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Abstract—Traffic Engineering (TE) has become a challenging
mechanism for network management and resources optimization
due to uncertain and difficult to predict traffic patterns. Recent
works have proposed robust optimization techniques to cope
with uncertain traffic, computing a stable routing configuration
that is immune to demand variations within certain uncertainty
set. However, using a single routing configuration for long-
time periods can be highly inefficient. Even more, the presence
of abnormal and malicious traffic has magnified the network
operation problem, claiming for solutions which not only deal
with traffic uncertainty but also allow to detect and identify faulty
traffic to take the appropriate countermeasures. In this paper,
we introduce the Reactive Robust Routing (RRR) for TE, an
approach that combines both proactive and reactive techniques
to tackle the problem. Based on expected traffic patterns, we
adapt the uncertainty set and build a multi-hour yet robust
routing scheme that outperforms the stable robust approach.
For the case of anomalous and unexpected traffic, we propose a
fast anomaly detection/isolation algorithm to detect and localize
abrupt changes in traffic flows and decide routing changes. This
algorithm is optimal in the sense that it minimizes the decision
delay for a given mean false alarm rate and false isolation
probability. We validate these proposals using real data from
two different backbone networks and we show how the RRR
can handle uncertain and highly dynamic traffic in an automatic
fashion, simplifying network operation.

Index Terms—Traffic Uncertainty, Multi-Hour Robust Rout-
ing, Anomaly Detection/Isolation, Reactive Robust Routing.

I. INTRODUCTION

Traffic engineering (TE) represents a major issue for net-

work operators in today’s scenario. TE allows the optimization

of network resources usage through multiple mechanisms.

In this work, we focus on routing optimization over an

Autonomous System (AS). This optimization is becoming

increasingly difficult due to the dynamic nature of current

traffic. Traffic demands present two different components or

behaviors: on one hand, a stable and predictable component

due to usual traffic usage patterns (e.g. daily demand fluctua-

tion); on the other hand, an abrupt and unpredictable behavior

due to unexpected events, such as network equipment failures,

flash crowds occurrences, security threats (e.g. denial of ser-

vice attacks, virus propagation), external routing changes (e.g.

inter-AS routing through BGP) and new spontaneous overlay

services (e.g. P2P applications). We use the term volume

anomaly [17] to describe these unexpected network events

(large and sudden link load changes). Recent works [2]–[5]

have proposed a new perspective to the routing optimization

under traffic uncertainty: the Robust Routing (RR) approach.

In a robust fashion of TE, demand uncertainty is taken into

account directly within the routing optimization, computing

a single routing configuration for all demands within an

uncertainty set. While this routing configuration is not optimal

for any single traffic matrix (TM) within the set, it minimizes

the worst case performance over the whole set. In this sense,

RR provides performance guarantees (i.e. worst-case bounds)

for all possible traffic variations within the uncertainty set.

The RR approach can be used as a proactive technique to

deal with dynamic traffic. It can handle changing demands at

a reasonable cost (with respect to an ideal but illusive optimal

adaptive routing) up to a certain limit (given by the size of

the uncertainty set). However, applying a RR algorithm to

address both traffic behaviors (usual traffic as well as volume

anomalies) is an inefficient strategy: a single routing can not

be suitable for both situations.

On the contrary, a reactive approach could be used as a

complementary strategy to enhance RR performance, respond-

ing to abrupt and large traffic changes with an effective routing

reconfiguration. Volume anomalies may have an important

impact on the network performance, causing sudden situations

of strong network congestion. The early detection and isolation

of these anomalies allows to modify the routing as soon as pos-

sible, limiting their impact. In this work, we propose a signal

processing algorithm for fast load change detection/isolation.

Through out the paper, we use the term anomaly isolation to

refer to the identification and localization of an anomalous

flow among the network traffic.

A. Related Work

There is a large literature on traffic engineering with un-

certain traffic demands. Traditional algorithms rely on a small

group of expected TMs (representative traffic demands from

past observations) or estimated TMs to compute optimal and

reliable routing configurations. An extreme case is presented

in [11], where routing is optimized for a single estimated TM

and it is then applied for long-time periods (24hs periods).

Traffic uncertainty is characterized by multiple TMs in [12],

[13] (e.g. set of TMs from previous day, same day of previous

week, etc.), and different ways to find optimal routes for the set

are presented. Given the dynamic nature of present demands,



this perspective is no longer suitable for current scenario [1]. A

different approach is provided by online reactive algorithms:

TeXCP [14] and MATE [15] both balance load in realtime,

responding to instantaneous traffic demands. Their main goal

is to avoid network congestion by adaptively balancing the

load among paths, based on measurement. Reactive routing

presents a desirable property, that of keeping routing adapted

to current traffic. However, these adaptive algorithms present

poor performance under significant and abrupt traffic changes

[5]. A third category of algorithms consists in Stable Robust

Routing techniques [2]–[6]. In [2], the authors capture traffic

variations by introducing a polyhedral set of demands, ap-

plying linear programming techniques to compute an optimal

stable routing for all demands within this set. [4] applies this

robust technique to compute a robust MPLS routing config-

uration without depending on TM estimation, and discusses

corresponding methods for robust OSPF optimization. Obliv-

ious Routing [3] also defines linear algorithms to optimize

worst-case performance for different sizes of traffic uncertainty

sets, aiming to handle dynamic changes. [6] analyses the

use of robust routing through a combination of traffic matrix

estimation and its corresponding estimation error bounds, in

order to shrink the uncertainty set. The drawback of stable

robust routing is its inherent dependence on the definition of

the uncertainty set: larger sets allow to handle a broader group

of traffic demands, but at the cost of routing inefficiency; con-

versely, tighter sets produce more efficient routing schemes,

but subject to poor performance guarantees. In [5], the authors

introduce COPE, an approach to deal with this tradeoff in the

size of the uncertainty set, combining traditional algorithms

with oblivious routing. COPE optimizes routing for predicted

demands and bounds worst-case performance to ensure accept-

able efficiency under unexpected traffic events. Nevertheless,

COPE proposes a long-term stable routing configuration as

previous works do (24hs periods), losing the adaptability (and

hence the performance efficiency) of reactive routing. Besides,

it is possible not only to assure performance guarantees for

unexpected events, but to obtain optimal routings for this

traffic.

As regards anomaly detection in data networks, the prob-

lem has been extensively studied. In this section, we will

just overview those works that have motivated our signal-

processing based detection algorithm. Signal processing tech-

niques have been applied to the anomaly detection field [7]–

[9]. The usual behavior of data flows is modeled by several

approaches: spectral analysis, time series analysis, wavelets

decomposition, etc. Anomalies correspond to deviations from

the usual behavior of the data flows. The general flaw of these

algorithms is the lack of stability over time of the proposed

traffic models, as well as the absence of optimality conditions

for the detection in most cases. A second class of methods

related to our model concerns statistical hypotheses testing

[17]–[19]. When data flows are parametrically modeled, the

design of optimal algorithms is possible. Nevertheless, non-

parametric approaches are particularly studied because of the

lack of parametric models, and these approaches are often sub-

optimal. The detection/isolation of traffic anomalies problem

was previously treated in [17], using a TM decomposition on

the Principal Component Analysis (PCA) basis. However, this

approach presents a major stability problem: the PCA basis

depends on the measurement period, rendering it unstable over

time.

B. Contributions of the Paper

In the final remarks of [4], the authors raised an interesting

reflection: ”it is not clear whether time-varying demands

should be addressed using proactive (e.g. robust routing)

or reactive (dynamic, adaptive) methods”. In this work, we

propose to use both proactive and reactive complementary

approaches to deal with current dynamic traffic demands, sep-

arately treating both traffic uncertainty sources. For expected

traffic fluctuations, we present a time varying approach of

RR that outperforms the current stable approach: the Multi-

Hour Robust Routing (MHRR). The stable RR may be

costly. However, it is easy to control its cost by shrinking

the uncertainty set. We preserve the virtues of RR, but change

the routing configuration during time. The uncertainty set is

optimally divided into several uncertainty sub-sets that better

adapt to real traffic loads, and a stable robust routing scheme

is computed for each sub-set. The partitioning algorithm

allows to optimally calculate the exact times when routing

changes must be performed. For the case of unpredictable

traffic behavior, we propose a novel volume anomaly detec-

tion/isolation algorithm to identify traffic problems and decide

routing changes. This algorithm allows both to detect the vol-

ume anomaly and to identify and localize the anomalous flow.

To overcome the stability problems of previous approaches, we

propose a non data-driven traffic model which remains stable

over time. The main contribution of this detection algorithm

relies on the well established conditions of optimality that it

presents, a feature generally absent in previous works.

Both proactive and reactive methods are combined into a

novel TE approach for dynamic traffic demands: the Reactive

Robust Routing (RRR). This approach uses the MHRR

to handle typical changes in traffic demands and the de-

tection/isolation algorithm to deal with unexpected volume

anomalies. The RRR exploits the isolation ability of the detec-

tion/isolation algorithm to compute an adapted robust routing

configuration after the anomalous traffic detection, reducing its

impact on network performance during its prevalence. In addi-

tion, it also provides a simple yet effective method to automat-

ically detect the end of the anomaly, returning to the MHRR

configuration. Contrary to previous works in the field, our

proposal optimizes routing in a robust and adaptive fashion for

every possible traffic demand (and not only for the common-

case traffic). A key feature of the RRR approach relies on

the fact that the whole routing configuration/reconfiguration

algorithm is completely automatic, an interesting property

that simplifies network operation by self-managing. All the

proposed algorithms in this work are validated using real

traffic data from two backbone networks, the Internet2 Abilene

backbone network and a private international Tier-2 network.



The remainder of this paper is organized as follows. In

Section II, we recall the basic aspects of the robust routing

approach. Section III presents the theoretical background and

empirical evaluation of the MHRR. The proposed algorithm

and traffic model for anomaly detection/isolation are intro-

duced and validated in section IV. Section V presents the

Reactive Robust Routing, showing the automatic interaction

between the proactive and the reactive components through

complete real and simulated examples. Finally, Section VI

concludes this work.

II. ROBUST ROUTING

Let us consider a network topology defined by a set

of n nodes and L = {1, . . . , r} links with capacities in

C = (c1, c2, . . . , cr). The TM demand d = {di,j} denotes

the traffic flow between every node i and node j (i 6= j)

of the network. We re-arrange d as a column vector, d =
{dk, k=1..m}, where dk represents the traffic flow transmitted

by OD pair k (OD-flow k) and m = n × (n − 1) is the

number of OD pairs. Let N = {OD1, . . . , ODm} be the

set of OD pairs. Link’s information yl represents the total

traffic (i.e. aggregated OD flows) through link l in a certain

period of time. This information is available from router’s MIB

variables and it is usually collected every 5’ periods via SNMP

[20]. Traffic demands and links’ traffic are related through the

routing matrix R, a r×m matrix which element 0 6 rl,k 6 1
represents the fraction of OD demand k routed through link l:

y = R × d. (1)

with y = {yl, l=1..r}. Routing optimization depends on

the underlying data transport mechanism; we will focus on

path-based routing such as MPLS. This optimization consists

in minimizing certain performance metric associated with

traffic demand. Throughout this work we consider maximum

link utilization (MLU) as the routing performance criterion.

Overloaded links tend to cause QoS degradation (e.g. larger

delays and packet losses, throughput reduction, etc.), so MLU

represents a reasonable measure of network performance. For

a given routing matrix R = {rl,k} and a traffic demand d, the

MLU (umax) is defined as the maximum of the ratio between

link load and link capacity:

umax (C,d, R) = max
l∈{1...r}

∑

k

rl,k · dk

cl

= max
l∈{1...r}

yl

cl

(2)

Let P (k) be the set of possible paths for OD demand k.

Let xk
p be the proportion of traffic demand dk that flows

through path p ∈ P (k), 0 6 xk
p 6 1. Finally, let xk

l be

the proportion of traffic demand dk that flows through link

l ∈ L, 0 6 xk
l 6 1. We define D as the uncertainty set

where traffic demand may vary. This set can be defined in

different ways, depending on the available information: link

load measurements and historical routing, a set of previously

observed TMs {d1,d2, . . . ,do}, TM time series d(t), etc. [2]

defines this set as a polytope, based on the intersection of

several half-spaces that result from linear constraints imposed

to traffic demand. The Robust Routing Optimization Problem

(RROP) consists in minimizing umax, considering all demands

within D (3). The RROP can be efficiently solved by linear

programming techniques, applying a combined column and

constraint generation method [2]. In a traditional robust rout-

minimize umax

subject to: (3)∑
p∈P (k)

xk
p > 1 ∀ k ∈ N

∑
p∈P (k), l∈p

xk
p 6 xk

l ∀ k ∈ N, ∀ l ∈ L

∑
k∈N

xk
l .dk 6 umax · cl ∀ l ∈ L, ∀ d ∈ D

xk
p , xk

l > 0 ∀ l ∈ L, ∀ p ∈ P (k), ∀ k ∈ N

umax 6 1

ing application, the obtained routing configuration is applied

during long-term periods of time (i.e. daily routing). In this

sense, we refer to robust routing as Stable Robust Routing

(SRR).

III. MULTI-HOUR ROBUST ROUTING

In [1] we present the advantages of the SRR with respect

to traditional routing approaches: SRR offers stability

guarantees against traffic uncertainty and traffic time-

variations at a reasonable cost. However, considering a

single routing scheme for long-time periods is conservative

and results in sub-optimal performance. We propose a

simple approach to shrink and adapt the uncertainty set

along time that outperforms the SRR. Based on rough

knowledge of traffic variations (i.e. considering expected

traffic behavior), we propose to optimally divide the

uncertainty set and build a multi-hour routing configuration,

considering a single SRR configuration for each sub-set.

Daily traffic changes can be seen as a time variation of
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Fig. 1. (a) Daily variation of the polytope Dt, (b) time partitioning of Dt.

the uncertainty set. At each time t, the routing matrix R

and the link load values y(t) = yt define an instantaneous

uncertainty set D(t) = {d ∈ R
m, R × d 6 yt, d > 0}. The

continious union of infinite instantaneous uncertainty

sets along time t defines the daily uncertainty set

Dt =
{
(d, t) ∈ R

m+1, d ∈ ∪ t16t6tτ
D(t), t1 6 t 6 tτ

}
.

Figure 1(a) explains this idea. Assuming this set is an

union of polytopes, [10] provides a theoretical study of

the optimal partitioning of Dt, using a partitioning hyper

plane. [10] proves that this is a NP-hard problem, except

for the case where a partitioning direction is previously

fixed. We define a partitioning hyper plane by its direction

vector α and a value w: α.d = w. In the MHRR approach,



we consider a particular direction for partitioning: the time

direction. In that case, w represents the time of the day. We

define h + 1 hyperplanes at times {w1, w2, .., wh+1}. The

intersection between Dt and the half-spaces defined by these

partitioning hyperplanes results in h uncertainty sub-sets

Di = {Dt ∩ {d, α.d > wi} ∩ {d, α.d 6 wi+1}} ,∀i = 1, ., h.

Let Di be the smallest single-time set that contains all

demands d(t) ∈ Di, wi 6 t 6 wi+1 (see figure 1(b)). A SRR

configuration Ri
robust is computed for each sub-set Di. Each

routing configuration is finally applied at each time interval.

The optimal values of routing changes w∗ = {w∗
2 , . . . , w∗

h}
are the solution for the following optimization problem (w1

and wh+1 are fixed a priori, as they define the considered

time interval of analysis):

w∗(Dt) = arg min
w

{
max
i=1..h

umax(Di)

}
(4)

where umax(Di) is the solution for (3) for polytope Di. [10]

presents a simple algorithm to approximately solve (4) (within

an arbitrary precision), using a generalization of a simple

dichotomy methodology. The MHRR presents a trade-off

between performance and routing stability. The more intervals

we use, the more adapted the routing becomes. However,

the number of intervals should be bounded as many routing

changes may lead to instabilities and performance degradation.

In a general case, 2 sub-sets are enough to handle the usual

daily variation.

MHRR Evaluation

We present a comparative analysis between SRR and

MHRR in Abilene, an Internet2 backbone network. Abilene

consists in 12 router-level nodes and 30 OC192 links (2

OC48). The used router-level network topology and traffic

demands are available at [26]. Traffic data consists in 6-

month traffic matrices collected every 5’ via Netflow from the

Abilene Observatory [27]. The time-variation of the polytope

is not a simple homothety [1]; in this sense, we will show

that a routing configuration change during the day improves

routing performance. Let Ro be the historical routing matrix of

Abilene, not necessarily optimal (Ro is available at [26]). We

consider a single time partitioning (i.e. 2 routing intervals),

w1 = 20:00, w2 = w∗ and w3 = 21:00, where w∗ is

the solution for (4). For each time interval, we consider the

smallest polytope that includes all possible realizations over

that period:

DA,B = {d ∈ R
m, Ro × d 6 yA,B , d > 0} (5)

where yA = y20:00−w∗

max and yB = yw∗−21:00
max (maximum

values for each link). In this way, DA includes all traffic

demands between 20:00 and w∗ and DB between w∗ and

21:00 (see figure 1(b)). For each polytope, we compute a

SRR configuration, RA
robust and RB

robust. In order to compare

stable and multi-hour approaches, we apply both routing

configurations during the whole evaluation period. We include

the routing performance obtained with Ro (curve historical

routing) to appreciate the time variation of traffic loads. Figure

2(a) compares the routing performance (MLU) between these

22:00 2:00 6:00 10:00 14:00 20:00
0.2

0.25

0.3

0.35

0.4

0.45

Time (hours)

M
ax

im
um

 L
in

k 
U

til
iz

at
io

n

Historical Routing
Stable Robust Routing A
Stable Robust Routing B
Multi−Hour Robust Routing

5:00 9:00 13:00 17:00 21:00 1:00
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Time (hours)

M
ax

im
um

 L
in

k 
U

til
iz

at
io

n

 

 

Historical Routing
Stable Robust Routing A
Stable Robust Routing B
Multi−Hour Robust Routing

(a) Expected daily behavior (b) Anomalous unexpected event

Fig. 2. Routing performance, stable vs. multi-hour robust routing.

two RR configurations. Polytope DA is well suited for smaller

loads, so RA
robust performs better during the first half of the

day, when network loading is lower. However, when traffic

increases, demands that do not belong to DA produce higher

link utilizations than those obtained with RB
robust. The MHRR

consists in computing the time when routing must be changed

(w∗ ≈ 8:00 in this case), using the corresponding routing

configuration depending on the time of the day (RA
robust

before w∗ and RB
robust after). The MHRR approach presents

a performance improvement of 15% with respect to the SRR

approach before w∗, reaching a near 20% of over-efficiency

after w∗. We repeat the same evaluation but considering a

traffic demand that drastically changes (i.e. a large time-

variation of the polytope, caused by a volume anomaly). Figure

2(b) presents an abrupt change in MLU (almost 14 times

higher) at time 18:00. In this case, we assume that this change

is known in advance (note that in the general case, it is not

possible to predict these abrupt changes). The optimal moment

for changing routing is w∗ ≈ 18:00. The MHRR approach

definitely outperforms the SRR in this experience, presenting

a MLU between 10% and 60% smaller during the whole

evaluation period.

IV. DEALING WITH UNEXPECTED EVENTS

The proposed MHRR approach offers a robust and efficient

routing configuration, provided a rough knowledge of the daily

uncertainty set. However, in the presence of volume anomalies

it is no longer possible to apply the MHRR as the daily

uncertainty set is unknown. For those cases, we propose a

fast volume anomaly detection/isolation algorithm to quickly

identify faulty traffic. This detection allows to decide as soon

as possible the moment when routing configuration must be

changed. The goal of the algorithm is to detect/isolate an addi-

tive change θ in the time series of traffic demand d(t) from a

sequence of link load measurements y(t) = R × d(t). We use

link loads as input to avoid relying on seldom available traffic

demands. In this work, we focus on detecting and isolating a

“localized” anomaly1, θ = θ (δ1,i, . . . , δi,i, . . . , δm,i)
T

, where

δi,j = 0 if i 6= j and δi,i = 1 (this corresponds to a change θ in

OD flow i). The isolation of the anomalous traffic is possible

1If several OD flows are simultaneously corrupted, the detection/isolation
algorithm produces an alarm and identifies only one faulty OD flow. The al-
gorithm can be extended to detect simultaneous anomalies, but the complexity
(no operations) grows like m4, where m is the no of OD flows.



since an anomaly in a given OD flow typically spans multiple

links. Real traffic demands follow a non-observable model

from link load measurements: since r < m, it is impossible

to retrieve d(t) from y(t) without additional assumptions on

the traffic demand. To overcome this difficulty, we propose

a parsimonious linear model for non-anomalous traffic. This

model renders traffic demands observable and therefore, it

allows to separate usual from anomalous traffic.

A. Stochastic Traffic Model for Anomaly Detection

We assume that the stochastic process of the OD traffic

demand d(t) obeys the following linear model:

d(t) = λ(t) + ξ(t) (6)

where λ(t) ∈ R
m is the mean traffic demand and ξ(t)

is a white Gaussian noise with covariance matrix Σ(t) that

represents the model error. The process λ(t) represents the

“regular” part of the OD TM which can be correctly modeled

when the behaviour of the network is anomaly-free. We pro-

pose to parameterize this vector by exploiting the stationarity

of the spatial distribution of the TM. One of the few invariants

of Internet traffic is that a small percentage of flows contribute

to a large proportion of total traffic [4], [16]. Hence, if we

assume that the traffic distribution between the different OD

couples is spatially stationary in the absence of an anomaly,

the order of increasing OD flows remains constant during

long time periods. The proposed traffic model takes advantage

of the stationary property of this ordering. We propose to

classify OD flows in three different classes, depending on

their volume: large OD flows, small OD flows and medium-

size OD flows. The sorted components can be interpreted as a

discrete increasing signal. The curve obtained by interpolating

this discrete signal is assumed to be a continuous curve, hence

it can be parameterized by using a polynomial approximation.

Figure 3 shows the OD flows, sorted in the increasing
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order of their volume of traffic, as a function of the time

t. Since data are vectors of finite dimension, we propose to

use the following method to design a discrete spline basis:

(i) we choose a continuous spline basis; (ii) we discretize all

these splines according to m points uniformly chosen on the

interval [1;m] and (iii) we rearrange all these discrete signals

according to previous sorting order. We finally obtain the

following linear model for the anomaly-free traffic demand:

d(t) = Sµ(t) + ξ(t) (7)

where S = (s1 s2 . . . sq) is a m × q known matrix with

columns sj and q is small with respect to m. The vectors

si, which correspond to the rearranged discrete spline, form a

set of known basis vectors describing the spatial distribution

of the traffic and µ(t) = (µ1(t) . . . µq(t))
T

is the unknown

time varying parameter vector which describes the OD flow

intensity distribution with respect to the set of vectors si. The

model for the anomaly-free link traffic is given by:

y(t) = Hµ(t) + ζ(t), (8)

where H = RS and ζ(t) = Rξ(t). In this way, we can

describe the usual behavior of traffic demands from simple

link measurements. The computation of the rank of H is not

simple since it depends on the routing matrix R. In practice,

since the number of columns of H is very small, the product

RS and its rank can be computed very fast. Therefore, we

will assume that H is full column rank. Finally, the covariance

matrix Σ is unknown. The remedy consists in computing an

estimate Σ̂ of Σ. Results on the estimation of Σ̂ can be found

in [22].

B. Volume Anomaly Detection/Isolation

The detection/isolation of a volume anomaly at time t0 can

be treated as a hypothesis testing problem where the null

hypothesis H0
t0

= {the OD flows are anomaly-free at time

t0} is tested against m alternatives Hj
t0

= {the j-th OD flow

presents an anomalous additional amount of traffic θ from the

time t0}. The change detection algorithm has to compute a

pair (T, ν), where T is the alarm time at which a ν-type

change (ν ∈ {1, 2, . . . ,m}) is detected and isolated, based on

link traffic observations y1,y2, ... This algorithm is optimal

in the sense that it minimizes the maximum mean delay for

detection/isolation, for a given minimum mean time before

a false alarm γ and maximum false isolation probability β,

both defined by an expert user. The hypothesis testing can be

written as

H0 : y(t) ∼ N (H µ(t), RΣRT ) , t = 1, 2, . . . , (9)

Hj
t0

:





y(t) ∼ N (H µ(t), RΣRT ), t = 1, . . . , t0 − 1,
y(t) ∼ N (H µ(t) + θj rj , RΣRT ) ,

θj,1 6 |θj | 6 θj,2 , t = t0, t0 + 1, . . .
(10)

where rj, 16j6m denotes the normalized j-th column of R and

0 < θj,1 < θj,2 < +∞ are some known bounds on the change

intensity of the j-th OD flow (these bounds are introduced

for technical reasons but they can be chosen arbitrarily). As

we show in the Appendix, we can simplify this problem by

eliminating the non-anomalous traffic. In this case, hypothesis

(10) can be rewritten as

Hj
t0

:





z(t) ∼ N (0, Ir−q) , t = 1, . . . , t0 − 1,
z(t) ∼ N (θjvj , Ir−q) ,

θj,0 6 |θj | 6 θj,1 , t = t0, t0 + 1, . . .
(11)

where vj is a known vector and z(t) are the normalized

residuals obtained from y(t) after filtering the non-anomalous

traffic. The vector vj corresponds to the signature in the



residuals of a change in OD flow j. We use the optimal

recursive algorithm (Tr, νr) proposed in [25] to solve (11) :

Tr = min
16k6m

{Tr(k)}, νr = arg min
16k6m

{Tr(k)}

Tr(k)= inf

{
t > 1 : min

06j 6=k6m
[gt(k, j) − hk,j ] > 0

}
(12)

with gt(k, j) = gt(k, 0) − gt(j, 0). The recursive functions

gt(k, 0) are defined by

gt(k, 0) = (gt−1(k, 0) + zt(k, 0))
+

(13)

zt(k, 0) = log
fk(z(t))

f0(z(t))
(14)

g0(k, 0) = 0 for every 1 6 k 6 m and gt(0, 0) = 0 for all t.

f0 represents the probability density function of anomaly-free

traffic measurements. fk is the probability density function

of residuals z(t0), z(t0 + 1), .. after a change of type k. The

thresholds hk,j are chosen by the following formula:

hk,j =

{
hd if 1 6 k 6 m and j = 0
hi if 1 6 k, j 6 m and j 6= k

where hd is the detection threshold and hi is the isolation

threshold. For given bounds γ and β, this algorithm is

asymptotically optimal, i.e. it reaches the lower bound of the

maximum mean delay for detection [25]. The choice of the

detection and isolation thresholds hd and hi is discussed (with

practical comments and simulations) in [24].

C. Validation

We demonstrate the ability of the detection/isolation algo-

rithm to detect and identify a volume anomaly in SNMP link

flow data from two different networks (different not only in

the topology but also in the behavior of traffic demands): a

large Tier-2 network (50 nodes, 168 measured links and 2450

non-zero OD flows, sampled at a 10 minute rate) and Abilene

(the Abilene dataset consists in Netflow traces, so we use the

supplied routing matrix to retrieve link loads). Figure 4 shows

the typical realizations of the decision functions gt(i, 0) and

st(i) = min06i6=k6m[gt(i, k)−hi,k] vs the elapsed time. The

functions st(i) are used to “monitor” the OD flows; when the

function st(i) exceeds 0, OD flow i is declared faulty. It is

assumed that the anomaly in the Tier-2 network begins at time

3660, and at time 1070 in Abilene. Note that after this time,

several decision functions gt(i, 0) rapidly grow. Each function

gt(i, 0) is associated with OD flow i and when this function

grows, it means that OD flow i is suspected of carrying an

abnormal amount of traffic. Contrary to gt(i, 0), only decision

function st(159) (st(87) in Abilene) associated to faulty OD

flow 159 (87 respectively) grows and finally exceeds the

threshold. Hence, the functions st(i) permit us to isolate

the faulty OD flow among all the OD flows associated to

functions gt(i, 0) that have rapidly grown. At time 3660 (1070
respectively), an alarm is raised and the algorithm selects the

faulty OD flow 159 (87 respectively). The decision function

st(i) needs only 1 observation (10 minutes in the Tier-2

network or 5 minutes in Abilene, but this is the smallest delay

than can be achieved given these sampling-rates) to detect and

isolate the faulty OD flow. An interesting observation of this
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Fig. 4. Typical realizations of decision functions for a Tier-2 network (a,b)
and Abilene (c,d).

evaluation is that the detection/isolation algorithm achieves

good results in both networks, even though the respective

traffic demand behaviors are completely different between

these two networks.

V. REACTIVE ROBUST ROUTING

Both proactive and reactive methods (the MHRR and the

anomaly detection/isolation algorithm respectively) are com-

bined into a single approach we refer to as the Reactive

Robust Routing (RRR). This approach provides an automatic

method for robust routing configuration/reconfiguration, based

on the monitoring of the network state. The RRR exploits the

isolation ability of the detection/isolation algorithm to compute

a new robust routing configuration after the detection of an

anomalous OD flow; at the same time, it detects the end of

the anomaly (if there is any) and returns to the usual MHRR

routing.

A. Routing Reconfiguration

We propose a simple method that exploits both

the RR approach and the isolation ability of previous

detection/isolation algorithm to compute the new routing

scheme to apply after the detection step. The idea of this

reconfiguration is to minimize the impacts of the detected

anomaly on the network performance. We assume that

before the detection of the anomalous traffic, a stable RR

configuration RA
robust is applied, computed on the basis of

the historical routing Ro and the link load yo that results

from the MHRR algorithm (5) (RA
robust is obtained from

(3), using DA = {d ∈ R
p, Ro × d 6 yo, d > 0}). After

the detection and isolation of the faulty OD flow k, the

anomalous-free traffic demand d takes the value d∗ = d + θ,

with θ = θ.δk, where δk = (δ1,k, . . . , δk,k, . . . , δp,k)T ,

δi,k = 0 if i 6= k and δk,k = 1. We can expand the

uncertainty set DA in the directions of the routed OD



flow k (with respect to Ro, i.e. the routing configuration

that defined DA), obtaining an expanded uncertainty set

DC = {d∗ ∈ R
p, Ro × d∗ 6 yo + Roθ, d > 0}. The reader

should bear in mind that the type of anomalies we deal

with are generally caused by external factors (e.g. external

routing changes, flash crowds, denial of service attacks); this

justifies the relevance of the uncertainty set expansion with

respect to Ro. Said in other words, we detect and identify

which is the anomalous OD flow, an then we consider a

bigger uncertainty set that takes into account the abrupt

change of this OD flow. The new RR scheme RC
robust is

the solution for (3), using DC . To avoid the estimation of

the unknown anomalous volume θ, we can expand DA to

the limits of links’ capacities, in the direction of OD flow

k : DC =
{
d∗ ∈ R

p, Ro × d∗ 6 yo.ζi,k + C.ζi,k, d > 0
}

,

where ζi,k = 1 if OD flow k is routed across link i = 1..r and

ζi,k = 0 otherwise, and † denotes the ones’ complement of †
(bitwise NOT, i.e. 0 → 1 and 1 → 0). While the outcome of

this approach may result in routing inefficiency, it avoids the

estimation errors of θ (i.e. we build a more robust routing).
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Figure 5 presents the evaluation of the RRR approach in the

presence of a sudden and abrupt load change. We consider

the same situation of figure 2(b), comparing the routing

performance of the MHRR and the RRR respectively. As in

section III, we assume the daily uncertainty set is completely

known for the case of the MHRR (i.e. the abrupt change is

known in advance). For the RRR, the anomaly is automatically

detected and the new routing configuration is computed and

immediately applied, based on the expansion of the uncertainty

set. We can appreciate that the routing performance of the RRR

is slightly worst than the one obtained with the MHRR (less

than 2%). Nevertheless, the RRR represents a real scenario,

where the anomaly can not be forecasted and has to be detected

to compute an accurate rerouting.

B. Back to the MHRR scenario

After the anomaly detection and the robust routing re-

configuration, we must provide a way to detect the end of

the anomaly, in order to return to the MHRR situation. This

detection can be easily achieved by using a simplified version

of our detection algorithm: suppose that we detect and isolate

a ktype anomaly at time t0 (i.e. OD flow k is declared as

anomalous). For every time t > t0, we only monitor OD flow

k until no anomaly alarms are raised, showing the end of this

anomaly (remember that in this work we have only considered

“localized” anomalies, i.e. anomalies in a single OD flow at a

time). As we focus on a single OD flow, the multi-hypotheses

test (9), (10) becomes a single hypothesis test, where the null

hypothesis H0
t = {the OD flow k is anomaly-free at time

t} is tested against H1
t = {the k-th OD flow presents an

anomalous additional amount of traffic at time t} (note that

this hypothesis test is slightly modified, as both hypothesis are

exchanged). Instead of using a sequential probability test (e.g.

single CUSUM algorithm [23]), we propose to apply a simple

LLR test (Log Likelihood Ratio Test) at each time t. For this

purpose, we consider the decision function τt(k)

τt(k) =

(
log

fk(z(t))

f0(z(t))

)+

− hd (15)

In the presence of an anomalous behavior in OD flow k,

τt(k) > 0 and the anomaly alarm keeps raising. When

τt(k) becomes negative, the anomaly alarm ceases, pointing

out its end. To conclude this section, we present in figure
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6 an evaluation of the complete RRR approach under the

presence of a volume attack (e.g. single DoS attack). We

introduce an artificial sudden and large volume change in

OD flow 63 of the Abilene dataset. This artificial traffic is

put on top of the usual daily traffic between times 1125 and

1350. The first step of the RRR consists in computing the

MHRR, using an expected daily uncertainty set. The optimal

division (4) results in w∗ = 1230. The evaluation begins

at time 1020, when the MHRR decides to apply the SRR

RA
robust (SRR A in fig. 6). The detection/isolation algorithm

continuously monitor the network state, and at time t0 = 1125



detects and localizes an anomalous behavior in OD flow 63

(figure 6(a)). After the detection (and before the new sampling

of link loads y(t0 + 1), i.e. a 5’ time-window) the new

routing configuration is computed, according to V-A. At time

t = t0 + 1 the new routing configuration is deployed and the

anomaly-end detection phase begins. It is important to note

that the matrix H = RS as well as the usual-traffic rejector

(see the Appendix) must be recomputed after the change of

the routing matrix R (in fact, the same re-computation must

be conducted every time the routing matrix changes, restarting

the detection algorithm to avoid transient effects). The decision

function τt(63) remains positive for every time t > t0, until

time t′ = 1350, when the negative value of τt′(63) shows the

end of the anomalous behavior in OD flow 63. At this time,

the RRR compares t′ with w∗ in order to decide which routing

to apply, whether SRR RA
robust or RB

robust (RA
robust if t′ < w∗

or RB
robust if t′ > w∗). Once the new routing configuration

is established, the anomaly detection/isolation algorithm starts

again to search for anomalous behaviors. The performance

improvements of the RRR are evident, up to a 40% wrt the

MHRR and near 50% wrt the traditional SRR approach.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we address the routing optimization under

traffic uncertainty problem. We provide a solution that not only

deals with current dynamic traffic demands in a robust and effi-

cient way but also detects and isolates large-volume anomalous

traffic, improving network operation. We extend the robust

routing paradigm by introducing the notion of time-varying

uncertainty set, setting up a multi-hour robust routing scheme.

We show that this approach achieves better resource utilization

than previous stable robust proposals in different scenarios.

We introduce an original linear spline-based parsimonious

model to parameterize usual traffic behavior from widely

available link load measurements. Compared to many other

traffic models, ours remains stable along time, a necessary

condition to achieve reliable results. Based on this model, we

present a statistical algorithm to detect and isolate volume

anomalies in network traffic. This algorithm presents well-

established conditions of optimality, unavailable in previous

proposals in the field. We apply this algorithm to cope with

sudden and large traffic changes in current dynamic demands,

complementing the multi-hour robust scheme. We propose a

simple method that exploits both the RR approach and the

isolation ability of previous detection/isolation algorithm to

compute the new routing scheme to apply after the detection

step. The idea of this reconfiguration is to minimize the

impacts of the detected anomaly on the network performance.

All these algorithms are merged into a new proposal for

robust and reactive routing optimization, the Reactive Robust

Routing. The RRR approach deals with traffic uncertainty in

a completely automatic fashion, simplifying network manage-

ment.

We believe that the RRR represents a first step towards

a dynamic and robust routing policy, but many important

issues remain open for further study. A deep evaluation of

the impact of routing re-configuration on end-to-end traffic

must be conducted, especially considering the imposed QoS

restrictions in the actual end-user Internet-services scenario.
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APPENDIX - ELIMINATION OF NON-ANOMALOUS TRAFFIC

Non-anomalous traffic Hµ(t) is eliminated by projecting the
measurement vector y(t) on the null space of H . By using the
invariant properties of the Gaussian law, the general covariance matrix
in (10) is reduced to the identity one. Let us define the matrix
W = (w1, ..,wr−q) of size r × (r − q) composed of eigenvectors

w1, ..,wr−q of the projection matrix P⊥

H = Ir − H(HT H)
−1

HT

corresponding to eigenvalue 1. The matrix W satisfies the following
conditions: W T H = 0, WW T = P⊥

H and W T W = Ir−q . The
matrix W can be considered as a linear rejector that eliminates the
non-anomalous traffic. Under hypothesis H

j
t0

, the sequence W T
y(t)

can be modeled as W T
y(t) = W T ζ(t)+ θj W T

rj , j = 1, .., m.
Since W T ζ(t) is a correlated Gaussian vector with covariance matrix

Σ̃ = W T RΣRT W , each vector W T
y(t) is normalized by using the

square root matrix Σ̃
1
2 , z(t) = Σ̃−

1
2 W T

y(t) ∼ N ( θj vj , Ir−q),

with vj = Σ̃−
1
2 W T

rj .


