p | p′ → q | q′ of the shape

· · ·
φ
· · ·

· · ·
φ′
· · ·

And we can compose atomic flows vertically: forφ : p→ q

andψ : q → r, we getψ ◦ φ : p→ r of the shape

· · ·
ψ
· · ·
φ
· · ·

Forφ : p → q we haveφ ◦ idp = φ = idq ◦ φ andφ | id0 =
φ = id0 |φ. We also have(ψ◦φ)|(ψ′◦φ′) = (ψ |ψ′)◦(φ|φ′)
which is pictured as

· · ·
ψ
· · ·
φ
· · ·

· · ·
ψ′
· · ·
φ′
· · ·

Finally, we have to give a set of generators and relations,
which is done in Figures 1 and 2. It is easy to see that
atomic flows form a (strict) monoidal category, that we de-
note byAF.

The generators in Figure 1 are calledai↓ (atomic in-
teraction down), ac↓ (atomic contraction down), aw↓
(atomic weakening down), ae (atomic exchange), aw↑
(atomic weakening up), ac↑ (atomic contraction up), and
ai↑ (atomic interaction up). Note that some of them have
already been studied, e.g., [4, 15, 7, 18]. The typing infor-
mation in Figure 1 says that

• for ai↓ (resp.ai↑) the two output edges (resp. input
edges) carry opposite atomic types,

• for ac↓ (resp.ac↑) all input and output edges carry the
same atomic type,

2

= =

= =

= =

= =

= =

a ā = ā a
a ā = ā a

Figure 2: Relations for atomic flows

• for aw↓ (resp.aw↑) there are no typing restrictions, and

• for ae, the left input has to carry the same type as the
right output, and vice versa.

When picturing an atomic flow we will omit the typing
when this information is irrelevant or clear from context,
as done in Figure 2. The typing is needed for two reasons:
first, we need to exclude illegal flows like

.

Note, that for this it would suffice to have only two types,
+ and−, as done in [10]. The second reason for having the
types here is the use of the flows as tool for proof transfor-
mations later in this paper.

Definition 2.1. For a given atomic flow diagramφ, we de-
fine its atomic flow graphGφ to be the directed acyclic
graph whose vertices are the generatorsai↓, ai↑, ac↓, ac↑,
aw↓, aw↑ (i.e., all exceptae) appearing inφ, whose incom-
ing (resp. outcoming) edges are the incoming (resp. out-
coming) edges ofφ, and whose inner edges are downwards
oriented as indicated by the flow diagram forφ. A path in
φ is a path inGφ.

Remark 2.2. If we label the edges inGφ by the correspond-
ing atomic type, then for every path inφ, all its edges carry
the same label.

Remark 2.3. In [10], atomic flows have been defined as di-
rected graphs, as done in Definition 2.1. Indeed,Gφ is the
“canonical representative” of a class of flow diagrams wrt.
to the equalities in Figure 2. However, with this definition
the order of the input/output edges is lost, which makes the
vertical composition and the mapping from formal deriva-
tions (done in Section 6) more difficult to define.

Remark 2.4. We could add the relations

= and =

and their duals to the ones given in Figure 2, and this would
equip every object inAF with a monoid and a comonoid
structure. However, the results in this paper do not rely on
that, and we decided to keep the set of relations minimal.

Notation 2.5. For making large atomic flows easier to read,
we introduce the following notation:

abbreviates · · ·

This can be extended to all generators:

abbreviates
···

abbreviates

··· ···

··· ···

abbreviates

··· ···

···

abbreviates ···

··· ···

And similarly for aw↑, ac↑, andai↑. In each case we allow
the number of edges to be0, which then yields the empty
flow. Moreover, if we label an abbreviation with atomic
typea, we mean that each edge being abbreviated has type
a. For instance:

a ā
abbreviates

a a āā

···

··· ···

.

Remark 2.6. The categoryAF of atomic flows is strictly
monoidal, but it is not compact closed, basically because we
do not have an equality between the two atomic flows shown
in (1). More precisely, although we can for a given atomic
flow φ : p |x→ q |x define the atomic flowTrx(φ) : p→ q

as

φ ,

3

the categoryAF is not traced [12], because it does not obey
yanking:

6=

Notation 2.7. A box containing some generators stands for
an atomic flow generated only from these generators, and
a box containing some generators crossed out stands for an
atomic flow that does not contain any of these generators.
For example, the two diagrams

and

stand for a flow that contains onlyai↓ andaw↓ generators
and a flow that does not contain anyac↑ andai↑ generators,
respectively.

Proposition 2.8. Every atomic flowφ can be written in the
following form:

(2)

Proof. Let φ be given and pick an arbitrary occurrence of
ai↓ insideφ. Thenφ can be written as shown on the left
below.

φ′

φ′′

=

φ′

φ′′

(3)

The equality follows by induction on the number of vertical
edges to cross, Forai↑ we proceed dually.

Definition 2.9. An atomic flow is weakly streamlined
(resp.,streamlinedand strongly streamlined) if it can be
represented as the flow on the left (resp., in the middle and
on the right):

.

Proposition 2.10. An atomic flowφ is weakly streamlined
if and only if inGφ there is no path from anai↓-vertex to an
ai↑-vertex.

Proof. Immediate from (3), read from right to left.

Definition 2.11. An atomic flowφ is weakly streamlined
with respect to an atomic typea if in Gφ there is no path
from an ai↓-vertex to anai↑-vertex, whose edges are la-
belled bya or ā.

3 Properties of Atomic Flows
In this section we show some properties of atomic flows.

Apart from Proposition 3.3 they are not needed in later sec-
tions of this paper, but they lead to an interesting normal
form for atomic flows (Theorem 3.8).

Remark 3.1. Lafont [15] has shown that the generatorae

together with the first two relations in Figure 2 defines the
category of permutations.

Definition 3.2. Let a be an atomic type. An atomic flow
φ is ai-free with respect toa if φ does not contain anyai↓
generators whose outputs are typed bya andā, andφ does
not contain anyai↑ generators whose inputs are typed bya

andā.

Proposition 3.3. Let a be an atomic type. Then every
atomic flowφ can be written as

a ā

φ′

a ā

, (4)

whereφ′ is ai-free with respect toa.

Proof. We apply the construction of the proof of Proposi-
tion 2.8 together with Remark 3.1 and the relations in the
last line of Figure 2.

Proposition 3.4. For any two atomic flowsφ and ψ, we
have

φ ψ = ψ φ

Proof. We have

φ

ψ

=

φ

ψ

=

φ

ψ

=

φ

ψ

4

Where the first equality follows by induction on the size of
φ, the second by induction on the size ofψ, and the third
from Remark 3.1.

Definition 3.5. An atomic flowφ is calledpure if all edges
carry the same atomic type. It is calledsemi-pureif only
two different atomic typesa andb occur inφ with b = ā.

Note that a pure atomic flow cannot contain anyai↓ nor
ai↑ generators.

Proposition 3.6. Every atomic flow can be written as

φ1 · · · φn

whereφ1, . . . ,φn are all semi-pure.

Proof. We proceed by induction on the size ofφ. If φ is a
generator orida for some atomic typea, then the result is
trivial. If φ = φ′ |φ′′, then by induction hypothesis we have
thatφ is equal to

φ′1 · · · φ′n φ′′1 · · · φ′′m

and the result follows from Proposition 3.4. Ifφ = φ′ ◦ φ′′,
then by induction hypothesis we have thatφ is equal to

φ′1 · · · φ′n

φ′′1 · · · φ′′m

Because of Proposition 3.4, we can assume that the edges
in φ′i andφ′′i carry the same atomic types, and by allowing
the empty flow, we can assume thatn = m. Then, the two
exchange boxes in the middle must compose to the identity
(see Remark 3.1).

Proposition 3.7. Every semi-pure atomic flowφ can be
written as

φ+ φ−

whereφ+ andφ− are both pure.

Proof. First apply Proposition 3.3 to get a flow of shape (4).
Then apply the construction of the previous proof toφ′. The
result then follows by Remark 3.1.

Theorem 3.8. Every atomic flow can be written as

φ+
1 φ−1 · · · φ+

n φ−n

whereφ+
1 , φ−1 , . . . ,φ+

n , φ−n are all pure.

Proof. Immediate from Propositions 3.6 and 3.7.

4 Local Flow Transformations

We denote by
cw
→ the rewrite relation on atomic flows

generated by the rules shown in Figure 3.

Proposition 4.1. The rewrite relation
cw
→ is locally conflu-

ent.

Proof. The result follows from a case analysis on the criti-
cal peaks, which are:

, and ,

and their duals.

However, in general the reduction
cw
→ is not terminating.

This can easily be seen by the following example:

a a

ā

a

cw
→

ā

a

a

ā

cw
→

a a

ā

a

.

5

→ →

→ →

→ →

→ →

Figure 3: Local rewrite rules

The reason is that there can be cycles composed of paths
connecting instances of theai↓ andai↑ generators. The pur-
pose of the notion “weakly streamlined” (Definition 2.9) is
precisely to avoid such a situation.

Theorem 4.2. Every weakly streamlined atomic flow has
a unique normal form with respect to

cw
→, and this normal

form is strongly streamlined.

Proof. We do not show the proof of termination here since
it can be found in [10]. We only note that the crucial point
is Proposition 2.10. Then, by Proposition 4.1, we have
uniqueness of the normal form. Since

cw
→ preserves the prop-

erty of being weakly streamlined, and in the normal form
there are no more redexes for

cw
→, there is no generatorai↓,

aw↓, ac↓ above a generatorai↑, aw↑, ac↑.

5 Global Flow Transformations
The purpose of this section is to present a method for

transforming any atomic flow into a weakly streamlined
one. The challenge is acually to find an operation that can be
lifted to proofs in a deductive system. Here, we present one
that breaks paths in the flow without removing any edge.
This construction can be considered to be the heart of this
paper.

Definition 5.1. Let φ be an atomic flow of the shape

φ =

a ā

ψ

a ā

, (5)

where the edges of the selectedai↓ andai↑ generators carry
the same atomic types, as indicated in (5), and letφ′ be the

atomic flow

φ′ =

a ā

ψ

a

ā

ā

ψ

a

ā

a

ψ

a ā

. (6)

Then we callφ′ a path breaker ofφ with respect toa, and

write φ
pb
→a φ

′.

Lemma 5.2. Letφ andφ′ be given withφ
pb
→a φ

′, and letb
be any atomic type. Ifφ is weakly streamlined with respect
to b, then so isφ′.

Proof. The only edges connecting an output of one copy of
ψ to an input of another copy ofψ are typed bya and ā.
Thus, the lemma is evident forb 6= a andb 6= ā. Let us now
assumeb = a and proceed by contradiction. Assume there
is anai↓ generator connected to anai↑ generator via a path
typed bya. If this is inside a copy ofψ, we have a contra-
diction; if it passes through thea-edge between the upper
and the middle copy ofψ in (6), then this path connects to
theai↓ in (5), which also is a contradiction. Similarly for a
path typed bȳa.

Lemma 5.3. Let φ, ψ, and a be given as in(5), and let

φ
pb
→a φ

′. If ψ is ai-free with respect toa, thenφ′ is weakly
streamlined with respect toa.

Proof. For not being weakly streamlined with respect toa,
we would need a path connecting the upperai↓ in (6) to the
lowerai↑. However, such a path must pass through both the
evidenced edge of typea and the evidenced edge of typeā,
which is impossible (see Remark 2.2).

Lemmas 5.2 and 5.3 justify the namepath breakerfor
the atomic flow in (6). It breaks all paths between the upper
ai↓ and the lowerai↑ in (5), and it does not introduce any
new paths. Furthermore, the interior of the flowψ is not
touched.

6

We now have to find a way to convert any atomic flowφ
into one of shape (5) withψ beingai-free with respect toa.
For this, notice that by Proposition 3.3, we can writeφ as

φ =

a ā

θ

a ā

, (7)

whereθ is ai-free with respect toa. This can be transformed
into a flowφ′:

φ′ =

a ā

θ

a ā

ψ

, (8)

which is of the desired shape and fulfills the condition of
Lemma 5.3.

Definition 5.4. Let φ andφ′ of shape (7) and (8) be given.
If θ is ai-free with respect toa, then we callφ′ a taming of

φ with respect toa, and writeφ
tm
→a φ

′.

Lemma 5.5. Letφ andφ′ be given withφ
tm
→a φ

′, and letb
be any atomic type. Ifφ is weakly streamlined with respect
to b, then so isφ′.

Proof. Immediate from (7) and (8).

Definition 5.6. On atomic flows, we define thepath break-

ing relation
PB
→ as follows. We haveφ

PB
→ φ′ if and

only if there is a flowφ′′ and an atomic typea, such that

φ
tm
→a φ

′′ pb
→a φ

′ andφ is not weakly streamlined with re-
spect toa.

Theorem 5.7. The relation
PB
→ is terminating, and its nor-

mal forms are weakly streamlined.

Proof. Let φ be given. We proceed by induction on the
number of atomic types occurring inφ, with respect to
which φ is not weakly streamlined. Whenever we have

φ
PB
→ φ′, this number is decreased by one forφ′ (by Lemmas

5.2, 5.3 and 5.5). By the constructions in (6) and (8), there
is always such aφ′ if φ is not weakly streamlined.

6 From Formal Deductions to Atomic Flows
We considerformulasthat are generated from the setA

of atomic types via the binary connectives∧ and∨, and the
nullary connectives (constants)t andf. We interpret the du-
ality bijection (̄·) : A → A on atomic types as negation
and extend the definition of negation to all formulas via the
usual DeMorgan laws.Sequentsare finite lists of formulas,
separated by comma. Formulas are denoted byA,B,C,D,
and sequents are denoted byΓ,∆. We can assign to each
formula, sequent, or list of sequents its flow type by forget-
ting the structural information of∧, ∨, t andf, and simply
keeping the list of atomic types as they occur in the formu-
las. For a formulaA, we denote this type byfl(A).

Similarly, we will assign flows to inference rules. Rules
like

⊢ Γ, A ⊢ B,∆
∧ −−−−−−−−−−−−−−−−−−−−−

⊢ Γ, A ∧B,∆
and

⊢ Γ, A,B
∨ −−−−−−−−−−−−−
⊢ Γ, A ∨B

will be translated into the identity flowsidfl(Γ) | idfl(A) |
idfl(B) | idfl(∆) andidfl(Γ) | idfl(A) | idfl(B), respectively. And
the rules

⊢ Γ, A,A
cont −−−−−−−−−−−−

⊢ Γ, A
and

⊢ Γ
weak −−−−−−−−

⊢ Γ, A

will be translated into flows of the shape

and .

In this manner, we could translate whole sequent proofs
into atomic flows. However, atomic flows carry more sym-
metries than present in the sequent calculus. In order to be
able to mirror the richness of atomic flows inside a sound
and complete deductive system for classical logic, we use
here a deep inference system.

More precisely, in this paper, we concentrate on system
SKS [2], whose rules are given in Figure 4. Recall that
these rules can, like rewrite rules, be applied inside arbitrary
contexts. For example,

[a ∨ (c ∧ [(b ∧ b̄) ∨ ā])] ∨ (b ∧ c̄)
ai↑ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

[a ∨ (c ∧ [f ∨ ā])] ∨ (b ∧ c̄)

is a correct application of the ruleai↑ inside the context
[a ∨ (c ∧ [{·} ∨ ā])] ∨ (b ∧ c̄). Note that here we allow nega-
tion only on atoms, and therefore all contexts are positive.
A derivationΦ: A→ B in SKS is a rewrite path fromA to
B using the rules in Figure 4. We callA thepremiseandB
theconclusionof Φ. A derivation is also denoted as

A

Φ
‚

‚

‚

‚
‚S

B

.

whereS is the set of inference rules used inΦ.

7

K{t}
ai↓ −−−−−−−−−−−

K{a ∨ ā}

K{A ∧ [B ∨ C]}
s −−−−−−−−−−−−−−−−−−−−

K{(A ∧ B) ∨ C}

K{a ∧ ā}
ai↑ −−−−−−−−−−−

K{f}

K{f}
aw↓ −−−−−−

K{a}

K{(A ∧ B) ∨ (C ∧ D)}
m −−−−−−−−−−−−−−−−−−−−−−−−−−−

K{[A ∨ C] ∧ [B ∨ D]}

K{a}
aw↑ −−−−−−

K{t}

K{a ∨ a}
ac↓ −−−−−−−−−−−

K{a}

K{f}
nmf −−−−−−−−−−

K{f ∧ f}

K{t ∨ t}
nmt −−−−−−−−−−

K{t}

K{a}
ac↑ −−−−−−−−−−−

K{a ∧ a}

K{A ∨ [B ∨ C]}
=α∨ −−−−−−−−−−−−−−−−−−−

K{[A ∨ B] ∨ C}

K{A ∨ B}
=σ∨ −−−−−−−−−−−−

K{B ∨ A}

K{A ∧ B}
=σ∧ −−−−−−−−−−−−

K{B ∧ A}

K{A ∧ (B ∧ C)}
=α∧ −−−−−−−−−−−−−−−−−−−−

K{(A ∧ B) ∧ C}

K{A}
=

f̂
−−−−−−−−−−−

K{A ∨ f}

K{A ∨ f}
=f −−−−−−−−−−−

K{A}

K{t ∧ A}
=t̂

−−−−−−−−−−−

K{A}

K{A}
=t −−−−−−−−−−−

K{t ∧ A}

Figure 4: The inference rules of systemSKS

Proposition 6.1. The inference rules

K{A ∨A}
c↓ −−−−−−−−−−−−

K{A}
and

K{A}
c↑ −−−−−−−−−−−−
K{A ∧A}

are derivable in systemSKS. [2]

Definition 6.2. A proof of a formulaA in SKS is a deriva-
tion Π: t → A. A proof iscut-freeif it does not contain any
instances of the rulesai↑, aw↑, or ac↑.

We refer the reader to [2, 1] for the precise correspon-
dence between cut-freeness inSKS and cut-freeness in the
sequent calculus.

We useSKS to denote the category whose objects are
the formulas and whose arrows are the derivations ofSKS.
This system has the additional advantage that the rules for
weakening, contraction, and identity and cut are already in
atomic form. Thus, it is straightforward to translateSKS

derivations into atomic flows. Formally, we assign to each
contextK{·} a left type and a right type denoted byl(K{·})
andr(K{·}), containing the lists of atomic types appearing
inK{·} on the left, respectively on the right of the hole{·}.
For example, forK{·} = [a ∨ (c ∧ [{·} ∨ ā])] ∨ (b ∧ c̄) we
havel(K{·}) = 〈a, c〉 andr(K{·}) = 〈ā, b, c̄〉. Then, for
each ruler of SKS we define therule flowfl(r) as follows:
we map the rulesai↓, ai↑, ac↓, ac↑, aw↓, andaw↑ to the
corresponding generator (with the appropriate typing), and
we map the rules=σ∨, =σ∧, andm to the permutation flows
shown below:

=σ∨,=σ∧: m :
fl(A) fl(B)

fl(A)fl(B)

fl(A) fl(B) fl(C) fl(D)

fl(A) fl(C) fl(B) fl(D)

All remaining rules are mapped to the identity flow.
Then an inference step

K{A}
r −−−−−−−
K{B}

is mapped to idl(K{·}) | fl(r) | idr(K{·})

A derivationΦ is mapped to the atomic flowφ = fl(Φ),
which is the vertical composition of the atomic flows ob-
tained from the inference steps inΦ. This translation de-
fines a forgetful functorfl : SKS → AF. Note that this
functor is independent from the fact whether the binary con-
nectives∧ and∨ are bifunctors inSKS (with or without
monoidal structure), whether the inference ruless and m

are natural transformation, and whether=α∨, =α∧, etc., are
isomorphisms inSKS or not (see [22] for details on this
issue). This functor has, however, an interesting property:
for every atomic flow there is a derivation that maps to it:

Theorem 6.3.For every flowφ : p→ q there is a derivation
Φ: A → B with fl(A) = p and fl(B) = q and fl(Φ) =
φ. [10]

Theorem 6.3 only works because the flows forget the
structural information about∧, ∨, t andf. If we fix φ : p→ q

together withA andB with fl(A) = p and fl(B) = q,
we can in general not provide a derivationΦ: A → B

with fl(Φ) = φ. We are thus interested in properties of
atomic flows that can be lifted to derivations, in the follow-
ing sense:

Definition 6.4. We say that a binary relationR on atomic
flowscan be lifted toSKS, if R(φ, φ′) implies that for every
derivationΦ: A → B with fl(Φ) = φ there is a derivation
Φ′ : A→ B with fl(Φ′) = φ′.

8

Definition 6.5. A derivationΦ: A → B is weakly stream-
lined (resp. streamlined, resp. strongly streamlined)if fl(Φ)
is weakly streamlined (resp. streamlined, resp. strongly
streamlined).

The propertystrongly streamlinedcan indeed be seen as
the up-down symmetric generalization beingcut-free:

Proposition 6.6. Every strongly streamlined proof inSKS

is cut-free.

Proof. If the premise of a derivation ist, then the upper box
of its flow, as given in Definition 2.9, must be empty.

7 Normalizing Derivations via Atomic Flows
In this section we show that the relations defined in Sec-

tions 4 and 5 on atomic flows can be lifted toSKS. This
gives us a procedure to transform an arbitrarySKS deriva-
tion first into a weakly streamlined one, and then into a
strongly streamlined one, without changing premise and
conclusion during the process. In other words we are go-
ing to show the following:

Theorem 7.1. For everySKS derivation fromA toB, there
is a SKS-derivation fromA to B that is strongly stream-
lined.

From which we get immediately the cut elimination the-
orem forSKS:

Corollary 7.2. For everySKS-proof ofA, there is a cut-free
SKS-proof ofA.

Proof. By Theorem 7.1 and Proposition 6.6.

It has already been shown in [10] that the local transfor-
mation discussed in Section 4 can be lifted toSKS:

Theorem 7.3. The relation
cw
→ can be lifted toSKS. [10]

For the remainder of this section, we use the following
convention: For saving space we use a new inference rule
=, which stands for any derivation using only the=.. rules
in Figure 4. More precisely,

A
= −−
B

abbreviates
A
‚

‚

‚

‚
‚{=α∨,=α∧,=σ∨,=σ∧,=t,=t̂,=f̂

,=f}

B

.

Lemma 7.4. Given a contextK{·} and a formulaA, there
exist derivations

A ∧K{t}
‚

‚

‚

‚
‚{s,=}

K{A}

and
K{A}

‚

‚

‚

‚
‚{s,=}

K{f} ∨A

.

Proof. By structural induction onK{·}. [21, 1].

We use this lemma to show that the transformation in the
proof of Proposition 2.8, which does nothing to the flows
can “be lifted” toSKS in the following sense. LetΦ be a
derivation. Then for every instance of the ruleai↓, we can
do the transformation:

A

Φ′

‚

‚

‚

‚
‚

K{t}
ai↓ −−−−−−−−−−
K{a ∨ ā}

Φ′′

‚

‚

‚

‚
‚

B

→

A
=t −−−−−

t ∧A
ai↓ −−−−−−−−−−−

[a ∨ ā] ∧A

Φ′

‚

‚

‚

‚
‚

[a ∨ ā] ∧K{t}
‚

‚

‚

‚
‚{s,=}

K{a ∨ ā}

Φ′′

‚

‚

‚

‚
‚

B

, (9)

which does not change the atomic flow, and dually forai↑.

Lemma 7.5. The relation
tm
→a can be lifted toSKS.

Proof. Let Φ: A → B with fl(Φ) = φ anda be given. By
repeatedly applying (9) we get the derivation

A
‚

‚

‚

‚
‚{ai↓,=}

[a ∨ ā] ∧ · · · ∧ [a ∨ ā] ∧A

Θ
‚

‚

‚

‚
‚

B ∨ (a ∧ ā) ∨ · · · ∨ (a ∧ ā)
‚

‚

‚

‚
‚{ai↑,=}

B

,

with fl(Θ) = θ, from which we can obtain a derivation

A
=t −−−−−

t ∧A
ai↓,=t −−−−−−−−−−−

[a ∨ ā] ∧A
‚

‚

‚

‚
‚{ac↑,=}

[(a ∧ · · · ∧ a) ∨ (ā ∧ · · · ∧ ā)] ∧A
‚

‚

‚

‚
‚{m,=}

[a ∨ ā] ∧ · · · ∧ [a ∨ ā] ∧A

Θ
‚

‚

‚

‚
‚

B ∨ (a ∧ ā) ∨ · · · ∨ (a ∧ ā)
‚

‚

‚

‚
‚{m,=}

B ∨ ([a ∨ · · · ∨ a] ∧ [ā ∨ · · · ∨ ā])
‚

‚

‚

‚
‚{ac↓,=}

B ∨ (a ∧ ā)
ai↑ −−−−−−−−−−−−

B ∨ f
=f −−−−−

B

,

whose flow is as shown in (8).

Lemma 7.6. The relation
pb
→a can be lifted toSKS.

9

Proof. Let Φ: A → B with fl(Φ) = φ anda be given. By
applying (9) we have a derivation

A
ai↓,=t −−−−−−−−−−−

[a ∨ ā] ∧A

Ψ
‚

‚

‚

‚
‚

B ∨ (a ∧ ā)
=f ,ai↑ −−−−−−−−−−−−

B

,

with fl(Ψ) = ψ. We also have the derivations

[B ∨ (a ∧ ā)] ∧A
aw↑ −−−−−−−−−−−−−−−−−−

[B ∨ (a ∧ t)] ∧A
= −−−−−−−−−−−−−−−−−−

[B ∨ [a ∨ f]] ∧A
aw↓ −−−−−−−−−−−−−−−−−−

[B ∨ [a ∨ ā]] ∧A
s −−−−−−−−−−−−−−−−−−
B ∨ ([a ∨ ā] ∧A)

and

[B ∨ (a ∧ ā)] ∧A
aw↑ −−−−−−−−−−−−−−−−−−

[B ∨ (t ∧ ā)] ∧A
= −−−−−−−−−−−−−−−−−−

[B ∨ [f ∨ ā]] ∧A
aw↓ −−−−−−−−−−−−−−−−−−

[B ∨ [a ∨ ā]] ∧A
s −−−−−−−−−−−−−−−−−−
B ∨ ([a ∨ ā] ∧A)

that we callΦa andΦā, respectively. We can now build

A
‚

‚

‚

‚
‚{c↑,ai↓,=}

(([a ∨ ā] ∧A) ∧A) ∧A

(Ψ∧A)∧A

‚

‚

‚

‚
‚

([B ∨ (a ∧ ā)] ∧A) ∧A

Φa∧A

‚

‚

‚

‚
‚

[B ∨ ([a ∨ ā] ∧A)] ∧A

[B∨Ψ]∧A

‚

‚

‚

‚
‚

B ∨ ([B ∨ (a ∧ ā)] ∧A)

B∨Φā

‚

‚

‚

‚
‚

B ∨ [B ∨ ([a ∨ ā] ∧A)]

B∨[B∨Ψ]
‚

‚

‚

‚
‚

B ∨ [B ∨ [B ∨ (a ∧ ā)]]
‚

‚

‚

‚
‚{c↓,ai↑,=}

B

,

whose atomic flow is as shown in (6).

Theorem 7.7. The relation
PB
→ can be lifted toSKS.

Proof. Immediate from Lemmas 7.5 and 7.6.

Proof of Theorem 7.1.For everySKS-derivationΦ: A →
B there exists a weakly-streamlinedSKS-derivation
Φ′ : A → B by Theorem 5.7 and Theorem 7.7; for every
weakly-streamlinedSKS-derivationΦ′ : A → B there ex-
ists a strongly streamlinedSKS-derivationΦ′′ : A → B by
Theorem 4.2 and Theorem 7.3.

References
[1] K. Brünnler. Deep Inference and Symmetry for Classical

Proofs. PhD thesis, Technische Universität Dresden, 2003.

[2] K. Brünnler and A. F. Tiu. A local system for classical logic.
In R. Nieuwenhuis and A. Voronkov, editors,LPAR 2001,
volume 2250 ofLNAI, pages 347–361. Springer, 2001.

[3] P. Bruscoli, A. Guglielmi, T. Gundersen, and M. Parigot.
A quasipolynomial cut-elimination procedure in deep infer-
ence via atomic flows and threshold formulae. InLPAR-16,
2010.

[4] A. Burroni. Higher dimensional word problem. InProceed-
ings of the 4th International Conference on Category Theory
and Computer Science, pages 94–105, London, UK, 1991.

[5] S. R. Buss. The undecidability ofk-provability. Annals of
Pure and Applied Logic, 53:72–102, 1991.

[6] V. Danos and L. Regnier. The structure of multiplicatives.
Annals of Mathematical Logic, 28:181–203, 1989.

[7] T. Ehrhard and L. Regnier. Differential interaction nets.
Theor. Comput. Sci., 364(2):166–195, 2006.

[8] J.-Y. Girard. Linear logic.Theoretical Computer Science,
50:1–102, 1987.

[9] J.-Y. Girard. Proof Theory and Logical Complexity, Volume
I, volume 1 ofStudies in Proof Theory. Bibliopolis, edizioni
di filosofia e scienze, 1987.

[10] A. Guglielmi and T. Gundersen. Normalisation control in
deep inference via atomic flows.Logical Methods in Com-
puter Science, 4(1:9):1–36, 2008.

[11] A. Joyal and R. Street. The geometry of tensor calculus.
Advances in Mathematics, 88:55–112, 1991.

[12] A. Joyal, R. Street, and D. Verity. Traced monoidal cate-
gories.Mathematical Proceedings of the Cambridge Philo-
sophical Society, 3:447–468, 1996.

[13] G. M. Kelly and S. Mac Lane. Coherence in closed cate-
gories.Jour. of Pure and Applied Algebra, 1:97–140, 1971.

[14] Y. Lafont. Interaction nets. InPOPL, pages 95–108, 1990.
[15] Y. Lafont. Equational reasoning with 2-dimensional dia-

grams, volume 909 ofLNCS, pages 170–195. 1995.
[16] F. Lamarche and L. Straßburger. Naming proofs in classical

propositional logic. In P. Urzyczyn, editor,Typed Lambda
Calculi and Applications, TLCA 2005, volume 3461 of
LNCS, pages 246–261. Springer, 2005.

[17] O. Laurent. Polarized proof-nets: proof-nets for LC (ex-
tended abstract). In J.-Y. Girard, editor,Typed Lambda Cal-
culi and Applications (TLCA 1999), volume 1581 ofLNCS,
pages 213–227. Springer, 1999.

[18] P.-A. Melliès and N. Tabareau. Resource modalities in ten-
sor logic. Annals of Pure and Applied Logic, 161(5):632 –
653, 2010. The Third workshop on Games for Logic and
Programming Languages (GaLoP), Galop 2008.

[19] E. P. Robinson. Proof nets for classical logic.Journal of
Logic and Computation, 13:777–797, 2003.

[20] P. Selinger. A survey of graphical languages for monoidal
categories. In B. Coecke, editor,New Structures for Physics,
Lecture Notes in Physics. Springer, 2009. to appear.

[21] L. Straßburger.Linear Logic and Noncommutativity in the
Calculus of Structures. PhD thesis, Technische Universität
Dresden, 2003.

[22] L. Straßburger. On the axiomatisation of Boolean categories
with and without medial.Theory and Applications of Cate-
gories, 18(18):536–601, 2007.

[23] L. Straßburger. From deep inference to proof nets via cut
elimination.Jour. of Logic and Comp., 2009. to appear.

10

