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Abstract—In the last few years, the number and impact is to reveal intrusions carried out exploiting TCP bugs, by
of security attacks over the Internet have been continuougl ysing Markovian models (high order and non homogeneous
g;srte;;'gg'(lggsgailisthsm':fg“eed t:s ;Siesf é?é:ﬁg'not“ ir?ert]i‘t’\’jv“orkMarkov chains) to describe the behavior of network traffic.
security. In this paper we address the problem considering The use of first order homogen_ec_aus Mgrkov Cr‘]‘am IS a.vve,l’l.-
a novel statistical technique for detecting network anomaes. known approach to detect two distinct kinds of “anomalies™
Our approach is based on the use of different families of masqueraders (analyzing the command stream of a host) and
Markovian models (namely high order and non homogeneous intruders (analyzing the evolution of TCP flows in the netiwor
Markov chains) for modeling network traffic running over TCP. traffic) [2].

Th rformance results shown in th r, justify the pr . . . .

me?h%% c;lndah?gtahli(:;jshl{[ ttshse ?mprovén?e?\?seo’\)euftcfgnt']n?o%l?/‘mj:gd Vgrdl and Ju in [3] describe the use of high order Markov

statistical techniques. chains to detect masqueraders at the host level, and in] [4][5

Index Terms—Intrusion Detection System, High Order Markov Ehe au.th“ors compare performance of first order models and

Chain, Mixture Transition Model, Non-Homogeneous Markov generic” high ord(_ar models.

Chain After an extensive survey, to the best of our knowledge,
there is no work directly related neither to the use of high
order Markov chains to detect anomalies in the TCP traffic

. INTRODUCTION nor to the application of non-homogeneous Markov chains to
In the last few years Internet has experienced an explosamomaly detection in general.

growth. Along with the wide proliferation of new services, Moreover no study at all compares the performance achiev-

the quantity and impact of attacks have been continuousiple with Markov chains of different orders and with a simple

increasing. The number of computer systems and their viiRdependent” model..

nerabilities have been rising, while the level of sophiitn ~ The paper is structured as follows: next section provides

and knowledge required to carry out an attack have beardetailed description of the implemented system, while the

decreasing, as much technical attack know-how is readfiyibsequent section presents the experimental resultallyFin
available on Web sites all over the world. section 4 concludes the paper with some final remarks..

Recent advances in encryption, public key exchange, tligita
signature, and the development of related standards have se Il SYSTEM DESIGN

a foundation for network security. However, security on a In this section we provide a detailed description of the

network goes beyond these issues. Indeed it must inclugf@posed anomaly based NIDS.

security of computer systems and networks, at all levels, to The aim of our work is to perform a comparison between

to bottom. several statistical models, which can be used to describe th

Since it seems impossible to guarantee complete protg@_havior of TCP connections. More in detail we take into
tion to a system by means of prevention mechanisms (e&gcount the use of:

authentication techniques), the use of an Intrusion Dietect < first order homogeneous Markov chains

System (IDS) is of primary importance to reveal intrusioms i  first order non-homogeneous Markov chains

a network or in a system. IDSs are usually classified on thes high order homogeneous Markov chains

basis of several criteria [1]. . stationary ECDF (Empirical Cumulative Distribution

State of the art in the field of intrusion detection is mostly ~ Function)

represented by misuse based IDSs. Considering that most non-stationary ECDF

attacks are realized with known tools, available on the In- Next subsections describe the training phase and the detec-

ternet, a signature based IDS could seem a good solutitan phase of our IDS.

Nevertheless hackers continuously come up with new ideas

for the attacks, that a misuse based IDS is not able to bloék. Training Phase

This is the main reason why our work has focused on theTo build the model which represents the “normal” behavior

development of an anomaly based IDS. In particular our gaalthe network, the system needs a training phase duringwhic



it analyzes some network traffic, supposed to be attack freghich grows exponentially with the order, according to thier

The system analyzes raw traffic traces in libpcap format, thé(K — 1). This entails the need of a parsimonious representa-

standard used by publicly available packet sniffer sofewas tion of the transition probabilities. The approach usedhiis t

Tcpdump or Ethereal. First of all the IDS performs a filteringaper is the Mixture Transition Distribution (MTD) model,

phase so that only TCP packets are passed as input to fir@ proposed in [6]. Under the MTD model, the transition

detection blocks. probabilities of anl™ order Markov chain can be expressed
The IDS only considers some fields of the packet headess, follows:

more precisely the IP source address, the IP destination

address, the source port number, the destination port numbe

and the TCP flags. The IP addresses and the port numbers ard”(G =S,|CG-1=5,,G-2=15,,---,G1 =5/) = @)

used to identify a connection, while the value of the flags is Sho1Air(Sels))

used to build_ the profile. Expe_rimental resul_ts have sh_O\_ﬂn ”\Nherect represents the state of the chain at stegnd the

the stochastic models associated to the different apitat quantities

strongly differ one from the other. Thus, before constngti

the model, the system isolates the different services, en th

basis of the server port number, and the following procedure R={r(slsj); i,j=1,2,--- , K} 3)

is realized once per each application. After that the IDS AN={}Aj; j=1,2,--- 1}

reconstructs the single connections on the basis of thelg-tu

(source and destination addresses, source and destipatisn

and protocol).

satisfy to the following constraints:

A value 5 is associated to each packet, according to the r(slsj)>0;i,j=12,---,K
configuration of the TCP flags: s r( .|;) —1Vi=12-.- K 4)
s5=1 S 1) — J — & ’
s = syn+2-ack+4- psh+8-rst+ 16-urg+32- fin (1) Aj>0; j=12,land3} ;A =1 Q)

Thus each “mono-directional” connection is represented by A consequence of the use of the MTD model is the reduction
sequence of symbols, which are integers i{0,1,---,63}. of the number of parameters frokt (K — 1) to K(K“— 1) +
The training phase, as well as the detection phase, vaiggl- To take into account the presence of th? rare” state
according to the stochastic model we are taking into accouflPelled K), we have to fix the following quantities:
1) ECDF: In the case of the stationary ECDF the training
phase simply consists of evaluating the probabiliti¥s;) r(rarels) = ¢, Vi=1,2,---,K ande small € = 10°©)
that the TCP flags assume the valigindependently of the (s|rare) _ (1787)/7(K N DVi=12- K1 (6)
position of the packet in the TCP connection. ’ T
For the non_stationary ECDF the system has to Compu‘lécording to the MTD model the |Og-|ike|ih00d of a sequence
the probabilities?| (s) that the TCP flags of thif" packet of (C1,Cz,--,Cr) of lengthT is
the connection assume the valge Taking into account the
nature of the security attacks, for reducing the compleafty
the system, we have decided to evaluate such probabilitigs o
for the first 10 packets of a connection, ije=1,2,---,10. Zilf):l"'ZL(:lN(Sovsla"' ,S|)|09<lel>\jf(so|3,-)> @)
2) Markov Chains:In the case of Markovian models the
symbolss are considered as the states of a hidden discretbere N(s,,s,,---,S,) represents the number of times the
time finite state Markov chain. transitions, — s, ; — --- — 5, is observed. Maximum like-
Since not all the TCP flags configurations are observablelinood estimation (MLE) of the chain parameters requires to
real traffic, the system only considers the states obsenvéti maximize the right hand side of eq. (7), with respecRtand
training phase. Moreover, to take into account the possibil A, taking into account the constraints (4) and (5).
that some new flags configurations could be observed duringSince the original solution [7] seems to be too much
the detection phase, a rare state is added. This procedtsmputationally demanding, we have applied the procedure
allows us to reduce the cardinality of the state space frgmoposed in [3], which consists in an alternate maximizatio
64 (all the possible configurations of the six TCP flags bits)ith respect toR and toA. This process leads to a global

LL(017027' o 7CT) =

to a numbelK, usually smaller than ten. maximum, sinceLL is concave irR andA. For the part when
Then the system estimates the transition probabilitiebef tR is fixed, we maximize.L with respect to\, and vice-versa.
Markov chain. In the first step (estimation @) we have used the sequential

Since the computation of such probabilities is quite straig quadratic programming, while the second maximization step
forward in the case of first order Markov chains (homogédestimation ofR) is a linear inverse problem with positivity
neous and non-homogeneous), in the following we considanstraints (LININPOS) that we have solved applying the
a Markov chain of ordel. The main problem related to thisexpectation maximization (EM) algorithm [8]. Since the ffirs
kind of models is the “explosion” of the number of parametermaximization step is quite trivial, in what follows we dissu



the second step, i.e. the estimation of the maRixwith are the unknowns;(s|sj) = ri; (-1, and
the vectorA fixed. First of all we have re-indexed the log-
likelihood in the following way:

N(Sl,Sl,"' asl) Nl
@(Soa51773|):1+ %(3171“('7]4)'( (8)
. = N(S[]_,Sj_, 7SK) NK
which takes to N = : = : (17)
N(SKaSKv 751) NZI.*KwLKlJf:L
| . .
N(S 73 ,"',S)Hakand )\]r(s |S)_>bk (9) : :
0 1 | ; 0= N(S(7a<,7a<) NK|+1

Thus, at first we estimate the quantities (MLE) and then

we solve the linear system whereN(so,sp, -+, 8) =Ni, 1 = @S, 8,5

A= {aj }xi+1.k2

by = ,Zle(SOISJ (10) wherea; = S1_ Ml [j = io+K(ix—1)], (18)
o a (i, i) = @)
which is a LININPOS problem.
At this point, the log-likelihood can be expressed as: The matrixB looks like:
K+1
1.---1 0---0 0---0 0---.0
aklogbk (11) ) ) ) ) ) )
Zl 0,--0 1,---,1 0---0 0,---,0
B= ) (19)
where [3] 0,---0 0,---0 . 0,---,0
0,0 00 0.0 1.1/ .
K K At this point the EM iteration step is the following:
T a=T-land y b=K (12) P P g
=1 =1
Thus a simple Lagrange method argument shows that the log- a K
likelihood is maximized when r— L p(A ‘N,R) + fi(B,1,R) (20)
sy A where
bkf—zkakgbkf—T_lK,Vk (13)
or, equivalently, when
Fi (W,u,v) = Z Bl L =12 ,K? (21)
>k Wik Vi
Z\)\ iT(Sls;) = =——N(Sq, Sy, »S,), Y(io,---,i1) (14) for matrix W = {w;; } and vectorsi = {u;},v={vi}, and
Thus, if we consider these equations as a linear system
subject to the constraints (4), we obtain a LININPOS problem o .
which can be solved, in the sense of the minimum Kullback-# Za'l - | iZ oy k;)\kl [j =io+K(ik—1)]
Leibler distance, using the EM algorithm. More in detail we (0""")7(" ®
have [9] R i—i .
= kY > [ =lo+K(ik—1)] (22)
PEDED:
|
A KN _ YK Lokt
= 1 k
(B)R <T1 ) (15) kZO
where andb,j =5bjj =1.

The choice of the initial values fdR andA is a key point.

RT = (r(sfs1),r(selsa),- -+, r(sklsa), -, F(s[s)) (16) Choosing\i=1/I,i=1,2,.. I and settingR to the first order
=(rq,ro,--+,rg2) transition probabilities.

Experimental tests have shown that good results are olbtaine



1
1 Max,zyL(c1,C2, -+ ,CT|A,R)\ T
X: ( XV;AU ( 1,02, )CT| Vs V)) (25)

L(Cla Co,--- ;CT|/\U5 RU)

where the vector(Ay,Ry) represents the parameters corre-

7 sponding to the model computed during the training phase
1 (hypothesisHp) and the componen% is introduced to take

into account that each observed sequence is characterized
by a different lengthT. It is worth noticing that this test

Log-likelihood Function
.

-3 L L L

’ * * umber ofpackets ’ . IS equivalent to decide on the basis of the Kullback-Leibler
divergence between the model associatedigoand the one
Fig. 1. Log-likelihood function of a “normal” connection computed for the observed sequence.

I1l. EXPERIMENTAL RESULTS

In this section we compare the performance of the different
statistical models over the 1999 DARPA evaluation project

400~ B

v e [11] data set.
g,mo, ] For sake of brevity, in the following we only present the
8 o] | results related to the Telnet traffic, since they appear to be

oo 1 representative of the overall performance.

f To test the correctness of the computed models we have
: : g . ‘ ‘ ‘ calculated the log-likelihood function of some sequences.
et Figure 1 corresponds to a “normal” connection. As expected
from the theory, the function decreases almost linearlh wit
the number of packets; its slope is equal to the entropy of the
model, which, for first order Markov chain, is defined as:

B. Detection Phase H(MC) = zz m(i)P(si|s) logP(sj|s)
Once the training phase has been performed, the IDS has a ]

model of the “normal” behavior of the network, representihereryi) is the stationary distribution of the Markov chain.

by the computegbrofile. , o ‘The given definition can be easily extended for higher order
As for the training phase, the input is given by raw traffi§;5kov chains.

traces in libpcap format, whic_h are_processed SO as to €XtraCh, the other hand the effect of an anomaly is an abrupt jump
sequences of TCP flags configurations. in the log-likelihood function, as highlighted by figure 2oth

Thus, given an observed sequence these figures refer to a first order model, but the behavior of
(C1,C2,---,Cr), the system has to decide between the e log-likelihood function does not significantly vary tvithe
hypotheses: order of the Markov chain.

To evaluate the performance we have used a Receiver
Operating Characteristic (ROC) curve, which plots detecti
(23) rate vs. false positive rate, obtained varying the valuehef t
thresholdg.

The problem is to choose between a single hypothidsis  Figure 3 shows the ROC curves for Markov chains of
which is associated to the estimated stochastic model, afiflerent orders. We have considered Markov chains of order
the composite hypothestd;, which represents all the otheryp to 4, since higher orders imply a heavy processing time,
possibilities. No optimal result is presented in the litera ot syitable for on-line detection. Since the results olsdi
about this decision theory problem, thus the best solutionjsing a model based on a Markov chain of order 1 are already
represented by the use of the Generalized Likelihood Ratjgry good for these traffic traces, it is not easy to realiz th
(GLR) test [10]. we achieve some improvements with high order models. To

Since the problem is quite straightforward for ECDF, in thge noted that the ROC curves are almost ideal, since we have
following we only consider the case of Markovian models, fog detection rate close to 100% with a negligeable false alarm
which the GLR test is defined as follows: rate. Nevertheless the zoomed area inside the figure shows

that with the model of order 4 we are able to achieve the best
Ho if X <& results, .obtz.iining a detection rate of 53% with a false alarm
H(X) :{ Hy if X > & (24) rate which is about one half of that related to the Markov
! chain of order 1.

where the threshold is set by means of MonteCarlo The following figure shows the performance of the ECDF,

simulations and the quantify is given by: while figure 5 presents a comparison between the first order

Fig. 2. Log-likelihood function of an “anomalous” connexti

Ho: {(c1,C2,--+,C1) ~ computed modgl
Hi : {anomaly
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packets of each connection. It is easy to conclude that tH&l Ju. W-H and vardi, ., A Hybrid High-order Markov Chain Model

. . . for Computer Intrusion DetectionNISS, Technical Report Number 92,
homogeneous Markov chain achieves a detection rate almost repruary 1999.

10% bigger than the other two models. [4] Schonlau, M., et al.Computer Intrusion: Detecting Masqueragd@$Ss,

This apparent paradox can be justied by the fact thay Yo et FUTE S VI %0 e o
the non-homogeneous models have been computed with a Stochastic Models for Computer Intrusion DetectionQuality and
relatively short, and so “incomplete”, training phase.dad, Reliability Engineering International, 18:243-250, 2002
on one side the whole training data set has been used [% E%gg{y's&';i'cgl ggggt;c’rs:r'%g'gdi; “gi%‘%\gghiggéumal of the
compute only one homogeneous model, while on the othgr Raftery, A.E. and Tavare, Estimation and modeliing repeated patterns
S|de, the same quanuty Of data |S part|t|oned |nt0 ten SBbse in high-order Markov chains with the mixture Fransitiqn wlisution )
corresponding to the first ten steps in the time evolution of (S“ggglcngoﬁf%n;égf T;94Rf)ya| Statistical Society, series C - Applie
each connection. In particular this can lead to almost déter  [8] Vvardi, Y. and Lee, D.,From Image deblurring to Optimal investments:
istic probabi"ties for the first Steps of the non homogemou Maximum Likelihood SOllthi.OI"IS for_Positivg Linear Inverseoli®em
models, thus a single flag configuration at Stepresent in (g jutom: AN. and’ Svatter, BF. A New Smooihing Regularizaton
the training data set only at stepps#i (and hence captured Approach for a Maximum-Likelihood Estimation ProblemApplied
by the time independent model), may generate a false alarm. Mathematics and Optimization, 29:225-241, 1994. .

Finally, we have taken into account that an intrusion shouﬁ%jp] Mood, AM., Graybill, F.A., and D. C. Boes, D'Cm_trqducnon to the

) Theory of Statistics3rd ed. Tokyo, Japan: McGraw-Hill, 1974.

be detected as soon as the anomaly appears. Thus, in figureLippmann, R, et al., The 1999 DARPA Off-Line Intrusion Detection
6, we show the performance of the homogeneous Markov E;ggjs‘:"t's%_sgosmp“ter Networks Volume 34, Issue 4 , October 2000,
chain model as a function of the nhumber of analyzed packets ’
for each connection (both for building the model and for the
detection phase). The results highlight that good perfocea
are achieved with a small number of packets, demonstrating
that such statistical models are suitable for on line angmal

detection.

IV. CONCLUSIONS

In this paper we have presented an anomaly based network
intrusion detection system, which detects anomalies ustiag
tistical characterizations of the TCP traffic. We have coraga
several stochastic models, such as first order homogenadus a
non-homogeneous Markov chains, high order homogeneous
Markov chains, and stationary and non-stationary ECDF. We
have detailed the estimation of the parameters of the models
and we have shown the results obtained with the DARPA 1999
data set. The performance analysis has highlighted that the
best results are obtained with the use of homogeneous Markov
chains and that some improvements can be achieved using
high order Markovian models: for instance, 4th order Markov
chains lead to the same detection rate of first order models,
with almost one half of false alarms.

Moreover, we have shown that, since only a small quantity
of packets is sufficient to reveal intrusions in the TCP tecaffi
this kind of approach is suitable for on line detection.
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