Marzio Cassandro 
email: cassandro@roma1.infn.it
  
Enza Orlandi 
email: orlandi@mat.uniroma3.it
  
Pierre Picco 
email: picco@cmi.univ-mrs.fr
  
  
Typical Gibbs configurations for the 1d Random Field Ising Model with long range interaction. *

Keywords: AMS 2000 Mathematics Subject Classification: Primary 60K35, secondary 82B20, 82B43 phase transition, long-range interaction, random field

We study a one-dimensional Ising spin systems with ferromagnetic, long-range interaction decaying as n -2+α , α ∈ [0, 1 2 ], in the presence of external random fields. We assume that the random fields are given by a collection of symmetric, independent, identically distributed real random variables, gaussian or subgaussian with variance θ. We show that for temperature and variance of the randomness small enough, with an overwhelming probability with respect to the random fields, the typical configurations, within volumes centered at the origin whose size grow faster than any power of θ -1 , are intervals of + spins followed by intervals ofspins whose typical length is ≃ θ -2

(1-2α) for 0 ≤ α < 1/2 and ≃ e 1 θ 2 for α = 1/2.

Introduction

We consider a one dimensional ferromagnetic Ising model with a two body interaction J(n) = n -2+α where n denotes the distance of the two spins and α ∈ [0, 1/2] tunes the decay of the interaction. We add to this term an external random field h[ω] := {h i [ω], i ∈ Z Z} given by a collection of independent random variables, with mean zero, symmetrically distributed, variance θ, gaussian or sub-gaussian defined on a probability space (Ω, Σ, IP ). We study the magnetization profiles that are typical for the Gibbs measure when θ and the temperature are suitably small; this on a subspace Ω 1 (θ) ⊂ Ω whose probability goes to 1 when θ ↓ 0.

A systematic and successful analysis of this model for θ = 0 i.e. when the magnetic fields are absent has been already accomplished more than twenty years ago [START_REF] Ruelle | Statistical mechanics of one-dimensional Lattice gas[END_REF][START_REF] Dobrushin | The description of a random field by means of conditional probabilities and. conditions of its regularity[END_REF][START_REF] Dobrushin | The conditions of absence of phase transitions in one-dimensional classical systems[END_REF][START_REF] Dobrushin | Analyticity of correlation functions in one-dimensional classical systems with slowly decreasing potentials[END_REF][START_REF] Dyson | Existence of phase transition in a one-dimensional Ising ferromagnetic[END_REF][START_REF] Fröhlich | The phase transition in the one-dimensional Ising model with 1 r 2 interaction energy[END_REF][START_REF] Imbrie | Decay of correlations in the one-dimensional Ising model with J ij =| ij | -2[END_REF][START_REF] Aizenman | Discontinuity of the magnetization in one-dimensional 1/|x -y| 2 percolation, Ising and Potts models[END_REF][START_REF] Imbrie | An intermediate phase with slow decay of correlations in one-dimensional 1/|x -y| 2 percolation, Ising and Potts models[END_REF]. In particular it has been shown that it exhibits a phase transition only for α ∈ [0, 1). The presence of external random fields (θ = 0) modifies this picture. In [START_REF] Aizenman | Rounding of first order phase transitions in systems with quenched disorder[END_REF], it has been proved that for α ∈ [0, 1/2] there exits an unique infinite volume Gibbs measure i.e. there is no phase transition. More recently in [START_REF] Cassandro | Phase Transition in the 1d Random Field Ising Model with long range interaction[END_REF] it has been proved that when α ∈ (1/2, log 3 log 2 -1) the situation is analogous to the three dimensional short range random field Ising model [START_REF] Bricmont | Phase transition in the three-dimensional random field Ising model[END_REF] : for temperature and variance of the randomness small enough, there exist at least two distinct infinite volume Gibbs states, namely the µ + and the µ -Gibbs states. The proof is based on the notion of contours introduced in [START_REF] Fröhlich | The phase transition in the one-dimensional Ising model with 1 r 2 interaction energy[END_REF] but using the geometrical description implemented in [START_REF] Cassandro | Geometry of contours and Peierls estimates in d = 1 Ising models with long range interaction[END_REF] better suited to describe the contribution of the random fields. A Peierls argument is obtained by using a lower bound of the deterministic part of the cost to erase a contour and controlling the stochastic part.

The method used in [START_REF] Aizenman | Rounding of first order phase transitions in systems with quenched disorder[END_REF] to prove the uniqueness of the Gibbs measure is very powerful and general but does not provide any insight about the most relevant spin configurations of this measure.

In this paper we show that for temperature and variance of the randomness small enough the typical configurations are intervals of + spins followed by intervals ofspins whose typical length is θ -2

(1-2α) for 0 ≤ α < 1/2 and becomes exponentially large in terms of θ -2 for α = 1/2. When θ > 0 the Gibbs measures are random valued measures. We need therefore to localize the region in which we inspect the system. All our results are given uniformly for an increasing sequence of intervals, centered in one point, with a diameter going to infinity when θ ↓ 0.

The modifications induced by the presence of random fields has been already studied for one dimensional Kac model with range γ -1 [START_REF] Cassandro | Typical configurations for one-dimensional random field Kac model[END_REF][START_REF] Cassandro | One-dimensional random field Kac's model: Localization of the Phases Electron[END_REF][START_REF] Orlandi | One-dimensional random field Kac's model: weak large deviations principle[END_REF]. In this case for θ and γ sufficiently small the typical size is γ -2 . The results are consistent if one recalls that the random field one dimensional Kac model exhibits a phase transition for γ ↓ 0 and θ sufficiently small. In the present paper the typical size is obtained estimating suitable upper and lower bounds. The derivation of the upper bound is similar to the one used for the Kac model [START_REF] Cassandro | Typical configurations for one-dimensional random field Kac model[END_REF]. The lower bound follows from the observation that small intervals can be controlled with an estimate similar to those used in [START_REF] Cassandro | Phase Transition in the 1d Random Field Ising Model with long range interaction[END_REF].

2 Model, notations and main results

The model

Let (Ω, A, IP ) be a probability space on which we define h ≡ {h i } i∈Z Z , a family of independent, identically distributed symmetric random variables. We assume that each

h i is Bernoulli distributed with IP [h i = +1] = IP [h i = -1] = 1/2.
With minor modifications that will be mentioned we could also consider the cases of a Gaussian random variables with variance 1 or a subgaussian i.e. such that IE[exp(th 0 )] ≤ exp(t 2 /2) ∀t ∈ IR. This property is satisfied for example for h 0 = X/a with X an uniform random variable on [-a, +a], a ∈ IR + and up to an appropriate constant by any bounded symmetric random variable, see [START_REF] Kahane | Propriétés locale des fonctions à séries de Fourier aléatoires[END_REF] for basic properties of sub-gaussian random variables.

The spin configurations space is S ≡ {-1, +1} Z Z . If σ ∈ S and i ∈ Z Z, σ i represents the value of the spin at site i. The pair interaction among spins is given by J(|i -j|) defined by

J(n) =    J(1) >> 1; 1 n 2-α if n > 1, with α ∈ (-∞, 1). (2.1)
For Λ ⊆ Z Z we set S Λ = {-1, +1} Λ ; its elements are denoted by σ Λ ; also, if σ ∈ S, σ Λ denotes its restriction to Λ. Given Λ ⊂ Z Z finite, define

H 0 (σ Λ ) = 1 2 (i,j)∈Λ×Λ J(|i -j|)(1 -σ i σ j ). (2.2) For ω ∈ Ω set G(σ Λ )[ω] := -θ i∈Λ h i [ω]σ i .
We consider the Hamiltonian given by the random variable on (Ω, A, IP )

H(σ Λ )[ω] = 1 2 (i,j)∈Λ×Λ J(|i -j|)(1 -σ i σ j ) + G(σ Λ )[ω]. (2.3)
To take into account the interaction between the spins in Λ and those outside Λ we set for η ∈ S 

W (σ Λ , η Λ c ) = i∈Λ j∈Λ c J(|i -j|)(1 -σ i η j ) (2.
H η (σ Λ )[ω] := H(σ Λ )[ω] + W (σ Λ , η Λ c ). (2.5)
In the following we drop out the ω from the notation. The corresponding Gibbs measure on the finite volume Λ, at inverse temperature β > 0 with boundary condition η is a random variable with values on the space of probability measures on S Λ denoted by µ η

Λ µ η Λ (σ Λ ) = 1 Z η Λ exp{-βH η (σ Λ )} σ Λ ∈ S Λ , (2.6) 
where Z η Λ is the normalization factor. When the configuration η is taken so that η i = τ , τ = ±1 for all i ∈ Z Z we denote the corresponding Gibbs measure by µ + Λ when τ = 1 and µ - Λ when τ = -1. By FKG inequality the infinite volume limit Λ ↑ Z Z of µ + Λ and µ - Λ exists, say µ + , µ -. By a result of Aizenman and Wehr, see [START_REF] Aizenman | Rounding of first order phase transitions in systems with quenched disorder[END_REF], *, when α ∈ [0, 1 2 ] for IP -almost all ω, µ + = µ -and therefore there is an unique infinite volume Gibbs measure that will be denoted by µ.

Main result

Any spin configuration σ ∈ {-1, +1} Z Z can be described in term of runs of +1, i.e. sequences of consecutive sites i 1 , i 1 + 1, i 1 + 2 . . . ∈ Z Z where σ k = +1, ∀k ∈ {i 1 , . . .}, followed by runs of -1. A run could have length 1. To enumerate the runs we do as follows. Start from the site i = 0. Let 1 . In this way to each configuration σ, we assign in a one to one way a sign τ = σ 0 and a family of runs (L (-1) j+1 τ j , i ∈ Z Z). To shorten notation we drop the (-1) j+1 τ and write simply (L j , j ∈ Z Z).

σ 0 = τ , τ ∈ {-1, +1} call L τ 1 = L τ 1 (σ)

Given a volume

V ⊂ Z Z and a configuration σ V , let e V = e V (σ V ) = sup(j ∈ Z Z : L j ⊂ V ) be the index of the rightmost run contained in V and b V = b V (σ V ) = inf(j ∈ Z Z : L j ⊂ V ) the index of the leftmost run contained in V . We consider the sequences of runs (L j , b V ≤ j ≤ e V ).
We give, in a volume V that we choose centered at the origin, in the regime β large and θ small, upper bound and lower bounds on the length of the runs.

In Theorem 2.1 we show that for volumes larger than any inverse power of θ up to subdominant terms with IP -probability larger than 1e -g(θ) , where g(θ) is a function slowly going to infinity as θ ↓ 0, the typical configurations have runs with length of order θ -2 1-2α when 0 ≤ α < 1/2. When α = 1 2 we show in Theorem 2.2 that with overwhelming IP -probability the typical run that contains the origin is exponentially long in θ -2 . Theorem 2.1 Let α ∈ [0, 1 2 ) and ζ = ζ(α) as defined in (7.5), there exist θ 0 = θ 0 (α), β 0 = β 0 (α) and constants c i (α), such that for all 0 < θ ≤ θ 0 , for all β > β 0

β ≥ ζ 2 8 θ 2 ,
(2.7) θ) and with a Gibbs measure larger than 1e -g(θ) the spin configurations are made of runs

if 0 < α < 1/2, setting g(θ) = (log 1 θ )(log log 1 θ ), with IP -probability larger than 1 -e -g(
(L j , b V ≤ j ≤ e V ) satisfying c 1 (α) log 1 θ -2 1-2α log log 1 θ -1 1-2α ≤ θ 2 1-2α L j ≤ c 2 (α)(log 1 θ )(log log 1 θ ), (2.8) 
* A simplified proof of this result which avoids the introduction of metastates, by applying the FKG inequalities, is given by Bovier, see [START_REF] Bovier | Statistical Mechanics of Disordered Systems[END_REF], chapter 7. Notice that although we assume that the distribution of the random field has isolated point masses, the result [START_REF] Aizenman | Rounding of first order phase transitions in systems with quenched disorder[END_REF] still holds.

29/november/2010; 15:35 for all j ∈ {b V , . . . e V } where V is a volume centered at the origin having diameter

diam(V ) = c 0 (α)e g(θ) 1 θ 2 1-2α
.

(2.9)

If α = 0, g(θ) has to be replaced by ĝ(θ) = log 

c 1 (0) ≤ θ 2 L i ≤ c 2 (0) log 1 θ 3 (2.10)
for all j ∈ {b V , . . . , e V } where V satisfies

diam( V ) = c 0 (0)e ĝ(θ) 1 θ 2 .
(2.11)

The proof of Theorem 2.1 follows from Propositions 3.1 and 4.1 and easy estimates.

Theorem 2.2 For α = 1/2, there exists θ 0 and β 0 and constants c i , such that for all 0 < θ ≤ θ 0 , for all β > β 0 such that (2.7) is satisfied, the run that contains the origin, satisfies the inequalities

exp c 1 θ 2 ≤ |L 1 | ≤ exp c 2 θ 2 (2.12)
with IP -probability larger than 1e -c 0 θ 2 and with a Gibbs measure larger than 1e -c 0 θ 2 .

Remark 2.3 . The results for α = 1/2 are less general because the probability estimates for the lower bound for L i are not enough to extend results on exponential scales. However the estimates for the upper bound are true on a much larger scale, and we have results for a lot more than one run, see (3.5) and (3.6).

The upper bound

Let I ⊂ Z Z be an interval, τ = ±1, denote

R τ (I) = {σ ∈ S : σ i = τ, ∀i ∈ I} (3.1)
the set of spin configurations equal to τ in the interval I and

R(I) := R + (I) ∪ R -(I). (3.2)
Let L max be a positive integer and V ⊂ Z Z be an interval centered at the origin with

|V | > L max . Denote R(V, L max ) = I⊂V , |I|≥Lmax R(I), (3.3) 
the set of spin configurations having at least one run of +1 or -1 larger than L max in V . The main result of this section is the following 29/november/2010; 15:35 Proposition 3.1 Let α ∈ [0, 1 2 ], there exist positive constants c α and c ′ α and θ 0 = θ 0 (α) such that for all β > 0, for all decreasing real valued function g 1 (θ) ≥ 1 defined on IR that satisfies lim θ↓0 g 1 (θ) = ∞ there exist an Ω 3 (α) ⊂ Ω with

IP [Ω 3 (α)] ≥ 1 -2e -g1(θ) , if 0 ≤ α < 1 2 ; 1 -e -1 2 e g 1 (θ) , if α = 1 2 , (3.4) 
L max (α) =        c ′ α g 1 (θ) 1 1 + 8 θ 3 , if α = 1/2, (3.6 
)

so that on Ω 3 (α), uniformly with respect to Λ ⊂ Z Z, sup η µ η Λ [R(V (α), L max (α))] ≤        2e g1(θ) e -βcαθ -2α 1-2α , if 0 < α < 1/2; 2e g1(θ) e -βc0 log 1 θ log 1 θ , if α = 0; e 1 2 exp(g1(θ)) e -βc 1/2 e 8 2 2θ 2 , if α = 1/2. ( 3 

.7)

Remark:

There are various way to choose g 1 (θ). If one is interested to get a good probability estimates in (3.4) and to have a volume L max (α) not too much different from the θ -2 1-2α in the case 0 < α < 1/2, one can take for g 1 (θ) a slowly varying function at zero. Note that g 1 (θ) = (log[1/θ])(log log[1/θ]) have some advantages : e -g1(θ) decays faster than any inverse powers of θ -1 , the volume V grows faster than any polynomials in θ -1 and the asymptotic behavior of (3.7) is unaffected.

Proof: Since I ′ ⊂ I, R(I) ⊂ R(I ′ ) we have I⊂V , |I|≥L R(I) ⊂ I⊂V , |I|=L R(I). (3.8) 
Therefore it is enough to consider the right hand side of (3.8) instead of the left hand one.

Assume that I = ∪ M ℓ=1 ∆(ℓ) where ∆(ℓ), ℓ ∈ {1, . . . , M }, are adjacent intervals of length |∆|. We denote by ∆ a generic interval ∆(ℓ), ℓ ∈ {1, . . . , M }. We start estimating µ η Λ (R + (∆)). We bound from below Z η Λ by the sum over configurations constrained to be in R -(∆) and collect the contributions of the magnetic fields in ∆ both in the numerator and in the denominator. We obtain: where E α (|∆|) is defined by

µ η Λ (R + (∆)) ≤ σΛ e -βH η (σΛ)[ω] 1I R + (∆) σΛ e -βH η (σΛ)[ω] 1I R -(∆) ≤ e 2βθ i∈∆ hi[ω] sup σ Λ\∆ sup η Λ c e -β[W (σ∆,σ Λ\∆ )+W (σ∆,η c Λ )] 1I R + (∆) (σ ∆ ) e -β[W (σ∆,σ Λ\∆ )+W (σ∆,η c Λ )] 1I R -(∆) (σ ∆ ≤ e 2βθ i∈∆ hi[ω] e 2β[
E α (|∆|) = 2(J(1) -1) + 2|∆| α α(1-α) , if 0 < α < 1; 2(J(1) -1) + 2 log(|∆|) + 4, if α = 0. (3.10) Calling Ω - 1 (∆) = ω : θ i∈∆ h i < -2E α (|∆|) , (3.11) 
on Ω - 1 (∆) we have sup

Λ⊂⊂Z Z sup η µ η Λ (R + (∆)) ≤ e -2βEα(|∆|) . (3.12) Define Ω - 2 (I) = ω : ∃ℓ * I ∈ {1, . . . , M } : θ i∈∆(ℓ * I ) h i < -2E α (|∆|) . (3.13) On Ω - 2 (I) we have R + (I) ⊂ R + (∆(ℓ * I )), (3.14) 
therefore, by (3.12), sup

Λ⊂⊂Z Z sup η µ η Λ (R + (I)) ≤ e -2βEα(|∆|) . (3.15) Assume V = [-N |∆|, N |∆|].
We can, then, cover V with overlapping intervals

I k = [k|∆|, M |∆| + k|∆|[ for k ∈ {-N, . . . , (N -M )}.
It is easy to check that for any interval I of length M |∆|, I ⊂ V , there exists an unique k ∈ {-N, . . . , (N -M -1)} such that

I ⊃ I k ∩ I k+1 . (3.16) 
Therefore one gets

I⊂V, |I|=M|∆| R + (I) ⊂ N -M-1 k=-N I:I k ∩I k+1 ⊂I⊂V |I|=M|∆| R + (I) ⊂ N -M-1 k=-N R + (I k ∩ I k+1 ). (3.17)
Note that for all k there are M -1 consecutive blocks of size |∆| in I k ∩ I k+1 that will be indexed by

ℓ k ∈ {2, . . . , M }. Define Ω - 3 (V ) = ω : ∀k ∈ {-N, . . . , N -M }, ∃ℓ * k ∈ {2, . . . , M } : θ i∈∆(ℓ * k ) h i < -2E α (|∆|) . (3.18) If we notice that R + (I k ∩ I k+1 ) ⊂ R + (∆(ℓ * k ))
, it follows from (3.3), (3.17), and (3.15), that on Ω - 3 (V ), uniformly with respect to Λ ⊂ Z Z we have

sup η µ η Λ (R + (V, M |∆|)) ≤ (2N + 1)e -2βEα(|∆|) . (3.19)
Next we make a suitable choice of the parameters |∆|, M, N . Consider first the case 0 < α < 1/2. Since the h i are independent symmetric random variables, we have, see (3.11), 

IP [Ω - 1 (∆)] = 1 2 1 -IP i∈∆ h i ≤ 2E α (|∆|) θ ≡ 1 2 (1 -p 1 ), ( 3 
IP [Ω - 2 (I)] ≥ 1 -1 -IP [Ω - 1 ] M = 1 - 1 + p 1 2 M , (3.21) 
see (3.13), and, see (3.18),

IP [Ω - 3 (V )] ≥ 1 -(2N + 1) 1 + p 1 2 M-1 . (3.22)
To estimate p 1 , we apply the following estimate, see Le Cam [START_REF] Le | Cam Asymptotic methods in statistical decision theory[END_REF], pg 407, which holds for i.i.d. random variables, symmetric and subgaussian:

sup x∈IR IP [ |∆| i=1 h i ∈ [x, x + τ ]] ≤ 2 √ π |∆|IE[1 ∧ (h 1 /τ ) 2 ] . (3.23) When {h i , i ∈ Z Z} have symmetric Bernoulli distribution, assuming that τ ≥ 1, one has IE[(h 1 /τ ) 2 1I |h1|≤τ ] ≥ τ -2 .
For random fields having different distribution see Remark 3.2. For any 0 < B < 1, take ∆ such that p 1 ≤ B < 1 and τ = 2E a (|∆|)/θ ≥ 1. Assuming that the second constraint holds and using (3.23), to satisfy the first constraint, it is enough that

p 1 ≤ 8E α (|∆|) √ π θ |∆| ≤ B. (3.24)
We choose

|∆| = 32 Bθα(1 -α) 2 1-2α . (3.25)
Then it is easy to check that there exists a θ 0 = θ 0 (α, J(1)) but independent on B such that (3.24) and τ ≥ 1 are satisfied for all 0 < θ ≤ θ 0 . Choosing When

M = 2g 1 (θ) log 2 
|∆| = θ -2 64 √ π B log θ -1 2 . ( 3 
α = 1/2 Ω 1 (∆) = {ω : θ i∈∆ h i ≤ -8 √ ∆}. (3.29)
Le Cam inequality is useless. We use the Berry-Esseen Theorem [START_REF] Chow | Probability theory. Independence, interchangeability, martingales. Third edition. Springer Texts in Statistics[END_REF] that gives 

IP [Ω 1 (∆)] ≥ 1 √ 2π -8 θ -∞ e -x 2 2 dx - C BE √ ∆ ( 3 
IE[1 ∧ (h 1 /τ ) 2 ]. A simple one is IE[(h 1 /τ ) 2 1I |h1|≤τ ]
which is bounded from below by half the variance of h 1 times τ -2 by taking τ large enough. However one can also get more precise bound since the difference between the censored variance and the variance can be estimated by using an exponential Markov inequality that can be obtained as a consequence of the definition of sub-gaussian. When h i , i ∈ Z Z are normal distributed the bound (3.23) can be easily improved to

sup x∈IR IP [ |∆| i=1 h i ∈ [x, x + τ ]] ≤ τ 2π|∆| . (3.35) 4 Lower bound Let ∆ ⊂ Z Z be an interval, ∂∆ = {i ∈ Z Z : d(i, ∆) = 1}, τ = ±1, define W(∆, τ ) = {σ ∈ S : σ i = τ, ∀i ∈ ∆, σ ∂∆ = -τ }. (4.1) 
Let L min be a positive integer and V ⊂ Z Z be an interval centered at the origin, with |V | > L min . We denote for i ∈ V and τ ∈ {-1, +1},

ν i (L min , τ ) = ∆∋i, |∆|≤Lmin W(∆, τ ), (4.2) V(V, L min ) = i∈V [ν i (L min , +) ∪ ν i (L min , -)] . (4.3) 
The main result of this section is the following.
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Proposition 4.1 Let α ∈ [0, 1 2 ], θ > 0, ζ = ζ(α)
as defined in (7.5). There exists θ 0 = θ 0 (α) and β 0 = β 0 (α) such that for 0 < θ < θ 0 and β > β 0 , for all D > 1, for all decreasing real valued function g 2 (x)

defined on IR + such that lim x↓0 g 2 (0) = ∞ but lim x↓0 g2(x) x = 0, if we denote b := min( βζ 4 , ζ 2 2 10 θ 2 ) (4.4)
then there exists Ω 5 (α) ⊂ Ω with

IP [Ω 5 (α)] ≥        1 -5 b 2 (1-2α) e -(4D-1)g2( b) , if 0 < α < 1/2; 1 -5 b g2( b) 2 4 + log b 8g2( b) 2 e -(4D-1)g2( b) , if α = 0; 1 -e -g2( b) , if α = 1/2. (4.5)
For

L min (α) =            b Dg2( b) 1 1-2α 1 4+log( b) 1 1-2α 1 1-2α , if 0 < α < 1/2; b Dg2( b) 4 + log b Dg2( b) , if α = 0; e b 2D -4 , if α = 1/2, (4.6) 
and

V min (α) =      e g2( b) ( b) 1 1-2α , if 0 < α < 1/2; e g2( b) b Dg2( b) 4 + log b Dg2( b) , if α = 0; e b 2 (1-1 D ) e -2g2( b) , if α = 1/2, (4.7) 
on Ω 5 (α), for all Λ ⊂ Z Z large enough, Let Λ ⊂ Z Z be an interval large enough, V ⊂ Λ and L an integer, L ≤ |V |. Since µ + Λ (∪ i∈V ν i (L, -)) ≤ i∈V µ + Λ (ν i (L, -)), it is enough to estimate for a given i ∈ V , µ + Λ (ν i (L, -)). Applying (4.2) one has

µ + Λ [V(V min (α), L min (α))] ≤        5 b 2 (1-2α) e -(4D-1)g2( b) , if 0 < α < 1/2;
µ + Λ (ν i (L, -)) ≤ L ℓ0=1 ∆:∆∋i,|∆|=ℓ0 µ + Λ (W(∆, -)). (4.12) 
It remains to estimate µ + Λ (W(∆, -)), for a given i ∈ V , ∆ ∋ i and |∆| = ℓ 0 . We denote by

C = C(∆, -) = {T ∈ T compatible with W(∆, -)}. (4.13) 
A family T is said compatible with the event W(∆, -) if T corresponds to a spin configuration where the event W(∆, -) occurs. By construction the families of triangles in C satisfy only one of the two following conditions:

• there exists T 0 ∈ C so that ∆ = supp(T 0 )

• there exist two triangles T right = T right (∆) and T lef t = T lef t (∆) one on the right and one on the left of ∆ that are adjacent * to ∆. The fact that T lef t (resp. T right ) is on the left (resp. right) of ∆ and is adjacent to it will be denoted by

T lef t ⊳ ∆, (resp T right ⊲ ∆). By (7.2) ℓ 0 = dist(T lef t , T right ) ≥ |T right | ∧ |T lef t |, i.
e. at least one of the two triangles (T lef t , T right ) has support smaller or equal than ℓ 0 . We make the partition:

C = ∪ 3 j=1 A j (4.14) 
where A j = A j (∆, i) are defined by:

A 1 = {T ∈ C : ∃T 0 ∈ T , supp(T 0 ) = ∆}; (4.15) A 2 = ∪ ℓ0 ℓ=1 A 2 (ℓ) with A 2 (ℓ) = {T ∈ C : ∃T lef t ∈ T , T lef t ⊳ ∆, |T lef t | = ℓ}; (4.16 
)

A 3 = ∪ ℓ0 ℓ=1 A 3 (ℓ) with A 3 (ℓ) = {T ∈ C \ A 2 : ∃T right ∈ T , T right ⊲ ∆, |T right | = ℓ}. (4.17) 
Any family in A 1 can be written as (T 0 , T ) ∈ A 1 where T 0 / ∈ T . We denote by A 1 \ T 0 the set all these T such that (T 0 , T ) ∈ A 1 , with the same meaning we denote A 2 (ℓ) \ T lef t and A 3 (ℓ) \ T right . We have Remark 4.2 . All the triangles belonging to A(T, ℓ) have mass ℓ 1 < ℓ and form a contour with T . Notice that triangles T 1 with |T 1 | = ℓ 1 , ℓ 1 < ℓ might belong to the same contour Γ of T but when we remove the triangles in Γ different than T , having support larger or equal to ℓ the resulting family might not form a single contour with T . These triangles are not in A(T, ℓ).

µ + Λ (W(∆, -)) = T ∈A1\T0 µ + Λ (T 0 ∪ T )1I {Supp(T0)=∆} + ℓ0 ℓ=1 T lef t :|T lef t |=ℓ 1I {T lef t ⊳ ∆} T ∈A2(ℓ)\T lef t µ + Λ (T lef t ∪ T ) + ℓ0 ℓ=1 T right :|T right |=ℓ 1I {T right ⊲ ∆} T ∈A3(ℓ)\T right µ + Λ (T right ∪ T ).
We start analyzing the first term on the right hand side of (4.18). We decompose T ∈ A 1 \ T 0 as S 1 ∪ T ′ with S 1 ∈ A(T 0 , ℓ 0 ) and T ′ / ∈ A(T 0 , ℓ 0 ), obtaining

T ∈A1\T0 µ + Λ (T 0 ∪ T ) = S 1 ∼T0 1I {S 1 ∈A(T0,ℓ0)} T ′ ∼(T0∪S 1 ) 1I {T ′ / ∈A(T0,ℓ0)} µ + Λ (T 0 ∪ S 1 ∪ T ′ ) = S 1 ∼T0 1I {S 1 ∈A(T0,ℓ0)} µ + Λ (T 0 ∪ S 1 ) = S 1 ∈A(T0,ℓ0) µ + Λ (T 0 ∪ S 1 ). (4.20)
Recall that S 1 ∼ T 0 means that S ∪ T 0 is an allowed configuration of triangles. Applying the same decomposition for the remaining two terms on the right hand side of (4.18) we get

µ + Λ (W(∆, -)) = S 1 ∈A(T0,ℓ0) µ + Λ (T 0 ∪ S 1 )1I {supp(T0)=∆} + ℓ0 ℓ=1 T lef t :|T lef t |=ℓ 1I {T lef t ⊳ ∆} S 1 ∈A(T lef t ,ℓ) µ + Λ (T lef t ∪ S 1 ) + ℓ0 ℓ=1 T right :|T right |=ℓ 1I {T right ⊲ ∆} S 1 ∈A(T right ,ℓ) µ + Λ (T right ∪ S 1 ). (4.21) 
We estimate separately each term in the previous sums. They are all alike µ + Λ (T ∪ S) with S ∈ A(T, ℓ) see (4.19) and |T | = ℓ. Recalling (4.9), we identify in S the families of triangles having the same mass. By construction we have k ∈ {1, . . . , ℓ -1}. We follow an argument used in [START_REF] Cassandro | Phase Transition in the 1d Random Field Ising Model with long range interaction[END_REF] which consists of 4 steps. We consider first the case 0 < α < 1/2, the case α = 0 and α = 1 2 will be discussed later.

Step I

For each j = {1, . . . , k S } we extract a term j k=1 n k (S)k α from the deterministic part of the Hamiltonian, i.e. using Theorem 7.3, we write

µ + Λ (T ∪ S) = 1 Z + Λ [ω] T ′ ∼T ∪S e -βH + (T ′ ∪T ∪S)[ω] ≤ e -β ζ 2 ( j k=1 n k (S)k α ) 1 Z + Λ [ω] T ′ ∼T ∪S e -βH + 0 (T ′ ∪T ∪S\(∪ j k=1 S (k) )+βθG(σ(T ′ ∪T ∪S))[ω] . (4.22)
We add to this list of k S inequalities a k S + 1-th inequality that we get when, after extracting all the terms corresponding to S, we extract the term corresponding to T i.e. Observing the right hand side of (4.22) and (4.23), one notes that the H + 0 and G are not evaluated at the same configuration of triangles. In the next step we compensate this discrepancy by a corrective term.

µ + Λ (T ∪ S) ≤ e -β ζ 2 ( k S k=1 n k (S)k α +ℓ α ) 1 Z + Λ [ω] T ′ ∼T ∪S e -βH + 0 (T ′ )+βθG(σ(T ′ ∪S∪T ))[ω] . ( 4 
Step II For each j ∈ {1, . . . , k S } we multiply and divide (4.22) by

T ′ ∼T ∪S e -βH + 0 (T ′ ∪T ∪S\(∪ j ℓ=1 S (ℓ) )+βθG(σ(T ′ ∪T ∪S\(∪ j ℓ=1 S (ℓ) ))[ω]
(4.24)

and when j = k S + 1, see (4.23) by

T ′ ∼T ∪S e -βH + 0 (T ′ )+βθG(σ(T ′ ))[ω] . (4.25)
Setting for j ∈ {1, . . . , k S }

F j [ω] := 1 β ln    T ′ ∼T ∩S e -βH + 0 (T ′ ∪T ∪S\(∪ j ℓ=1 S (ℓ) )+βθG(σ(T ′ ∪T ∪S))[ω] T ′ ∼T ∪S e -βH + (T ′ ∪T ∪S\(∪ j ℓ=0 S (ℓ) )+βθG(σ(T ′ ∪T ∪S\(∪ j ℓ=1 S (ℓ) ))[ω]    , (4.26) 
and for j = k S + 1

F kS +1 [ω] = 1 β ln T ′ ∼T ∪S e -βH + 0 (T ′ )+βθG(σ(T ∪T ∪S))[ω] T ′ ∼T ∪S e -βH + 0 (T ′ )+βθG(σ(T ′ ))[ω]
(4.27)

we have the following set of inequalities: for j ∈ {1, . . . , k T + 1}

µ + Λ (T ∪ S) ≤ e -β ζ 2 ( j ℓ=1 n ℓ (S)ℓ α )+βFj [ω] µ + Λ (T ∪ S \ (∪ j ℓ=1 S (ℓ) )) ≤ e -β ζ 2 ( j k=1 n k (S)k α )+βFj [ω] . (4.28)
Step III We make a partition of the probability space to take into account the fluctuations of the F i in (4.28). For each (T, S) we write

Ω = ∪ kS +1 j=0 B j , (4.29) 
where, recalling (4.10), for j ∈ {1, . . . , k S }

B j = B j ((T, S)) = {ω : F j [ω] ≤ ζ 4 j k=1 n k (S) k α , and for ∀i ∈ {j +1, . . . ℓ 0 }, F i [ω] > ζ 4 i k=1 n k (S) k α }; (4.30) B kS +1 = B kS +1 ((T, S)) =    ω : F kS +1 [ω] ≤ ζ 4   kS k=1 n k (S) k α + ℓ α      ; (4.31) B 0 = B 0 ((T, S)) = {ω : ∀i ∈ {1, . . . , k S + 1}, F i [ω] > ζ 4 i k=1 n k (S) k α }. (4.32)
The point is that using exponential inequalities for Lipschitz function of subgaussian random variables, see [START_REF] Cassandro | Phase Transition in the 1d Random Field Ising Model with long range interaction[END_REF] Section 4 for details, one has : for all α ∈ (0, 1) For 0 ≤ j ≤ k S , with the convention that an empty sum is zero. For j = k S + 1 we use IE 1I B k S +1 ≤ 1.

IE 1I Bj ≤ e -ζ 2 2 10 θ 2 k S k=j+1 n k (S) k 2α-1 +ℓ 2α-1 . ( 4 
Step IV Using (4.29), we have

IE µ + Λ (T ∪ S) = kS +1 j=0 IE µ + Λ (T ∪ S)1I {Bj } , (4.34) 
then, (4.28) entails

IE µ + Λ (T ∪ S)1I {Bj } ≤ e -β ζ 2 ( j k=1 n k (S) k α ) IE e βFj 1I {Bj } . (4.35) 
Recalling (4.30),(4.31) and (4.32), on B j we have

F j ≤ ζ 4 j k=1 n k (S) k α (4.36)
that gives with (4.35) and (4.33)

IE µ + Λ (T ∪ S)1I {Bj } ≤ e -β ζ 4 j k=1 n k (S) k α e -ζ 2 2 10 θ 2 k S k=j+1 n k (S) k 2α-1 +ℓ 2α-1 . (4.37) 
Coming back to (4.34) we get 

IE µ + Λ (T ∪ S) ≤ kS j=0 e -βζ 4 j k=1 n k (S) k α e -ζ 2 2 10 θ 2 k S k=j+1 n k (S) k 2α-1 +ℓ 2α-1 + e -βζ 4 k S k=1 |S (k) |n k (S) k α +ℓ α ≤ (k S + 2)e -b k S k=1 n k (S) k 2α-1 +ℓ 2α-1 , ( 4 
i ∈ V I 1 (i) ≡ L ℓ0=1 ∆:∆∋i,|∆|=ℓ0 S 1 ∈A(T0,ℓ0) IE µ + Λ (T 0 ∪ S 1 ) 1I {suppT0=∆} = L ℓ0=1 T0:T0∋i,|T0|=ℓ0 S 1 ∈A(T0,ℓ0) IE µ + Λ (T 0 ∪ S 1 ) ≤ L ℓ0=1 T0:T0∋i,|T0|=ℓ0 S 1 ∈A(T0,ℓ0) (ℓ 0 + 2)e -b k S k=1 n k (S 1 ) k 2α-1 +ℓ 2α-1 0 . (4.40) 
Since all the triangles in S 1 ∈ A(T 0 , ℓ 0 ) are smaller than ℓ 0 , we have

kS 1 k=1 n k (S 1 ) k 2α-1 + ℓ 2α-1 0 ≥ 1 ℓ 1-2α 0 (4 + log ℓ 0 )   kS 1 k=1 n k (S 1 )(4 + log k) + (4 + log ℓ 0 )   (4.41)
29/november/2010; 15:35 so that from (4.40) we have

I 1 (i) ≤ L ℓ0=1 (ℓ 0 + 2) T0:T0∋i,|T0|=ℓ0 S 1 ∈A(T0,ℓ0) e -b 1 ℓ 1-2α 0 (4+log ℓ 0 ) k S 1 k=1 n k (S 1 )(4+log k)+(4+log ℓ0) ≤ L ℓ0=1 (ℓ 0 + 2) Γ:Γ∋i,|Γ|≥ℓ0 e -b 1 ℓ 1-2α 0 (4+log ℓ 0 ) k Γ k=1 n k (Γ)(4+log k)+(4+log ℓ0) . (4.42) 
Take D > 1 and g 2 ( b) > 1 so that b

L 1-2α (4 + log L) ≥ Dg 2 ( b). (4.43) Applying (7.15), if Dg 2 ( b) ≥ C 0 ∨ 3 we get I 1 (i) ≤ L ℓ0=1 (ℓ 0 + 2)e -Dg2( b)(4+log ℓ0) ℓ2≥ℓ0 2ℓ 2 e -Dg2( b)(4+log ℓ2) ≤ 10e -8Dg2( b) . (4.44) 
It remains to consider the second term in (4.21), the third term being identical. Using (4.38), (4.16), and (7.15) for each i ∈ V , we have

I 2 (i) ≡ L ℓ0=1 ∆:∆∋i, |∆|=ℓ0 ℓ0 ℓ1=1 T lef t :|T lef t |=ℓ1 1I {T lef t ⊳ ∆} T ∈A2(ℓ1)\T lef t IE µ + Λ (T lef t ∪ T ) ≤ L ℓ0=1 ℓ 0 ℓ0 ℓ1=1 (ℓ 1 + 2)e -Dg2( b)(4+log ℓ1) Γ:Γ∋0;|Γ|≥ℓ1 e -Dg2( b)(4+log |Γ|) ≤ 5e -8Dg2( b) L ℓ0=1 ℓ 0 ≤ 5L 2 e -8Dg2( b) . (4.45) 
Collecting (4.44) and (4.45) one gets

IE µ + Λ (ν i (L, -)) ≤ 20L 2 e -8Dg2( b) . (4.46) 
By Markov inequality, on a probability subset Ω 4 = Ω 4 (L, i) with

IP [Ω(L, i)] ≥ 1 -5Le -4Dg2( b) , (4.47) 
one gets

µ + Λ (ν i (L, -)) ≤ 5Le -4Dg2( b) .
Recalling the definition of V(V, ℓ 0 ) see ( 4.3), one gets that on a probability subset Ω 5 = Ω 5 (V ) with 

IP [Ω 5 ] ≥ 1 -|V |5Le -4Dg2( b) (4.48) we have µ + Λ (V(V, L) ≤ 5|V |Le -4Dg2( b) . ( 4 
L ≡ L min = b 1 1-2α 4 + log b 1 1-2α -1 1-2α Dg 2 ( b) -1 1-2α . (4.50)
It is easy to check that there exists a θ 0 = θ 0 (α) and β 0 that depend on α but not on D > 1 nor on g 2 ( b) ≥ 1 such that (4.43) is satisfied for all 0 < θ ≤ θ 0 and all β ≥ β 0 .

Then one can take the volume V with a diameter similar to (3.6), namely

V min (α) = e g2( b) b 1 1-2α . (4.51)
An easy computation gives (4.5) and (4.8).

• α = 0. Going back to (4.22), the modifications are the following : each time a k α , respectively an ℓ α , appears replace it by (4 + log k), respectively by (4 + log ℓ). The event in the step III, are modified in the same way. The only difference comes with (4.33) replaced by 7 Appendix: Geometrical description of the spin configurations

IE 1I Bj ≤ e -b k S k=j+1 n k (S) (4+log k) 2 k + (4+log ℓ 0 ) 2 ℓ 0 . ( 4 
We will follow the geometrical description of the spin configuration presented in [START_REF] Cassandro | Geometry of contours and Peierls estimates in d = 1 Ising models with long range interaction[END_REF] and use the same notations. We will consider homogeneous boundary conditions, i.e the spins in the boundary conditions are either all +1 or all -1. Actually we will restrict ourself to + boundary conditions and consider spin configurations σ = {σ i , i ∈ Z Z} ∈ X + so that σ i = +1 for all |i| large enough.

In one dimension an interface at (x, x + 1) means σ x σ x+1 = -1. Due to the above choice of the boundary conditions, any σ ∈ X + has a finite, even number of interfaces. The precise location of the interface is immaterial and this fact has been used to choose the interface points as follows: For all x ∈ Z Z so that (x, x+1) is an interface take the location of the interface to be a point inside the interval [x+ 1 2 -1 100 , x+ 1 2 + 1 100 ], with the property that for any four distinct points r i , i = 1, . . . , 4 |r 1r 2 | = |r 3r 4 |. This choice is done once for all so that the interface between x and x + 1 is uniquely fixed. Draw from each one of these interfaces points two lines forming respectively an angle of π 4 and of 3 4 π with the Z Z line. We have thus a bunch of growing ∨lines each one emanating from an interface point. Once two ∨lines meet, they are frozen and stop their growth. The other two lines emanating from the the same interface points are erased. The ∨lines emanating from others points keep growing. The collision of the two lines is represented graphically by a triangle whose basis is the line joining the two interfaces points and whose sides are the two segment of the ∨lines which meet. The choice done of the location of the interface points ensure that collisions occur one at a time so that the above definition is unambiguous. In general there might be triangles inside triangles. The endpoints of the triangles are suitable coupled pairs of interfaces points. The graphical representation just described maps each spin configuration in X + to a set of triangles. Notation Triangles will be usually denoted by T , the collection of triangles constructed as above by T and we will write

|T | = cardinality of ∩ Z Z = mass of T, (7.1) 
and by supp(T ) ⊂ IR the basis of the triangle.

We have thus represented a configuration σ ∈ X + as a collection of T = (T 1 , . . . , T n ). The above construction defines a one to one map from X + onto T . It is easy to see that a triangle configuration T belongs to T iff for any pair T and We say that two collections of triangles S ′ and S are compatible and we denote it by S ′ ∼ S iff S ′ ∪ S ∈ T (i.e. there exists a configuration in X + such that its corresponding collection of triangles is the collection made of all triangles that are obtained by concatenating S ′ and S.) By an abuse of notation, we write

T ′ in T dist(T, T ′ ) ≥ min{|T |, |T ′ |}. ( 7 
H + 0 (T ) = H + 0 (σ), G(σ(T ))[ω] = G(σ)[ω], σ ∈ X + ⇐⇒ T ∈ T . Definition 7.1
The energy difference Given two compatible collections of triangles S ∼ T , we denote

H + (S|T ) := H + (S ∪ T ) -H + (T ). (7.3) Let T = (T 1 , . . . , T n ) with |T i | ≤ |T i+1 | then using (7.
3) one has

H + (T ) = H + (T 1 |T \ T 1 ) + H + (T \ T 1 ). ( 7.4) 
The following Lemma proved in [START_REF] Cassandro | Geometry of contours and Peierls estimates in d = 1 Ising models with long range interaction[END_REF], see Lemma 2.1 there, gives a lower bound on the cost to "erase" triangles sequentially starting from the smallest ones. Lemma 7.2 [START_REF] Cassandro | Geometry of contours and Peierls estimates in d = 1 Ising models with long range interaction[END_REF] For α ∈ [0, ln 3 ln 2 -1) and

ζ = ζ(α) = 1 -2(2 α -1) (7.5) 
one has

H + 0 (T 1 |T \ T 1 ) ≥ ζ|T 1 | α . (7.6) 
By iteration, for any The estimate (7.7) involves contributions coming from the full set of triangles associated to a given spin configuration, starting from the triangle having the smallest mass. To implement a Peierls bound in our set up we need to "localize" the estimates to compute the weight of a triangle or of a finite set of triangles in a generic configuration. In order to do this [START_REF] Cassandro | Geometry of contours and Peierls estimates in d = 1 Ising models with long range interaction[END_REF] introduced the notion of contours as clusters of nearby triangles sufficiently far away from all other triangles.

1 ≤ i ≤ n H + 0 (∪ i ℓ=1 T ℓ |T \ [∪ i ℓ=1 T ℓ ]) ≥ ζ i ℓ=1 |T ℓ | α . ( 7 
Contours A contour Γ is a collection T of triangles related by a hierarchical network of connections controlled by a positive number C, see (7.8), under which all the triangles of a contour become mutually connected. We denote by T (Γ) the triangle whose basis is the smallest interval which contains all the triangles of the contour. The right and left endpoints of T (Γ) ∩ Z Z are denoted by x ± (Γ). We denote |Γ| the mass of the contour Γ |Γ| =

T ∈Γ

|T |

i.e. |Γ| is the sum of the masses of all the triangles belonging to Γ. We denote by R(•) the algorithm which associates to any configuration T a configuration {Γ j } of contours with the following properties. P.2 Independence. Let {T (1) , . . . , T (k) }, be k > 1 configurations of triangles; R(T (i) ) = {Γ (i) j , j = 1, . . . , n i } the contours of the configurations T (i) . Then if any distinct Γ (i) j and Γ (i ′ ) j ′ satisfies P.1, R(T (1) , . . . , T (k) ) = {Γ (i) j , j = 1, . . . , n i ; i = 1, . . . , k}.

As proven in [START_REF] Cassandro | Geometry of contours and Peierls estimates in d = 1 Ising models with long range interaction[END_REF], the algorithm R(•) having properties P.0, P.1 and P.2 is unique and therefore there is a bijection between families of triangles and contours. Next we report the estimates proven in Theorem 3.2 of [START_REF] Cassandro | Geometry of contours and Peierls estimates in d = 1 Ising models with long range interaction[END_REF] which are essential for this paper. Next we summarize the results of Theorem 4.1 of [START_REF] Cassandro | Geometry of contours and Peierls estimates in d = 1 Ising models with long range interaction[END_REF] stated for α > 0 and the corresponding estimate for α = 0 given in Appendix F of [START_REF] Cassandro | Geometry of contours and Peierls estimates in d = 1 Ising models with long range interaction[END_REF]. 
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1+B( 3

 3 .26) and 2N + 1 = e g1(θ) 1 + B 2 (3.27) with g 1 (θ) so that lim θ↓0 g 1 (θ) = ∞, (3.4), (3.5), (3.6), and (3.7) are proven for 0 < α < 1/2. The actual value of B affects only the values of the constants. When α = 0, Le Cam inequality suggests

  .28) Taking M and N as in (3.26) and (3.27), one gets (3.4), (3.5), (3.6), and (3.7).

2 e

 2 -(4D-1)g2( b) , if α = 0; e -g2( b) , if α = 1/2.

(4. 8 )

 8 Remark:The estimate (4.8) is uniform in Λ, therefore by the uniqueness of the infinite volume Gibbs measure,[START_REF] Aizenman | Rounding of first order phase transitions in systems with quenched disorder[END_REF], Proposition 4.1 holds for the infinite volume Gibbs measure µ. Proof: Since the boundary conditions are homogeneous equal to + we apply the geometrical description of the spin configuration presented in[START_REF] Cassandro | Geometry of contours and Peierls estimates in d = 1 Ising models with long range interaction[END_REF]. In the following we will assume that the notions of triangles, contours, and their properties are known to the reader. In Section 7 we summarize definitions and main properties used in the proof. Let T = {T } be the set of families of triangles compatible with the chosen + boundary conditions on Λ. Let denote by |T | the mass of the triangle T , i.e. the cardinality of T ∩ Z Z, see(7.1). It is convenient to identify in T ∈ T families of triangles having the same mass,T = {T (1) , . . . , T (kT ) },(4.9) arranged in increasing order, where k T = sup{|T | : T ∈ T } ∈ IN and for ℓ ∈ {1, . . . , k T }, T (ℓ) is the family of n ℓ ≡ n ℓ (T ) ∈ IN triangles in T having all the mass ℓ. By convention n ℓ (T ) = 0 when there is no triangle of mass ℓ in T . We denote |T | x = kT ℓ=1 n ℓ (T ) ℓ x , x ∈ IR, x = 0

(4. 18 )*

 18 We say that T is adjacent to an interval ∆ if 0 < d(supp(T ), ∆) < 1. i.e. ∆ ∩ supp(T ) = ∅ and T is the first triangle on the right or the left of ∆ having the support at distance from ∆ smaller than 1. 29/november/2010; 15:35 For any given triangle T , with |T | = ℓ, recalling the definition of contours in Section 7, let A(T ) ≡ A(T, ℓ) = {S ∈ T : T / ∈ S ; (T, S) form a contour ; ∀S ∈ S, |S| < ℓ}. (4.19)

Dg 2 4 ( 4

 244 the choice of L goes as before. Here we choose L ≡ L min = b easy to see that if b ≥ Dg 2 ( b) then (4.54) is satisfied. Then as before taking V min (0) = e g2( b) b Dg 2 ( b) 4 + log b Dg 2 ( b) (4.56) one gets (4.5) and (4.8) after easy estimates. • α = 1/2. (4.33) holds in the following form IE 1I Bj ≤ e k (S) ≥ 1 the inequality (4.38) becomes IE[µ + Λ (T ∪ S)] ≤ (k S + 2)e -b 2 e log L) ≥ D ≥ C 0 (4.59) 29/november/2010; 15:35where C 0 is defined in 7.4. TakingL ≡ L min = e b 2Di (L, -))] ≤ 20e + b 2D -8 e -b 2 ≤ 20e -b 2 ((V min , L min )) ≤ e -g2( b) (4.63)with a IP -probability larger than 1e -g2( b) .

. 7 )

 7 For α = 0, (7.6) and (7.7) hold with |T ℓ | α replaced by log |T ℓ | + 4.

P. 1

 1 29/november/2010; 15:35P.0 Let R(T ) = (Γ 1 , . . . , Γ n ), Γ i = {T j,i , 1 ≤ j ≤ k i }, then T = {T j,i , 1 ≤ i ≤ n, 1 ≤ j ≤ k i } Contours arewell separated from each other. Any pair Γ = Γ ′ verifies one of the following alternatives.T (Γ) ∩ T (Γ ′ ) = ∅ i.e. [x -(Γ), x + (Γ)] ∩ [x -(Γ ′ ), x + (Γ ′ )] = ∅, in which case dist(Γ, Γ ′ ) := min T ∈Γ,T ′ ∈Γ ′ dist(T, T ′ ) > C min |Γ| 3 , |Γ ′ | 3 (7.8)where C is a positive number. IfT (Γ) ∩ T (Γ ′ ) = ∅, then either T (Γ) ⊂ T (Γ ′ ) or T (Γ ′ ) ⊂ T (Γ); moreover, supposing for instance that the former case is verified, (in which case we call Γ an inner contour) then for any triangleT ′ i ∈ Γ ′ , either T (Γ) ⊂ T ′ i or T (Γ) ∩ T ′ i = ∅ and dist(Γ, Γ ′ ) > C|Γ| 3 , if T (Γ) ⊂ T (Γ ′). (7.9)

Theorem 7 . 3 [ 5 ] 2 T

 7352 Let α ∈ [0, ln 3 ln 2 -1) and the constant C given in (7.8), be so large that where [x] denotes the integer part of x. For any T ∈ {T }, let Γ 0 ∈ R(T ) be a contour, S (0) the triangles inΓ 0 and ζ = ζ(α) = 1 -2(2 α -1). Then H + 0 (S (0) |T \ S (0) ) ≥ ζ ∈S (0) |T | α . (7.11) For α = 0, (7.11) holds with |T | α replaced by log |T | + 4 .

Theorem 7 . 4 [ 5 ]

 745 For any α > 0 there exists C 0 (α) so that for b ≥ C 0 (α) and for all m > 0 {0∈Γ,|Γ|=m} w α b (Γ) ≤ 2me -bm α , (7.12) 29/november/2010; 15:35 and there exists C 0 so that for b ≥ C 0 {0∈Γ,|Γ|=m} w 0 b (Γ) ≤ 2me -b(log m+4) . (7.15)

  BE ≤ 7.5 is the Berry-Esseen constant. By the lower bound

								-y -∞ e -x 2 2 dx ≥ y 1+y 2 e -1 2 y 2 , we have
	1 √ 2π	-8 θ -∞	e -x 2 2 dx ≥		1 √ 2π	1 1 + 8 θ	e -8 2 2θ 2 .	(3.31)
	Choosing						
		∆ = 16 2 (2π) 1 +	8 θ	2	e	8 2 θ 2 ,	(3.32)
	so that the right hand side of (3.30) is strictly positive,			
		M = 2	√ 2π(1 +	8 θ	)e	8 2 2θ 2 e g1(θ) ,	(3.33)
	and						
			2N + 1 = e	1 2 e g 1 (θ)	(3.34)
	we get (3.4), (3.5), (3.6), and (3.7).						

.30) 29/november/2010; 15:35 where C Remark 3.2 . To apply (3.23), one needs a lower bound for the censored variance at τ of h 1 which is

  .23)

29/november/2010; 15:35
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