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Abstract
We define the magnetic Schrödinger operator on an infinite graph by

the data of a magnetic field, some weights on vertices and some weights
on edges. We discuss essential self-adjointness of this operator for graphs
of bounded degree. The main result is a discrete version of a result of two
authors of the present paper.

On définit l’opérateur de Schrödinger avec champ magnétique sur un

graphe infini par la donnée d’un champ magnétique, de poids sur les som-

mets et de poids sur les arêtes. Lorsque le graphe est de degré borné,

on étudie le caractère essentiellement auto-adjoint d’un tel opérateur. Le

résultat principal est une version discrète d’un résultat de deux des auteurs

du présent article.
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BP 74, 38402-Saint Martin d’Hères Cedex (France); francoise.truc@ujf-grenoble.fr;
http://www-fourier.ujf-grenoble.fr/∼trucfr/

1



1 Introduction

In this work, we investigate essential self-adjointness for magnetic Schrödinger
operators on infinite weighted graphs G = (V,E) of bounded degree. It is a
continuation of [To] and [CdV-To-Tr], where the same problem was studied in the
non magnetic case, for metrically complete graphs ([To]) as well as non complete
ones ([CdV-To-Tr]). The main result is a discrete version of the result in [CdV-Tr].

In the former paper ([CdV-To-Tr]), we proved that provided a growth con-
dition on the potential W , namely W ≥ N/(2D2) where D is the distance to
infinity and N the maximal degree, the Schrödinger operator ∆ω,c +W is essen-
tially self-adjoint. The operator ∆ω,c is defined, for any weights ω : V −→ R⋆

+

and c : E −→ R⋆
+, by:

(∆ω,cf) (x) =
1

ω2
x

∑

y∼x

c{x,y} (f (x)− f (y)) ,

for any f ∈ C0(V ) (finite supported function) and any vertex x ∈ V.
We will extend this result to the case of magnetic graph Laplacians. To do

this, we establish a lower bound for the magnetic Dirichlet integral, in terms of
an effective potential depending on the magnetic field (and not depending on
the magnetic potential) and follow the method described in [CdV-To-Tr]. The
precise setup of the result is described in the next section.

2 Magnetic fields on graphs

Discrete magnetic Schrödinger operators were already introduced by several
authors, see [Li-Lo, CdV, CdV3, Tor].

2.1 Magnetic Schrödinger operators

Let G = (V,E) be a locally finite connected graph. We will denote by {x, y} ∈ E
an edge and by [x, y] and [y, x] the two orientations of this edge.
We equip G with

(i) a set of non zero complex weights on oriented edges: Cxy ∈ C\0 for {x, y} ∈ E
with Cyx = Cxy. We write Cxy = cxye

iαxy with cxy = |Cxy|. We have
cxy = cyx and αxy = −αyx. The set A = (αxy) is called a magnetic potential
on G.

(ii) a set of strictly positive weights on the vertices: ωx, x ∈ V.

The space of complex valued functions on the graph G is denoted here by

C(V ) = {f : V −→ C}
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and C0(V ) is the subspace of C(V ) of functions with finite support.

We consider the Hilbert space

l2ω(V ) = {f ∈ C(V );
∑

x∈V
ω2
x |f(x)|2 < ∞}

equipped with the Hermitian inner product given by

〈f, g〉l2ω =
∑

x∈V
ω2
xf(x)g(x).

Let us consider the Hermitian form

Qc,A(f) =
∑

{x,y}∈E
cxy|f(x)− eiαxyf(y)|2,

where we take only one term for each (unoriented) edge (the contribution is the
same for both choices of orientations [x, y] and [y, x].)

The associated magnetic Schrödinger operator Hω,c,A is given formally by

〈Hω,c,Af |f〉l2ω = Qc,A(f).

We get easily

Hω,c,Af(x) =
1

ω2
x

∑

y∼x

cxy[f(x)− eiαxyf(y)].

This operator Hω,c,A is Hermitian symmetric on C0(V ) with the Hermitian
product induced by l2ω(V ).

2.2 Gauge transforms

Definition 2.1 Let us consider a sequence of complex numbers (ux)x∈V with
|ux| ≡ 1 and write ux = eiσx. The associated gauge transform U is the uni-
tary map on l2ω(V ) defined by

(Uf)(x) = uxf(x).

The map U acts on the quadratic forms Qc,A by

U⋆(Qc,A)(f) = Qc,A(Uf).

Let us define the magnetic potential U⋆(A) by U⋆(Qc,A) = Qc,U⋆(A) . The associ-
ated magnetic Schrödinger operator is Hω,c,U⋆(A).
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More explicitly, we get:

U⋆(A)xy = αxy + σy − σx.

Let us denote by C1(G) the Z-module generated by the oriented edges with the
relation [x, y] = −[y, x], and by ∂ the boundary operator

C1(G)
∂→ C(V,Z)

so that ∂([x, y]) = δy − δx where, for z ∈ V , δz ∈ C(V,Z) is defined by δz(z) = 1
and δz(z

′) = 0 if z′ 6= z. We will denote, for any γ ∈ C1(G), γ =
∑

e∈E γ(e)e.

The space of cycles, denoted by Z1(G), is the kernel of the boundary operator.
If G is connected and finite, it is a known fact (see [Bi], part 1, chapters 4, 5) that
Z1(G) is a free Z−module, of rank #V −#E+1, with a basis of geometric cycles
γ = [x0, x1] + [x1, x2] + · · ·+ [xn−1, xn] with, for i = 0, · · · , n− 1, {xi, xi+1} ∈ E,
and xn = x0.

We will construct a basis of cycles for any graph G.
Zorn’s Lemma allows to show the existence of a maximal tree T of G. We

have V (T ) = V (G) and we denote E ′ the set of all edges of G which are not
edges of T . We choose an orientation for each edge of E ′. For any (oriented)
edge [x, y] ∈ E ′, there exists a unique simple path βyx in the tree T linking y to
x. So γxy = [x, y] + βyx is a geometric cycle of G.

Let γ ∈ Z1(G), we set: γ′ = γ −
∑

e∈γ∩E′

γ(e)γe, where we denote γe = γxy, if

e = [x, y] is an oriented edge which is in E ′ and included in the cycle γ. Then γ′

is a cycle of G with support in T. So it vanishes and we have: γ =
∑

e∈γ∩E′

γ(e)γe.

We have proved the following Lemma:

Lemma 2.1 Let T a maximal tree of G. To each oriented edge [x, y] of G, if
{x, y} is not an edge of T, we have associated a unique cycle γxy of the graph G
including [x, y]. The set of all such cycles is a basis of Z1(G).

Definition 2.2 Let us define the holonomy map:

HolA : Z1(G) → R/2πZ

by
HolA([x0, x1] + [x1, x2] + · · ·+ [xn−1, x0]) = αx0x1

+ · · ·+ αxn−1x0
.

Proposition 2.1 With the notations above we have:

(i) The map A → HolA is surjective onto HomZ(Z1(G),R/2πZ).
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(ii) HolA1
= HolA2

if and only if there exists a gauge transform U so that
U⋆(A2) = A1.

Proof.–

For (i), let hol ∈ HomZ(Z1(G),R/2πZ) and let T a maximal tree.
We choose A = (αxy) such that αxy = hol(γxy) if {x, y} ∈ E ′ and
αxy = 0 if {x, y} ∈ E(T ), see Lemma 2.1.
Then we have hol = HolA.
For (ii), it suffices to prove that, if HolA = 0, then there exists a
gauge transform U so that U⋆(A) = 0.
We must find a sequence (σx) satisfying the equality σx = αxy + σy,
for any edge {x, y}.
We fix x0 ∈ V , set σx0

= 0. If x ∈ V \ {x0}, there exists a path
x0, x1, ..., xn−1, xn = x connecting x0 to x, and we set σx = αxxn−1

+
.... + αx2x1

+ αx1x0
. This doesn’t depend on the path from x0 to x,

since HolA(γ) = 0 for any cycle γ.

�

In the case of finite planar graphs, the assertions (i) and (ii) are similar to
respectively Lemma 2.2 and Lemma 2.1 in [Li-Lo].

Definition 2.3 A magnetic field B on the graph G is given by an holonomy map

hol ∈ HomZ(Z1(G),R/2πZ).

If B is associated to the magnetic potential A, we write B = dA and we have
hol = HolA.

Remark 2.1 The magnetic Schrödinger operator Hω,c,A is uniquely defined, up
to unitary conjugation, by the data of the magnetic field B, the weights (cxy){x,y}∈E
and the weights ω = (ωx)x∈V .

2.3 Norms of magnetic fields

Definition 2.4 If G = (V,E) is a finite connected graph with a magnetic field
B, we define the norm |B| of B as the lowest eigenvalue of H1,1,A on l2ω(V ) with
ω ≡ 1, for any A with dA = B.

Lemma 2.2 We have |B| = 0 if and only if HolA = 0.

Proof.–
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If HolA = 0, H1,1,A is unitarily equivalent to H1,1,0 whose lowest
eigenvalue is 0 with constant eigenfunctions.
Conversely, let f 6= 0 with H1,1,Af = 0 and hence Q1,A(f) = 0. This
implies that all terms in the expression of Q1,A(f) vanish : for any
edge {x, y} we have f(x) = eiαxyf(y). If γ = [x0, x1] + [x1, x2] + · · ·+
[xn−1, x0] is a cycle, we have in particular

f(xn) = eiαxnxn−1f(xn−1) = · · · = e−iHolA(γ)f(x0) .

Hence
e−iHolA(γ) = 1.

�

Lemma 2.3 Let G = Z/NZ be the cyclic graph with N vertices, Ω be the holon-
omy of γ = [0, 1] + [1, 2] + · · · [N − 1, 0] and δ = infk∈Z |Ω− 2πk|.
If B denotes the magnetic field such that B(γ) = Ω we have

|B| = |1− eiδ/N |2.

In particular, the maximal value

|B| = |1− eiπ/N |2

is obtained for B = π.

Proof.–

We can choose A so that

Q1,A(f) =
N−1
∑

x=0

|f(x)− eiΩ/Nf(x+ 1)|2.

The eigenvectors are the N complex functions on V :

fξ : x → ξx

where ξN = 1. We have ‖fξ‖2l2 = N and

Q1,A(fξ) = N |1 − ξeiΩ/N |2.

�
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2.4 Lower bounds using an effective potential

Definition 2.5 Let m ∈ N. A good covering of degree m of G = (V,E) is a
family Gl = (Vl, El) with l ∈ L of finite connected sub-graphs of G so that

(i) V = ∪l∈LVl

(ii) for any {x, y} ∈ E,

0 < #{l ∈ L | {x, y} ∈ El} ≤ m.

Example 2.1 Let G the 1-skeleton of a triangulation of the plane R2. Then the
set of all the triangles of this triangulation is a good covering of degree 2.

Remark 2.2 A graph G of bounded degree admits good coverings given by the:

Proposition 2.2 Let G = (V,E) be a graph of bounded degree N . For k ≥ 1
and x ∈ V , let

Gk
x = {y ∈ V, d(x, y) ≤ k}.

The family (Gk
x)x∈V is a good covering of G of degree m = N(N−1)k−2

N−2
of the graph

G.

The main estimate is given by the following Theorem:

Theorem 2.1 Let (Gl)l∈L a good covering of degree m of G. Then for any f ∈
C0(V ),

Qc,A(f) ≥
∑

x∈V
W (x)ω2

x|f(x)|2

with the effective potential

W (x) =
1

m

∑

{l∈L|x∈Vl}
|Bl| inf

{y,z}∈El

cyz (1)

where |Bl| is the norm of the restriction of B to Gl.

Proof.–

From the definition of Qc,A and m, we have

Qc,A(f) ≥
1

m

∑

l∈L

∑

{x,y}∈El

cxy|f(x)− eiαxyf(y)|2.

Using the definition of |B|l, we get

Qc,A(f) ≥
1

m

∑

l

(

inf
{y,z}∈El

cyz

)

|B|l
(

∑

x∈Vl

ω2
x|f(x)|2

)

which gives the lower bound.

�
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3 Magnetic confinement

We want to find a criterion similar to the main result of [CdV-Tr] which says
that if (c, |B|) grows fast enough near infinity, then Hω,c,B is essentially self-
adjoint on C0(V ). We will use Theorem 4.3 of [CdV-To-Tr] which gives the case
where B = 0.

Let us define the distance dp given in terms of the weights ω and c as follows:

pxy =
min(ωx, ωy)√

cxy

for any vertices x, y ∈ V.
Define also D(x) (≤ ∞) (see [CdV-To-Tr]) as the distance from a vertex x to

the boundary V∞.

Theorem 3.1 Let G a graph with maximal degree N and let (Gl)l∈L a good
covering of degree m of G. If there exists M so that

W (x) ≥ N/2D(x)2 −M,

where W is the effective potential defined in (1), then Hω,c,B is essentially self-
adjoint.

Remark 3.1 Theorem 3.1 holds in particular if (G, dp) is a complete metric
space.

Proof.–

The proof follows the steps of the proof of Theorem 4.3. in [CdV-To-Tr].
In particular we use the following Agmon estimate.

Lemma 3.1 Let v be a weak solution of Hv = 0, and let f = f ∈
C0(V ) a real function with finite support in V. Then

〈fv ,H(fv)〉 =
1

2

∑

x∈V

∑

y∼x

ℜ[v(x)v(y)Cyx](f(x)− f(y))2 (2)

Proof.–

We denote here H ≡ Hω,c,B.
The proof is a simple calculation:

〈fv ,H(fv)〉 =
∑

x∈V
f(x)v(x)

(

∑

y∼x

cxy[f(x)v(x)− e−iαxyf(y)v(y)]

+
∑

y∼x

W (x)f(x)v(x)

)

=
∑

x∈V
f(x)v(x)

(

∑

y∼x

Cxy(f(x)− f(y))v(y)

)
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where we used the fact that Hv = 0.
An edge {x, y} contributes to the first sum twice. So the
total contribution is

f(x)v(x) Cxy(f(x)−f(y))v(y)−f(y)v(y)Cxy(f(x)−f(y))v(x)

so

〈fv ,H(fv)〉 =
∑

{x,y}∈E
[f(x)−f(y)] [f(x)v(x)Cyxv(y)− f(y)v(y)Cxyv(x)]

Noticing that the quantity is real, we take the mean value
of the expression and of its conjugate then we get the result.

�

From Lemma 3.1 we derive the following Theorem.

Theorem 3.2 Let v be a solution of (H − λ)v = 0. Assume that v
belongs to l2ω(V ) and that there exists a constant c > 0 such that, for
all u ∈ C0(V ),

〈u|(H − λ)u〉l2ω ≥ N

2

∑

x∈V
max

(

1

D(x)2
, 1

)

ω2
x|u(x)|2 + c‖u‖2l2ω , (3)

then v ≡ 0.

Proof.–

We refer to [CdV-To-Tr] for the proof, since the fact that
we use complex functions does not make any change in it.

�

Then Theorem 3.1 follows from Theorems 2.1 and 3.2 since we
have for any u ∈ C0(V ) :

〈u|Hu〉l2ω ≥
∑

x∈V
W (x)ω2

x|u(x)|2,

so

〈u|(H − λ)u〉l2ω − N

2

∑

x∈V

1

D(x)2
ω2
x|u(x)|2 ≥

∑

x∈V
−(M + λ)‖u‖2l2ω .

�
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4 Examples

The simplest example where we can make estimates is the “infinite ladder”, see
[Li-Lo]. That is the graph G = (V,E) where the set of vertices V is the Cartesian
product V = N×{−1, 1} equipped with the “horizontal” edges {(l, ε), (l+1, ε)}
with l = 0, 1, · · · and ε = ±1 and the “vertical” edges {(l,−1), (l,+1)} with
l = 0, 1, · · · . We will use the “square” cycles

γl = [(l, 1), (l+1, 1)]+[(l+1, 1), (l+1,−1)]+[(l+1,−1), (l,−1)]+[(l,−1), (l, 1)],

for l = 0, 1, · · · , as a basis of the space of cycles. Let bl be the holonomy of B
in the cycle γl. We will take B so that the value of |Bγl| is 2−

√
2, which is the

maximal one by Lemma 2.3.
Using the good covering of G by the cycles γl, we get m = 2 and the effective

potential

W ((l, ε)) =

(

1−
√
2

2

)

inf
{x,y}∈El

cxy.

We will take
c(l,ε)(l+1,ε) = c(l,−1)(l,+1) = Cl and ω(l,ε) = wl .

If Cl is increasing, we get W ((l, ε)) =
(

1−
√
2
2

)

Cl. Let us assume that wl is

decreasing, we get

p(l,ε)(l+1,ε) =
ωl+1√
Cl

and D((l, ε)) =

∞
∑

m=l

wm+1√
Cm

.

We take now Cl = la with a > 0 and wl = l−b with b > 0. The graph is not
complete for the distance dp if a+ b/2 > 1. In this case, we have

D((l, ε)) ∼ c1l
(1−a−b/2) and W ((l, ε)) ∼ c2l

a.

The assumption of Theorem 2.1 is satisfied if b < 1. So we get that, if 0 < b < 1
and a + b/2 > 1, the operator Hω,c,B is essentially self-adjoint. If a > 2, the
operator Hω,c,0 is not essentially self-adjoint by Theorem 4.1 in [CdV-To-Tr].

5 Questions

The following questions are unsolved at the moment:

1. If Hω,c,0 is essentially self-adjoint, does it imply that Hω,c,B is essentially
self-adjoint for any B? Does it hold in the continuous case?

2. What would be a correct statement for a locally finite graph with un-
bounded degree (even if B = 0)?

10



3. In the case where the completion of (G, dp) is compact and under the as-
sumption of Theorem 2.1, Hω,c,B has a compact resolvent. What is the
asymptotic behavior of the eigenvalues? The continuous case is worked out
in [CdV2].
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sur une variété Riemannienne et sur un graphe, Thèse de doctorat de
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