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Sequential detection (and isolation) of unusual and significant changes in network Origin-Destination (OD) traffic volumes from simple link load measurements is considered in the paper. The ambient traffic, i.e. the OD traffic matrix corresponding to the non-anomalous network state, is unknown and it is considered here as a nuisance parameter because it can mask the anomalies. Since the OD traffic matrix is not recoverable from the simple link load measurements, the anomaly detection is an ill-posed decision-making problem. The method discussed in this paper consists of finding a linear parsimonious model of ambient traffic (nuisance parameter) and detecting/isolating anomalies by using an invariant decision algorithm. An optimal sequential algorithm has been discussed in our previous publication, the main goal of the present paper is to discuss a simple "snapshot" algorithm based on the last vector of observations.

Introduction and motivation

The traffic demand over a network is typically described by a traffic matrix that captures the amount of traffic transmitted between every pair of ingress and egress nodes in a network, also called the Origin-Destination (OD) flows. A volume anomaly is a sudden change in an OD flow's traffic (for example, due to denial-of-service, viruses/worms, external routing reconfigurations, etc.) that spans multiple physical links of the network. The reliable detection/isolation of these unusual and significant changes in the OD traffic matrix is an important issue for network operation. The direct measurements (flow-level data) need high hardware requirements to be collected and processed network-wide [START_REF] Coates | Internet tomography[END_REF]. Consequently, the Simple Network Management Protocol (SNMP), which is a widely deployed standardized protocol, is preferred in practice to measure link loads and obtain some information on the traffic matrix. The challenge lies in the ill-posed nature of the problem: the number of unknown OD flows is much larger than the number of SNMP measurements [START_REF] Ahmed | Multivariate online anomaly detection using kernel recursive least squares[END_REF].

Several approaches are proposed to remedy this problem. The first group of methods consists in detecting anomalies in SNMP measurements without taking in consideration the traffic matrix. Such methods typically use times series, ARIMA models among others, [START_REF] Krishnamurthy | Sketch-based change detection: methods, evaluation, and applications[END_REF]; [START_REF] Thottan | Anomaly detection in IP networks[END_REF]; Tartakovsky et al. (2006aTartakovsky et al. ( , 2006b)); [START_REF] Ahmed | Multivariate online anomaly detection using kernel recursive least squares[END_REF]) to model the SNMP measurement evolution in time and to detect deviations. In [START_REF] Lakhina | Diagnosing network-wide traffic anomalies[END_REF], the authors propose to decompose the SNMP measurements on a Principal Component Analysis (PCA) basis. These methods can detect anomalies by monitoring each link but they do not exploit the routing matrix, i.e. the linear mathematical relationship between the OD traffic matrix and the SNMP measurements.

The second group of methods [START_REF] Cao | Time-varying network tomography: router link data[END_REF]; [START_REF] Coates | Internet tomography[END_REF]; [START_REF] Tebaldi | Bayesian inference on network traffic using link count data[END_REF]) exploits this linear mathematical relationship. These approaches typically assume that the traffic matrix is well approximated by a known statistical model. Such a method requires a well known prior to be efficient, which is not always feasible in practice. In [START_REF] Zhang | Network anomography[END_REF], the authors study a large number of methods based on several kinds of model for SNMP measurements (wavelets, PCA among others) and OD flows (ARIMA time series) to detect anomalies. A major drawback of these methods is the absence of theoretical results on the optimality of the studied methods with respect to the statistical hypotheses testing theory: no results are proposed about the design of an optimal test which maximises the probability to detect anomalies.

Finally the last group of methods consists in using the Kalman filtering technique [START_REF] Soule | Traffic matrices: balancing measurements, inference and modeling[END_REF]) to track the evolution of the traffic matrix in time and to detect changes in the OD flows. Strictly speaking, the ill-posed nature of the measurement model makes the Kalman filter not observable and the Kalman filtering efficiency strongly depends on the initialization, which is a serious limitation in practice.

The contributions of this study are the following. First, a parsimonious linear model of non-anomalous OD flow volumes ("ambient" traffic) is proposed. This model can be used in two ways, either to estimate the OD flow volumes or to eliminate the non-anomalous "ambient" traffic from the SNMP measurements in order to provide residuals sensitive to anomalies. Secondly, since a few anomaly-free SNMP measurements (at most one hour of measurements) is sufficient to obtain a reliable model of the OD flows, the proposed method is well adapted to the case of non stationary measurements and to dynamic routing which is a typical situation in practice. Finally, an optimal invariant detection algorithm is proposed to detect anomalies directly from SNMP measurements. x(1, 2)
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x(1, 3) Let us consider a network composed of r nodes and n monodirectional links [START_REF] Lakhina | Diagnosing network-wide traffic anomalies[END_REF]; [START_REF] Zhang | Network anomography[END_REF]) where y(ℓ) denotes the volume of traffic (typically in bytes) on the link ℓ at time t. To simplify the notations, the subscript t is omitted. The link volumes are provided by SNMP measurements. Let x(i, j) be the OD traffic demand from node i to node j at time t. This situation is shown in Fig. 1. The traffic matrix X = {x(i, j)} is reordered in the lexicographical order as a column vector X = (x(1), . . . , x(m))

T where X T denotes the transpose of the matrix X and m = r 2 is the number of OD flows. Let us define an n × m routing matrix A = (a(ℓ, k)) where 0 ≤ a(ℓ, k) ≤ 1 represents the fraction of OD flow k volume that is routed through link ℓ. This leads to the linear model Y = A X where Y = (y(1), . . . , y(n))

T . Without loss of generality, the known matrix A is assumed to be full row rank, rank (A) = n.

Problem statement : volume anomaly detection

The problem consists in detecting (/isolating) a significant volume anomaly in an OD flow x(i, j) by using only SNMP measurements y(1), . . . , y(n). For example, in Fig. 1, it is necessary to detect a sudden increase of the traffic volume x(1, 3) by using y(1), y(2), y(3) (typical figures of anomaly to be detected in SNMP measurements are presented in Lakhina et al. ( 2004)).

As it has been mentioned above, the main problem with the SNMP measurements is that n ≪ m. To overcome this difficulty a parsimonious linear model of non-anomalous traffic has been used. The derivation of this model includes two steps: i) description of the ambient traffic by using a spatial stationary model and ii) linear approximation of the model by using piecewise polynomial splines. The idea of the spline model is that the non-anomalous (ambient) traffic at each time t can be represented by using a known family of basis functions superimposed with unknown coefficients : i.e. X t ≈ Bµ t , where the m × q matrix B is assumed to be known and µ t ∈ R q is a vector of unknown coefficients such that q < n. Finally, it is assumed that the model residuals together with the natural variability of the OD flows follow a spatial Gaussian distribution, which leads to the following equation:

X t = Bµ t + ξ t (1)
where ξ t ∼ N (0, Σ) is a Gaussian noise, with the m × m spatial diagonal covariance matrix Σ = diag(σ 2 1 , . . . , σ 2 m ). The advantages of a parametric model are the following ones. First, a non-parametric basis, typically the PCA basis, can be used to generate the matrix B but this solution needs direct OD flow measurements (infeasible in practice) and the PCA basis depends on the period when the measurements are made (see [START_REF] Ringberg | Sensitivy of PCA for traffic anomaly detection[END_REF]). Secondly, the parametric detection method performances are better than the non-parametric ones provided that the adopted model is accurate enough. Hence, the link load measurement model is given by the following linear equation :

Y t = A Bµ t + Aξ t = Gµ t + ζ t + [η = possible anomaly], (2) 
where Y t = (y(1), . . . , y(n)) T and ζ t ∼ N (0, AΣA T ). Without any loss of generality, the resulting matrix G = A B is assumed to be full column rank. Typically, when an anomaly occurs on OD flow j at time t 0 (change-point), the vector η has the form η = ǫ a(j) where a(j) is the j-th normalized column of A and ǫ is the intensity of the anomaly. The goal is to detect the presence of an anomalous vector η not explicable by the ambient traffic model X t ≈ Bµ t and to isolate the contaminated OD flow j.

The problem of the anomaly detection/isolation based on a sequential decision rule [START_REF] Nikiforov | A generalized change detection problem[END_REF][START_REF] Nikiforov | A simple recursive algorithm for diagnosis of abrupt changes in random signals[END_REF][START_REF] Nikiforov | A lower bound for the detection/isolation delay in a class of sequential tests[END_REF]) has been discussed in our previous publication (see Fillatre et al. (2007b)) for a time correlated noise sequence (ζ t ) t≥1 . In case of a strong autocorrelation in the residual process (ζ t ) t≥1 and a large signal-to-noise ratio, the statistical characteristic of the snapshot algorithm is very close to the characteristic of the optimal sequential test because the mean detection delay is almost equal to one observation. For this reason let us consider now a simple and efficient detection scheme based on the step by step hypotheses testing sometimes called "snapshot".

Snapshot detection : hypotheses testing

Since the matrix Φ = AΣA T is known, the testing problem consists of choosing between the two alternatives at time t:

H 0 = {Z t ∼ N (θ + Hµ t , I n ); θ = 0, µ t ∈ R q }
(3)

H 1 = {Z t ∼ N (θ + Hµ t , I n ); θ = 0, µ t ∈ R q }, (4) 
with

Z t = Φ -1 2 Y t , H = Φ -1 2 G, θ = Φ -1 2 η, Φ -1 2
is the square-root matrix of Φ -1 , Φ -1 is the inverse of Φ and I n is the identity matrix of size n. Here µ t is considered as a nuisance vector parameter since i) it is completely unknown, ii) it is of no interest for the system in charge to detect the anomaly θ and iii) it can mask the anomalies.

Let K α = {φ : sup µ t ∈R q Pr θ=0,µ t (φ(Z t ) = H 1 ) ≤ α} be the class of tests φ : R n → {H 0 , H 1 } with upper-bounded maximum false alarm probability, where the probability Pr θ,µ t stands for the vector of observations Z t being generated by the distribution N (θ + Hµ t , I n ) and α is the prescribed probability of false alarm. The power function β is defined as the probability of detection: β(θ; µ t ) = Pr θ =0,µ t (φ(Z t ) = H 1 ). The subtlety of the above mentioned hypotheses testing problem consists of choosing between H 0 and H 1 with the best possible performance indexes (α, β) while considering µ t as a nuisance parameter.

Anomaly detection methodology

It is easy to see that the problem remains invariant under the group of translations G = {g : g(Z) = Z + Hc , c ∈ R q }. Let S be the family of surfaces S = {S c : c > 0} with S c = {θ : P ⊥ H θ 2 2 = c 2 }. Then, it is shown (Fillatre and Nikiforov (2007a)) that the test

φ * (Z t ) = H 0 if Λ(Z t ) = P ⊥ H Z t 2 2 < λ α H 1 else , (5) 
where P ⊥ H = I n -H(H T H) -1 H T and the threshold λ α is chosen to satisfy the false alarm bound α, Pr θ=0,µ t (Λ(Z t ) ≥ λ α ) = α, is Uniformly Best Constantly Powerful (UBCP) 1 in the class K α over the family of surfaces S. The statistics Λ is distributed according to the χ 2 law with nq degrees of freedom. This law is central under H 0 and non-central under H 1 with the non-centrality parameter θ T P ⊥ H θ.

  Fig. 1. Detection of unusual changes in OD traffic volumes. A step-wise anomaly appears at time t0 in the OD flow x(1, 3) and it is routed on links y(1) and y(2).

A test φ * ∈ Kα is UBCP on S if 1) β φ * (θ ′ ) = β φ * (θ ′′ ), ∀θ ′ , θ ′′ ∈ Sc;

2) β φ * (θ) ≥ β φ (θ), ∀θ ∈ Sc, ∀c > 0 for any test φ ∈ Kα which satisfies 1).

Conclusion

The results of numerical experiments with real data will be shown during the presentation of the paper. They confirm the quality of the proposed methods.