
HAL Id: hal-00540986
https://hal.science/hal-00540986v1

Submitted on 29 Nov 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Self-synchronizing stream ciphers and dynamical
systems: state of the art and open issues

Gilles Millérioux, Philippe Guillot

To cite this version:
Gilles Millérioux, Philippe Guillot. Self-synchronizing stream ciphers and dynamical systems: state
of the art and open issues. International journal of bifurcation and chaos in applied sciences and
engineering , 2010, 20 (9), pp.2979-2991. �10.1142/S0218127410027532�. �hal-00540986�

https://hal.science/hal-00540986v1
https://hal.archives-ouvertes.fr

SELF-SYNCHRONIZING STREAM CIPHERS

AND DYNAMICAL SYSTEMS: STATE OF

THE ART AND OPEN ISSUES

G. MILLERIOUX
Centre de Recherche en Automatique de Nancy (CRAN UMR 7039),

Nancy University, CNRS
E-mail: gilles.millerioux@esstin.uhp-nancy.fr

P. GUILLOT
Laboratoire Analyse, Géométrie et Applications (LAGA UMR 7539)

University of Paris 8,
philippe.guillot@univ-paris8.fr

November 29, 2010

Dynamical systems play a central role in the design of symmetric cryptosystems. Their use has
been widely investigated both in “chaos-based” private communications and in stream ciphers
over finite fields. In the former case, they get the form of automata named as Moore or Mealy
machines. The main charateristic of stream ciphers lies in that they require synchronization
of complex sequences generated by the dynamical systems involved at the transmitter and the
receiver part. In this paper, we focus on a special class of symmetric ciphers, namely the Self-
Synchronizing Stream Ciphers. Indeed, such ciphers have not been seriously explored so far
although they get interesting properties of synchronization which could make them very appeal-
ing in practice. We review and compare different design approaches which have been proposed
in the open literature and fully-specified algorithms are detailed for illustration purpose. Open
issues related to the validation and the implementation of Self-Synchronizing Stream Ciphers
are developped. We highlight the reason why some concepts borrowed from control theory
appear to be useful to this end.

Keywords: dynamical systems, stream ciphers, control theory

1. Introduction

Nowadays, a huge amount of information ex-
change is carried out through public networks.
This being the case, guaranteeing privacy in the
communication is undoubtedly a great challenge.
It turns out that cryptography is central in this
context. Indeed, it is highly based on the notions
of confusion and diffusion introduced by Shannon.

Although these notions are intuitively understand-
able, they are actually explicited through a precise
formalism (see for example [Massey, J.L., 1992]).
Among a wide variety of cryptographic techniques,
two major classes can be typically distinguished:
public-key ciphers (or asymmetric-key ciphers)
and secret-key ciphers (also called symmetric-key
ciphers). Public-key ciphers are largely based upon
computationally very demanding mathematical

1

problems, for instance, integer factorization into
primes. Two milestones are 1976 with the seminal
paper of Diffie and Hellmann [1976] that founded
the public key cryptography and 1978, marked
by the publication of RSA, the first full-fledged
public-key algorithm. This discovery was impor-
tant notably because it solved the key-exchange
problem of symmetric cryptography. Modern
symmetric cryptography originates in the works
of Feistel at IBM during the late 1960s and early
1970s. One of the key dates is 1977, when the sym-
metric cipher Data Encryption Standard (DES)
was adopted by the U.S. National Bureau of Stan-
dards (now the National Institute of Standards and
Technology —NIST), for encrypting unclassified
information. DES is now in the process of being
replaced by the Advanced Encryption Standard
(AES), a new standard adopted by NIST in 2001.

Among symmetric-key ciphers, stream ciphers
are of special interest for high speed encryption
in satellite communications, private TV channels
broadcasting, RFID, networked embedded systems.
They are mainly based on generators, precisely
in the form of dynamical systems, delivering
complex sequences which must be synchronized
at the transmitter and receiver sides. Stream
ciphers have received increasing attention quite
recently. Two European projects have influenced
on this evolution : the project NESSIE within the
Information Society Technologies Programme of
the European Commission which had started in
2000 and ended in 2004 followed by ECRYPT1

launched on February 1st, 2004. Sponsored by
ECRYPT, eSTREAM is a multi-year effort aim-
ing at identifying promising both software and
hardware oriented symmetric cryptosystems with
proposals from industry to academia.

As it turns out, there is a connection between
the properties of confusion and diffusion and the
random-looking chaotic dynamics, or more gener-
ally complex dynamics. This is the main reason
why in 1993 entered the scene “chaos-based pri-
vacy”. Indeed, chaotic behavior is one of the most
complex dynamics a nonlinear system can exhibit.
A formal definition of chaos is due to R.L. Devaney
[1989] and the sensitivity to initial conditions is

1website available at http://www.ecrypt.eu.org/stream/

one of the most central property characterizing
chaos. It can roughly be described into the fact
that a small change in the initial conditions can
drastically change the long-term behavior of a
system. Chaos has received considerable attention
for some years. Actually, the terminology “chaos”
has been really introduced for the first time in
the seminal paper of Li and Yorke “Period Three
Implies Chaos” [1975]. Complex dynamics had its
beginnings in the work of the french mathematician
Henri Poincaré (1854-1912). Sensitive dependent
phenomena have been highlighted by Edward
Lorenz in 1963 while simulating a simplified model
of convection. Since the 90’s, a huge number of
applications have been proposed over the fields of
circuits and systems, mechanics, physics, avionics,
weather forecasting. Because the signals resulting
from chaotic systems are broadband, noiselike and
present random-like statistical properties, albeit
they are generated by deterministic systems, they
are difficult to predict. All this motivated the use
of such dynamical systems for privacy issues. The
year 1990 is a milestone with a pioneering work
reported in [Carroll, T. L & Pecora, L. M., 1991].
Since then, many schemes have been proposed to
scramble information with a complex sequence
delivered by dynamical systems leading thereby
to cryptosystems which mimic symmetric ciphers
(see [Ogorzalek, M. J., 1993][Hasler, M., 1998]
[Yang, T., 2004][Alvarez, G. & Li, S., 2006]
[Millérioux G. et al., 2008b] for some surveys).
To highlight the fancy for this topic, let us stress
that many special issues in international journals
have been published, numerous invited sessions
in conferences have been organized as well. But
actually, it turns out that the chaos-based algo-
rithms proposed so far belong more to the field of
steganography than to pure cryptography.

After this brief recall on the important events
which have marked the field of cryptography
and the role played by the dynamical systems in
this context, the following remark can be made.
Less attention has been paid on a special class of
symmetric ciphers, namely the self-synchronizing
stream ciphers. Indeed, when looking at the open
literature and some substantial courses on symmet-
ric cryptography proposed by, to mention a few,

2

M. Kiviharju2, S. Paul3, the web site PICSI4 on
Cryptology and Information security, these ciphers
are just touched on but not really investigated (see
[Daemen, J. et al., 1992] for an exception). Even
more is true, it is worth pointing out that within
the eSTREAM project, a project of reference in the
field of stream ciphers-based cryptography, over 34
stream cipher primitives which had been submitted
for evaluation, only two of them belonged to the
class of self-synchronizing stream ciphers. Never-
theless, they turn out to be very useful in secure
communications. Indeed, as it will be detailed later
in this paper, self-synchronizing stream ciphers
offer serious advantages, the main one being the
ability to automatically achieve synchronization
between the two parts of a communication setup.
As a result, there is no need to call for resynchro-
nization protocols or synchronization flags. It is of
first importance when one must be face for example
drastic constraints concerning the throughput.

The main objective of this paper is to re-
view, compare and discuss the different design
approaches devoted to Self-Synchronizing Stream
Ciphers while showing how dynamical systems are
used to confer them the interesting property of
self-synchronization. The layout is the following.

After a recall of basic background on cryp-
tography with a special emphasis on symmetric
cryptography (Section 2), the different approaches
which have been proposed in the open literature are
detailed and illustrated through interesting fully-
specified algorithms (Section 3). Thus, we suggest
some open issues related to the design, the valida-
tion and the implementation of self-synchronizing
stream ciphers (Section 4).

2. Background on symmetric cryptography

2.1. Generalities

A general encryption mechanism, also called cryp-
tosystem or cipher, is illustrated in Fig. 1. We are
given an alphabet A, that is, a finite set of basic
elements named symbols. On the transmitter part,

2available at www.tcs.hut.fi/Studies/T-79.514/
3available at http://homes.esat.kuleuven.be/

psourady/stream cipher course-I.htm
4available at www.picsi.org

m m̂c

eavesdropper

receiver

e(ke, m)

key source key source

kdke

transmitter

d(kd, c)

Fig. 1: General encryption mechanism

a plaintext (also called information or message)
m ∈ M (M is called the message space) consisting
of a string of symbols mk ∈ A is encrypted accord-
ing to an encryption function e which depends on
the key ke ∈ K (K is called the key space). The re-
sulting ciphertext c ∈ C (C is called the ciphertext
space), a string of symbols ck from an alphabet B
usually (and assumed hereafter) identical to A, is
conveyed through a public channel to the receiver.
At the receiver side, the ciphertext c is decrypted
according to a decryption function d which depends
on the key kd ∈ K. For a prescribed ke, the func-
tion e must be invertible. In symmetric encryption,
the pair (e, d) is such that the key kd can be easily
recovered from ke. Hence, not only kd must be kept
secret but the key ke as well. It is customary that
both keys are identical, that is kd = ke. Another
property of a symmetric encryption scheme is that
there must exist a unique pair (ke, kd) such that
d(kd, c) = m where c = e(ke,m).
There are two classes of symmetric-key encryption
schemes which are commonly distinguished: block
ciphers and stream ciphers. A block cipher is an en-
cryption scheme that breaks up the plaintext mes-
sages into strings (called blocks) of a fixed length
over an alphabet and encrypts one block at a time.
Block ciphers usually involve compositions of sub-
stitution and transposition operations. Next we de-
scribe stream ciphers in more detail.

2.2. Stream ciphers

In the case of stream ciphers, the encryption func-
tion e can change for each symbol because it de-
pends on a time-varying key zk also called running
key. The sequence {zk} is called the keystream.
This being the case, stream ciphers are generally
well appropriate and their use can even be com-
pulsory when buffering is limited or when only one
symbol can be processed at a time: the field of

3

telecommunications often include such constraints.
They benefit from smaller footprint (gates, power
consumption, . . .) in low-end hardware implemen-
tation, high encryption speed, small input/output
delay and simple protocols for handling variable
sized inputs. They are efficient and compact in con-
strained devices.
Stream ciphers require a keystream generator. It is
usual that the plaintext mk and the ciphertext ck

are binary words. If so, the most widely adopted
function e is the bitwise XOR operation and if the
generator delivers a truly random keystream {zk}
which is never used again, the encryption scheme is
called one-time pad —the only cipher known to be
unconditionally secure so far. However, in order to
decrypt the ciphertext, the recipient party of a one-
time pad encryption setup would have to know the
random keystream and, thus, would require again
a secure transmission of the key. Besides, for the
one-time pad cipher, the key should be as long as
the plaintext and would drastically increase the dif-
ficulty of the key distribution. As an alternative to
such an ideal encryption scheme, one can resort to
pseudo-random generators. Indeed, for such gen-
erators, the keystream is produced by a determin-
istic function (often involving feedback shift regis-
ters along with nonlinearities [Knuth, D. E., 1998])
while its statistical properties look random. There
are two classes of stream ciphers, the difference ly-
ing in the way the keystream is generated: the syn-
chronous stream ciphers and the self-synchronizing
stream ciphers.
Synchronous Stream Ciphers (written hereafter
SSC for short) admit the equations:

qk = σs(qk−1)
zk = s(qk)
ck = e(zk,mk)

(1)

σs is the next-state transition function while s acts
as a filter and generates the keystream {zk}.

Self-Synchronizing Stream Ciphers (written
hereafter SSSC for short) admit the equations:

{

zk = σss
θ (ck−l−M , . . . , ck−l)

ck = e(zk,mk)
(2)

σss
θ is the function that generates the keystream

{zk}. l is a nonnegative integer standing for a
possible delay. σss

θ depends on past values of ck.

The number of past values is most often bounded
and equals M , the delay of memorization.
Actually, many chaos-based encryption schemes
proposed in the literature (see for example
[Millérioux G. et al., 2008b] and references therein
for a survey) involve observers. When the state
reconstruction is ensured asymptotically, such
cryptosystems can be considered as belonging to
the class of SSSC with M → ∞.
It may be also considered SSSC for which M is
a random variable with a probability law that
decreases to zero as time grows to infinity. These
SSSC are called statistical SSSC but have never
been investigated so far. A little bit more will be
told at the end of this paper in the Subsection 4.3
devoted to open issues.
Unless otherwise stated, only the case when M is
bounded will be addressed in the sequel.

Regardless the class of ciphers, synchronous or
self-synchronizing, the ciphertext ck is worked out
through an encryption function e which must be
invertible for any prescribed zk. In the binary case,
one has A = B = {0, 1} and e(zk,mk) = zk ⊕ mk

where ⊕ denotes the modulo 2 addition on the 2-
element field. The decryption is performed through
a function d depending on the ciphertext ck and the
running key ẑk of the receiver’s generator. Such a
function must obey the rule:

m̂k := d(ck, ẑk) = mk if ẑk = zk (3)

In the binary case, one has d(ẑk, ck) = ẑk ⊕ ck

Synchronization issues
For stream ciphers, the generators at both sides
have same generator function and synchronization
of keystreams {zk} and {ẑk} generated respectively
at the transmitter and receiver sides is a condition
for proper decryption.
For SSC, the generators are not coupled each
other. Consequently, the only way to guarantee
synchronization of the keystreams is to share the
seed (the initial running key z0). This being the
case, the secret key θ is nothing but the seed z0.
For SSSC, since the generator function σss

θ shares,
at the transmitter and receiver sides, the same
quantities, namely the past ciphertexts, it is clear
that the generators synchronize automatically after
a finite transient time of length M . The secret

4

key is some suitable (according to the security)
parameters of the function σss

θ .

Advantages of self-synchronizing stream ci-
phers
As far as SSSC are concerned, the ability to self-
synchronizing provides many advantages. First, if
a ciphertext is deleted, inserted or flipped, the SSSC
will automatically resume proper decryption after a
short, finite and predictable transient time. Hence,
SSSC does not require any additional synchroniza-
tion flags or interactive protocols for recovering lost
synchronization. Secondly, the self-synchronizing
mechanism also enables the receiver to switch at
any time into an ongoing enciphered transmission.
Third, any modification of ciphertext symbols by
an active eavesdropper causes incorrect decryption
for a fixed number of next symbols. As a result,
an SSSC prevents active eavesdroppers from unde-
tectable tampering with the plaintext: message au-
thenticity is guaranteed. Finally, since each plain-
text symbol influences a fixed number of following
ciphertexts, the statistical properties of the plain-
text are thereby diffused through the ciphertext.
Hence, SSSC are very efficient against attacks based
on plaintext redundancy and the property of diffu-
sion is structurally fulfilled.

3. State of the art in the design of SSSC

Actually, the model (2) of an SSSC is a conceptual
model, called canonical representation, that can
correspond to different architectures and that
result from different design approaches. In the
open literature, few designs methods have been
proposed. They are detailed below in a way which
highlights the central role played by dynamical sys-
tems and the reason why some concepts borrowed
from control theory appear to be useful.

3.1. Block ciphers in CFB mode

This SSSC design approach resorts to a length M
shift register and a block cipher (DES for instance)
both inserted in a closed-loop architecture. It
is a very special mode of operation involving
block ciphers naturally called Cipher FeedBack
(CFB) mode. The block cipher’s input is the shift
register state. Usually a limited number of the

block cipher output bits are retained, the selection
being performed through a so-called filter function
denoted h′ on the Fig. 2. Such a configuration is
often used in 1-bit CFB mode. In such a case, the
encryption function e is a XOR (modulo 2 addition
over {0, 1}). The keystream generator σss

θ of the
corresponding canonical form (2) results from the
composition of three functions: the state transition
function of the shift register, the block cipher and
the filter function h′.

This mode is quite inefficient in terms of en-
cryption speed since one block cipher operation,
and so multiple rounds, are required for enciphering
a single plaintext mk.

block

cipher

register
shift

h′

zk

mk e
ck

Fig. 2: Block cipher in CFB mode

3.2. Maurer’s approach

In [Maurer, U. M., 1991], it is suggested an al-
ternate design approach exclusively dedicated to
SSSC. It includes two main ideas.

The first idea consists in replacing the shift reg-
ister, the block cipher and the output bit filter func-
tion of the CFB mode architecture by an automa-
ton. The automaton obeys the dynamics

{

qk+1 = gθ(qk, ck)
zk = hθ(qk)

(4)

The function gθ is called (next) state transition
function while hθ is called output function.
The automaton must have a finite input memory of
size M meaning that the state qk must be expressed

5

by mean of a function lθ which depends on a finite
number of past ciphertexts ck−i :

qk = lθ(ck−M , . . . , ck−1) (5)

Substituting the above expression of qk into the
second equation of (4) gives the function σss

θ of
the canonical form (2). One has the following
composition : σss

θ = hθ ◦ lθ. According to the
discussion of Subsect. 2.2 on synchronization
issues, self-synchronization is guaranteed.

Let us notice that the CFB mode can be
rewritten into the form (4)-(5). The function lθ is
very simple since it merely reduces to a shift. The
output function hθ results from the composition of
the block cipher (parametrized by its secret key θ)
and the filter function h′.

In the Maurer’s approach, the SSSC is based
on a cryptographically secure state-transition
function gθ as well as on a cryptographically secure
output function hθ. Consequently, the resulting
SSSC can be secure unless both functions are
simultaneously unsecure. That differs from the
CFB mode for which the security relies entirely
on the security of the output function hθ and so
mostly on the block cipher function.

The second idea of the Maurer’s principle con-
sists in increasing the complexity by combining
several finite automata in serial or in parallel or
more generally by performing composition. As a
result, many components that are relatively simple
in terms of implementation complexity and memory
size can be combined to form an SSSC realizing a
very complicated function σss

θ in the corresponding
canonical representation (2). For a serial compo-
sition of multiple automata, the resulting memory
size equals the sum of the memory size of each au-
tomaton. For a parallel composition of multiple au-
tomata, the resulting memory size equals the upper
memory size. When implemented in hardware, par-
allelization leads to very high achievable encryption
speed. An example of architecture involving four
automata is depicted in Fig. 3.

Throughout the eSTREAM project, two fully
specified algorithms have retained attention: SSS
and Moustique. They are shortly described to illus-
trate how the general principle of Maurer is taken

register
shift

shift
register

register
shift

shift
register

mk

zk

ck

e

h̃

σss3
θ σss4

θ

σss2
θσss1

θ

Fig. 3: Example of serial/parallel connection of

four automata. The function h̃ combines
the accessible automata outputs to deliver
the keystream zk

into account. As a matter of fact, only the first
idea of Maurer consisting in resorting to an automa-
ton with finite input memory has been adopted
throughout these two examples. Indeed, as it turns
out, the second idea is too general as is. These ex-
amples are also interesting in that they give us a
better understanding in the way how the dynam-
ical systems are “shaped” to guarantee the self-
synchronization property.

3.2(A). SSS

SSS is a software bit oriented cryptosystem which
has been proposed in [Hawkes P et al., 2004]. The
corresponding block diagram is depicted on Fig. 4.

The following notations are necessary to de-
scribe SSS.

• x >>> n denoted the rotation of n bits to
the right of the word x

• Sθ(x) = SBOXθ(xH) ⊕ x with xH the most
significant byte of the word x is the XOR op-
eration between x and the result of SBOXθ

which is a combination of two S-boxes imple-

6

q
(6)

k
q
(0)

k
q
(1)

k

mk

zk

ck

ck

hθ

gθ

q
(16)

k
q
(15)

k
q
(14)

k
q
(13)

k
q
(12)

k

Fig. 4: Block diagram of SSS

menting nonlinear substitutions called Skip-
jack S-box and Q-box and parametrized by
the secret key θ

The keystream generator obeys (4). The dimen-
sion of the state vector qk equals n = 17 that is

the number of shift registers. Each component q
(j)
k

assigned to a shift register obeys an independent
dynamics gj

θ :

q
(16)
k+1 = ck

q
(j)
k+1 = q

(j+1)
k (j = 0, 2, . . . , 11, 13, 15)

q
(14)
k+1 = q

(15)
k + Sθ(ck >>> 8)

q
(12)
k+1 = Sθ(q

(13)
k)

q
(1)
k+1 = q

(2)
k >>> 8

(6)
The initial state of the shift register number 16

fulfills q
(16)
1 = c0. Furthermore, insofar as the state

q
(j)
k+1 (j = 1, . . . , 16), at time k + 1, depends on the

state q
(j+1)
k at time k, thus after 16 iterations, the

internal state qk will depend exclusively on the 16
past ciphertexts ck−i. Hence for all k ≥ 16 there
exists a function lθ fulfilling

qk = lθ(ck−16, . . . , ck−1) (7)

The output function hθ delivering the keystream zk

is defined as:

zk = hθ(qk) = Aθ >>> 8 ⊕ q
(0)
k (8)

with Aθ = Sθ

(

Sθ(q
(0)
k + q

(16)
k) + q

(1)
k + q

(6)
k + q

(13)
k

)

Finally, combining the equations (8) and (7), the
keystream generator can be equivalently rewritten
in the SSSC canonical form (2):

zk = hθ(lθ(ck−16, .., ck−1))
= σss

θ (ck−16, .., ck−1)
(9)

and guarantees the self-synchronization property.
The encryption function e and decryption func-
tion d follow the classical rules described in Sub-
section 2.2 where ⊕ is viewed in this case as a com-
ponentwise addition over the 2-element field.

3.2(B). Moustique

Another interesting SSSC, called Mous-
tique, which follows the second idea in the
Maurer’s approach, has been proposed in
[Daemen, J. & Kitsos, P., 2005]. It is a re-
visited version of two former algorithms called
Mosquito and Knoth. Unlike SSS, it is an hardware
bit oriented algorithm. Furthermore, although the
structure still relies on the automaton (4) which
must have a finite memory, a different “shape” for
the state transition function gθ is provided to guar-
antee self-synchronizing property. Moreover, the
output function is designed through the concept of
pipelining. Those two facts are explicited below.

For Moustique, the dimension of the state
vector qk in (4) equals n = 96.

As far as the state transition function gθ is con-

cerned, each component q
(j)
k obeys a dynamics gj

θ in
the form:

q
(j)
k+1 = gj

θ(q
(j−1)
k , q

(j−2)
k , ..., q

(1)
k , ck) j = 1, . . . , n

(10)
The jth component of qk+1 does no longer depend
exclusively on one component of qk (as it is for SSS),
but it depends actually on several components of

qk, especially q
(l)
k with l < j. The function gθ has a

”triangular” form and ensures qk to be independent
of the initial condition q0 after n iterations. Simi-
larly to SSS, there exists thereby a function lθ which
enables (10) to be rewritten in a strictly equivalent
way for k ≥ n and depends exclusively on a finite
number of past ciphertexts ck−i

qk = lθ(ck−n, ..., ck−1) (11)

Besides, unlike SSS, the output function is pipelined
(see Fig. 5). The keystream is computed in a se-
quential way and the computation involves bs = 9
successive stages. Each stage corresponds to a spe-
cific function si (i = 0, . . . , bs−1) depending on the
result of the previous stage. For the function s0 one
has s0(qk) = qk. The output function is made up

7

of a composition of bs functions. The keystream is
computed from the state functions qk but is deliv-
ered at time k + bs:

zk+bs
= s8(s7(...(s0(qk)))) = h(qk) (12)

Combining (11) and (12) gives σss
θ

zk+bs
= h(lθ(ck−n, ..., ck−1))
= σss

θ (ck−n, ..., ck−1)
(13)

It’s a simple matter to see that the keystream gen-
erator can be again equivalently rewritten in the
SSSC canonical form (2) and self-synchronization
is guaranteed.
The pipeline is interesting in that it enables to in-
crease the complexity of the output function while
a single clock cycle is still needed to deliver the run-
ning key. Indeed the computation of each function
si is parallelized. That induces a delay bs between
the plaintext and the corresponding ciphertext. Let
us notice that none of the function si depend on
the secret key θ. Actually, the output function hθ

in (4) should be rewritten as a non parametrized
function h.
Similarly to SSS, the encryption function e and de-
cryption function d follow the classical rules de-
scribed in Subsection 2.2.

ck+bs

Stage 0 (128 bits)

Stage 1 (53 bits)

Stage 7 (3 bits)

Stage 8 (1 bits)

lθ

h

mk

ck+bs−1

zk+bs

ck−1 ck−n

qk

required past ciphertetxts to encipher 1 plaintext

Fig. 5: Block diagram of Moustique. The functions
si deliver a quantity of decreasing size: from
128 bits for the stage 0 to a single bit for the
last stage 8

3.3. Message embedding

The message-embedded technique is derived
from cryptosystems which have been proposed
first for “chaos-based” private communications.
It is given different names in the literature:
direct chaotic modulation [Hasler, M., 1998],
embedding [Lian K-Y. & Liu P., 2000]
[Millérioux, G. & Daafouz, J., 2004], non au-
tonomous modulation [Yang, T., 2004]. Different
structures very similar to the message-embedding
was also been proposed in [Yang, T. et al., 1997]
or [Parker, A. T. & Short, K. M., 2001].
Very recently, it has been provided in
[Millérioux G. et al., 2008b] a general frame-
work, based on concepts borrowed from control
theory, which allows to derive a self-synchronizing
cryptosystem from the message-embedded struc-
ture. This Subsection aims at recalling the
approach.

The equations governing a message-embedded
cryptosystem are given by the dynamical system:

{

xk+1 = fθ(xk,mk)
yk = hθ(xk,mk)

(14)

Such a dynamical system is described by the 5-tuple
(A,B,X, fθ, hθ) where

• A is the input alphabet, which is the finite set
of input symbols mk

• B = A is the output alphabet, which is the
finite set of output symbols yk

• X is the finite set of internal states xk also
called state vectors

• fθ : X × A −→ X is the (next) state transi-
tion function

• hθ : X × A −→ B is the output function.

The ciphering consists of injecting (or, as it is also
usually said, embedding) the plaintext mk ∈ A (the
input of the dynamical system) into a dynamics fθ.
The resulting system turns into a non autonomous
one since the information to be encrypted acts as
an exogenous input. The ciphertext yk ∈ A of
the dynamical system is worked out through an
output function hθ of the plaintext mk and the

8

internal state xk ∈ X. θ parametrizes the dynam-
ical and output functions and acts as the secret key.

Under special conditions, (14) can be rewritten
into the form (2) and is thereby structurally equiv-
alent to a self-synchronizing stream cipher. The
correspondence is based on usual concepts of con-
trol theory. The basic background is recalled below.

We first define the so-called iterated functions
associated respectively to fθ and hθ.

Definition 3.1. The i-order iterated next-state
function, f

(i)
θ : X × Ai −→ X describes the way

how the internal state xk+i ∈ X of (14) at time
k + i depends on the state xk ∈ X and on the se-
quence of i input symbols mk · · ·mk+i−1 ∈ Ai. It is
defined for i ≥ 1 and recursively obeys for k ≥ 0,

f
(1)
θ (xk,mk) = fθ(xk,mk),

f
(i+1)
θ (xk,mk · · ·mk+i) =

fθ

(

f
(i)
θ (xk,mk · · ·mk+i−1),mk+i

)

for i ≥ 1

Definition 3.2. The i-order iterated output func-

tion h
(i)
θ : X × Ai+1 −→ A describes the way how

the output yk+i of (14) at time k + i depends on
the state xk ∈ X and on the sequence of i+1 input
symbols mk · · ·mk+i ∈ Ai+1. It is defined for i ≥ 0
and recursively obeys for k ≥ 0,

h
(0)
θ (xk,mk) = hθ(xk,mk),

h
(i)
θ (xk,mk . . . mk+i) =

hθ

(

f
(i)
θ (xk,mk · · ·mk+i−1),mk+i

)

for i ≥ 1

Then we recall, throughout the three following
definitions, properties of dynamical systems which
are central to our purpose.

Definition 3.3. The relative degree of the dynam-
ical system (14) is the quantity denoted r with

• r = 0 if ∃xk ∈ X, ∃mk,m
′

k ∈ A with
hθ(xk,mk) 6= hθ(xk,m

′

k).

In other words, there exists a state xk ∈ X
and two distinct input symbols mk,m

′

k ∈ A
that lead to different values of the output,

• r > 0 if

for 0 < i < r,∀xk ∈ X, ∀mk · · ·mk+i,m
′

k · · ·
m′

k+i ∈ Ai+1 one has

h
(i)
θ (xk,mk · · ·mk+i) = h

(i)
θ (xk,m

′

k · · ·m
′

k+i)

and

for i = r,∃xk ∈ X, ∃mk · · ·mk+i,m
′

k · · ·
m′

k+i ∈ Ai+1 with

h
(r)
θ (xk,mk · · ·mk+r) 6= h

(r)
θ (xk,m

′

k · · ·m
′

k+r)

In others words, for i < r, the iterated output

function h
(i)
θ only depends on xk while for i ≥ r, it

depends both on xk and on the sequence of i−r+1
input symbols mk · · ·mk+i−r. In particular, for i =
r, the iterated output function depends both on mk

and on xk, that is, there exists a state xk ∈ X and
two distinct input symbols mk ∈ A and m′

k ∈ A
that lead to different values of the output, for any
sequence mk+1 · · ·mk+r of input symbols.

Roughly speaking the relative degree of the
dynamical system (14) is the minimum number of
iterations such that the output at time k + r is
influenced by the input at time k.

Consequently, for r > 0, the r-order output

function h
(r)
θ may be considered as a function on

X × A, and thus one has for r ≥ 0:

yk+r = h
(r)
θ (xk,mk) (15)

Definition 3.4. The dynamical system (14) is left
invertible if for any internal state xk ∈ X, the map

hxk
:

A −→ A

mk 7−→ h
(r)
θ (xk,mk)

is a permutation, where r ≥ 0 is the relative degree
of (14).

The left invertibility property means that the
input mk is uniquely determined by the knowledge
of the state xk and the output yk+r. The output

function h
(r)
θ may be considered as a family of

permutations on A, indexed by the set X of the
internal states, or at least by a subset.

9

Definition 3.5. An output for (14) is said to be
flat if all system variables of (14) can be expressed
as a function of yk and a finite number of its for-
ward/backward iterates. In particular, there exists
two functions F and G and integers t1 < t2 and
t′1 < t′2 such that

xk = F (yk+t1, · · · , yk+t2)
mk = G(yk+t′1

, · · · , yk+t′2
)

(16)

Then, the dynamical system (14) is said to
be flat if it admits a flat output and the flatness
characteristic number is defined as the quantity
t2 − t1 + 1.

The following Proposition is a major result.

Proposition 3.6. If the system (14) fulfills the fol-
lowing assumptions H1 to H3

• it has a finite relative degree r (H1)

• it is left invertible (H2)

• it is flat with flat output yk and a flatness charac-
teristic number t2 − t1 + 1 (H3)

then it is equivalent, from a structural point of
view, to the transmitter part of a self-synchronizing
stream cipher of the form (2) with the correspon-
dences (explicited below for short by the symbol ↔)

• a keystream generator (also named ciphering func-
tion) σss

θ ↔ F

• a running key zk ↔ xk

• a ciphertext ck+r corresponding to the plaintext mk

↔ yk+r

• a ciphering function e ↔ h
(r)
θ

This is the direct consequence of the as-
sumptions H1 − H3 since, if they are fulfilled,
Equations (15) and (16) hold and identification
of (15) and the first equation of (16) with the
respective equations (2) gives the correspondence.

Let us point out that H2 is a necessary condi-
tion for H3

Based on the previous result, the state (and so
the running key) reads:

xk = F (yk+t1 , · · · , yk+t2) (17)

This expression of xk guarantees the self-
synchronizing property. A key point of the
message-embedded approach lies in that the imple-
mentation of (14) is much more computationally
efficient than its canonical representation (17).

Furthermore, when the relative degree r is
strictly greater than zero, there is a delay r between
the plaintext mk and the corresponding ciphertext
yk+r and it similar to what typically happens
when the output function is pipelined (see the al-
gorithm Moustique described in Subsection 3.2(B)).

The equivalent representation of the message-
embedded cryptosystem, called self-synchronizing
message embedded stream cipher (14) is depicted
on Fig. 6.

yk+r

xk

mk h(r)(xk, mk)

F

Fig. 6: Self-synchronizing Message Embedded
Stream Cipher

To conclude on this Section, the properties of
invertibility and flatness, borrowed from control
theory, define a general and flexible framework for
the design of SSSC.

4. Issues

In this Section, it is discussed some perspectives
regarding the design, the validation and the imple-
mentation of SSSC.

4.1. Hybrid dynamical systems as a rele-

vant class of ciphers

For obvious reasons, it is always aimed at providing
ciphers having high speed and low hardware or soft-
ware complexity. To this end, it must be thought
about suitable class of dynamical systems which

10

benefit from an ease of design without degrading
their complexity regarding the security. A general
idea has been proposed in the literature from
this perspective: mixing algebraic domains. For
example, in [Lai, X. & Massey, J. M., 1991] the
authors suggest a software/hardware oriented block
cipher (called IDEA) which mixes three operations
with distinct algebraic domains: xor, modulo 216

addition and modulo 216+1 multiplication. Shamir
suggests in [Klimov A. & Shamir A., 2004] to use
primitives built from combinations of boolean
and arithmetic operations. He defines the class
of so-called T-functions which contains arbitrary
compositions of plus, minus, times, or, and, xor
operations on n-bit words. That confers to ciphers
resistance against pure algebraic or bit-oriented
attacks as linear and differential attacks. In others
words, it sounds relevant to introduce heterogene-
ity in the ciphers.

Issues: In automatic control, hybrid systems
is a typical class of dynamical systems involving
heterogeneity. Indeed, they involve several alge-
braic models called modes which are switched in
time according to a logical rule. Issues regarding
hybrid systems in conjunction with the special
context of cryptography, and more specifically
self-synchronizing stream ciphering, has never been
explored yet. That constitutes a very interesting
and challenging problem. In particular, a major
specificity must be taken into account. In usual
control theory, the variables are assumed to take
values in a continuum (often R

n or a subset of
R

n) since they are related to physical quanti-
ties. In the cryptographic context, variables take
values in finite cardinality sets (e.g. finite fields
like Z/pZ of F2n). As a result, many control-
theoretical concepts involved especially in the
message embedding approach must be definitively
revisited. A first study has been addressed in
[Millérioux, G. et al., 2008a] with a special class of
hybrid systems namely the piecewise linear systems.

Others dynamical systems, in particular
chaotic ones, with the interesting properties of
confusion and diffusion, are defined with polyno-
mial or rational next-state functions in (14). It
would be interesting to investigate properties of
the resulting dynamics after having transposed the

equations over finite fields. Previous substantial
works ([Fridrich, J., 1998][Schmitz, R., 2001]
or [Szczepanski, J. et al., 2005]
[Kocarev, L. et al., 2006]) have been already
been conducted in the same spirit to design
permutations through discretization of chaotic
maps. These studies could be considered as a good
guideline in the context under consideration here.

4.2. Cryptanalysis

An essential issue for the validation of cryptosys-
tems is the cryptanalysis, that is the study of
attacks against cryptographic schemes in order to
reveal their possible weakness. The consideration
in the design of the possible attacks and their
complexity dictates the way how the secret key
involved in (14) must be defined. Let us review
some of cryptanalysis approaches which appear to
be relevant in the context of the message-embedded
approach and let us highlight the corresponding
issues to be addressed.

1. Algebraic attacks
It is worthwhile pointing out that the design of
a cryptographic scheme must take into account
that the sets A, B, K and the pair (e, d) are
known. Only the pair (ke, kd) can be assumed to
be secret in symmetric-key cryptography. This is a
fundamental premise in cryptanalysis, first stated
by A. Kerkhoff in 1883. Based on this principle, the
algebraic attack has been suggested by Shannon
and has recently been widely studied with some
success on certain classes of synchronous stream
ciphers. Its principle relies on the algebraic model
of the cipher. The objective of an algebraic attack
is to find out a set of algebraic equations which can
be solved efficiently. An efficient algebraic attack
is a one for which the complexity is below the com-
plexity of an exhaustive search. One of the main
tool for that purpose is the elimination technique
in particular based on the use of Grobner basis.
In general, the eavesdropper is assumed to control
the input of the cipher or the decipher and is
able to collect and to analyze plaintext/ciphertext
pairs to generate the equations and perform a
so-called chosen plaintext or ciphertext algebraic
attack. The security with respect to algebraic
attack is directly related to the complexity of the
parameters (secret key) recovering task.

11

Issues: The parameters recovering task in au-
tomatic control is nothing but identification. This
being the case, the security is related to the com-
plexity of the identification procedure required for
retrieving the secret parameter θ of the dynamical
system (14) which are expected to act as the secret
key. An identification procedure has been provided
for switched linear self-synchronizing primitives in
[Vo Tan, P. et al., 2010]. As it turns out, neither
bit-oriented algebraic attacks, nor classical identifi-
cation procedure apply if heterogeneity in the form
of more general hybrid systems is thought. This
issue deserves thereby new approaches and tools.

2. Others attacks

Ciphering function reconstruction
The core of an SSSC is the ciphering function F .
Its complexity can be assessed through the “dis-
tance” from a given function having low algebraic
degree. If the “distance” is not large enough, then
there exists decoding algorithms that are able to re-
construct the whole low degree approximation of F
and provide thereby an estimation of the plaintext.

Another way to reconstruct the ciphering
function is to call for statistical learning with ar-
tificial neural networks as example of efficient tools.

These approaches deserve deeper investigation
for heterogeneous ciphering functions.

Distinguisher
It can be proved that an SSSC is secure as long
as the ciphering function F behaves like a random
function. Indeed, in this case, the cryptanalyst
has no information at all on the keystream {zk}.
As a result, a sufficient condition for an SSSC to
be secure is that the adversary cannot distinguish
the ciphering function from a random one. The
existence of a distinguisher is a weakness in the
ciphering function.

Checking for efficient distinguishers of hetero-
geneous ciphering functions remains a challenging
issue.

Linear attack

The linear attack is a known plaintext attack
that belongs to the family of statistical attacks.
It has been first published by Matsui [1993] for
cryptanalyzing the DES. A variant of this attack
may be applied to SSSC. This attack recovers
the secret key θ. It is also based on a linear
approximations of the ciphering function F . For
a prescribed linear approximation, several pairs
of input/output data of F are lumped together.
They are accessible when a known plaintext attack
is performed. The number of required known
plaintext depends on the quality of the linear
approximation. This process is repeated with
several other linear approximations. Then a simple
linear algebra algorithm, eventually together with
a remaining exhaustive search, retrieves the key θ.

This attack may be extended to non linear ap-
proximations by dint of increasing the complexity
of the key recovery. Assessing the complexity and
the efficiency of such an attack for hybrid systems
would be of great interest.

Side channel attacks
If the secret key is embedded in a device such as a
smart card or an electronic component, an adver-
sary who has temporarily access to the device may
try to recover the secret key through physical mea-
sures such as time, power consumption, glitch and
so on. These attacks is a modern topic of great in-
terest at the moment. Cryptographic algorithms
must be implemented with great care, either on
hardware or software target, to resist these attacks.

4.3. Statistical Self-Synchronizing Stream

Ciphers

The actual synchronization delay of self-
synchronizing stream ciphers is the number
M of symbols required for the receiver to re-
cover the same internal state as the transmitter
(See Eq. (2)). The canonical representation of
SSSC assumes that the synchronization delay is
bounded. This assumption limits the complexity
of the ciphering function, as in this case, it may
be represented as a memoryless function. This
requirement is not mandatory in practice, and
it is acceptable that the synchronization delay
is not a constant value, but may be a random
variable with a probability law that decreases

12

to zero as time grows to infinity. Regarding
cryptographic applications, it may be expected to
bring in more complex dynamic. The way how to
introduce randomness in the synchronization is a
challenging issue. A solution has been suggested in
[Burda, K., 2007] but deeper investigation and new
alternative methods are really lacking. The tool to
control the probability law of the synchronization
delay remains to be developed. It may be based
on spectral analysis, through discrete Fourier
transform of the next-state iterated function.

5. Conclusion

This paper aimed at surveying a special application
of dynamical systems in the context of cryptogra-
phy. We hope that this paper has highlighted the
interest of self-synchronizing stream ciphers, a class
not really addressed so far, and has opened a new
field of investigation. The list of questions to be ad-
dressed is undoubtedly not exhaustive but we hope
that it will help any designer who would intend to
provide new SSSC really competitive.

References

Alvarez, G. & Li, S. [2006] “Some basic crypto-
graphic requirements for chaos-based cryptosys-
tems,” Int. J. of Bifurcations and Chaos 16,
2129–2151.

Burda, K. [2007] “Resynchronization interval of
self-synchronizing modes of block ciphers,” Int.
J. of Computer and Network Security 7, 8–13.

Carroll, T. L. & Pecora, L. M. [1991] “Synchroniz-
ing chaotic circuits,” IEEE Trans. Circuits and
Systems 38, 453–456.

Daemen, J., Govaerts, R. & Vandewalle, J. [1992]
“On the design of high speed self-synchronizing
stream ciphers,” Proc. of the ICCS/ISITA’92
conference 1, 279–283.

Daemen, J. & Kitsos, P. [2005] “The
self-synchronizing stream cipher mous-
tique,” eSTREAM, ECRYPT Stream
Cipher Project , Available online at
http://www.ecrypt.eu.org/stream.

Devaney, R. L. [1989] An introduction to Chaotic
Dynamical Systems (Addison-Wesley, Redwood
City, CA).

Diffie, W. & Hellman, M. [1976] “New directions
in cryptography,” IEEE Trans. on Information
Theory 22, 644–654.

Fliess, M., Levine, J., Martin, P. & Rouchon P.
[1995] “Flatness and defect of non-linear sys-
tems: introductory theory and examples,” Int.
Jour. of Control 61, 1327–1361.

Fridrich, J. [1998] “Symmetric ciphers based on
two-dimensional chaotic maps,” International
Journal of Bifurcation and Chaos 8, 1259–1284.

Guillot P. & Mesnager S. [2005] “Nonlinearity and
security of self-synchronizing stream ciphers,”
Proc. of the 2005 International Symposium on
Nonlinear Theory and its Applications (NOLTA
2005), Bruges, Belgium, October.

Hasler M. [1998] “Synchronization of chaotic sys-
tems and transmission of information,” Interna-
tional Journal of Bifurcation and Chaos 8, 647–
659.

Hawkes P. , Paddon, M., Rose G. G.
& Miriam W. V [2004] “Primitive
specification for sss, Technical re-
port,” e-Stream Project , Available at:
http://www.ecrypt.eu.org/stream/ciphers/sss/sss.pdf.

Isidori, A. [1995] Nonlinear control systems (Com-
munications and control engineering series,
Springer).

Klimov A. & Shamir A. [2004] Fast Software En-
cryption, Chapter 1, New cryptographic primi-
tives based on multiword T-functions (Springer
Berlin / Heidelberg).

Knuth, D. E. [1998] The Art of Computer Program-
ming, Vol. 2 (Addison-Wesley, Reading, MA).

Kocarev, L., Szczepanski, J., Amigo, J. M & To-
mosvski, I. [2006] “Discrete chaos: part i,” IEEE
Trans. on Circuits and Systems I 53, 1300–1309.

Lai, X. & Massey, J. M. [1991] “A proposal for a
new block encryption standard,” Lectures Notes

13

in Computer Science 473, Advances in Cryp-
tology (EUROCRYPT’90), Aarhus, Denmark,
Springer-Verlag, May.

Li T-Y. & Yorke J. A. [1975] “Period three implies
chaos,” Amer. Math. Monthly 82, 985–992.

Lian K-Y. & Liu P. [2000] “Synchronization with
message embedded for generalized lorenz chaotic
circuits and its error analysis,” IEEE Trans.
Circuits. Syst. I: Fundamental Theo. Appl 47,
1418–1424.

Massey, J.L. [1992] Contemporary cryptology: an
introduction (G.J. Simmons, New York, ieee
press edition).

Matsui, M. [1993] “Linear cryptanalysis method for
des cipher,” Advances in Cryptology - EURO-
CRYPT’93, Lofthus, Norway, May.

Maurer, U. M. [1991] “New approaches to the de-
sign of self-synchronizing stream cipher,” Lec-
ture Notes in Computer Science, Advances
in Cryptography (EUROCRYPT’91), Brighton,
UK, April.

Menezes, A. J., Oorschot P. C. & Vanstone, S. A.
[1996] Handbook of Applied Cryptography (CRC
Press).

Millérioux, G., Guillot P., Amigó, J. M. & Daafouz,
J. [2008] “Flat dynamical systems and self-
synchronizing stream ciphers,” In Proc. of the
Fourth Workshop on Boolean Functions : Cryp-
tography and Applications (BFCA’08), Copen-
hagen, Denmark, May.

Millérioux G., Amigo J. M. & Daafouz J. [2008]
“A connection between chaotic and conventional
cryptography,” IEEE Trans. on Circuits and
Systems I: Regular Papers 55, 1695–1703.

Millérioux, G. and Daafouz, J. [2004] “Unknown in-
put observers for message-embedded chaos syn-
chronization of discrete-time systems,” Inter-
national Journal of Bifurcation and Chaos 14,
1357–1368.

National Bureau of Standards [1980] Des mode of
operations, Technical report, Fed. Inform. Proc.
Standards Publication, 81, Nat. Inform. Service
(Springfield, VA).

Ogorzalek, M. J. [1993] “Taming chaos - part i:
synchronization,” IEEE Trans. Circuits. Syst. I:
Fundamental Theo. Appl 40, 693–699.

Parker, A. T. & Short, K. M. [2001] “Reconstruct-
ing the keystream from a chaotic encryption
scheme,” IEEE Trans. on Circ. and Syst. 48,
624–630.

Schmitz, R. [2001] “Use of chaotic dynamical sys-
tems in cryptography,” Journal of the Franklin
Institute 338, 429–441.

Sira-Ramirez, H. & Agrawal, S. K. [2004] Differen-
tially Flat Systems (Marcel Dekker, New York).

Szczepanski, J., Amigó, J.M., Michalek, T. & Ko-
carev L. [2005] “Crytographically secure sub-
stitutions based on the approximation of mix-
ing maps,” IEEE Trans. Circuits and Systems
I : Regular Papers 52, 443–453.

Vo Tan, P. Millérioux, G. and Daafouz, J. [2010]
“Left invertibility, flatness and identifiability of
switched linear dynamical systems: a frame-
work for cryptographic applications,” Interna-
tional Journal of Control 1, 145–153.

Yang, T. [2004] “A survey of chaotic se-
cure communication systems,” Int. J. of
Computational Cognition , (available at
http://www.YangSky.com/yangijcc.htm).

Yang, T., Wu, C. W. & Chua, L. O. [1997]
“Cryptography based on chaotic systems,” IEEE
Trans. Circuits. Syst. I: Fundamental Theo.
Appl 44, 469–472.

14

