Essential self-adjointness for combinatorial Schrödinger operators III- Magnetic fields - Archive ouverte HAL Access content directly
Journal Articles Annales de la Faculté des Sciences de Toulouse. Mathématiques. Year : 2011

Essential self-adjointness for combinatorial Schrödinger operators III- Magnetic fields

Yves Colin de Verdière
Francoise Truc

Abstract

We define the magnetic Schrödinger on an infinite graph by the data of a magnetic field, some weights on vertices and some weights on edges . We discuss essential self-adjointness of this operator for graphs of bounded degree. The main result is a discrete version of a result of two authors of the present paper.
Fichier principal
Vignette du fichier
ESA-Magnet-29-11-2010.pdf (153.43 Ko) Télécharger le fichier
Origin : Files produced by the author(s)
Loading...

Dates and versions

hal-00541062 , version 1 (29-11-2010)

Identifiers

Cite

Yves Colin de Verdière, Nabila Torki-Hamza, Francoise Truc. Essential self-adjointness for combinatorial Schrödinger operators III- Magnetic fields. Annales de la Faculté des Sciences de Toulouse. Mathématiques., 2011, 20 (3), pp.597-609. ⟨hal-00541062⟩
119 View
154 Download

Altmetric

Share

Gmail Facebook X LinkedIn More