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Abstract—In this paper, we are interested in the prob€an be interested in synchronizing two oscillators for com-
lem of synchronization of coupled dynamical systems. Theunication purpose. The drive may consist of a modulator
coupling under consideration is unidirectional and correin a communication setup while the response may be a
sponds to a drive-response configuration. The drive systehiL (Phase Locked-Loop). In such a case, the drive signal
is supposed to be subjected to unknown inputs. It is prés imposed while the structure of the response must be
vided a systematic methodology for selecting suitabledrivsuitable designed to guarantee the phase synchronization
variables and for designing an appropriate response syst@&rith good filtering properties. Another example concerns
so that a finite time self-synchronizing is achieved. The apgymmetric cryptography. In such a context, the drive
proach is based on the notion of flatness, a notion borrowednsists of the generator delivering a complex sequence
from control theory. used to conceal the information called the plaintext. The
response consists of the decipher which not only must be
synchronized in finite-time with the drive but also must be
designed so that the plaintext can be properly recovered.
n‘{he drive variable is nothing else but the ciphertext which

. . - IS conveyed through the public channel. For a typical class
subject of research for a long time. Driving a system bé ) L .
f ciphers, the synchronization must be guaranteed without

another means that both systems are coupled so that & . o
. . external control on the decipher. Indeed synchronization
behavior of the second one is dependent on the behavior

of the first one but the converse does not hold. The firs Ags may be forbidden for throughput purpose. In other

system is called thelrive system while the second Or]ewords, finite-time self-synchronization must be ensured.

is called theresponse The driving is often referred to

as unidirectional couplingand distinguishes from the ~Numerous techniques proposed so far in the literature to
bidirectional coupling. The coupling is made through théuarantee self-synchronization of autonomous dynamical
drive variables which consist of one or several output8yStems resort to state reconstruction approaches imgplvi
variables of the drive system. In the years 1990, worki®r example observers. In such a case, the corresponding
of Hubler [6] have been shown that driving systems wittiequired property to guarantee synchronization is ob-
aperiodic signals could induce some interesting behaviop§rvability. A more complex self-synchronization issue
like nonlinear resonances or stimulation of particulafrises when the drive system is non autonomous, that is
modes. The idea has been extended to chaotic signf#ced by an input, and when such an input is unknown

and originates from the pioneering works of Pecora ani® the response. In such a case, a so-called unknown
Carroll [5]. input observer must be used. It is the typical situation

encountered in the aforementioned symmetric ciphers

Among numerous definitions of synchronization (sed/nere the plaintext plays the role of the unknown input.
[2] for an complete list), self-synchronization in a drive-t iS also the case when a drive system is subjected to
response configuration has drawn much attention. Bgl‘_knof"’” disturbances. It turns out that unknown input
self-synchronization, it is meant an identical behavior ofinite-time self-synchronization is an issue which has not
the drive and the response which is achieved without afjgen deeply addressed.
external control. The main issue in self-synchronizat®on i
not only the selection of appropriate outputs of the drive to In this paper, we propose a methodology leading
guarantee a given convergence behavior as asymptotidal, a systematic and constructive design of finite time
finite-time, robustness against parameter mismatch or diself-synchronizing coupled systems with unknown inputs.
turbances, as well as the design of a suitable structure fBoth issues, namely, the selection of suitable drive (a)itpu
the response. Several examples arfiedent situations can variables and the design of the response system, are
be borrowed from the engineering area. For instance, wevestigated. Analysis approaches have already been

1. Introduction

Driving a dynamical system has been an importa



suggested in the literature. By analysis, it is meant thathereU is a non empty set of initial conditions atfid ||
given a specific output, it is possible to check whethedenotes the Euclidean norm.

the finite-time self-synchronization can be achieved. FdFirstly, since the coupling is only unidirectional - froneth
example, a condition which applies for switched discretedrive to the responsex, cannot depend orc.”As a result,
time systems has been proposed in [4]. On the othéor all k > k¢, when (4) applies, that is wheq andX. are
hand, design purpose, that is the issue of selecting a pri@gual after a finite number of iterations, the consideration
suitable outputs to achieve finite-time self-synchronirat of (2) leads to the fact that and %, up to a delayr, are
is a much more intricate problem. Actually it is anboth expressed as a function, denokgdwhich depends
open problem in the general case. Very few works havexclusively on a finite number of delayed outpytsthat is
addressed such an issue. See the work [3] for an exception R

dealing with continuous linear systems and a polynomial X = Rerr = FYiems - Yiew) VK> kg ()
matrices-based approach. Based on the notion of ﬂameﬁ%erel\/l andM’ are integers.

a notion borrowed from control theory, we propose here Besides, after substituting the expressiorxat into the

state space approach for discrete-time linear systems ngcond equation of (2) and taking into account (3), it turns

the hope that an extension can be carried out for SOMEit thatm, and M, are equal and both of them can be
. +r
classes of nonlinear systems. expressed as a function, denot®dwhich depends also

exclusively on a finite number of delayed outpytsthat is
The outline of this paper is the following. In Sec- y y

tion 2, the problem of finite-time self-synchronization is Mg = Mgr = G(Ykens - - -5 Yienr) ¥ K> K¢ (6)
stated in the general case. In Section 3 the problems of

the selection of appropriate drive variable and of the devhereN andN” are integers. Let us point out that (6) is
sign of the response which must ensure a finite-time selfothing else but the inpdutput model of (1). Such arela-
synchronization are solved for discrete-time linear syste  tion provides a way to recover the unknown inpt

An illustrative example is provided in Section 4. FinallyThe property that the state vectr and the inputm of
Section 5 is devoted to some concluding remarks addredg€ dynamical system (1) can be expressed exclusively as

more details about flatness, the reader may refer to [1]. It

is important stressing that, likewise observability, aft d
namical systems haven't got this property. The output

We are interested in a drive-response setup where tR@responding to a suitable functiorwhich yields the re-

2. Problem statement in the general case

drive part is described by lations (5) forx and (6) formy is called the flat output.
X1 = (X M) Remark 1 The relation (5) reflects that a flat system is
{ yki h(x n”]() (1) necessary observable insofar as the state veqtds ex-

pressed by means of a function of the output only.
my is the input,f is the state-transition functiom, is the
output function andy is the drive (output) variable ensur-
ing the coupling with the response.

Equation (5) and (6) allow to rewrite the response (2) in the
strictly equivalent form whenevér> kg

The response part admits the following generic equations { fier = FOeMs - - - Yiewr) @
{ )A(k+r+l = f()szrr’yk—l, cee ’yk—l’) (2) Mhr = G(Yk—N, o ,Yk—N’)
Mier = MR Yoot - -+ Yeet’) The previous developments allows us to state the following

, ~ proposition.
wherel andl” are integers and whefemust have the fol-
lowing property: Proposition 1 If a dynamical system at the drive side is

flat, it is always possible to select an outputoalled flat
Mier = M if Xar = X« (3)  output and to design a response system so that, not only a

. L . . self-synchronization in finite time is achieved, but also so
[ is a positive integer which stands for a possible dela¥hat the unknown input grof (1) can be recovered in finite
The equation involvingh plays a central role for the

. ) time. The equations describing the response are given b
recovery of the inpumy of (1), mg being assumed to be (7) or by (2)(130r a recursive equ?valentfo?m. 9 y
unknown.

The purpose of this paper is to provide a systematic

methodology based on a state space approach to select the

flat outputs and to design the response system for the spe-

ks < 0o, Vo€ U,k > ki and Ymy [Ixc—Rrll = 0 (4) cial class of discrete-time linear systems with the hope tha
an extension can be carried out for some classes of nonlin-
ear systems.

Definition 1 A finite time self-synchronization fulfills



3. Main result Proof

Firstly, the observable canonical form
3.1. Background on control theory

. . . . o A'Xx: + B*
Throughout this section, when classical linear control { Xer1 kB Mk (13)

theory results are mentioned, proofs are not incorporated. Y = Cx+ Dm
Let us consider the state space representation of a Singigh A+, B+, C* andD* defined by (12) and the state space

Input Single Output linear system: representation (8), related one another according to
Xer1 = AXe+ Bmy (8) A = T-1IAT
Yk = CXk + DfT‘k B* = T_lB
. ; (14)
with X € R", m¢ € R andyj € R. C=CT
The corresponding inpigutput model of (8) reads: D*=D

Yiint. ... Farye1+agyk = BaMn+. . .+B1Me1+Bomy (9)  from which (11) are deduced, have the same ifquiput
, _ o model (9). T is the similarity transform matrix and is in-

where theg's are the cofiicients of the characteristic poly- \ertiple by definition. To prove such a correspondence, it
nomial of A which is by definitionp(1) = det(dl — A) (I g fices to work out the transfer functiotr () = C*(z1 —
stands for the identity matrix of dimensionand det is A")"1B* + D* to realize that is the same as (10) and then
the determinant). Equation (9) can be obtained by worksonsidering again the variatiteas a shift operator.

ing putthetransferfunctloH(z) = Y(2)/M(2) of (8) which  gjnce it is assumed that only one tegnwith i = p

is given by (p €1{0,...,n}) is different from zero, (9) reduces to
ﬂnz”+....+,812+ﬂo (10) ne

2"+ ... +a1Z+ Qg AjYk+j * Yken = BpMksp (15)

then considering as the shift operator in the time domain. ]

=

H@=C@-A"'B+D=

Il
o

Proposition 2 The system (8) is observable if and only ifConsequently, the first condition for a flat output, that is
rank Q, = n with the input must be expressed as a finite number of delayed

outputsy, is fulfilled.
T T -1\T1T
Q=[C" (CA" ... (CAT)] Secondly, let us iterate (8) and lump together the iterates i

Proposition 3 [1] The system (8) is flat if and only if it the following matrix form
controllable, that is, rank @= n with

Yk M
=[BAB... A¥'B Vi1 M1
Q=1 ] Coler] Y —oe=0 )
3.2. Selecti flat output for the dri ’ ’
electing a flat output for the drive Voot —
We wish to state a condition on the space space mode|
(8) which guarantees thg is a flat output. with
Propositi(_)n 4 The outputyof (8) is flat whenever the pair D 0 C
(C, D) fulfills CB D 0 CA
D=D*, C=CT with T solution of r=r . ol *T
n-1
TA = AT (11) CAYB ... : D cA
{ B=THB

Notice that the matriXQ, is invertible since by construc-
with tion, (8) is observable and precisefy; is the observability
matrix of (8). As a result, one gets

-a-1 1 O 0 Bn-1— Bnan-1
-a> 0 1 0 : Yk my
« . . « ’ Yi+1 Mi1
A= : : : S E B* = IBi _IBI’lai Xk = Qal( . -T : ) (17)
-1 0 0 1 : :
—ag 00 0 Bo — Bndo Yk+n-1 Mkn-1
C = [ 10 - 0O ] D* = Bn Sincem and its iterates depend exclusively on a finite

(12) number of delayed outpuig regarding (15), so does the
and all theg;s are zero but one denotgg, p € {0,...,n} state vectorxx of (17). As a consequence, the second



condition required for a flat output is fulfiled. That We set arbitrarilyp = 1 andB; = 1. It is recalled that
completes the proof. according to Proposition 4, all the other ¢ogentss; with
i # p, hereBy andpBz, must be zero. ThuB* reads
Based on Proposition 1, several important remarks can

be made. « |1
o< [ 1] -

Remark 2 The tractability of this result lies in that the un- _ )
known T, which enables to compute C, can be easily of0 find outC andD which ensures a flat output, we must
tained since (11) are mere linear matrix equalities to b&onsequently solve (11). One gets

solved.
T =[ 1 1

o 0}, C=[0-1], D=0

Remark 3 Given A and B, the solution T of (11) is not

unique Following Section 3.3, the corresponding response system

hich ensures a finite-time self-synchronization véitnd

Remark 4 The whole uncountable set of flat outputs og . . . . . .
previously obtained yields, after basic matrices manipu-

(8) corresponds to the set of all triple{®,8p, T) with

) lations
€{l,....,n},Bp € Rand T solutions of (11 X
pef b Bp (1) M1 = Yier — 4Yk + Syk-1
3.3. Design of the response N Yk — OYk-1
Xk+1 = =y

On one hand, from (15), we infer that the functiGrof
(7) fulfills: Let us notice that a delay = 1 has been introduced for

causality sake.

My = M= 18[_31 : (ZT;(% ajYk-p+j + Yk-p+n) (18)
G(Yk-N> - - - » Yk-N') 5. Concluding remarks

wherer is the delay introduced for causality sake. In this paper, we have provided a systematic method-
Next, substitutingny given by (18) and its iterates into (17) ology for achieving a finite time self-synchronization be-
and replacing by X+ gives explicitly the functiorF of  tween two unidirectional coupled systems. Both issues,

(7). namely the selection of suitable drive variables and the
design of an appropriate response system, have been ad-
4. Example dressed. The approach is based on state space models and

_ _ _ _ the notion of flatness. Whether the method can be extended
We consider the following drive system with state spacg nonlinear systems is an interesting bufidult matter.

model Indeed, the key idea of the present paper lies in that we are
1 2 1 able to find out an equivalence between two objects: a gen-
Xer1 = [ I R ] ]mk eral state space model on one hand and a canonical state

(19) space model on the other hand. Owing to the equivalence,
the property of flatness for the canonical form induces the
Y same property for the general state space model. The trick

We aim to find an appropriate output and so suitable li€s in that characterizing flatness for the canonical form
matricesC andD as well as designing a response syster$ straightforward. As a result, if we wish to extend the

so that the resulting drive-response configuration has ti@@Proach for nonlinear systems, we must find out canoni-
finite-time self-synchronization property. cal forms, also called normal forms, characterizing flat sys

tems. Such an issue deserves further works.

CXx + Dmy

The controllability matrixQ. is
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