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An Introduction to Finite Automata and their Connection to Logic

This introductory chapter is a tutorial on finite automata. We present the standard material on determinization and minimization, as well as an account of the equivalence of finite automata and monadic second-order logic. We conclude with an introduction to the syntactic monoid, and as an application give a proof of the equivalence of first-order definability and aperiodicity.

The word automaton (plural: automata) was originally used to refer to devices like clocks and watches, as well as mechanical marvels built to resemble moving humans and animals, whose internal mechanisms are hidden and which thus appear to operate spontaneously. In theoretical computer science, the finite automaton is among the simplest models of computation: A device that can be in one of finitely many states, and that receives a discrete sequence of inputs from the outside world, changing its state accordingly. This is in marked contrast to more general and powerful models of computation, such as Turing machines, in which the set of global states of the device-the so-called instantaneous descriptions-is infinite. A finite automaton is more akin to the control unit of the Turing machine (or, for that matter, the control unit of a modern computer processor), in which the present state of the unit and the input symbol under the reading head determine the next state of the unit, as well as signals to move the reading head left or right and to write a symbol on the machine's tape. The crucial distinction is that while the Turing machine can record and consult its entire computation history, all the information that a finite automaton can use about the sequence of inputs it has seen is represented in its current state.

But as rudimentary as this computational model may appear, it has a rich theory, and many applications. In this introductory chapter, we will present the core theory: that of a finite automaton reading a finite word, that is, a finite string of inputs, and using the resulting state to decide whether to accept or reject the word. The central question motivating our presentation is to determine what properties of words can be decided by finite automata. Subsequent chapters will present both generalizations of the basic model (to devices that read infinite words, labeled trees, etc.) and to applications. An important theme in this chapter, as well as throughout the volume, is the close connection between automata and formal logic.

Plan of the chapter

In Section 1.2, we introduce finite automata as devices for recognizing formal languages, and show the equivalence of several variants of the basic model, most notably the equivalence of deterministic and nondeterministic automata. Section 1.3 describes Büchi's sequential calculus, the framework in predicate logic for describing properties of words that are recognizable by finite automata. In Section 1. [START_REF] Eilenberg | Automata, Languages, and Machines, volume A[END_REF] we prove what might well be described as the two fundamental theorems of finite automata: that the languages recognized by finite automata are exactly those definable by sentences of the sequential calculus, and also exactly those definable by rational expressions (also called regular expressions). Section 1.5 presents methods that can be used to show certain languages cannot be recognized by finite automata. The last sections, 1.6 and 1.7, have a more algebraic flavor: we introduce both the minimal automaton and the syntactic monoid of a language, and prove the important McNaughton-Schützenberger theorem describing the languages definable in the first-order fragment of the sequential calculus.

Notation

Throughout this chapter, A denotes a finite alphabet , that is, a finite non-empty set. Elements of A are called letters, and a finite sequence of letters is called a word . We denote words simply by concatenating the letters, so, for example, if A = {a, b, c}, then aabacba is a word over A. The empty sequence is considered a word, and we use ε to denote this sequence. The set of all words over A is denoted A * , and the set of all nonempty words is denoted A + . The length of the word w, that is, the number of letters in w, is denoted |w|.

If u, v ∈ A * then we can form a new word uv by concatenating the two sequences. Concatenation of words is obviously an associative and (unless A has a single element) noncommutative operation on A * . We have |uv| = |u| + |v|, and

u ε = ε u = u.
(Other texts frequently use Λ or 1 to denote the empty word. The latter choice is justified by the second equation above.)

A subset of A * is called a language over A.

Historical note and references

This chapter contains a modern presentation of material that goes back more than fifty years. The reader can find other accounts in classic papers and texts: The equivalence of finite automata and rational expressions given in Section 1.4 was first described by Kleene in [START_REF] Steven | Representation of events in nerve nets and finite automata[END_REF]. The connection with monadic second-order logic was found independently by Trakhtenbrot [START_REF] Trakhtenbrot | The synthesis of logical nets whose operators are described in terms of monadic predicates[END_REF] and Büchi [START_REF] Büchi | Weak second-order arithmetic and finite automata[END_REF]. Nondeterministic automata were introduced by Rabin and Scott [START_REF] Michael | Finite automata and their decision problems[END_REF], who showed their equivalence to deterministic automata. Minimization of finite-state devices (framed in the language of switching circuits built from relays) is due to Huffman [START_REF] Huffman | The synthesis of sequential switching circuits[END_REF]. The simple congruential account of minimization that we give originates with Myhill [START_REF] Myhill | Finite automata and the representation of events[END_REF] and Nerode [START_REF] Nerode | Linear automaton transformations[END_REF].

The equivalence of aperiodicity of the syntactic monoid with star-freeness is due to Schützenberger [START_REF] Paul | On finite monoids having only trivial subgroups[END_REF], and the connection with first-order logic is from McNaughton and Papert [START_REF] Mcnaughton | Counter-Free Automata[END_REF]. Our account of these results relies heavily on an argument given in Wilke [START_REF] Wilke | Classifying discrete temporal properties[END_REF].

Rational expressions, determinization and minimization have become part of the basic course of study in theoretical computer science, and as such are described in a number of undergraduate textbooks. Hopcroft and Ullman [START_REF] Hopcroft | Introduction to Automata Theory, Languages, and Computation[END_REF], Lewis and Papadimitriou [START_REF] Lewis | Elements of the Theory of Computation[END_REF] and the more recent Sipser [START_REF] Sipser | Introduction to the Theory of Computation[END_REF] are notable examples. A more technical and algebraically-oriented account is given in the monograph by Eilenberg [START_REF] Eilenberg | Automata, Languages, and Machines, volume A[END_REF][START_REF] Eilenberg | Automata, Languages, and Machines[END_REF]. An algebraic view of automata is developed by Sakarovitch [START_REF] Sakarovitch | Elements of Automata Theory[END_REF]. Detailed accounts of the connection between automata, logic and algebra can be found in Straubing [START_REF] Straubing | Finite Automata, Formal Logic, and Circuit Complexity[END_REF] and Thomas [START_REF] Thomas | Languages, automata and logic[END_REF]. The state of the art, especially concerning the algebraic classification of automata, will appear in the forthcoming handbook [START_REF]Automata: from Mathematics to Applications[END_REF].

Automata and rational expressions 1.2.1. Operations on languages

We describe here a collection of basic operations on languages, which will be building blocks in the characterization of the expressive power of automata.

Since languages over A are subsets of A * , we may of course consider the boolean operations: union, intersection and complement. The product operation on words can be naturally extended to languages: if K and L are languages over A, we define their concatenation product KL to be the set of all products of a word in K followed by a word in L:

KL = {uv | u ∈ K and v ∈ L}.
We also use the power notation for languages: if n > 0, L n is the product LL • • • L of n copies of L. We let L 0 = {ε}. Note that if n > 1, L n differs from the set of n-th powers of the elements of L. The iteration (or Kleene star ) of a language L is the language L * = n≥0 L n .

Finally, we introduce a simple rewriting operation, based on the use of morphisms. If A and B are alphabets, a morphism from A * to B * is a mapping ϕ : A * → B * such that (1) ϕ(ε) = ε, (2) for all u, v ∈ A * , ϕ(uv) = ϕ(u)ϕ(v).

To specify such a morphism, it suffices to give the images of the letters of A. Then the image of a word u ∈ A * , say u = a 1 • • • a n , is obtained by taking the concatenation of the images of the letters, ϕ(u) = ϕ(a 1 )

• • • ϕ(a n ). That is, ϕ(a 1 • • • a n ) is obtained from a 1 • • • a n
by substituting for each letter a i the word ϕ(a i ). This operation naturally extends from words to languages: if

L ⊆ A * , then ϕ(L) = {ϕ(u) | u ∈ L}.
The consideration of these operations leads to the classical definition of rational languages (also called regular languages). The operations of union, concatenation and iteration are called the rational operations. A language over alphabet A is called rational if it can be obtained from the letters of A by applying (a finite number of) rational operations.

More formally, the class of rational languages over the alphabet A, denoted RatA * , is the least class of languages such that (1) the languages ∅ and {a} are rational for each letter a ∈ A;

(2) if K and L are rational languages, then K ∪ L, KL and L * are also rational.

Example 1.1. The language a * (ab) * A * ∩ A * (ba) * 2 * is rational. (Note that in order to lighten the notation, we write a, b, etc., instead of {a}, {b}.)

The language {ε}, containing just the empty word, is rational. Indeed, it is equal to ∅ * .

Any finite language (that is, containing only finitely many words) is rational. Let a, b ∈ A be distinct letters. It is instructive to show that the following languages are rational: (a) the set of all words which do not contain two consecutive a; (b) the set of all words which contain the factor ab but not the factor ba.

We also consider the extended rational operations: these are the rational operations, and the operations of intersection, complement and morphic image. A language is said to be extended rational if it can be obtained from the letters of A by applying (a finite number of) extended rational operations. The class of extended rational languages over A is written X-RatA * .

Of course, all rational languages are extended rational. The definition of extended rational languages offers more expressive possibilities but as we will see, q 0 q 0.05 q 0.1 q 0.15
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The automaton of a (simplified) coffee machine they are not properly more expressive than rational languages.

Automata

Let us start with a couple of examples.

Example 1.2. A coffee machine delivers a cup of coffee for e.25. It accepts only coins of e.20, e.10 and e.05. While determining whether it has received a sufficient sum, the machine is in one of six states, q 0 , q 0.05 , q 0.1 , q 0.15 , q 0.2 and q 0.25 . The names of the states correspond to the sum already received. The machine changes state after a new coin is inserted, and the new state it assumes is a function of the value of the new coin inserted and of the sum already received. The latter information is encoded in the current state of the machine.

Here, the input word is the sequence of coins inserted, and the alphabet consists of three letters, w, t and f, standing respectively for twenty cents, ten cents and five cents. The machine is represented in Figure 1.1.

The incoming arrow indicates the initial state of the machine (q 0 ), and the outgoing arrow indicates the only accepting state (q 0.25 ), that is, the state in which the machine will indeed prepare a cup of coffee for you. Notice that the machine does not return change, but that it will accept sums up to e.40.

Example 1.3. Our second example (Figure 1.2) reads an integer, given by its binary expansion and read from right to left, that is, starting with the bit of least weight. Upon reading this word on alphabet {0, 1}, the automaton decides whether the given integer is divisible by 3 or not.

For instance, consider the integer 19, in binary expansion 10011: our input word is 11001. It is read letter by letter, starting from the initial state (the state indicated by an incoming arrow, state r 0 ). After each new letter is read, we follow the corresponding edge starting at the current state. Thus, starting in state r 0 , we visit successively the states r ′ 1 , r 0 , r ′ 0 , r 0 again, and finally r ′ 1 . This state is not accepting (it is not marked with an outgoing edge), so the word 11001 is not
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2. An automaton to compute mod 3 remainders accepted by the automaton. And indeed, 19 is not divisible by 3.

In contrast, 93 is divisible by 3, which is confirmed by running its binary expansion, namely 1011101, read from right to left, through the automaton: starting in state r 0 , we end in state r ′ 0 . The reader will quickly see that this automaton is constructed in such a way that, if n is an integer and w n is the binary expansion of n, then the state reached when reading w n from right to left, starting in state r 0 , is r k (resp. r ′ k ) if n is congruent to k (mod 3) and w n has even (resp. odd) length.

We now turn to a formal definition. A (finite state) automaton on alphabet A is a 4-tuple A = (Q, T, I, F ) where Q is a finite set, called the set of states, T is a subset of Q × A × Q, called the set of transitions, and I and F are subsets of Q, called respectively the sets of initial states and final states. Final states are also called accepting states.

For instance, the automaton of Example 1.2 uses a 3-letter alphabet, A = {f, t, w}. Formally, it is the automaton A = (Q, T, I, F ) given by Q = {q 0 , q 0.05 , q 0.1 , q 0.15 , q 0.2 , q 0.25 }, I = {q 0 }, F = {q 0.25 } and T is a 15-element subset of Q × A × Q containing such triples as (q 0 , f, q 0.05 ), (q 0.1 , t, q 0.2 ) or (q 0.2 , w, q 0.25 ).

As in our first examples, it is often convenient to represent an automaton A = (Q, T, I, F ) by a labeled graph, whose vertices are the elements of Q (the states) and whoses edges are of the form q a -→ q ′ if (q, a, q ′ ) is a transition, that is, if (q, a, q ′ ) ∈ T . The initial states are specified by an incoming arrow, and the final states are specified by an outgoing edge.

From now on, we will most often specify our automata by their graphical representations.

Example 1.4. Here, the alphabet is A = {a, b}. A path in automaton A is a sequence of consecutive edges,

p = (q 0 , a 1 , q 1 )(q 1 , a 2 , q 2 ) • • • (q n-1 , a n , q n ),
also drawn as

p = q 0 a1 -→ q 1 a2 -→ q 2 • • • an -→ q n .
Then we say that p is a path of length n from q 0 to q n , labeled by the word u = a 1 a 2 • • • a n . By convention, for each state q, there exists an empty path from q to q labeled by the empty word. For instance, in the automaton of Figure 1.3, the word a 3 ba labels exactly four paths: from 1 to 1, from 1 to 2, from 1 to 3 and from 3 to 3.

A path p is successful if its initial state is in I and its final state is in F . A word w is accepted (or recognized ) by A if there exists a successful path in the automaton with label w. And the language accepted (or recognized ) by A is the set of labels of successful paths in A. It is denoted by L(A). We say that A accepts (or recognizes) L(A).

For instance, the language of the automaton of Figure 1.1 is finite, with exactly 27 words. The automaton of Figure 1.3 accepts the set of words in which at least one occurrence of a is followed immediately by a b, namely A * abA * , where A = {a, b}.

Different automata may recognize the same language: if A and B are automata such that L(A) = L(B), we say that A and B are equivalent . 

Complete automata

An automaton A = (Q, T, I, F ) on alphabet A is said to be complete if, for each state q ∈ Q and each letter a ∈ A, there exists at least one transition of the form (q, a, q ′ ): in graphical representation, this means that, for each letter of the alphabet, there is an edge labeled by that letter starting from each state. Naturally, this easily implies that, for each state q and each word w ∈ A * , there exists at least one path labeled w starting at q. Every automaton can easily be turned into an equivalent complete automaton.

If A = (Q, T, I, F ) is not complete, the completion of A is the automaton A comp = (Q ′ , T ′ , I, F ) given by Q ′ = Q ∪ {z},
where z is a new state not in Q, and T ′ is obtained by adding to T all triples (z, a, z) (a ∈ A) and all triples (q, a, z) (q ∈ Q, a ∈ A) such that there is no element of the form (q, a, q ′ ) in T .

If A is complete, we let A comp = A. It is immediate that, in every case, A comp is complete and L(A comp ) = L(A).

Example 1.6. Let A = {a, b}. The automaton B in Figure 1.5, which accepts the language b * a * , is evidently not complete. The automaton B comp is represented next to it.

Trim automata

A complete automaton reads its entire input before deciding to accept or reject it: whatever input it receives, there is a transition that can be followed. However, we have seen that in the completion A comp of a non-complete automaton A, state z does not participate in any successful path: it is in a way a useless state. Trimming an automaton removes such useless states; it is, in a sense, the opposite of completing an automaton, and aims at producing a more concise device.

A state q of an automaton A is said to be accessible if there exists a path in A starting from some initial state and ending at q. State q is co-accessible if there exists a path in A starting from q and ending at some final state. Observe that a state is both accessible and co-accessible if and only if it is visited by at least one successful path.

The automaton A itself is trim if all its states are both accessible and coaccessible: in a trim automaton, each state is useful, in the sense that it is used in accepting some word of the language L(A).

Of course, every automaton A is equivalent to a trim one, written A trim , obtained by restricting A to its accessible and co-accessible states and to the transitions between them.

Interestingly, A trim can be constructed efficiently, using breadth-first search. One first computes the accessible states of A, by letting Q 0 = I (the initial states are certainly accessible) and by computing iteratively

Q n+1 = Q n ∪ q∈Qn,a∈A {q ′ ∈ Q | (q, a, q ′ ) ∈ T }.
One verifies that the elements of Q n are the states that can be reached from an initial state, reading a word of length at most n; and that if two consecutive sets Q n and Q n+1 are equal, then Q n = Q m for all m ≥ n, and Q n is the set of accessible states of A. In particular, the set of accessible states is computed in at most |Q| steps.

A similar procedure, starting from the final states instead of the initial states, and working in reverse, produces in at most |Q| steps the set of co-accessible states of A. The automaton A trim is then immediately constructed.

Remark 1.1. The construction of A trim , or indeed, just of the set of accessible states of A provides an efficient solution of the emptiness problem: given an automaton A, is the language L(A) empty? that is, does A accept at least one word? Indeed, A recognizes the empty set if and only if no final state is accessible: in order to decide the emptiness problem for automaton A, it suffices to construct the set of accessible states of A and verify whether it contains a final state. This yields an O(|Q| 2 |A|) algorithm.

Epsilon-automata

It is sometimes convenient to extend the notion of automata to the so-called εautomata: the difference from ordinary automata is that we also allow ε-labeled transitions, of the form (p, ε, q) with p, q ∈ Q. Proposition 1.1. Every ε-automaton is equivalent to an ordinary automaton. Sketch of proof. Let A = (Q, T, I, F ) be an ε-automaton, and let R be the relation on Q given by p R q if there exists a path from p to q consisting only of ε-labeled transitions (that is: R is the reflexive transitive closure of the relation defined by the ε-labeled transitions of A).

Let A ′ be the (ordinary) automaton given by the tuple (Q, T ′ , I ′ , F ) with T ′ = (p, a, q) | (p, a, q ′ ) ∈ T and q ′ R q for some q ′ ∈ Q I ′ = q | p R q for some p ∈ I . We have defined automata as nondeterministic computing devices: given a state and an input letter, there may be several possible choices for the next state. Thus an input word might be associated with many different computation paths, and the word is accepted if one of these paths ends at an accepting state. In contrast, B has the convenient property that each input word labels at most one computation path.

Then A ′ is equivalent to A. ⊓ ⊔ 1.2.
These remarks are formalized in the following definition. An automaton A = (Q, T, I, F ) is said to be deterministic if it has exactly one initial state, and if, for each letter a and for all states q, q ′ , q ′′ , (q, a, q ′ ), (q, a, q ′′ ) ∈ T =⇒ q ′ = q ′′ . Thus, of the automata in Figures 1.3 and 1.4, the second one is deterministic, and the first is non-deterministic. This definition imposes a certain condition of uniqueness on transitions, that is, on paths of length 1. This property is then extended to longer paths by a simple induction.

Proposition 1.2. Let A be a deterministic automaton and let w be a word.

(1) For each state q of A, there exists at most one path labeled w starting at q.

(2) If w ∈ L(A), then w labels exactly one successful path.

In particular, we can represent the set of transitions of a deterministic automaton A = (Q, T, I, F ) by a transition function: the (possibly partial) function δ : Q×A → Q which maps each pair (q, a) ∈ Q × A to the state q ′ such that (q, a, q ′ ) ∈ T (if it exists). This function is then naturally extended to the set Q × A * : if q ∈ Q and w ∈ A * , δ(q, w) is the state q ′ such that there exists a path from q to q ′ labeled by w in A (if such a state exists). In the sequel, deterministic automata will be specified as 4-tuples (Q, δ, i, F ) instead of the corresponding (Q, T, {i}, F ). We note the following elementary characterization of δ. Proposition 1.3. Let A = (Q, δ, i, F ) be a deterministic automaton. Then we have δ(q, ε) = q; δ(q, ua) = δ(δ(q, u), a) if both δ(q, u) and δ(δ(q, u), a) exist, undefined otherwise;

u ∈ L(A) if and only if δ(i, u) ∈ F .
for each state q, each word u ∈ A * and each letter a ∈ A. Again, it turns out that every automaton is equivalent to a deterministic automaton. This deterministic automaton can be effectively constructed, although the algorithm -the so-called subset construction -is more complicated than those used to construct complete or trim automata.

{1} {1, 2} {1, 3} {1, 2, 3} ∅ {2} {3} {2, 3}
Let A = (Q, T, I, F ) be an automaton. The subset transition function of A is the function δ :

P(Q) × A → P(Q) defined, for each P ⊆ Q and each a ∈ A by δ(P, a) = {q ∈ Q | ∃p ∈ P, (p, a, q) ∈ T }.
Thus, δ(P, a) is the set of states of A which can be reached by an a-labeled transition, starting from an element of P . The subset automaton of A is A sub = (P(Q), δ, I, F sub ) where

F sub = {P ⊆ Q | P ∩ F = ∅}.
The automaton A sub is deterministic and complete by construction, and the subset transition function of A is the transition function of A sub . Moreover, if A has n states, then A sub has 2 n states. 

Sketch of proof.

Let A = (Q, T, I, F ). One shows by induction on |w| that for all P ⊆ Q and w ∈ A * , δ(P, w) is the set of all states q ∈ Q such that w labels a path in A starting at some state in P and ending at q.

Therefore, a word w is accepted by A if and only if at least one final state lies in the set δ(I, w), if and only if δ(I, w) ∈ F sub , if and only if w is accepted by A sub . This concludes the proof.

⊓ ⊔

In general, the subset automaton is not trim (see Example 1.8) and we can find a deterministic automaton smaller than A sub , which still recognizes the same language as A, namely by trimming A sub . Observe that in the proof of Proposition 1.4, the only useful states of A sub are those of the form δ(I, w), that is, the accessible states of A sub .

We define the determinized automaton of A to be A det = A sub ) trim . This automaton is equivalent to A. An obstacle in the computation of A det is the explosion in the number of states: if A has n states, then A sub has 2 n states. The determinized automaton A det may well have exponentially many states as well, but it sometimes has fewer. Therefore, it makes sense to try and compute A det directly, in time proportional to its actual number of states, rather than first constructing the exponentially large automaton A sub and then trimming it.

This can be done using the same ideas as in the construction of A trim in Section 1.2.2.3. One first constructs B, the accessible part of A sub , starting with the initial state of A sub , namely I. Then for each constructed state P and each letter a, we construct δ(P, a) and the transition (P, a, δ(P, a)). And we stop when no new state arises this way.

The second step consists in finding the co-accessible part of B, using the method in Section 1.2.2.3.

Example 1.10. Let A = {a, b}, let n ≥ 2, and let L = A * aA n-2 . Then L is accepted by a non-deterministic automaton A with n states. However, any deterministic automaton accepting L must have at least 2 n-1 states. To see this, suppose that (Q, δ, i, F ) is such a deterministic automaton. Let u, v be distinct words of length n -1. Then one of the words (let us say u) contains an a in a position in which v contains the letter b. Thus u = u ′ ax, v = v ′ by, where |x| = |y|. Let w be any word of length n -2 -|x|. Then uw ∈ L, vw / ∈ L. It follows that δ(i, u) = δ(i, v) and thus there are at least as many states as there are words of length n -1. This shows that the exponential blowup in the number of states in the subset construction cannot in general be reduced.

Logic: Büchi's sequential calculus

Let us start with an example.

Example 1.11. Recall that ∧ is the logical conjunction, which reads "AND". And ∨ is the logical disjunction, which reads "OR". We will consider formulas such as

∃x∃y (x < y) ∧ R a x ∧ R b y.
This formula has the following interpretation on a word u: there exist two natural numbers x < y such that, in u, the letter in position x is an a and the letter in position y is a b. Thus this formula specifies a language: the set of all words u in which this formula holds, namely A * aA * bA * .

First-order formulas

Let us now formalize this point of view on languages.

Syntax

The formulas of Büchi's sequential calculus use the usual logical symbols (∧, ∨, ¬ for the negation), the equality symbol =, the constant symbol true, the quantifiers ∃ and ∀, variable symbols (x, y, z, . . .) and parentheses. They also use specific, nonlogical symbols: binary relation symbols < and S, and unary relation symbols R a (one for each letter a ∈ A).

For convenience, we may assume that the variables are drawn from a fixed, countable, set of variables.

The atomic formulas are the formulas of the form true, x = y, x < y, S(x, y), and R a x, where x and y are variables and a ∈ A.

The first-order formulas are defined as follows:

• Atomic formulas are first-order formulas,

• If ϕ and ψ are first-order formulas, then (¬ϕ), (ϕ∧ψ) and (ϕ∨ψ) are first-order formulas, • If ϕ is a first-order formula and if x is a variable, then (∃x ϕ) and (∀x ϕ) are first-order formulas.

Remark 1.2. As is usual in logic, we will limit the usage of parentheses in our notation of formulas, to what is necessary for their proper parsing, writing for instance ∀x R a x instead of (∀x (R a x)).

Certain variables appear after a quantifier (existential or universal): occurrences of these variables within the scope of the quantifier are said to be bound . Other occurrences are said to be free. A precise, recursive, definition of the set F V (ϕ) of the free variables of a formula ϕ is as follows:

• If ϕ is atomic, then F V (ϕ) is the set of all variables occurring in ϕ, • F V (¬ϕ) = F V (ϕ), • F V (ϕ ∧ ψ) = F V (ϕ ∨ ψ) = F V (ϕ) ∪ F V (ψ), • F V (∃x ϕ) = F V (∀x ϕ) = F V (ϕ) \ {x}.
A formula without free variables is called a sentence.

Interpretation of formulas

In Büchi's sequential calculus, formulas are interpreted in words: each word u of length n ≥ 0 determines a structure (which we abusively denote by u) with domain Dom(u) = {0, . . . , n -1} (Dom(u) = ∅ if u = ε). Dom(u) is viewed as the set of positions in the word u (numbered from 0). The symbol < is interpreted in Dom(u) as the usual order (as in (2 < 4) and ¬(3 < 2)). The symbol S is interpreted as the successor symbol: if x, y ∈ Dom(u), then S(x, y) if and only if y = x + 1. Finally, for each letter a ∈ A, the unary relation symbol R a is interpreted as the set of positions in u that carry an a (a subset of Dom(u)).

Example 1.12.

If u = abbaab, then Dom(u) = {0, 1, . . . , 5}, R a = {0, 3, 4} and R b = {1, 2, 5}.
A valuation on u is a mapping ν from a set of variables into the domain Dom(u). It will be useful to have a notation for small modifications of a valuation: if ν is a valuation and d is an element of Dom(u), we let ν[x → d] be the valuation ν ′ defined by extending the domain of ν to include the variable x and setting

ν ′ (y) = ν(y) if y = x, d if y = x.
If ϕ is a formula, u ∈ A * and ν is a valuation on u whose domain includes the free variables of ϕ, then we define u, ν |= ϕ (and say that the valuation ν satisfies ϕ in u, or equivalently u, ν satisfies ϕ) as follows: 

• u, ν |= (x = y) (resp. (x < y), S(x, y), R a x) if and only if ν(x) = ν(y) (resp. ν(x) < ν(y), S(ν(x), ν(y)), R a ν(x)) in Dom(u); • u, ν |= ¬ϕ if and only if it is not true that u, ν |= ϕ; • u, ν |= (ϕ ∨ ψ) (resp. (ϕ ∧ ψ)) if
∈ Dom(u) such that u, ν[x → d] |= ϕ; • u, ν |= (∀x ϕ) if and only if, for each d ∈ Dom(u), u, ν[x → d] |= ϕ.
Note that the truth value of u, ν |= ϕ depends only on the values assigned by ν to the free variables of ϕ. In particular, if ϕ is a sentence, then there is a valuation µ with an empty domain. We say that ϕ is satisfied by u (or u satisfies ϕ), and we write u |= ϕ for u, µ |= ϕ. Thus each sentence ϕ defines a language: the set L(ϕ) of all words such that u |= ϕ. Note that this interpretation makes sense even if u is the empty word, for then the valuation µ is still defined: Every sentence beginning with a universal quantifier is satisfied by ε, and no sentence beginning with an existential quantifier is satisfied by ε. An early example was given in Example 1.11, Remark 1.3. Two sentences ϕ and ψ are said to be logically equivalent if they are satisfied by the same structures. We will use freely the classical logical equivalence results, such as the logical equivalence of ϕ∧ψ and ¬(¬ϕ∨¬ψ), or the logical equivalence of ∀x ϕ and ¬(∃x ¬ϕ). We will also use the implication and bi-implication notation: ϕ → ψ stands for ¬ϕ ∨ ψ and ϕ ↔ ψ stands for (ϕ → ψ) ∧ (ψ → ϕ).

Example 1.13. Let ϕ and ψ be the following formulas.

ϕ = ∃x ∀y ¬(y < x) ∧ R a x ψ = ∀x ∀y ¬(y < x) → R a x .
The sentence ϕ states that there exists a position with no strict predecessor, containing an a, while ψ states that every such position contains an a. The latter sentence, like all universally quantified first-order sentences, is vacuously satisfied by the empty string. Thus L(ϕ) = aA * and L(ψ) = aA * ∪ {ε}.

The first-order logic of the linear order (resp. of the successor ), written FO(<) (resp. FO(S)) is the fragment of the first-order logic described so far, where formulas do not use the symbol S (resp. <).

Monadic second-order formulas

In monadic second-order logic, we add a new type of variable to first-order logic, called set variables and usually denoted by upper case letters, e.g. X, Y, . . . The atomic formulas of monadic second-order are the atomic formulas of first-order logic, and the formulas of the form (Xy), where X is a set variable and y is an ordinary variable.

The recursive definition of monadic second-order formulas, starting from the atomic formulas, closely resembles that of first-order formulas: it uses the same rules given in Section 1.3.1, and the additional rule:

• If ϕ is a monadic second-order formula and X is a set variable, then (∃Xϕ) and (∀Xϕ) are monadic second-order formulas.

The notion of free variables is extended in the same fashion. The interpretation of monadic second-order formulas also requires an extension of the definition of a valuation on a word u: a monadic second-order valuation is a mapping ν which associates with each first-order variable an element of the domain Dom(u), and with each set variable, a subset of Dom(u).

If ν is a valuation, X is a set variable, and R is a subset of Dom(u), we denote by ν[X → R] the valuation obtained from ν by mapping X to R (see Section 1.3.1.2).

With these definitions, we can recursively give a meaning to the notion that a valuation ν satisfies a formula ϕ in a word u (u, ν |= ϕ): we use again the rules given in Section 1.3.1.2, to which we add the following:

• u, ν |= (Xy) if and only if ν(y) ∈ ν(X); • u, ν |= (∃Xϕ) (resp. (∀Xϕ)) if and only if there exists R ⊆ Dom(u) such that (resp. for each R ⊆ Dom(u)) u, ν[X → R] |= ϕ.
Note that the empty set is a valid assignment for a set variable: the empty word may satisfy monadic second order variables even if they start with an existential set quantifier.

Büchi's sequential calculus (see Section 1.3.1.2) is thus extended to include monadic second-order formulas. We denote by MSO(<) (resp. MSO(S)) the fragment of monadic second-order logic, where formulas do not use the symbol S (resp. <). Of course, FO(<) and FO(S) are subsets of MSO(<) and MSO(S), respectively.

Example 1.14. Inspecting the following MSO(<) sentence,

ϕ = ∃X ∀x (Xx ↔ ((∀y ¬(x < y)) ∨ (∀y ¬(y < x)))) ∧ ∀x (Xx → R a x) ∧ ∃x Xx .
one can see that the elements of X must be the first and last positions of the word in which we interpret ϕ, so L(ϕ) = aA * ∩ A * a. This language can also be described by a first order sentence, see Example 1.13, that is: this formula is equivalent to a first-order formula.

Example 1.15. We now consider the more complex formula

ϕ = ∃X (∀x ∀y ((x < y) ∧ (∀z ¬((x < z) ∧ (z < y)))) → (Xx ↔ ¬Xy)) ∧ (∀x (∀y ¬(y < x)) → Xx) ∧ (∀x (∀y ¬(x < y)) → ¬Xx) .
The formula ϕ states that there exists a set X of positions in the word, such that a position is in X if and only if the next position is not in X (so X has every other position), and the first position is in X, and the last position is not in X. Thus L(ϕ) is the set of words of even length. It is an easy consequence of the results of Section 1.7 that this language cannot be described by a first-order formula.

The successor relation can be expressed in FO(<): S(x, y) is logically equivalent to the following formula:

(x < y) ∧ ∀z ((x < z) → ((y = z) ∨ (y < z))).
In a weak converse, the order relation < can be expressed in MSO(S): the formula x < y is equivalent to:

∃X Xy ∧ ¬Xx ∧ [∀z ∀t ((Xz ∧ S(z, t)) → Xt)] .
It follows that MSO(<) and MSO(S) have the same expressive power. Proposition 1.5. A language can be defined by a sentence in MSO(S), if and only if it can be defined by a sentence in MSO(<).

However, the order relation < cannot be expressed in FO(S). This is a non-trivial result; for a proof, see [START_REF] Straubing | Finite Automata, Formal Logic, and Circuit Complexity[END_REF].

Proposition 1.6. If a language can be defined by a sentence in FO(S), then it can be defined by a sentence in FO(<). The converse does not hold.

The Kleene-Büchi theorem

In this section, we prove the following theorem, a combination of the classical Kleene and Büchi theorems.

Theorem 1.1. Let L be a language in A * . The following conditions are equivalent:

(1) L is defined by a sentence in MSO(<);

(2) L is accepted by an automaton;

(3) L is extended rational; (4) L is rational.

From automata to monadic second-order formulas

Let A = (Q, i, δ, F ) be a deterministic automaton. The idea is to associate with each state q ∈ Q a second order variable X q , to encode the set of positions in which a given path visits state q. What we need to express about the sets X q is the following:

• the sets X q form a partition of the set of all positions (at each point in time, the automaton must be in one and exactly one state); • if a path visits state q at time x, state q ′ at time x + 1 and if the letter in position x + 1 is an a, then δ(q, a) = q ′ ; This analysis leads to the following formula. For convenience, let Q be the set {q 0 , q 1 , . . . , q n }, with initial state i = q 0 . We also use the shorthand min and max to designate the first and last positions: this is acceptable as these positions can be expressed by FO(S)-formulas. For instance, R a min stands for ∀x (∀y ¬S(y, x) → R a x); and X max stands for ∀x (∀y ¬S(x, y) → Xx).

∃X q0 ∃X q1 • • • ∃X qn q =q ′ ¬∃x (X q x ∧ X q ′ x) ∧ ∀x q X q x ∧ ∀x ∀y S(x, y) → q∈Q, a∈A X q x ∧ R a y ∧ X δ(q,a) y ∧ a∈A R a min → X δ(q0,a) min ∧ q∈F X q max .
This sentence is actually verified by the empty word, so the language it defines coincides with L(A) on A + . If q 0 ∈ F , it accurately defines L(A). But if q 0 ∈ F , we must consider the conjunction of this sentence with ∃x true. This is a sentence in MSO(S, <) but as we know, it is logically equivalent to one in MSO(<). Note that it is in fact an existential monadic second order sentence, that is, the second-order quantifications are all existential.

From formulas to extended rational expressions

The proof that an MSO(<)-definable language can be described by an extended rational expression, is more complex. The reasoning is by induction on the recursive definition of formulas. Instead of associating a language only with sentences (formulas without free variables), we will associate languages with all formulas but these languages will be over larger alphabets, which allow us to encode valuations.

The auxiliary alphabets B p,q

Let p, q ≥ 0 and let B p,q = A × {0, 1} p × {0, 1} q . A word over the alphabet B p,q can be identified with a sequence (u 0 , u 1 , . . . , u p , u p+1 , . . . , u p+q ) where u 0 ∈ A * , u 1 , . . . , u p , u p+1 , . . . , u p+q ∈ {0, 1} * and all the u i have the same length.

Let K p,q consist of the empty word and the words in B + p,q such that each of the components u 1 , . . . , u p contains exactly one occurrence of 1. Thus each of these components really designates one position in the word u 0 , and each of the components u p+1 , . . . , u p+q designates a set of positions in u 0 .

Example 1.16. If A = {a, b}, the following is a word in K 2,1 :

u 0 a b a a b a b u 1 0 0 0 0 1 0 0 u 2 0 0 1 0 0 0 0 u 3 0 1 1 0 0 1 1
Its components u 1 and u 2 designate positions 4 and 2, respectively, and its component u 3 designates the set {1, 2, 5, 6}.

The languages K p,q are extended rational. Indeed, for 1 ≤ i ≤ p, let C i be the set of elements (b 0 , b 1 , . . . , b p+q ) ∈ B p,q such that b i = 1. Then K p,q is the set of words in B * p,q which contain at most one letter in each C i :

K p,q = ε ∪ 1≤i≤p (B p,q \ C i ) * C i (B p,q \ C i ) * = B * p,q \ 1≤i≤p B * p,q C i B * p,q C i B * p,q .
1.4.2.2. The language associated with a formula

Let now ϕ(x 1 , . . . , x r , X 1 , . . . , X s ) be a formula in which the free first order (resp. set) variables are x 1 , . . . , x r (resp. X 1 , . . . , X s ), with r ≤ p and s ≤ q.

We interpret

• R a as R a = {i ∈ Dom(u) | u 0 (i) = a}; • x i as the unique position of 1 in u i (if u i = ε);
• X j as the set of positions of 1 in u p+j .

Note that if p = q = 0, then ϕ is a sentence and this is the usual notion of interpretation.

More formally, let (u 0 , u 1 , . . . , u p+q ) be a non-empty word in K p,q . Let n i be the position of the unique 1 in the word u i and let N j be the set of the positions of the 1's in the word u p+j . We say that u = (u 0 , u 1 , . . . , u p+q ) ∈ K p,q satisfies ϕ if u 0 , ν satisfy ϕ where ν is the valuation defined by

ν(x i ) = n i for 1 ≤ i ≤ r and ν(X j ) = N j for 1 ≤ j ≤ s.
We also say that the empty word (in K p,q ) satisfies ϕ if ε |= ϕ. We let L p,q (ϕ) = {u ∈ K p,q | u satisfies ϕ}. Thus each formula ϕ defines a subset of K p,q , and hence a language in B * p,q .

Example 1.17. Let ϕ = ∃x (x < y ∧ R a y). Then F V (ϕ) = {y}. And L 1,0 (ϕ) is the set of pairs of words (u 0 , u 1 ) such that u 0 ∈ A * , u 1 ∈ {0, 1} * , u 0 and u 1 have the same length, u 1 has a single 1, which is not the first position, and u 0 has an a in that position.

Let ϕ = ∀x ((Xx ∧ x < y ∧ R b y) → R a x). Then L 1,1 (ϕ)
is the set of triples of words (u 0 , u 1 , u 2 ) with u 0 ∈ A * , u 1 , u 2 ∈ {0, 1} * , all three words have the same length, and either this length is zero, or u 1 has a single 1 such that:

Let n be the position in u 1 which has a 1. If u 0 has a b in position n, then u 0 has an a in each position before n in which u 2 has a 1. If u 0 does not have a b in position n, then there is no constraint.

The MSO(<)-definable languages are extended rational

We first consider the languages associated with an atomic formula. Let 1 ≤ i, j ≤ p + q and let a ∈ A. Let

C j,a = {b ∈ B p,q | b j = 1 and b 0 = a}, C i,j = {b ∈ B p,q | b i = b j = 1},
and

C i = {b ∈ B p,q | b i = 1}.
Then we have

L p,q (R a x i ) = K p,q ∩ B * p,q C i,a B * p,q L p,q (x i = x j ) = K p,q ∩ B * p,q C i,j B * p,q L p,q (x i < x j ) = K p,q ∩ B * p,q C i B * p,q C j B * p,q L p,q (X i x j ) = K p,q ∩ B * p,q C i+p,j B * p,q .
Thus, the languages defined by the atomic formulas, namely L p,q (R a x), L p,q (x = y), L p,q (x < y) and L p,q (Xy), are extended rational.

Now let ϕ and ψ be formulas and let us assume that L p,q (ϕ) and L p,q (ψ) are extended rational. Then we have

L p,q (ϕ ∨ ψ) = L p,q (ϕ) ∪ L p,q (ψ) L p,q (ϕ ∧ ψ) = L p,q (ϕ) ∩ L p,q (ψ) L p,q (¬ϕ) = K p,q \ L p,q (ϕ),
and hence these three languages are extended rational as well. We still need to handle existential quantification.

Let π i be the morphism which deletes the i-th component in a word of B * p,q ; that is: if 1 ≤ i ≤ p, then π i : B * p,q → B * p-1,q , and if p < i ≤ p+q, then π i : B * p,q → B * p,q-1 . In either case, we have

π i (b 0 , b 1 , . . . , b p+q ) = (b 0 , b 1 , . . . , b i-1 , b i+1 , . . . , b p+q ).
Now, observe that, for any formula ϕ(x 1 , . . . , x r , X 1 , . . . , X s ), and for p ≥ r, q ≥ s, 1 ≤ i ≤ p and 1 ≤ j ≤ q we have L p-1,q (∃x i ϕ) = π i (L p,q (ϕ)) and L p,q-1 (∃X j ϕ) = π p+j (L p,q (ϕ)).

This concludes the proof that L p,q (ϕ) is extended rational for any p ≥ r, q ≥ s.

In particular, if ϕ is a sentence in MSO(<) (that is, ϕ has no free variables), we may take p = q = 0. Then L 0,0 (ϕ) is extended rational -and we already noted that L(ϕ) = L 0,0 (ϕ).

From extended rational expressions to automata

It is immediately verified that the languages ∅, {ε}, {a} (a ∈ A) are accepted by finite automata. We now need to show that if K, L ⊆ A * are recognizable and if π : A * → B * is a morphism, then L, K ∪ L, K ∩ L, KL, K * and π(L) are recognizable.

Proposition 1.7. If L ⊆ A * is recognizable, then the complement L of L is recognizable as well.

Proof. Let A = (Q, δ, i, F ) be a deterministic complete automaton recognizing L. Then A = (Q, δ, i, F ) recognizes L by Proposition 1.3. Note that the resulting procedure yields a deterministic automaton for L. It is very efficient if L is given by a deterministic automaton, but may lead to an exponential growth in the number of states if L is given by a non-deterministic automaton.

Proposition 1.8. If K, L ⊆ A * are recognizable, then K ∪ L and K ∩ L are recognizable as well.

Proof. Let A = (Q, T, I, F ) and A ′ = (Q ′ , T ′ , I ′ , F ′ ) be automata recognizing L and L ′ , respectively. We assume that the state sets Q and Q ′ are disjoint. Then it is readily verified that the automaton

A ∪ A ′ = (Q ∪ Q ′ , T ∪ T ′ , I ∪ I ′ , F ∪ F ′ ) accepts L ∪ L ′ . Thus L ∪ L ′ is recognizable, and hence so is L ∩ L ′ = L ∪ L ′ , by Proposition 1.7.
The construction in the above proof always yields a non-deterministic automaton for L∪L ′ , even if we start from deterministic automata for L and L ′ . The product of automata provides an alternative construction which preserves determinism, avoids any exponentiation of the number of states, and works for both the union and the intersection.

Let A = (Q, T, I, F ) and A ′ = (Q ′ , T ′ , I ′ , F ′ ) be automata recognizing the languages L and L ′ . Their cartesian product is the automaton

A ′′ = (Q × Q ′ , T ′′ , I × I ′ , F × F ′ )
where

T ′′ = {((p, p ′ ), a, (q, q ′ )) | (p, a, q) ∈ T and (p ′ , a, q ′ ) ∈ T ′ }.
Note that if A and A ′ are deterministic, then A ′′ is deterministic as well. The main property of A ′′ is the following: there exists a path (p, p ′ ) u -→ (q, q ′ ) in A ′′ if and only if there exist paths p u -→ q and p ′ u -→ q ′ , in A and A ′ respectively. Therefore A ′′ recognizes L ∩ L ′ .

If we take (F × Q ′ ) ∪ (Q × F ′ ) as the set of final states, instead of F × F ′ , and if the automata A and A ′ are complete, then the product automaton recognizes L ∪ L ′ .

In practice, the cartesian product of A and A ′ may not be trim, and one may want to use the procedure in Section 1.2.2.3 to produce more concise automata for L ∩ L ′ and L ∪ L ′ . Remark 1.4. Let us record here an algorithmic consequence of Propositions 1.7 and 1.8: given two automata A and B, it is decidable whether L(A) ⊆ L(B) and whether L(A) = L(B). Indeed, we can compute automata accepting L(A) \ L(B) = L(A) ∩ L(B) and L(B) \ L(A), and decide whether these languages are empty (see Remark 1.1). Proposition 1.9. If L, L ′ ⊆ A * are recognizable, then LL ′ and L * are recognizable as well. Sketch of proof. Let A = (Q, T, I, F ) and let A ′ = (Q ′ , T ′ , I ′ , F ′ ) be automata accepting L and L ′ , respectively, and let us assume that their state sets are disjoint.

It is easily verified that the ε-automaton

Q ∪ Q ′ , T ∪ T ′ ∪ (F × {ε} × I ′ ), I, F ′ accepts LL ′ (see Section 1.2.2.4). Similarly, if j is a state not in Q, the ε-automaton Q ∪ {j}, T ∪ (F × {ε} × I), I ∪ {j}, F ∪ {j} accepts L * . ⊓ ⊔ Proposition 1.10. If L ⊆ A * is recognizable and ϕ : A * → B * is a morphism, then ϕ(L) is recognizable as well.
Sketch of proof. Let A = (Q, T, I, F ) be an automaton recognizing L. We let A ′ be the ε-automaton

A ′ = (Q ∪ Q ′ , T ′ , I, F ),
where the set T ′ consists of -the transitions of the form (p, ε, q) such that (p, a, q) ∈ T for some letter a with ϕ(a) = ε, -the transitions occurring in the paths of the form

p b1 -→ q ′ 1 b2 -→ • • • q ′ k-1 b k -→ q such that (p, a, q) ∈ T , ϕ(a) = b 1 • • • b k = ε and q ′ 1 , . . . , q ′ k-1
are new states that we adjoin for each such triple (p, a, q). The set Q ′ contains all the new states that occur in the latter paths. It is elementary to verify that A ′ recognizes ϕ(L).

⊓ ⊔

So far, we have shown that a language is recognizable, if and only if it is defined by a sentence in MSO(<), if and only if it is extended rational. Remark 1.5. Note that the proofs of this logical equivalence are constructive, in the sense that given a sentence ϕ in MSO(<), we can construct an automaton A such that L(ϕ) = L(A). It follows that MSO(<) is decidable: given an MSO sentence ϕ, we can decide whether ϕ always holds. Indeed, this is the case if and only if L(¬ϕ) = ∅, which can be tested as discussed in Remark 1.1.

From automata to rational expressions

To complete the proof of the Kleene-Büchi theorem, it suffices to prove that every recognizable language is rational. For this, we use the McNaughton-Yamada construction.

Let A = (Q, T, I, F ) be an automaton. For each pair of states p, q ∈ Q and for each subset P ⊆ Q, let L p,q (P ) be the set of all words u ∈ A * which label a path from state p to state q, such that the states visited internally by that path are all in P : L p,q (P ) = {a 1 a 2 . . . a n ∈ A * | there exists a path in A p a1 -→ q 1 a2 -→ . . . q n-1 an -→ q with q 1 , . . . , q n-1 ∈ P }.

Recall that, by convention, there always exists an empty path, labeled by the empty word, from any state q to itself. So ε ∈ L p,q (P ) if and only if p = q.

We show by induction on the cardinality of P that each language L p,q (P ) is rational. This will prove that L(A) is rational, since L(A) = i∈I, f ∈F L i,f (Q).

If P = ∅, then L p,q (∅) = {a ∈ A | (p, a, q) ∈ T } if p = q, and L q,q (∅) = {a ∈ A | (q, a, q) ∈ T } ∪ {ε}. Thus L p,q (∅) is always finite, and hence rational. Now let n > 0 and let us assume that, for any p, q ∈ Q and P ⊆ Q containing at most n -1 states, the language L p,q (P ) is rational. Let now P ⊆ Q be a subset with n elements and let r ∈ P . Considering the first and the last visit to state r of a path from p to q, we find that L p,q (P ) = L p,q (P \ {r}) ∪ L p,r (P \ {r})L r,r (P \ {r}) * L r,q (P \ {r}).

Since P \ {r} has cardinality n -1, it follows from the induction hypothesis that L p,q (P ) is rational.

This concludes the proof of the Kleene-Büchi theorem.

Closure properties

Rational languages enjoy many additional closure properties.

Proposition 1.11. Let ϕ : A * → B * be a morphism and let L ⊆ B * . If L is rational, then ϕ -1 (L) is rational as well.

Sketch of proof.

Let A = (Q, T, I, F ) be an automaton over B, recognizing L, and let A ′ = (Q, T ′ , I, F ) be the automaton over A where

T ′ = {(p, a, q) | p ϕ(a)
-→ q is a path in A}.

It is readily verified that A ′ recognizes ϕ -1 (L).

⊓ ⊔

Let u ∈ A * and L ⊆ A * . The left and right quotients of L by u are defined as follows:

u -1 L = {v ∈ A * | uv ∈ L}; Lu -1 = {v ∈ A * | vu ∈ L}.
These notions are generalized to languages: if K and L are languages, the left and right quotients of L by K are defined as follows:

K -1 L = {v ∈ A * | ∃u ∈ K such that uv ∈ L} = u∈K u -1 L, LK -1 = {v ∈ A * | ∃u ∈ K such that vu ∈ L} = u∈K Lu -1 .
Proposition 1.12. If L ⊆ A * is rational and K ⊆ A * is any language (possibly not rational), then K -1 L and LK -1 are rational as well.

p 0 p ij = p i k p n u 1 u 2 u 3
Fig. 1.7. Proof of the pumping lemma rational is a trickier problem. This short section presents the main tool for that purpose, namely the pumping lemma. We actually first present a rather abstract version of this statement, and then its more classical corollaries.

Theorem 1.2. Let L be a rational language. There exists an integer N > 0 with the following property. For each word w ∈ L and for each sequence of integers

0 ≤ i 0 < i 1 < . . . < i N ≤ |w|, there exist 0 ≤ j < k ≤ N such that, if w = u 1 u 2 u 3 with |u 1 | = i j and |u 1 u 2 | = i k , then u 1 u * 2 u 3 ⊆ L.
Proof. Let A be an automaton recognizing L, and let N be the number of states of

A. Let w = a 1 a 2 • • • a n ∈ L and let p 0 a1 -→ p 1 a2 -→ p 2 • • • an -→ p n be a successful path in A labeled w. Let 0 ≤ i 0 < i 1 < • • • < i N ≤ n be a sequence of integers.
Then two of the states p i0 , p i1 , . . . , p iN are equal, that is, there exist 0

≤ j < k ≤ N such that p ij = p i k . Let u 1 = a 1 • • • a ij , u 2 = a 1+ij • • • a i k and u 3 = a 1+i k • • • a n . Of course, w = u 1 u 2 u 3 , |u 1 | = i j , |u 1 u 2 | = i k .
The situation is summarized by Figure 1.7: we may iterate or skip the loop labeled u 2 and still retain a successful path, so u 1 u * 2 u 3 ⊆ L.

Corollary 1.1. Let L be a rational language. There exists an integer N > 0 such that, for each word w ∈ L with length |w| ≥ N , we can factor w in three parts, w = u 1 u 2 u 3 , with u 2 = ε and u 1 u * 2 u 3 ⊆ L.

Corollary 1.2. Let L be a rational language. There exists an integer N > 0 such that, for each word w ∈ L with length |w| ≥ N , we can factor w in three parts,

w = u 1 u 2 u 3 , with u 2 = ε, |u 1 u 2 | ≤ N (resp. |u 2 u 3 | ≤ N ) and u 1 u * 2 u 3 ⊆ L.
Sketch of proof. To prove Corollary 1.2, we apply Theorem 1.2 with i j = j (resp. Consider now the following language over the alphabet {a, b, c, d}

{(ab) n (cd) n | n ≥ 0} ∪ A * {aa, bb, cc, dd, ac}A *
It satisfies the necessary condition for rationality in Corollary 1.2, but it is not rational, as can be proved using Theorem 1.2.

However, the pumping lemma as stated here may not be enough to prove that a given language is not rational. Let us say that a word contains a square if it can be written in the form uvvw with v = ε. Then the language {udv | u, v ∈ {a, b, c} * and either u = v, or one of u and v contains a square} satisfies the necessary condition for rationality in Theorem 1.2 (for N = 4). Yet it is not rational (the proof of that fact uses the existence of arbitrarily long words on the alphabet {a, b, c} containing no square).

Ehrenfeucht, Parikh, Rozenberg gave a necessary and sufficient condition for rationality in the same style as the pumping lemma (see e.g. [START_REF] Sakarovitch | Elements of Automata Theory[END_REF]Theorem I.3.3]).

Minimal automaton and syntactic monoid

Consider the two automata in Figure 1.8. Both are complete and deterministic, and both recognize the set of words over A = {a, b} that contain some occurrence of the word aaa as a factor -that is, the language A * aaaA * . The two automata were designed using different intuitions about how to go about this task: In the first instance, the underlying algorithm is "keep track of the last two letters read from the input", as indicated by the state labels, while in the second automaton the algorithm is, "keep track of the length of the longest suffix of a's in the input". Thus the second automaton achieves the same result with a smaller number of states. It is easy to see that the second example is also optimal-no complete deterministic automaton recognizing this language can have a smaller number of states.

In this section we will see that for every rational language L there is a unique minimal complete deterministic automaton accepting L. We will also describe an efficient algorithm that takes as input an arbitrary complete deterministic automaton A, and produces as output the minimal automaton for L(A).

Myhill-Nerode equivalence and the minimal automaton

One way to see that there is something inefficient about the first automaton in the example above is to observe its behavior on the two input words u = bab and v = abb. These words lead from the initial state to two different states. However, for purposes of recognizing words in L, there is no point in distinguishing between u and v, for no matter what the subsequent input w is, the result will be the same: either uw and vw are both in L or both outside of L.

To formalize this notion of inputs that are indistinguishable with respect to L, we make the following definitions: If u, v ∈ A * we define u ≡ L v if and only if u -1 L = v -1 L (see Section 1.4.5). Obviously, ≡ L is an equivalence relation on A * . We also note that if u ≡ L v, and w ∈ A * , then uw ≡ L vw, since (uw) -1 L = w -1 (u -1 L). An equivalence relation with this multiplicative property is said to be a right congruence. Further, L itself is a union of ≡ L -classes, since w ∈ L if and only if ε ∈ w -1 L.

We can accordingly define a complete deterministic automaton A min (L) by making the states these classes of equivalent words: We set

A min (L) = (Q L , δ L , i L , F L ), where Q L = A * / ≡ L , i L = [ε] ≡L , and F L and δ L : Q L × A → Q L are defined by F L = {[v] ≡L | v ∈ L} and δ([v] ≡L , a) = [va] ≡L .
We need to show that this is well-defined, since a state will in general have many different representations of the form [v] ≡L . But well-definedness is an immediate consequence of our observation that ≡ L is a right congruence. We have the following result.

Theorem 1.3. Let L ⊆ A * .

(1) A min (L) accepts L.

(2) L is rational if and only if ≡ L has finite index.

Proof. It follows at once by induction on |w| that for all

w ∈ A * , δ L ([ε] ≡L , w) = [w] ≡L .
Since, as observed above, L itself is a union of ≡ L -classes, it follows that w is accepted if and only if w ∈ L. This proves the first claim.

To prove the second claim in the theorem, note that if ≡ L has finite index, then A min is a finite automaton, and therefore by (1), L is rational. Conversely, if L is rational, then it is accepted by some complete deterministic automaton (Q, δ, i, F ) H. Straubing and P. Weil with Q finite. Now suppose u, v ∈ A * and δ(i, u) = δ(i, v). Then if w ∈ A * and uw ∈ L, we have

δ(i, vw) = δ(δ(i, v), w) = δ(δ(i, u), w) = δ(i, uw) ∈ F, so vw ∈ L. Similarly, vw ∈ L implies uw ∈ L, so u ≡ L v.
Thus the number of classes of ≡ L cannot be more than |Q|, so ≡ L has finite index.

The proof of Theorem 1.3 shows that A min (L) has the least number of states among the complete deterministic automata accepting L. The automaton A min (L) is called the minimal automaton of L. We now give another, more algebraic justification for this terminology.

Uniqueness and minimality of A min (L)

Let A = (Q, δ, i, F ) be a complete deterministic automaton over A, and let L = L(A). We say that p, q ∈ Q are equivalent states, and write p ≡ q, if

{v ∈ A * | δ(p, v) ∈ F } = {v ∈ A * | δ(q, v) ∈ F }.
Intuitively, this means that for purposes of recognizing words in L, p and q do the same job, and we might as well merge them into a single state.

We now repeat, in a somewhat different form, an observation made in the proof of Theorem 1.3: If δ(i, u) ≡ δ(i, v), then uw ∈ L ⇐⇒ δ(δ(i, u), w) ∈ L ⇐⇒ δ(δ(i, v), w) ∈ L ⇐⇒ vw ∈ L, so that u ≡ L v. In particular, if δ(i, u) = δ(i, v), then u ≡ L v, so we have a welldefined mapping δ(i, w) → [w] ≡L , from the set of accessible states of A onto the states of A min (L). Note that this mapping sends the initial state i = δ(i, ε) to [ε] ≡L , final states of A to final states of A min (L), and respects the next-state function. We summarize these observations as follows.

Theorem 1.4. Let A = (Q, δ, i, F ) be a complete deterministic automaton over A, and let L = L(A). Then there is a map f from the set of accessible states in

Q onto Q L such that • for all a ∈ A and accessible q ∈ Q, f (δ(q, a)) = δ L (f (q), a), • f (i) = i L , • f (F ) = F L . Moveover, f (p) = f (q) if and only if p ≡ q.
In particular, if A has the same number of states as A min (L), then since f is onto, the two automata are isomorphic by Theorem 1.4.

1.6.3. An algorithm for computing the minimal automaton Theorem 1.4 says that in principle we can compute the minimal automaton of a rational language L starting from any complete deterministic automaton (Q, δ, i, F ) accepting L, first by removing the inaccessible states and then merging equivalent states. We have already seen how to compute the accessible states. How do we determine if two states are equivalent? If p, q are inequivalent states then there is a word v ∈ A * that distinguishes between these states in the sense that δ(p, v) ∈ F and δ(q, v) / ∈ F , or vice-versa. It follows from a simple pumping argument that if such a distinguishing word exists, then it can be chosen to have length no more than |Q| 2 . Thus we can effectively determine whether two states are equivalent by calculating δ(p, v) and δ(q, v) for all words up to this length.

Of course, this is a terrible algorithm, since there are |A| |Q| 2 different words to check! In practice, we can proceed as follows: Let m ≥ 0. We say p ≡ m q if for all v ∈ A * of length no more than m, δ(p, v) ∈ F if and only if δ(q, v) ∈ F . This is clearly an equivalence relation on A * , and ≡ m+1 refines ≡ m for all m. The following lemma improves the |Q| 2 bound on the length of distinguishing words. Lemma 1.1. Let p, q ∈ Q. Then p ≡ q if and only if p ≡ m q for m = |Q| -2.

Proof. First suppose that for some m, the equivalence relations ≡ m and ≡ m+1 coincide. We claim that ≡ m and ≡ coincide. To see this, suppose that p and q are inequivalent, and that w is a word of minimal length distinguishing them. If |w| > m, then we can write w = uv, where |v| = m + 1, so that p ′ = δ(p, u) and q ′ = δ(q, u) are inequivalent modulo ≡ m+1 . But this means that they are also inequivalent modulo ≡ m , and thus distinguished by a word v ′ of length no more than m, and thus p and q are distinguished by the word uv ′ of length strictly less than that of w, a contradiction. Thus the minimal distinguishing word has length no more than m, so that ≡ m coincides with ≡. Now if ≡ m+1 does not coincide with ≡ m , then ≡ m+1 has a larger number of classes. Since the number of classes can never exceed |Q|, and since ≡ 0 has two classes, the sequence {≡ m } m≥0 will stabilize by the time m reaches |Q| -2. Lemma 1.1 leads to the following practical algorithm for minimization. We begin with a list of all the pairs {p, q} of distinct accessible states, and mark the pair if p ∈ F and q / ∈ F , or vice-versa. In each phase of the algorithm, we visit each unmarked pair {p, q} and each a ∈ A, we compute {p ′ , q ′ } = {δ(p, a), δ(q, a)}, and we mark {p, q} if {p ′ , q ′ } is marked. An easy induction shows that if a pair {p, q} is distinguished by a word of length m, then it will be marked by the m th phase of the algorithm. Thus after no more than |Q| -2 phases, the algorithm will not mark any new pairs, with the result that the algorithm terminates, and the unmarked pairs are exactly the pairs of equivalent states.

Example 1.20. Consider the first automaton in Figure 1.9. Initially we mark the pairs {i, j}, where i ∈ {1, 2, 3} and j ∈ {4, 5, 6}. On the next pass, the pairs Example 1.21. We now apply the algorithm to the automaton in Figure 1.10. Initially, the pairs {i, 6} with i < 6 are marked. On the next pass the pairs {i, 5} with i < 5 are marked, etc., until on the fifth pass the pair {1, 2} is marked. The result is that every pair of distinct states is marked: the automaton is already minimal.

The pair-marking implementation of the algorithm just illustrated is suitable for small examples worked by hand. In the worst case, shown in the last example, we check O(|Q| 2 ) unmarked pairs on each pass, and make O(|Q|) passes, with |A| consultations of the state-transition table for each pair we inspect. Thus, the overall time complexity of the algorithm is O(|A| • |Q| 3 ). More astute bookkeeping, in which we partition equivalence classes at each step, rather than marking pairs of inequivalent states, leads to a O(|A| • |Q| 2 ) algorithm (Moore [START_REF] Moore | Gedanken experiments on sequential machines[END_REF]). This can be further improved to O(|A| • |Q| • log |Q|) (Hopcroft [6]).

The transition monoid of an automaton

Let A = (Q, δ, i, F ) be a complete deterministic automaton over an alphabet A. Let w ∈ A * . We study the maps from Q into itself. We will write the image of a state q under f A w as qf A w rather than the more traditional f A w (q). We then have, for v, w ∈ A * ,

f A w : q -→ δ(q, w)
f A vw = f A v f A w ,
where the product in the right-hand side of the equation is left-to-right composition of functions -that is,

q(f A v f A w ) = (qf A v )f A w .
We will henceforth drop the superscript A, except in situations where several different automata are involved. Observe that f ε is the identity map on Q. Thus the set of maps

M (A) = {f w | w ∈ A * }
forms an algebraic structure with an associative product and an identity element (usually denoted 1). Such a structure is called a monoid , and we call M (A) the transition monoid of A. Observe that if Q is finite, then M (A) is finite, and that the structure of M (A) depends only on the next-state function δ, and not at all on the initial or final states.

A * is, of course, itself a monoid, with concatenation of words as the operation and the empty word ε as the identity. The map

ϕ : w -→ f w is consequently a monoid morphism from A * into M (A); that is, it satisfies ϕ(w 1 w 2 ) = ϕ(w 1 )ϕ(w 2 )
for all w 1 , w 2 in A * , and it maps the identity element of A * to the identity element of M (A).

Example 1.22. In the diagrams in this example and in Examples 1.23 and 1.24, we indicate only the transitions between states, since, as we have observed, the initial and final states do not enter into the computation of the transition monoid of an automaton.

First, consider the automaton A 1 in Figure 1.11. We will write an element f w of M (A 1 ) as a vector f w = ( 1f w 2f w 3f w ). We can then begin enumerating the 

f ε = ( 1 2 3 ) f a = ( 2 3 3 ) f b = ( 3 1 3 ) f aa = ( 3 3 3 ) f ab = ( 1 3 3 ) f ba = ( 3 2 3 ) f bb = ( 3 3 3 ) 
We could continue enumerating like this, but instead we note that f aba = f a , f bab = f b , and for all other w ∈ A * of length 3, f w = ( 3 3 3 ). Thus the inventory above is the entire transition monoid, since any transition induced by a word of length greater than 2 is equal to one induced by a shorter word. Thus M (A) has 6 elements 1, α = f a , β = f b , αβ, βα, and 0. The multiplication is then determined by the laws αα = ββ = 0, α = αβα, and β = βαβ. The complete multiplication table is shown below:

• 1 α β αβ βα 0 1 1 α β αβ βα 0 α α 0 αβ 0 α 0 β β βα 0 β 0 0 αβ αβ α 0 αβ 0 0 βα βα 0 β 0 βα 0 0 0 0 0 0 0 0
This example illustrates an important general point: There is an effective procedure for computing the multiplication table of the transition monoid of a complete deterministic finite automaton. We enumerate the maps f w until we find that all words of some length induce the same maps as shorter words.

Example 1.23. Consider the automaton A 2 in Figure 1.12. The transition monoid is generated by the two permutations f a and f b , both of which are permutations of the set of states: f a cycles the five states and f b transposes a pair of adjacent states. It is well known from elementary group theory that we can obtain all transpositions t of adjacent elements by repeated conjugation with the cycle (the map t → f 4 a t f a ), and that all permutations of the states can be obtained by composing transpositions of pairs of adjacent elements. So M (A) consists of all the permutations of {1, 2, 3, 4, 5}, and is consequently the symmetric group of degree 5, with 5! = 120 elements. Of course, we can do likewise with any finite set of states.

Example 1.24. Now consider the effect of adding a third input letter to the preceding example, obtaining the automaton A 3 in Figure 1.12. It is not hard to show that every map from {1, 2, 3, 4, 5} into itself can be obtained by repeatedly composing f c with permutations. Thus M (A 3 ) is the full transformation monoid on 5 states, which has 5 5 = 3125 elements. We can similarly generate a transition monoid with n n elements using an n-state automaton.

The syntactic monoid

Now let L ⊆ A * , and consider the transition monoid of the minimal automaton A min (L) = (Q L , δ L , i L , F L ). Let u, v ∈ A * . When are the two elements f u , f v of this monoid the same? If they are different, then there is some state q such that qf u = qf v . Since the automaton is minimal, there is a word y ∈ A * distinguishing these two states, so that qf u f y ∈ F L and qf v f y / ∈ F L , or vice-versa. Since every state is accessible, there is also a word x such that q = if x , so that either xuy ∈ L and xvy / ∈ L, or vice-versa. Conversely, if such a pair of words x, y exists, then f u and f v cannot be equal. We thus have: If the conditions in this theorem are satisfied, then we write u ∼ =L v. The equivalence relation ∼ =L is called the syntactic congruence of L, and the transition monoid of A min (L) is called the syntactic monoid of L. We denote the syntactic monoid of L by M (L). In algebraic terms, M (L) = M (A min (L)) = A * / ∼ =L, that is M (L) is the quotient monoid of A * by the syntactic congruence. The morphism mapping each w ∈ A * to its ∼ =L-class is called the syntactic morphism of L, and is denoted µ L .

The syntactic congruence is a two-sided congruence on A * ; that is, if u ∼ =L v and u ′ ∼ =L v ′ , then uu ′ ∼ =L vv ′ . Compare this to the Myhill-Nerode congruence ≡ L , which, as we noted, is a right congruence. The equivalence ∼ =L refines ≡ L .

Transition monoids, and, in particular, the syntactic monoid, allow us to place many questions about the behavior of automata in a purely algebraic setting. For instance, we have the following algebraic characterization of rationality: Let M be a monoid and ϕ : A * → M a morphism. We say that ϕ recognizes L ⊆ A * if and only if there is a subset X of A * such that L = ϕ -1 (X). We also say in this situation that M recognizes L.

Theorem 1.6. Let L ⊆ A * . The following are equivalent:

(1) L is rational.

(2) M (L) is finite.

(3) L is recognized by a finite monoid.

Proof. To show (1) implies (2), note that if L is rational, then A min (L) has a finite set of states, and thus its transition monoid, M (L), is finite. For [START_REF] Cho | Finite automaton aperiodicity is PSPACE-complete[END_REF] Since M is finite, L is rational.

implies (3), if u ∈ L and u ∼ =L v, then v = ε v ε is also in L. Thus L is a union of equivalence classes of ∼ =L, so that L = µ -1 L (X), where X = {f w ∈ M (A min (L)) | w ∈ L}.
Remark 1.7. Observe that if M is a finite monoid and A(M ) is the automaton defined in the proof of Theorem 1.6, then the transition monoid of A(M ) is M itself.

The syntactic monoid plays the same role in this algebraic view of rational languages that the minimal automaton plays in the automaton-theoretic view. Here we make this precise: We say that a monoid N divides a monoid M , and write N ≺ M , if there is a submonoid M ′ of M and a surjective morphism ϕ : M ′ → N . It is easy to see that ≺ is a transitive relation on monoids. Proof. First suppose M recognizes L, so that there is a morphism ϕ : A * → M such that L = ϕ -1 (X) for some X ⊆ M . We claim that if ϕ(u) = ϕ(v), then u ∼ =L v. To see this, suppose that xuy ∈ L for some x, y ∈ A * . Then ϕ(xuy) ∈ X, and since ϕ(u) = ϕ(v), we have ϕ(xvy) ∈ X, so that xvy ∈ L. By the same argument, if xvy ∈ L then xuy ∈ L, so that u ∼ =L v. Now let M ′ = ϕ(A * ). We define a map ψ : M ′ → M (L) by ψ(ϕ(u)) = µ L (u). By the remark just made, ψ is well-defined, since the value of ψ only depends on ϕ(u) and not on u. Moreover ψ is clearly a morphism, and it is surjective because µ L is, so M (L) ≺ M .

Conversely, suppose M (L) ≺ M , so that there is a morphism ψ from a submonoid M ′ of M onto M (L). For a ∈ A, we set ϕ(a) to be any m ∈ M ′ for which ψ(m) = µ L (a). This can be extended to a unique morphism ϕ :

A * → M such that µ L = ψ • ϕ. Let X = ϕ(L). If ϕ(u) ∈ X then ϕ(u) = ϕ(v)
for some v ∈ L, and thus µ L (u) = µ L (v), so u ∼ =L v. Since, as noted in the proof of Theorem 1.6, L is a union of ∼ =L-classes, this implies u ∈ L, so that L = ϕ -1 (X), and thus M recognizes L.

Example 1.25. Consider the transition monoid of the automaton A in Figure 1.13. We can fairly easily determine the elements of this monoid without doing an exhaustive tabulation: First, if a word w has even length, then it maps {1, 3} into {1, 3}, and {2, 4} into {2, 4}, while if w has odd length, then it interchanges these two sets. Second, if w contains aa or bb as a factor, then the image of f w is contained in {3, 4}. Finally, if the letters of w alternate, then f w maps either 1 or 2 to {1, 2}, but not both, depending on whether the first letter of w is a or b. We thus get these elements:

1 = f ε = ( 1 2 3 4 ) γ = f a = ( 2 3 4 3 ) δ = f b = ( 4 1 4 3 ) γδ = f ab = ( 1 4 3 4 ) δγ = f ba = ( 3 2 3 4 ) γ 2 = f aa = ( 3 4 3 4 ) γ 3 = f aaa = ( 4 3 4 3 )
Observe that {γ 2 , γ 3 } forms a group, permuting the states 3 and 4. This automaton accepts the language (ab) * . In algebraic terms, the morphism ϕ : w → f w from A * into M (A) recognizes this language with (ab) * = ϕ -1 (X), where

X = {f ∈ M (A) | f maps state 1 to itself }.
The states 3 and 4 are equivalent, and the minimal automaton of L is obtained by merging these states: it is the automaton examined in Example 1.22 (with 1 as initial and final state), where we computed its transition monoid, namely M (L).

According to Theorem 1.7, M (L) ≺ M (A), and, indeed, the map sending 1 to 1, γ, δ, γδ, δγ to α, β, αβ, βα, respectively, and γ 2 and γ 3 both to 0, is a morphism from M (A) onto M (L).

Example 1.26. Let us take the automaton of Example 1.24 and specify 1 as both the initial state and the unique accepting state. With these choices, the automaton is the minimal automaton of the language it accepts, since every state is accessible and no two distinct states are equivalent. This shows that the syntactic monoid of a language accepted by an n-state automaton can have as many as n n elements.

Example 1.27. Not every finite monoid is the syntactic monoid of a rational language. Consider, for instance, the monoid M = {1, α, β, γ} with multiplication m 1 m 2 = m 2 for m 2 = 1. Suppose A is a finite alphabet and ϕ : A * → M is a morphism. Let X ⊆ M . We partition A into three subsets, B, C, and D,

B = {a ∈ A | ϕ(a) = 1} C = {a ∈ A | ϕ(a) ∈ X \ {1}} D = A \ (B ∪ C) Then ϕ -1 (X) = B * ∪ A * CB * if 1 ∈ X and ϕ -1 (X) = A * CB * otherwise.
(Observe that B or C might be empty.) But then L = ϕ -1 (X) is recognized by the submonoid {1, α, β}, using the morphism that maps B to 1, C to α and D to β. Thus every language recognized by M is recognized by a strictly smaller monoid, so by Theorem 1.7, M cannot be the syntactic monoid of any language.

First-order definable languages

This section is devoted to proving one of the earliest and most important applications of the syntactic monoid: the characterization of the languages definable in FO(<).

A finite monoid M can contain a nontrivial group, as for example the {γ 2 , γ 3 } in the monoid M (A) of Example 1.25. If there is no nontrivial group in M , we say that M is aperiodic. Lemma 1.2. Let M be a finite monoid. Then the following are equivalent:

(1) M is aperiodic.

(2) There is an integer n > 0 such that m n = m n+1 for all m ∈ M .

Proof. Suppose M is aperiodic. Let m ∈ M , and consider the sequence 1, m, m 2 , . . . Since M is finite, if we take n = |M |, we have m r = m n for some r < n. Take the largest such r, and consider the set G = {m k | r ≤ k < n}.

Observe that for all g ∈ G, gG = Gg = G, since m r+t m s = m r+[(t+s) mod (n-r)] for all s, t ≥ 0. This implies that G is a group, so that |G| = 1, and thus r = n -1 and m r = m r+1 . Conversely, if M is not aperiodic, then M contains a nontrivial group G, and an element g ∈ G different from the identity element e of G. Then g k = e for some k > 1, so that g n = g n+1 for all n ≥ 0.

Note that the proof shows that we can choose n in condition (2) of Lemma 1.2 to be |M | -1.

We say that a language L ⊆ A * is star-free if it can be defined by an extended rational expression without the use of the * operation or morphic images. The Schützenberger-McNaughton-Papert Theorem offers the following characterization.

Theorem 1.8. Let L ⊆ A * be a rational language. Then the following are equivalent.

(1) L is star-free.

(2) L is definable by a sentence of FO(<).

(3) L is recognized by an aperiodic finite monoid. (4) M (L) is aperiodic.

Before we turn to the proof of this theorem, we give an important corollary, and an example.

Corollary 1.3. It is decidable whether a rational language (given by a rational expression or an accepting automaton) is definable by a sentence of first-order logic.

Proof. As we have seen, we can compute A min (L) from any automaton or expression for L, and thence compute the multiplication table of M = M (L). We can then test for all m ∈ M whether m |M|-1 = m |M| , and thus, by Lemma 1.2 determine whether M (L) is aperiodic. By Theorem 1.8, this decides whether L is first-order definable.

In fact, the proof of Theorem 1.8 will show that if M (L) is aperiodic, then we can effectively construct both a star-free expression and a first-order sentence for L from an automaton that recognizes L.

Example 1.28. Let L = (ab) * . We computed M (L) in Example 1.22. We have α 2 = β 2 = 0 = α 3 = β 3 , and (αβ) 2 = αβ, (βα) 2 = βα, so by Lemma 1.2, M (L) is aperiodic. Theorem 1.8 says that L is definable by a star-free extended rational expression, and also by a sentence of FO(<). Let us exhibit such expressions.

First, note that membership of a word w in L is equivalent to saying that w contains no occurrence of either aa or bb as a factor, and that the first letter of w (if there is one) is a, and the last letter is b. We thus have

L = {ε} ∪ (aA * ∩ A * b ∩ A * (aa ∪ bb)A * ).
witnessing the fact that L is star-free (note that A * is star-free, since A * = ∅).

To obtain a first-order sentence defining L, we use the same characterization of words in L. We say there is no occurrence of aa as a factor using the following sentence:

¬∃x∃y(R a x ∧ R a y ∧ S(x, y)).
This uses the successor predicate S, but as we noted earlier, S can be expressed in FO(<). We can likewise write a sentence saying that there is no occurrence of bb. An FO-sentence stating that the first letter of a word is a was given in Example 1.13. A similar sentence can be formed to say that the last letter is b. Note that all these sentences are satisfied by the empty word as well, so that the conjunction of the four sentences defines the language (ab) * .

This language is also recognized by the first monoid that we exhibited in Example 1.25, which is not aperiodic. This in no way contradicts Theorem 1.8, which only says that some aperiodic monoid recognizes L.

Remark 1.8. The decision procedure outlined in the proof of Corollary 1.3 may take exponential time in the size of an automaton accepting L, since it involves computing the syntactic monoid of L (see Example 1.24). While this procedure may be improved, this decision problem is intrinsically difficult. In fact, it is known to be PSPACE-complete (Cho and Huynh [START_REF] Cho | Finite automaton aperiodicity is PSPACE-complete[END_REF]).

We now turn to the proof of Theorem 1.8. We will show (4) ⇔ (3) ⇒ (1) ⇒ (2) ⇒ (4). By Theorem 1.7, every language is recognized by its syntactic monoid. Also every divisor of an aperiodic monoid is aperiodic, since the property m n = m n+1 for all elements m in a monoid is inherited by morphic images and submonoids. Thus (3) and ( 4) are equivalent.

The most difficult part of the proof is (3) ⇒ (1). To prove this, we suppose L ⊆ A * is recognized by a finite aperiodic monoid. This is equivalent to L being accepted by a complete deterministic automaton A = (Q, δ, i, F ) whose transition monoid is aperiodic (see the proof of Theorem 1.6 and Remark 1.7). We will show that for all q, q ′ ∈ Q, the set L A q,q ′ = {w | qf A w = q ′ } is a star-free language. Since L is a finite union of such languages, L is star-free.

The proof is by induction on the pair (|Q|, |A|): the induction hypothesis is that the claim holds for all automata with a strictly smaller state set, or with the same size state set and a strictly smaller input alphabet. In the case |Q| = 1, L is either A * or ∅, which are star-free. In the case |A| = 1, so that A = {a}, aperiodicity implies that L is a finite union of singleton sets {a k }, possibly together with the language a r a * , where r = |Q| -1, which is also star-free, since a * = ∅.

We thus assume both |Q| > 1 and |A| > 1. First suppose that for every a ∈ A, Qf A a = Q, so that f A a is a permutation of Q. Aperiodicity implies (f A a ) r = (f A a ) r+1 for some r, and thus f A a is the identity map on Q. Consequently f A w is the identity map for all w ∈ A * , and thus the claim holds trivially. We can therefore assume that there is some a ∈ A such that

Qf A a = Q ′ Q.
We now define two new automata B and C. Automaton B has state set Q and next-state function δ Q×B , where B = A \ {a}. We need not define initial and final states for B, because we are only interested in the state transitions f B w . Automaton C has state set Q ′ , input alphabet

C = {(f B w , a) | w ∈ B * , a ∈ A},
and next-state function

δ ′ : (q, (f B w , a)) -→ q • f A wa .
This makes sense, because Qf A a = Q ′ and because f B w = f B w ′ implies that f A wa = f A w ′ a . The inductive hypothesis applies to both B and C. (The transition monoids of these automata inherit the aperiodicity of A, because every transition in them is the restriction of a transition in A.)

A word in L A q,q ′ can contain either no occurrences of a, a single occurrence of a, or two or more occurrences of a. We can accordingly write L A q,q ′ as a finite union of sets of the form L B q,q ′ , L B q,p aL B p ′ ,q ′ , L B q,p aT p ′ ,q ′′ L B q ′′ ,q ′ , where p ∈ Q, p ′ = p • f A a ∈ Q ′ , and T p,q ′′ = L A p,q ′′ ∩ A * a. By the inductive hypothesis all the sets of the form L B s,t are star-free, so it remains to show that T p ′ ,q ′′ is a star-free language. We can factor any w ∈ A * a uniquely as

w = v 1 a • • • v k a,
where v 1 , . . . , v k ∈ B * . Let us associate to w the word

w C = c 1 • • • c k ∈ C * ,
where c j = (f B vj , a) ∈ C. By the inductive hypothesis, the language L C p ′ ,q ′′ is starfree. So we need to show that if R ⊆ C * is star-free, then Ψ(R) = {w ∈ A * a | w C ∈ R} is also star-free, since T p ′ q ′′ = Ψ(L C p ′ ,q ′′ ). It is thus enough to show To prove (1) ⇒ (2), we need to show that every star-free language is first-order definable. Since the singleton sets {a} for a ∈ A are clearly first-order definable, and since the boolean operations are part of first-order logic, this reduces to showing that if L 1 , L 2 ⊆ A * are first-order definable, then so is L 1 L 2 . To do this, we introduce the notion of relativizing a first-order sentence. Let ϕ be a sentence of FO(<) and x a variable symbol that does not occur in ϕ. We define a formula ϕ <x with one free variable with the following property: Let ν be an interpretation mapping x to i ∈ Dom(u), and let v be the prefix v of u with domain {0, . . . , i -1}. Then u, ν |= ϕ <x if and only if v |= ϕ. To construct ϕ <x , we simply work from the outermost quantifier of ϕ inward, replacing each quantified subformula ∃y α by ∃y ((y < x) ∧ α). We define ϕ >x and ϕ ≤x analogously. Now suppose ϕ, ψ are first-order sentences defining L 1 and L 2 , respectively. Let x be a variable symbol that does not occur in ϕ or ψ. We have L 1 L 2 defined by the sentence

∃x (ϕ ≤x ∧ ψ >x ) if ε / ∈ L 1 , ∃x (ϕ ≤x ∧ ψ >x ) ∨ ψ if ε ∈ L 1 .
To prove (2) ⇒ (4), we need to show that the syntactic monoid of every firstorder definable language in A * is aperiodic. We will proceed as in Section 1.4.2, and treat a first-order formula with free variables contained in {x 1 , . . . , x p } as defining a language over the extended alphabet B p = A × {0, 1} p . We will show by induction on the quantifier depth that every first-order definable language L ⊆ B * p in this extended sense has an aperiodic syntactic monoid. More precisely, we will show that for each such L there exists an integer q > 0 such that for all v ∈ B * p , v q ∼ =L v q+1 . By Lemma 1.2, this implies aperiodicity.

First suppose L is defined by one of the atomic formulas x 1 < x 2 or R a x 1 . Let u, v, w ∈ B * p . If v has a letter with a 1 in one of its last p components, then neither uv 2 w nor uv 3 w can be in L, since only one letter of a word in L can have a 1 in a given component. If v has no such letter, then membership of uvw in L is witnessed by the relative positions and values of letters in u and w, so that uvw ∈ L if and only if uv 2 w ∈ L. Thus in all cases, we have uv 2 w ∈ L if and only if uv 3 w ∈ L, so that v 2 ∼ =L v 3 . Now suppose the claim is true for L 1 , L 2 ⊆ B * p defined by formulas ϕ 1 , ϕ 2 , and suppose L is defined by ϕ 1 ∨ ϕ 2 . We have, by assumption, v q ∼ =L 1 v q+1 , and v q ∼ =L 2 v q+1 , for some q > 0. (The exponents for these two languages are, a priori, different, but we can then choose q to be the maximum of the two exponents.) Now ϕ 1 ∨ ϕ 2 defines L 1 ∪ L 2 , and we have directly uv q w ∈ L 1 ∪ L 2 if and only if

uv q+1 v ∈ L 1 ∪ L 2 .
Care must be taken with the negation operator, since it does not exactly correspond to the boolean complement. We can assume that the exponent q for L 1 is at least 2. Let L ′ 1 be the language defined by ¬ϕ 1 . Suppose uv q w ∈ L ′ 1 . Then uv q w / ∈ L 1 , and thus uv q+1 w / ∈ L 1 . Further v cannot contain a 1 in the last p components of any of its positions, so uv q+1 w has exactly one occurrence of 1 in each of the last p positions, and thus is in L ′ 1 . The same argument shows that if uv q+1 w ∈ L ′ 1 , then so is uv q w. Thus v q ∼ = L ′ 1 v q+1 . So now let K ⊆ B * p-1 be the language defined by ∃x p ϕ 1 . Let v ∈ B * p-1 . We will show v 2q+1 ∼ =K v 2q+2 . Suppose uv 2q+1 w ∈ K. Let us extend each letter in this word by adding a p th component with 0. We will still denote the resulting word as uv 2q+1 w. Since K is defined by ∃x p ϕ 1 , we can switch the p th component of some letter to obtain a word z ∈ B * p such that z ∈ L 1 . Now, wherever the position in which we switched the p th component is located, at least q consecutive occurrences of v will be left intact. We thus find that z can be written in the form xv q y, for some x, y ∈ B * p . (The extreme case is when the position is within the middle occurrence of v, in which case we get two factors of the form v q .) Thus xv q+1 y ∈ L 1 . If we now switch the changed 1 back to 0, we find uv 2q+2 w ∈ K. The identical argument shows uv 2q+2 w ∈ K implies uv 2q+1 w ∈ K. Thus v 2q+1 ∼ =K v 2q+2 , as claimed.

Remark 1.9. Interesting presentations of proofs of all or part of Theorem 1.8 can be found, for instance, in the work of Perrin [START_REF] Perrin | Finite automata[END_REF], Straubing [START_REF] Straubing | Finite Automata, Formal Logic, and Circuit Complexity[END_REF] and Diekert and Gastin [START_REF] Diekert | First-order definable languages[END_REF]. 
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Sketch of proof.

If A = (Q, T, I, F ) is an automaton recognizing L. Let I ′ be the set of states of A which are accessible from an initial state of A following a path labeled by a word of K,

Then one shows that A ′ = (Q, T, I ′ , F ) recognizes K -1 L. The proof for LK -1 is similar.

⊓ ⊔ Remark 1.6. The proof of Proposition 1.12 is not effective: we may not be able to construct the set of states I ′ associated with K. However, if K is rational too, then I ′ is effectively constructible.

Recall that a word u is a prefix of the word v if there exists a word

If L is a language, we let Pref(L) (resp. Suff(L), Fact(L)) be the set of all prefixes (resp. suffixes, factors) of the words in L. Proposition 1.13. If L ⊆ A * is rational, then Pref(L), Suff(L) and Fact(L) are rational as well.

Proof. The result follows from Proposition 1.12, since Pref(L) = L(A * ) -1 , Suff(L) = (A * ) -1 L and Fact(L) = (A * ) -1 L(A * ) -1 .

We leave it to the reader to verify that the following operations also preserve rationality.

The mirror image of a word u = a 1 . . . a n ∈ A * is the word ũ = a n . . . a 1 . The corresponding language operation is given by L = {ũ | u ∈ L} for each L ⊆ A * .

A word u = a 1 . . . a n ∈ A * is a subword of a word v ∈ A * if there exist words u 0 , . . . , u n ∈ A * such that v = u 0 a 1 u 1 . . . a n u n . If L ⊆ A * , we let SW(L) be the set of all subwords of the words of L.

The shuffle of the words u and v is the set

If K and L are languages, we let K ⊔⊔ L = u∈K, v∈L u ⊔⊔ v.

Proposition 1.14. Let K, L ⊆ A * be rational languages. Then L, SW(L) and K ⊔⊔ L are rational as well.

Pumping lemmas

The characterizations summarized in the Kleene-Büchi theorem are sufficient most of the time to show that a language is rational. Showing that a language is not