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Abstract—In the last few years, the number and impact
of security attacks over the Internet have been continuously
increasing. To face this issue, the use of Intrusion Detection
Systems (IDSs) has emerged as a key element in network
security. In this paper we address the problem considering
a novel statistical technique for detecting network anomalies.
Our approach is based on the use of different families of
Markovian models (namely high order and non homogeneous
Markov chains) for modeling network traffic running over TCP .
The performance results shown in the paper, justify the proposed
method and highlight the improvements over commonly used
statistical techniques.

Index Terms—Intrusion Detection System, High Order Markov
Chain, Mixture Transition Model, Non-Homogeneous Markov
Chain

I. I NTRODUCTION

In the last few years Internet has experienced an explosive
growth. Along with the wide proliferation of new services,
the quantity and impact of attacks have been continuously
increasing. The number of computer systems and their vul-
nerabilities have been rising, while the level of sophistication
and knowledge required to carry out an attack have been
decreasing, as much technical attack know-how is readily
available on Web sites all over the world.

Recent advances in encryption, public key exchange, digital
signature, and the development of related standards have set
a foundation for network security. However, security on a
network goes beyond these issues. Indeed it must include
security of computer systems and networks, at all levels, top
to bottom.

Since it seems impossible to guarantee complete protec-
tion to a system by means of prevention mechanisms (e.g.
authentication techniques), the use of an Intrusion Detection
System (IDS) is of primary importance to reveal intrusions in
a network or in a system. IDSs are usually classified on the
basis of several criteria [1].

State of the art in the field of intrusion detection is mostly
represented by misuse based IDSs. Considering that most
attacks are realized with known tools, available on the In-
ternet, a signature based IDS could seem a good solution.
Nevertheless hackers continuously come up with new ideas
for the attacks, that a misuse based IDS is not able to block.
This is the main reason why our work has focused on the
development of an anomaly based IDS. In particular our goal

is to reveal intrusions carried out exploiting TCP bugs, by
using Markovian models (high order and non homogeneous
Markov chains) to describe the behavior of network traffic.

The use of first order homogeneous Markov chain is a well-
known approach to detect two distinct kinds of “anomalies”:
masqueraders (analyzing the command stream of a host) and
intruders (analyzing the evolution of TCP flows in the network
traffic) [2].

Vardi and Ju in [3] describe the use of high order Markov
chains to detect masqueraders at the host level, and in [4][5]
the authors compare performance of first order models and
“generic” high order models.

After an extensive survey, to the best of our knowledge,
there is no work directly related neither to the use of high
order Markov chains to detect anomalies in the TCP traffic
nor to the application of non-homogeneous Markov chains to
anomaly detection in general.

Moreover no study at all compares the performance achiev-
able with Markov chains of different orders and with a simple
“independent” model..

The paper is structured as follows: next section provides
a detailed description of the implemented system, while the
subsequent section presents the experimental results. Finally
section 4 concludes the paper with some final remarks..

II. SYSTEM DESIGN

In this section we provide a detailed description of the
proposed anomaly based NIDS.

The aim of our work is to perform a comparison between
several statistical models, which can be used to describe the
behavior of TCP connections. More in detail we take into
account the use of:
• first order homogeneous Markov chains
• first order non-homogeneous Markov chains
• high order homogeneous Markov chains
• stationary ECDF (Empirical Cumulative Distribution

Function)
• non-stationary ECDF
Next subsections describe the training phase and the detec-

tion phase of our IDS.

A. Training Phase

To build the model which represents the “normal” behavior
of the network, the system needs a training phase during which
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it analyzes some network traffic, supposed to be attack free.
The system analyzes raw traffic traces in libpcap format, the
standard used by publicly available packet sniffer software, as
Tcpdump or Ethereal. First of all the IDS performs a filtering
phase so that only TCP packets are passed as input to the
detection blocks.

The IDS only considers some fields of the packet headers,
more precisely the IP source address, the IP destination
address, the source port number, the destination port number,
and the TCP flags. The IP addresses and the port numbers are
used to identify a connection, while the value of the flags is
used to build the profile. Experimental results have shown that
the stochastic models associated to the different applications
strongly differ one from the other. Thus, before constructing
the model, the system isolates the different services, on the
basis of the server port number, and the following procedure
is realized once per each application. After that the IDS
reconstructs the single connections on the basis of the 5-tuple
(source and destination addresses, source and destinationports,
and protocol).

A value si is associated to each packet, according to the
configuration of the TCP flags:

si = syn+2 ·ack+4 · psh+8· rst+16·urg+32· f in (1)

Thus each “mono-directional” connection is represented bya
sequence of symbolssi , which are integers in{0,1, · · · ,63}.

The training phase, as well as the detection phase, varies
according to the stochastic model we are taking into account.

1) ECDF: In the case of the stationary ECDF the training
phase simply consists of evaluating the probabilitiesP(si)
that the TCP flags assume the valuesi , independently of the
position of the packet in the TCP connection.

For the non-stationary ECDF the system has to compute
the probabilitiesPj(si) that the TCP flags of thejth packet of
the connection assume the valuesi . Taking into account the
nature of the security attacks, for reducing the complexityof
the system, we have decided to evaluate such probabilities only
for the first 10 packets of a connection, i.e.j = 1,2, · · · ,10.

2) Markov Chains: In the case of Markovian models the
symbolssi are considered as the states of a hidden discrete
time finite state Markov chain.

Since not all the TCP flags configurations are observable in
real traffic, the system only considers the states observed in the
training phase. Moreover, to take into account the possibility
that some new flags configurations could be observed during
the detection phase, a rare state is added. This procedure
allows us to reduce the cardinality of the state space from
64 (all the possible configurations of the six TCP flags bits)
to a numberK, usually smaller than ten.

Then the system estimates the transition probabilities of the
Markov chain.

Since the computation of such probabilities is quite straight-
forward in the case of first order Markov chains (homoge-
neous and non-homogeneous), in the following we consider
a Markov chain of orderl . The main problem related to this
kind of models is the “explosion” of the number of parameters,

which grows exponentially with the order, according to the rule
K l (K−1). This entails the need of a parsimonious representa-
tion of the transition probabilities. The approach used in this
paper is the Mixture Transition Distribution (MTD) model,
first proposed in [6]. Under the MTD model, the transition
probabilities of anl th order Markov chain can be expressed
as follows:

P(Ct = si0|Ct−1 = si1,Ct−2 = si2, · · · ,Ct−l = si l ) =

∑l
j=1 λ j r(si0|si j )

(2)

whereCt represents the state of the chain at stept and the
quantities

R= {r(si |sj); i, j = 1,2, · · · ,K}
Λ = {λ j ; j = 1,2, · · · , l}

(3)

satisfy to the following constraints:

r(si |sj )≥ 0; i, j = 1,2, · · · ,K
∑K

si=1 r(si |sj) = 1 ∀ j = 1,2, · · · ,K
(4)

λ j ≥ 0; j = 1,2, · · · , l and ∑l
j=1 λ j = 1 (5)

A consequence of the use of the MTD model is the reduction
of the number of parameters fromK l (K−1) to K(K−1)+
l − 1. To take into account the presence of the “rare” state
(labelled K), we have to fix the following quantities:

r(rare|si) = ε, ∀i = 1,2, · · · ,K andε small (ε = 10−6)
r(si |rare) = (1− ε)/(K−1),∀i = 1,2, · · · ,K−1

(6)

According to the MTD model the log-likelihood of a sequence
(c1,c2, · · · ,cT) of lengthT is

LL(c1,c2, · · · ,cT) =

∑K
i0=1 · · ·∑K

i l =1N(si0,si1, · · · ,si l )log

(

∑l
j=1 λ j r(si0|si j )

)

(7)

where N(si0,si1, · · · ,si l ) represents the number of times the
transitionsi l → si l−1 → ··· → si0 is observed. Maximum like-
lihood estimation (MLE) of the chain parameters requires to
maximize the right hand side of eq. (7), with respect toR and
Λ, taking into account the constraints (4) and (5).

Since the original solution [7] seems to be too much
computationally demanding, we have applied the procedure
proposed in [3], which consists in an alternate maximization
with respect toR and to Λ. This process leads to a global
maximum, sinceLL is concave inR andΛ. For the part when
R is fixed, we maximizeLL with respect toΛ, and vice-versa.
In the first step (estimation ofΛ) we have used the sequential
quadratic programming, while the second maximization step
(estimation ofR) is a linear inverse problem with positivity
constraints (LININPOS) that we have solved applying the
expectation maximization (EM) algorithm [8]. Since the first
maximization step is quite trivial, in what follows we discuss
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the second step, i.e. the estimation of the matrixR, with
the vectorΛ fixed. First of all we have re-indexed the log-
likelihood in the following way:

φ(si0,si1, · · · ,si l ) = 1+
l

∑
j=0

(si j −1)K l− j → k (8)

which takes to

N(si0,si1, · · · ,si l )→ ak and
l

∑
j=1

λ j r(si0|si j )→ bk (9)

Thus, at first we estimate the quantitiesbk (MLE) and then
we solve the linear system

bk =
l

∑
j=1

λ j r(si0|si j ) (10)

which is a LININPOS problem.
At this point, the log-likelihood can be expressed as:

kl+1

∑
k=1

aklogbk (11)

where [3]

kl+1

∑
k=1

ak = T− l and
kl+1

∑
k=1

bk = K l (12)

Thus a simple Lagrange method argument shows that the log-
likelihood is maximized when

b̂k =
ak

∑k ak
∑
k

bk =
ak

T− l
K l , ∀k (13)

or, equivalently, when

l

∑
j=1

λ j r(si0|si j ) =
K l

T− l
N(si0,si1, · · · ,si l ), ∀(i0, · · · , i l ) (14)

Thus, if we consider these equations as a linear system
subject to the constraints (4), we obtain a LININPOS problem,
which can be solved, in the sense of the minimum Kullback-
Leibler distance, using the EM algorithm. More in detail we
have [9]

(

A
B

)

R=

(

Kl

T−l ·N
1

)

(15)

where

RT = (r(s1|s1), r(s2|s1), · · · , r(sK |s1), · · · , r(sK |sK))

= (r1, r2, · · · , rK2)
(16)

are the unknowns,r(si |sj) = r i+K( j−1), and
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
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









(17)

whereN(s0,s1, · · · ,sl ) = Ni , i = φ(si0,si2, · · · ,si l )

A = {ai j }Kl+1×K2

whereai j = ∑l
k=0 λkI [ j = i0 +K(ik−1)],

(i0, · · · , i l ) = φ−1(i)
(18)

The matrixB looks like:

B =











1, · · · ,1 0, · · ·0 0, · · ·0 0, · · · ,0
0, · · ·0 1, · · · ,1 0, · · ·0 0, · · · ,0

0, · · ·0 0, · · ·0
... 0, · · · ,0

0, · · ·0 0, · · ·0 0, · · ·0 1, · · · ,1











K×K2

(19)

At this point the EM iteration step is the following:

r j ←
a· j

a· j +b· j
r̂ j(A,

K l

T− l
·N,R)+

b· j
a· j +b· j

r̂ j(B,1,R) (20)

where

r̂ j(W,u,v)≡
v j

w· j
∑
i

wi j ui

∑k wikvk
, j = 1,2, · · · ,K2 (21)

for matrix W = {wi j } and vectorsu = {ui},v = {vi}, and

a· j = ∑
i

ai j = ∑
(i0,··· ,i l )=φ−1(i)

l

∑
k=0

λkI [ j = i0 +K(ik−1)]

=
l

∑
k=0

λk∑
i0

· · ·∑
i l

I [ j = i0 +K(ik−1)]

=
l

∑
k=0

λkK
l−1 = K l−1

(22)

andb· j = ∑i bi j = 1.
The choice of the initial values forR andΛ is a key point.

Experimental tests have shown that good results are obtained
choosingλi = 1/l , i = 1,2, · · · , l and settingR to the first order
transition probabilities.
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Fig. 1. Log-likelihood function of a “normal” connection
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Fig. 2. Log-likelihood function of an “anomalous” connection

B. Detection Phase

Once the training phase has been performed, the IDS has a
model of the “normal” behavior of the network, represented
by the computedprofile.

As for the training phase, the input is given by raw traffic
traces in libpcap format, which are processed so as to extract
sequences of TCP flags configurations.

Thus, given an observed sequence
(c1,c2, · · · ,cT), the system has to decide between the two
hypotheses:

H0 : {(c1,c2, · · · ,cT)∼ computed model}
H1 : {anomaly}

(23)

The problem is to choose between a single hypothesisH0,
which is associated to the estimated stochastic model, and
the composite hypothesisH1, which represents all the other
possibilities. No optimal result is presented in the literature
about this decision theory problem, thus the best solution is
represented by the use of the Generalized Likelihood Ratio
(GLR) test [10].

Since the problem is quite straightforward for ECDF, in the
following we only consider the case of Markovian models, for
which the GLR test is defined as follows:

H(X) =

{

H0 i f X < ξ
H1 i f X > ξ (24)

where the thresholdξ is set by means of MonteCarlo
simulations and the quantityX is given by:

X =

(

Maxv6=uL(c1,c2, · · · ,cT |Λv,Rv)

L(c1,c2, · · · ,cT |Λu,Ru)

) 1
T

(25)

where the vector(Λu,Ru) represents the parameters corre-
sponding to the model computed during the training phase
(hypothesisH0) and the component1T is introduced to take
into account that each observed sequence is characterized
by a different lengthT. It is worth noticing that this test
is equivalent to decide on the basis of the Kullback-Leibler
divergence between the model associated toH0 and the one
computed for the observed sequence.

III. E XPERIMENTAL RESULTS

In this section we compare the performance of the different
statistical models over the 1999 DARPA evaluation project
[11] data set.

For sake of brevity, in the following we only present the
results related to the Telnet traffic, since they appear to be
representative of the overall performance.

To test the correctness of the computed models we have
calculated the log-likelihood function of some sequences.
Figure 1 corresponds to a “normal” connection. As expected
from the theory, the function decreases almost linearly with
the number of packets; its slope is equal to the entropy of the
model, which, for first order Markov chain, is defined as:

H (MC) = ∑
i

∑
j

π(i)P(sj |si) logP(sj |si)

whereπ(i) is the stationary distribution of the Markov chain.
The given definition can be easily extended for higher order
Markov chains.

On the other hand the effect of an anomaly is an abrupt jump
in the log-likelihood function, as highlighted by figure 2. Both
these figures refer to a first order model, but the behavior of
the log-likelihood function does not significantly vary with the
order of the Markov chain.

To evaluate the performance we have used a Receiver
Operating Characteristic (ROC) curve, which plots detection
rate vs. false positive rate, obtained varying the value of the
thresholdξ.

Figure 3 shows the ROC curves for Markov chains of
different orders. We have considered Markov chains of order
up to 4, since higher orders imply a heavy processing time,
not suitable for on-line detection. Since the results obtained
using a model based on a Markov chain of order 1 are already
very good for these traffic traces, it is not easy to realize that
we achieve some improvements with high order models. To
be noted that the ROC curves are almost ideal, since we have
a detection rate close to 100% with a negligeable false alarm
rate. Nevertheless the zoomed area inside the figure shows
that with the model of order 4 we are able to achieve the best
results, obtaining a detection rate of 53% with a false alarm
rate which is about one half of that related to the Markov
chain of order 1.

The following figure shows the performance of the ECDF,
while figure 5 presents a comparison between the first order
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Markov chains and the time dependent models described in
the paper.

Since a detection performed analyzing only the first 10
packets of each connection is obviously worse than the one
based on the entire connections, also the time independent
model has been computed only considering the first ten
packets of each connection. It is easy to conclude that the
homogeneous Markov chain achieves a detection rate almost
10% bigger than the other two models.

This apparent paradox can be justified by the fact that
the non-homogeneous models have been computed with a
relatively short, and so “incomplete”, training phase. Indeed,
on one side the whole training data set has been used to
compute only one homogeneous model, while on the other
side, the same quantity of data is partitioned into ten subsets
corresponding to the first ten steps in the time evolution of
each connection. In particular this can lead to almost determin-
istic probabilities for the first steps of the non homogeneous
models, thus a single flag configuration at stepi, present in
the training data set only at stepsj 6= i (and hence captured
by the time independent model), may generate a false alarm.

Finally, we have taken into account that an intrusion should
be detected as soon as the anomaly appears. Thus, in figure
6, we show the performance of the homogeneous Markov
chain model as a function of the number of analyzed packets
for each connection (both for building the model and for the
detection phase). The results highlight that good performance
are achieved with a small number of packets, demonstrating
that such statistical models are suitable for on line anomaly
detection.

IV. CONCLUSIONS

In this paper we have presented an anomaly based network
intrusion detection system, which detects anomalies usingsta-
tistical characterizations of the TCP traffic. We have compared
several stochastic models, such as first order homogeneous and
non-homogeneous Markov chains, high order homogeneous
Markov chains, and stationary and non-stationary ECDF. We
have detailed the estimation of the parameters of the models
and we have shown the results obtained with the DARPA 1999
data set. The performance analysis has highlighted that the
best results are obtained with the use of homogeneous Markov
chains and that some improvements can be achieved using
high order Markovian models: for instance, 4th order Markov
chains lead to the same detection rate of first order models,
with almost one half of false alarms.

Moreover, we have shown that, since only a small quantity
of packets is sufficient to reveal intrusions in the TCP traffic,
this kind of approach is suitable for on line detection.
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Fig. 3. Performance of Markovian models of different orders
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