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Analog implementations of digital error control decoders, generally referred to as analog decoding, have recently been proposed as an energy and area 
competitive methodology. Despite several successful implementations of small analog error control decoders, little is currently known about how this 
methodology scales to smaller process technologies and copes with the non-idealities of nano-scale transistor sizing. A comprehensive analysis of the 
potential of sub-threshold analog decoding is examined in this paper. It is shown that mismatch effects dominated by threshold mismatch impose firm 
lower limits on the sizes of transistors. The effect of various forms of leakage currents is also investigated and minimal leakage current to normalizing 
currents are found using density evolution and control simulations. Finally, the convergence speed of analog decoders is examined via a density 
evolution approach. The results are compiled and predictions are given which show that process scaling below 90 nm processes brings no advantages, 
and, in some cases, may even degrade performance or increase required resources.

1. Introduction

The key performance metric in a communication system is

data integrity, which can be ensured through sophisticated error

control coding techniques. For this reason, decoder circuitry that

detects and corrects errors is an essential part of any receiver.

Recently low-density parity-check (LDPC) codes have shown near

optimum performance with reasonable decoder complexities

[1–3]. LDPC codes are decoded using a class of iterative decoding

algorithms known as message passing algorithms [4,5]. The core

of these iterative algorithms consists of exchanging probabilistic

information inside the decoder using a graphical description of

the code known as a Tanner graph [6].

Such graph-based decoding algorithms can be efficiently

implemented using analog circuitry [7–9]. Most analog decoders

exploit the basic exponential characteristics of microelectronic

devices to implement fundamental decoder functions. This

exponential behavior is found in bipolar transistors as well as

CMOS transistors in the sub-threshold region of operation. These

decoders often have a better area utilization compared to their

digital counterparts. The messages in analog decoders are passed

between nodes using one or two wires whereas in a typical digital

decoder messages are generally represented by word lengths of at

least four binary digits [10]. This means that in a parallel

implementation of a decoder, each edge connection of the graph

requires at least four wires. Reducing this number requires use of

bit-serial arithmetic [11,12] or stochastic computational techni-

ques [13,14]. Simulation and implementation of small analog

decoders have shown promising results in terms of energy

efficiency or throughput [15–28].

While analog implementations of the computational primi-

tives are elegant, they suffer from physical non-idealities such as

mismatch, thermal noise and short-channel effects. These un-

desirable effects become more severe as the technology scales

down. The presence of different short-channel effects causes the

transistor model to deviate from the ideal exponential form. As a

result these effects can seriously impact the performance of

decoders that use short channel length technologies. Currently,

there are no reported analog decoders in sub-100nm processes

in the literature. In this study we discuss the feasibility of

scaling sub-threshold analog decoders down to the sub-100nm

processes and propose guidelines for transistor sizing to mitigate
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short-channel effects. We have used the popular BSIM 4 [29]

models and studied the behavior of threshold voltage and the sub-

threshold swing parameter in nano scale transistors. As a proof of

concept several example decoder computational nodes were

designed and simulated in 90nm CMOS process. The post-layout

simulation (PLS) results are presented in this paper.Using our

findings supported by mathematical analysis of large-scale

Tanner graphs using density evolution principles [4,30], we

present quantitative performance predictions of what can be

expected from sub-threshold analog decoders in sub-100nm

technology.

Preliminary work regarding the mismatch effects in analog

decoders was published by Lustenberger et al. who studied the

effect of mismatch on decoder performance in bipolar transistors

[31]. They assumed that the current factor mismatch [32] has the

largest contribution on transistor mismatch and further showed

that the effect of such mismatch on the performance of short error

control codes was minimal. Frey et al. studied the effect of

mismatch on CMOS analog decoders [33]. Results were based on

measurements from eleven different semi-discrete short analog

decoders. A first analytical mismatch analysis of large codes was

given by Winstead and Schlegel [34]. They used density evolution

(DE) to predict the behavior of large codes in the presence of

mismatch. A current factor mismatch model was used as the

mismatch source. In this paper, we present the effect of mismatch

on small, moderate and large LDPC decoders using the well

established and more appropriate threshold voltage mismatch

model [32]. As we will see in Section 4, threshold mismatch is the

dominant source of current mismatch in the sub-threshold region

of operation.

Aside from mismatch and short-channel effects, scaling

transistors introduces increased levels of leakage currents in

MOSFETs. Leakage currents enforce a limit on the maximum

computational range in a decoder, potentially compromising

decoder performance, especially in the low-error regime. Sections

7 and 8 of the paper are devoted to system and circuit level effects

of leakage currents on the performance of a decoder.

In Section 9 we investigate thermal noise effects. Dai showed

that thermal noise is negligible in sub-threshold analog decoders

[35], but unfortunately the noise model he used is valid only in

strong inversion. We apply an appropriate sub-threshold noise

model to show that the effects of thermal noise are indeed

negligible.

The best metric for comparing and evaluating the performance

of digital processors is the energy consumption per bit. In order

to predict this value, the convergence speed of the decoder needs

to be known. In Section 10 we employ DE to estimate the

convergence time for analog LDPC decoders. We also discuss

the relationship between the input signal to noise ratio and

the convergence speed. The rest of the paper is organized as

follows. Section 2 reviews background information on analog

LDPC decoders. Sections 3–6 discuss the various non-idealities

of nano-scale transistors, and Section 11 concludes the

paper.

2. Analog LDPC decoders

The LDPC decoding procedure operates on a graphical

representation of the code dependencies, on which the sum-

product algorithm is executed [5]. In this algorithm probabilistic

(soft) information is passed between two types of nodes in the

graph: variable and check nodes. These nodes perform local

processing on soft information that represents signal reliability.

This soft information is generally represented in the form of a log-

likelihood (LLR) ratios. LLRs are defined with respect to a binary

digit x as

LLRðxÞ ¼ ln
Pðx¼ 0Þ
Pðx¼ 1Þ

� �

: ð1Þ

The operation at the variable node is to sum the incoming LLRs

from the channel and the check nodes that are connected to it. Eq.

(2) shows the operation at the variable node:

LLRv-c ¼ LLRchannelþ
X

c0 ACv\fcg
LLRc0-v, ð2Þ

where LLRv-c is the LLR message sent from the variable node v to

check node c at each round of the algorithm and LLRc0-v is the

message sent from the check node c
0
to variable node v at each

round. The set Cv is the set of check nodes connected to variable

node v. Note that the sum in (2) excludes the self message from c

to v. The message LLRchannel is the LLR value from the channel. The

check nodes perform soft exclusive-or operations on the incoming

messages. Eq. (3) describes the check node operation both in LLR

and probability form:

LLRc-v ¼ 2atanh
Y

v0 AVc \fvg
tanhðLLRv0-c=2Þ

!

¼ ln
Pðv01 � v02 � � � � � v0dc�1 ¼ 0Þ : 8v0iAðVc\fvgÞ
Pðv01 � v02 � � � � � v0dc�1 ¼ 1Þ : 8v0iAðVc\fvgÞ

!

, ð3Þ

where dc is the number of check node connections. The core

circuit for analog implementations of both of these operations in

sub-threshold CMOS technologies is the Gilbert multiplier

cell [36]. Fig. 1 shows a two-input Gilbert multiplier circuit.

Eqs. (4)–(7) hold between the current values in Fig. 1. The circuit

produces the normalized product of the input currents. The

output currents are normalized by the total current flowing to the

first input:

Ix0y0 ¼
Ix0 � Iy0
Iy0 þ Iy1

, ð4Þ

Ix0y1 ¼
Ix0 � Iy1
Iy0 þ Iy1

, ð5Þ

Ix1y0 ¼
Ix1 � Iy0
Iy0 þ Iy1

, ð6Þ

Fig. 1. Two input Gilbert current multiplier.
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Ix1y1 ¼
Ix1 � Iy1
Iy0 þ Iy1

: ð7Þ

These expressions are derived with the assumption of the sub-

threshold mode of operation. The drain current IDS of a MOSFET in

the sub-threshold region assuming a perfect exponential behavior

is

ID ¼ I0exp
VGS�Vt

nVT

� �

, ð8Þ

where I0 depends on different process parameters, transistor

sizing, drain to source voltage and temperature. VGS is the gate to

source voltage, Vt is the threshold voltage, VT is the thermal

voltage, and n is the sub-threshold swing parameter.

In sub-threshold analog decoders, currents represent prob-

abilities and voltages represent LLR values. These currents are

normalized to the ‘‘unity’’ current IU. The value of this normalizing

current is a design parameter. Probabilities P(x¼0,1) are now

represented by the currents

Ix0 ¼ IU � Pðx¼ 0Þ, ð9Þ

Ix1 ¼ IU � Pðx¼ 1Þ: ð10Þ

We can use the Gilbert multiplier as the core circuit for both types

of nodes in our graph. In order to clarify the relationship between

decoder nodes and the Gilbert multiplier, here we assume a two

input variable node and derive its output in terms of currents in

the circuit. In (11) we present the construction of a two-input

variable node, i.e.,

LLRV ¼ ln
Pðx¼ 0Þ
Pðx¼ 1Þ

� �

þ ln
Pðy¼ 0Þ
Pðy¼ 1Þ

� �

¼ ln
Pðx¼ 0ÞPðy¼ 0Þ
Pðx¼ 1ÞPðy¼ 1Þ

� �

¼ ln
Ix0 Iy0
Ix1 Iy1

� �

¼ ln
Ix0y0
Ix1y1

� �

, ð11Þ

where LLRV is the output LLR of the variable node. The output of a

two input check node, LLRC, is given by

LLRC ¼ ln
Pðx¼ 0ÞPðy¼ 0ÞþPðx¼ 1ÞPðy¼ 1Þ
Pðx¼ 0ÞPðy¼ 1ÞþPðx¼ 1ÞPðy¼ 0Þ

� �

¼ ln
Ix0 Iy0 þ Ix1 Iy1
Ix0 Iy1 þ Ix1 Iy0

� �

¼ ln
Ix0y0 þ Ix1y1
Ix0y1 þ Ix1y0

� �

, ð12Þ

where we assume a perfect exponential characteristic for the

transistors in the circuit.

3. Scaling the decoder

Semiconductor devices are scaled aggressively for high

performance and integration. Scaled transistors tend to operate

faster but their behavior deviates from long-channel models and

undesired effects arise. The gate loses its control over the channel

while the drain becomes more prominent. There are many

different short-channel effects, primarily channel length modula-

tion, drain-induced barrier lowering (DIBL), punchthrough, velo-

city saturation and hot carrier effects [37]. In the sub-threshold

region of operation the threshold voltage Vt and sub-threshold

swing nVT play the most important roles. This is due to the

exponential dependence between the current and these para-

meters. Therefore, the only short-channel effects that we consider

here are the ones affecting the threshold voltage or the sub-

threshold swing. In the first sub-section we will briefly introduce

short channel effects. Readers who prefer to focus on the results

can skip this sub-section without a loss of continuity.

3.1. Short channel theory

In this section we are considering the size dependence of the

threshold voltage and nVT and propose a number of design rules

for building LDPC computational nodes in the nano regime.

In the long-channel MOSFET equations, the threshold voltage

is only a function of process parameters and source-to-bulk

voltage. As the channel length of the MOSFET is scaled down, the

threshold becomes a complicated function of the applied voltages,

transistor sizing as well as the process parameters.

The classic equation for the threshold voltage in a MOS

transistor is [29]

Vt ¼ VFBþFsþg
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

FsþVsb

p

¼ VFBþFs�
QB

Cox
, ð13Þ

where VFB is the flat band voltage, Fs is the surface potential, Cox is

the oxide capacitance, and QB is the charge in the depletion

region. The last term in (13) represents the voltage across the

depletion region. The parameter g is the body bias coefficient,

given by

g¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2qesiNsubstrate

p

Cox
, ð14Þ

where Nsubstrate is the doping level of the substrate, and esi is the

permittivity of silicon. Fs is a function of channel doping and

temperature. In short-channel transistors, channel doping is no

longer uniform. The variations in channel doping are both vertical

and lateral. The lateral doping change is due to a process called

pocket (Halo) implant [38]. During this process, the doping near

the source and drain regions is increased. Therefore, as the

channel becomes shorter, the average effective concentration

becomes higher and increases the surface potential. Thus, Vt

becomes a strong function of L. This dependency is modeled in

BSIM 4 by a term added to the classic threshold value. Assuming

no body effect the threshold voltage in the presence of pocket

implants is [29,39]

Vt ¼ VFBþFs�
QB

Cox
þK1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ LPE0

L

r

�1

 !

ffiffiffiffiffiffi

Fs

p

, ð15Þ

where K1 and LPE0 are process parameters. Thus threshold

voltage in nano-scale processes is a decreasing function of

effective length. The width of a transistor also plays a role in its

effective threshold. In a long-channel MOS transistor, the source

and drain regions are far away from the channel. Therefore, the

fields can be assumed to be vertical in most of the channel. In

short-channel devices, with channel lengths less than 0:35mm,

the fabrication process follows a pattern known as shallow trench

isolation (STI). This isolation technique is used to prevent leakage

currents between adjacent devices. As a result of this process, a

big portion of gate electric fields, called fringing fields, terminate

on source and drain ends. Part of the depletion charge is due to

these fringing fields. In order to calculate the exact threshold

value, these charges have to be taken into consideration. The new

threshold voltage in an STI process, assuming no body effect is

Vt ¼ VFBþFs�
QB

Coxþ2CF
, ð16Þ

where CF is the fringing field capacitor and is only a function of L.

Since QB is a function of W� L, the threshold voltage increases

with larger device width and smaller channel lengths. This higher

threshold voltage is desirable for sub-threshold applications as it

provides a wider range of accurate operation.

Another important phenomenon that affects Vt is the DIBL

effect. In long-channel transistors the drain can only affect a small

part of the channel. As the channel shrinks, field lines from the

drain can influence the charge and potential throughout the

3



channel and force Vt to be a function of drain voltage. Drain

voltage increases Fs and hence lowers the potential energy for

electrons [37]. In analog decoders, we do not have control over the

drain to source voltage VDS. Therefore, DIBL is undesirable as it

changes Vt during the course of the decoder operation. VDS in a

sub-threshold analog decoder typically ranges from 100 to

400mV. For these small values of VDS, DIBL can be modeled with

a first order linear term added to the threshold [40,37]:

DVt ¼�ZVDS: ð17Þ

The parameter Z has a 1/L relationship with the channel length.

Ideally we want Z to be zero. Therefore longer channel lengths are

less sensitive to VDS variations.

Short-channel effects can also affect the sub-threshold swing

parameter n. This parameter plays an important role in the

accurate operation of the Gilbert multipliers. Also, conversion

from LLRs to probabilities is directly proportional to this value.

Ideally we want this number to be constant throughout the weak

inversion region. In small channel lengths the gate control over Fs

decreases. Therefore, the variations in Fs due to variations in the

gate potential are smaller [41]. This relationship indicates a bigger

sub-threshold swing. According to BSIM 4 models:

np
1

coshðL=ltÞ�1
, ð18Þ

where lt is a process parameter. Such behavior implies a strong

relationship between n and the effective length of the transistor in

small transistor lengths. This strong dependence is undesirable in

sub-threshold analog decoders. This is because due to the

imperfections in fabrication processes, the size of the fabricated

transistors are different from the designed size. In addition, large

values of n are generally undesirable as they tend to slow down

the circuit. The value of n also determines how fast the drain

current changes with regards to variations in the gate voltage.

Therefore, using longer transistors is advantageous in reducing

the uncertainty in the sub-threshold swing.

3.2. Design rules

From the above discussions, we know that there exists a

tradeoff in choosing the length and the width of the transistors.

Smaller lengths tend to increase the threshold voltage and hence

our region of operation. In addition, the gate to bulk capacitance

and the output resistance in the device are proportional to device

sizing. Using smaller transistor sizes reduces the energy con-

sumption and increases speed of the nodes. However, small

transistor lengths amplify the unwanted short-channel effects

such as DIBL and length dependency of the sub-threshold swing.

They also increase the value of the sub-threshold swing. Large

transistor widths are desirable for higher threshold voltage and

achieving smaller inversion coefficient. Therefore, using large

transistor widths, we can afford large transistor lengths to combat

the short-channel effects while the threshold voltage is still high

enough due to the large transistor width. On the downside, they

slow down the circuit and increase the leakage currents in the

transistor. In fact the real trade off is between size, power/speed

versus accuracy of the circuit.

As a proof of concept and to study the effect of these non-

idealities in decoders, we implemented a variable node employing

these rules.

The circuit adds the two incoming differential voltages that

represent LLRs in the decoder. The check node circuit is very

similar to the variable node. The only difference is the way the

Gilbert multiplier outputs are connected to each other. Therefore

we are only presenting variable node results here. The post-layout

simulation results presented are based on Cadence using

STMicroelectronics BSIM 4 models.

The variable node is a two-input function. Therefore in order to

be able to compare these different implementations and compare

their accuracy we generated an error surface for the set of all

meaningful inputs with a 1mV step size. The error surface

contours show the absolute difference between the circuit output

and the ideal output which is the addition of the two input LLRs.

Therefore each point on the error surface represents the error

using, LLRerror ¼ jLLRin1þLLRin2�LLRCircuitj. Where, LLRin1,2 are the

input LLRs and LLRCircuit is the LLR output from the circuit

simulations. The Gilbert multiplier in the computational nodes

can be implemented using either pMOS or nMOS transistors. The

choice of pMOS transistors over nMOS was previously recom-

mended by [42]. pMOS transistors give the designer the luxury of

connecting the bulk to the source and thus, eliminating the

threshold variations due to the change in the source voltage. A

pMOS based variable node was implemented in 90nm generic

CMOS process. The choice of the transistors lengths and widths

are shown in Table 2 and part of the node layout is shown in

Fig. 3. The surface error for the implemented node is shown in

Fig. 2.

The implemented node has an absolute error of less than 0.055

LLR units for LLR input range between �1 and +1. This error

increases to 0.15 LLR units for input LLR swing of �4.5 to +4.5.

The designed node is accurate for small input LLRs but the error

increases as high as 1.4 LLR units for larger input LLR values. This

increase in the error at higher LLR swings is mainly due to the

clipping of LLRs. Fortunately, the clipping of the output LLR is

tolerated by most codes. These ideas are discussed in Section 7.

Another important characteristic of the designed node is its

average speed and power consumption. Previous studies [44]

have shown that the speed of the decoder is independent of the

variance of the delay distribution and is a function of the average

delay. Therefore for the purposes of speed comparison in this

section and convergence time estimation in Section 10, we have

used the average speed of the node. In our simulations, we

simulate the speed and energy consumption of the implemented

circuit under 10 different input conditions. In each test setup we

change one or both inputs in the circuit and wait for the output to

reach 95% of its final value. We then calculate the time and energy

in each case. Table 1 presents these different test setups. In this

table ‘‘High’’ is an input differential voltage of 600mV and
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Fig. 2. Absolute error surface, LLRerror ¼ jLLRin1þLLRin2�LLRCircuitj, of a two-input

pMOS variable node designed in 90nm CMOS. The inputs and the error are both in

terms of LLR values.
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‘‘�High’’ is an input differential voltage of �600mV. We further

verified that adding more test cases did not change the average

delay significantly. Table 2 shows these values as well the

transistor sizing we use for the Gilbert multiplier.

3.3. Decoder performance under short-channel effects

Now the natural question is how a decoder performs using

nodes with non-idealities due to short-channel effects. True

simulation of large fully parallel analog decoders using computer

simulations is not possible with the current computing powers.

Different simulation techniques have been proposed in the

literature to increase the accuracy of simulations [26,45,46]. Here

we are performing system-level C analysis while incorporating

post-layout simulation data from Cadence. LDPC decoder consists

of many identical nodes (Variable and Check node) that are

connected in a certain fashion. Therefore, neglecting mismatch

(which is introduced in the next section), the response of each

node is similar to the other nodes in its group. We took advantage

of this structure to perform system level C/MATLAB simulations

while including the post layout simulation data. We characterized

a node by generating a large lookup table for every meaningful

input/output (30% beyond output clipping range) with a quanti-

zation level of 1mV. In the C simulations, the node was modeled

as a black box that functioned according to the generated lookup

table. We use a (3,6)-regular length-816 LDPC code from [47] and

perform Monte-Carlo simulations with 50 iterations. An iteration

is a round of message passing between variable, check nodes and

back. Fifty frame errors are generated for every data point. Binary

phase shift keying (BPSK) modulation is used over an additive

white Gaussian noise (AWGN) channel. We verify the bias

independence of the results using all-zero, all-one and random

codewords. The simulations represent a successive substitution

Monte-Carlo simulation of the decoder, and hence some behavior

in real, continuous-time decoders is lost.

Fig. 4 shows the bit error rate (BER) plot. This plot was

generated using the Monte-Carlo simulations we proposed.

The implemented node result is very close to the floating-point

sum-product algorithm. It is very interesting that the 90nm

circuit has a better performance than the ideal simulation at

higher Eb/N0 values. This is mainly due to the fact that the sum-

product algorithm is not optimal. Such behaviors have previously

been observed in analog decoders [44]. Nevertheless the loss in

the performance is negligible up to a BER of 10�6. Based on these

post-layout simulation results we conclude that the short-channel

effects can be controlled in sub-threshold analog decoders. If we

ignore the mismatch effects and the high leakage currents, they

can still decode with reasonable performance in nano-scale

processes. The next section is dedicated to the limitations of

mismatch on decoder performance.

4. Matching properties of CMOS transistors

Modern CMOS processes are highly sensitive to process

variations. Phenomena such as local Vt variations can make

results deviate from circuit simulators. Mismatch can be caused

by many different variations in the fabrication process. The

fabricated width and length of the transistors can be different

from the implemented dimensions and channel doping varies in

local areas. Also the oxide thickness varies across the die. The

local threshold variations of a transistor are a function of the L, W,

D

C

C

C

C

S

Fig. 3. Part of the layout of the 90nm implemented node. In this layout dummy

gates where used to reduce the STI effects. Also common-centroid and spacing

techniques were used to reduce the well proximity effects. Examples of dummy

gates in the layout are shown with letter ‘‘D’’, common-centroid transistors with

‘‘C’’ and more than three gate length spacings with ‘‘S’’ [43].

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

B
E

R

3210

Eb /N0

Ideal Sum-product

Implemented Node

Fig. 4. Bit Error curve for (3,6)-regular length-816, LDPC code using the

implemented node.

Table 2

PLS results of the average energy/speed and transistor sizing of the implemented

node.

Technology 90nm

Length ðmmÞ 0.2

Width ðmmÞ 2.0

Energy (pJ) 0.38

Settling time ðmsÞ 0.05

Circuit simulations Fig. 2

BER simulations Fig. 4

Table 1

Test conditions for power/speed measurements.

Tests Input one Input two

Initial Final Initial Final

Test1 Zero High Zero Zero

Test2 High Zero Zero Zero

Test3 Zero Zero Zero High

Test4 Zero Zero High Zero

Test5 Zero High Zero High

Test6 High Zero High Zero

Test7 Zero High Zero �High

Test8 High Zero �High Zero

Test9 Zero �High Zero High

Test10 �High Zero High Zero
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the surface charge variations and the channel doping [48]. In

short-channel CMOS processes, different short-channel effects can

increase mismatch [49]. For example, the effective length, the

effect of halo implants and charge sharing due to DIBL effect, can

strongly increase the threshold mismatch [50,51]. It has been

shown through many different measurements that the mismatch

factor AD, which will be introduced in this section, does not

improve for processes smaller than 100nm [50].

The local Vt variations contribute to an approximate Gaussian

distribution of the threshold voltage with variance s2
Vt

[32,52]:

sVt
¼ AD

ffiffiffiffiffiffiffiffi

WL
p : ð19Þ

AD is a process parameter with units mVmm. The value of this

parameter depends on the fabrication process and can be found in

the process documentation. The value of AD decreases with oxide

thickness and hence, scales with technology [53,54]. However,

this behavior does not extend to small processes. The improve-

ment in AD is limited for sub-100nm processes and in some cases

even reverses and AD increases with scaling [41]. Therefore,

scaling alone will not help us much if at all in smaller processes.

Mismatch is also present in m, Cox, W and L, where m is the

mobility. The net effect of these variations on current factor,

b¼ mCoxW=L, also has a Gaussian distribution and affects the

drain current mismatch. These variations are usually due to edge

roughness in transistor size as well as local variations in Cox and m.
The statistic of the current factor mismatch is given by

sDb=b ¼
Ab
ffiffiffiffiffiffiffiffi

WL
p : ð20Þ

In the sub-threshold region of operation, where most analog

decoders operate, values of IDS are small, Ab is a small number on

the order of 1% and it is negligible with respect to threshold

mismatch. In addition mismatch variations in the sub-threshold

swing parameter, n, are also negligible [55], making Vt variation

the dominant effect [41]. Hence, in this section our focus is on Vt

variations and their effects on sub-threshold current mismatch.

The typical value for AD in nano-scale processes is around

4mVmm [41]. Using this value the total estimated threshold

mismatch for a minimum-sized transistor in a typical 65nm

CMOS is sVt
¼ 35mV which can have severe effects on the

performance of sub-threshold analog decoders. We investigate

these effects in the next section.

5. Statistics of LLR mismatch in analog decoders

In this section we first derive the output current equations of

the Gilbert multiplier under mismatch. We then apply the result

to the computational nodes of LDPC decoders and derive error

statistics in these nodes.

5.1. Gilbert multiplier in the presence of mismatch

As seen in the previous section, the threshold voltage of a

transistor varies with mismatch, which causes the drain current

to vary as

IDS,Circuit ¼ IDS � exp � DVt

nVT

� �

, ð21Þ

where DVt
is a Gaussian variable with zero mean and variance s2

Vt
.

Using (21) we derive the mismatch versions of (4)–(7) as

Ix0y0 ¼
Ix0Iy0e1e4

Iy0e1e4þ Iy1e2e3
, ð22Þ

Ix1y1 ¼
Ix1Iy1e2e5

Iy0e1e6þ Iy1e2e5
, ð23Þ

Ix0y1 ¼
Ix0Iy1e2e3

Iy0e1e4þ Iy1e2e3
, ð24Þ

Ix1y0 ¼
Ix1Iy0e1e6

Iy0e1e6þ Iy1e2e5
, ð25Þ

where

ei ¼ exp
DVtðiÞ

nVT

� �

, ð26Þ

represents the threshold mismatch in transistor Mi, from Fig. 1

and has a log-normal distribution.

5.2. Variable node behavior in the presence of mismatch

The functionality of a two-input variable node is described by

(11). Therefore, the output LLR of the circuit under mismatch

using (22)–(25) is

LLRvariable ¼ LLRiþ ln
Iy0 ðe21e4e6Þþ Iy1 ðe1e2e4e5Þ
Iy1 ðe22e3e5Þþ Iy0 ðe1e2e4e5Þ

, ð27Þ

where LLRi is the ideal output LLR. Using (26) we can rewrite the

second term in (27) in terms of the input probability Py0 ¼ Iy0=IU,

lmismatch ¼ ln
1þPy0ðeDVt1

=nVT þDVt6
=nVT�DVt2

=nVT�DVt5
=nVT�1Þ

1þPy1ðeDVt2
=nVT þDVt3

=nVT�DVt1
=nVT�DVt4

=nVT�1Þ
: ð28Þ

New variables can be defined as, a¼ ððDVt1
=nVTÞ�ðDVt2

=nVTÞÞ,
b¼ ððDVt5

=nVTÞ�ðDVt6
=nVTÞÞ, y¼ ððDVt3

=nVTÞ�ðDVt4
=nVTÞÞ. These

new variables are Gaussian with s2
new ¼ 2� s2

Vt
and mean zero.

Re-writing the mismatch in terms of a, b and y we obtain

lmismatch ¼ ln
1þPy0ðea�b�1Þ
1þPy1ðey�a�1Þ

: ð29Þ

5.3. Check node behavior in the presence of mismatch

Eq. (12) describes the function of a check node with two inputs

and one output. Using (22)–(23) in (12) we obtain

LLRcheck ¼ ln
e21e4e6Px0P

2
y0þe1e2e4e5Py0Py1þe22e3e5Px1P

2
y1

e21e4e6Px1P
2
y0þe1e2e3e6Py0Py1þe22e3e5Px0P

2
y1

!

: ð30Þ

Eqs. (27) and (30) are the LLR output functions for the statistics of

the output LLR for a two-input variable node and check node,

respectively. A multi-input node consists of several such basic

blocks cascaded together. In a sub-threshold analog decoder, the

output of each one of these blocks is normalized before passing to

the next node for processing. This normalizing block can be

realized by making sure that the output current probabilities

always add up to IU.

6. Mismatch performance of the decoder

Monte-Carlo decoder simulations are presented for three

different codes: an (8,4) Hamming code, a moderate size (3,6)-

regular length-816 LDPC code and a large (3,6)-regular code of

length 4000. The two LDPC codes were taken from [47]. Seventy

frame errors are simulated for every data point. A maximum of 50

iterations were performed for each frame. The simulations are

performed under AWGN channel assumptions with BPSK mod-

ulation. In order to consider the circuit non-idealities, we use the

post-layout simulation results of a pMOS based, 65nm imple-

mented node. Therefore the computations used in the simulations
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are based on the non-ideal circuits presented in the previous

section. As a result, the following mismatch curves represent both

the circuit non-idealities and the mismatch effect. The mismatch

is added using the relationships derived in the previous section.

Fig. 5 presents the results of an (8,4) Hamming code in the

presence of mismatch, and shows that the mismatch has a minor

effect on a small (8,4) Hamming code which is consistent with

measurement results from [56]. Fig. 6 shows the result for the

length-816 LDPC code and finally Fig. 7 represents the bit error rate

curves of the length-4000 LDPC code. sV in these figures represents

the standard deviation of the variable node and sC is standard

deviation in the check node. We use different threshold mismatch

variances for the variable node and check nodes. This is because the

decoder is far more sensitive tomismatch in the check node than the

variable node. This observation is demonstrated in Fig. 7. This in an

important observation since it will allow for savings in area for the

variable node. We also performed mismatch simulations using ideal

computational nodes. Our simulations show that the circuit

imperfections have a minor effect compared to mismatch. These

graphs are not presented in this paper since the results were very

similar to circuit based mismatch simulations we presented in

Figs. 5–7. Table 3 maps the threshold standard deviation values to

the transistor sizing. In order to generate the data for this table, the

parameter AD is set to 4mVmm and we assume W¼2� L which

ensures an inversion coefficient, IC smaller than 0.1 for the

normalizing current, IU ¼ 1mA.
Mismatch can severely affect the performance of analog LDPC

decoders. These effects become more prominent in larger codes and

are barely noticeable in smaller ones. Therefore, building large sub-

threshold analog decoders even in sub-100nm processes requires

transistor over-sizing to overcome the mismatch. Large transistors

are power hungry and introduce large capacitance that will slow

down the decoder. To demonstrate how the transistor sizing would

affect the speed and energy consumption of the decoder, Table 4

provides a few data points for the post layout simulation results of

computational nodes with different transistor sizes.

Our simulations also demonstrate that check-node mismatch

has a stronger impact on the decoder than the variable node

mismatch. As a result it becomes clear that analog LDPC decoders

based on sub-threshold CMOS transistors cannot take full

advantage of small transistor sizes.

7. Leakage currents in MOSFET

The currents in a real transistor can never be fully turned off.

As we decrease the gate to source voltage of a transistor, we

Fig. 5. Hamming (8,4) code in the presence of mismatch.

Fig. 6. Length-816, (3,6)-regular code in the presence of mismatch.

Fig. 7. Length-4000, (3,6)-regular code in the presence of mismatch.

Table 3

Mapping of the threshold standard deviation to transistor sizing.

sV W ðmmÞ L ðmmÞ W� L ðmmÞ2

0.25 22.64 11.32 256.3

0.50 11.32 5.66 64.1

2.00 2.84 1.42 4.0

5.00 1.14 0.57 0.6

9.00 0.64 0.32 0.2

Table 4

PLS results of the average energy/speed for computational nodes with different

transistor sizes.

Transistor W� L ðmmÞ2 Node energy (pJ) Settling time ðmsÞ sV

nMOS-0.2�0.7 0.25 0.02 10.7

pMOS-0.2�2.0 0.38 0.05 6.3

nMOS-2.3�1.69 0.66 0.09 2.0

pMOS-4.53�1.86 3.53 0.75 1.3
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ideally expect all the currents to go to zero. In a real transistor,

however, these currents reach a lower limit caused by leakage

currents. These unwanted currents increase as we scale the

transistors. The leakage currents enforce a lower bound on the

probabilities and consequently an upper bound on the maximum

possible LLRs in the decoder that we refer to as ‘‘Clipping’’. In this

section we review the sources of leakage currents in CMOS

circuits and their impact on the performance of decoders.

Depending on the context, leakage currents are often inter-

preted differently. Digital circuit designers refer to leakage as any

current flowing when gate to source voltage is less than the

threshold voltage, VGSoVt. It is obvious that in the context of

analog decoding we have a different definition for leakage

currents. Fig. 8 better explains this. The graph shows the drain

current of a MOSFET transistor in a sub-100nm CMOS process for

two different drain voltages.

The main mechanisms that contribute to leakage currents in

the MOSFET are the pn junction leakage, gate induced drain

leakage (GIDL) and the gate leakage. The pn junction leakage is

the classic leakage current in MOS transistors. The source of this

current is the reverse-bias voltage applied to the pn junction

formed by drain (n-type) and substrate (p-type) in an nMOS

transistor and is a function of the transistor width [57]. In short-

channel devices and in the presence of high drain currents, this

leakage converts to band-to-band tunnelling (BTBT). BTBT is

the effect of electrons tunnelling from the valence band in the

p-region to the conduction band of the n-region [58]. This current

is much higher than the classic pn junction leakage and can

increase the leakage by more than an order of magnitude. Another

form of tunnelling leakage current in MOSFETs is the GIDL

current. Such leakage can be very problematic in sub-threshold

analog decoders since with GIDL the drain current increases

exponentially with lower values of gate to source voltage. GIDL

happens when the negative gate voltage causes the p-region near

drain and source to become heavily doped. In the presence of the

gate voltage we get strong fields which enables tunnelling

currents. Tunnelling occurs between the depleted region in n

and the heavily doped substrate. This tunnelling current is a

strong function of drain voltage and the negative gate voltage

[40]. The last type of leakage in the MOSFET is gate leakage. In the

context of sub-threshold analog decoders, however, gate leakage

is not very severe. The reason is that in the sub-threshold mode of

operation the voltage drop across the oxide is small and the gate

leakage is negligible. Analog decoders can tolerate small gate

leakages. The bipolar decoders that have been previously reported

[15,16] are a good example of this fact. The base current in a

bipolar transistor is much larger than the MOSFET sub-threshold

gate leakage.

BTBT and GIDL tunnelling currents require high drain voltages.

Therefore, as long as we keep drain voltage small, we are mainly

dealing with pn junction leakage.

The issue of leakage currents links directly to LLR clipping in

the decoder. The clipping of LLRs only happens in variable nodes.

This is because the check node output is never larger than its

inputs. In order to fully understand the behavior of decoder in the

presence of leakage currents, we derive the output of a variable

node under leakage conditions. A variable node consists of two

input differential pairs connected to a Gilbert multiplier. Fig. 9

shows the differential pair. The input LLRs are of the form

li ¼DVi
=nVT, where DVi

is the input differential voltage. Ideally we

want the output of the variable node to be the sum of the two

input LLRs:

lout ¼ l1þl2: ð31Þ

Assuming all transistors use the same transistor width the pn

junction leakage current is roughly the same for all transistors.

This leakage can be modeled with a constant leakage current

ILeakage, added to the drain current. Using this model, the currents

in Fig. 9 follow these equations:

Iþ þ I� ¼ IU, ð32Þ

Iþ ¼ I0exp
Vþ�VS

nVT

� �

þ ILeakage, ð33Þ

I� ¼ I0exp
V��VS

nVT

� �

þ ILeakage, ð34Þ

where I0 is the sub-threshold current at zero gate source drive.

We have ignored the leakage current in the normalizing current

source. Using these equations we can rewrite the current in terms

of the differential voltage drive ðDVi
Þ, leakage current and the

normalizing current IU,

Iþ ¼
expðDVi

=nVTÞðIU�ILeakageÞþ ILeakage
1þexpðDVi

=nVTÞ
, ð35Þ

and

I� ¼ IU�Iþ : ð36Þ
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Applying the leakage model to the Gilbert multiplier in Fig. 1 and

using the output currents from the differential pair we obtain the

output of the variable node under leakage conditions:

lout ¼ ln
ð1þel2�2el1 þl2 Þ � bþel1 þl2

1þð�2þel2 þl1 þel1 Þ � b

� �

, ð37Þ

where b¼ ILeakage=IU is the ratio between the leakage current and

the normalizing current. In order to verify the result we compare

(37) with circuit simulations from a 65nm CMOS process. An ideal

1mA current source was used as the normalizing current.

In order to achieve higher leakage currents in the circuit level

we artificially add current sources between the drain and bulk

terminal of the transistors. In order to be able to connect these

blocks directly, we use nMOS-based differential pairs and a

pMOS-based Gilbert multiplier. We apply the same voltage to

both inputs and calculated the natural logarithm of the ratio

between the output currents from the Gilbert multiplier. For

conversion between voltages and LLRs we use a value of the sub-

threshold swing parameter n which best matches the circuit

results. The simulation results are presented in Fig. 10. The figure

shows the close match between the circuit simulations from

Cadence and the analytical results for three different values of b.

Using (37) we can derive the maximum output LLR for different

values of b. Larger values of b represent nano-scale CMOS

technologies. One way to avoid large b values is to use a higher

normalizing current source. The drawback is that this leads to

higher power consumption. Also, very big currents force the

circuit to move from the sub-threshold region to strong inversion

and reduces the accuracy of the circuit.

8. The effect of clipping on the sum-product algorithm

In order to study the effect of clipping on large codes we use

density evolution (DE). DE has previously proved to be useful in

predicting the code threshold and the average behavior of LDPC

codes [4,3]. DE predicts the behavior of an infinitely large code but

it is well known that even in finite sized codes, the LLRs behave

closely to the DE results [4,30]. We modify DE to predict the

performance of the decoder under limited LLR constraints. For

each of eight code ensembles in Table 5, we clip the internal LLRs

passing from variable nodes to check nodes, at three different

values, chosen according to a beta of 0.001; 0.005 and 0.01. These

ratios correspond to maximum LLR values of ‘‘IBound’’¼6.90 5.29

and 4.6. When the internal LLRs are clipped, we cannot allow large

input LLRs from the channel which could otherwise override any

internal computation and cause high error floors. In other words

the inputs from the channel should also be bounded so that the

small check node outputs would be able to correct any channel

LLR value. Therefore, we also clip the channel input LLRs at LLR

value of CBnd, where ‘‘CBnd’’ is optimized for best performance in

each case and is given in Table 5. Two thousand iterations are run

at the target bit error rate of 10�8. The results of this simulation

are shown in Table 5. The term ‘‘Th’’ is the new threshold value for

the code with LLR limitations. The deviation of the code from its

original threshold is an indicator of the performance loss. The

results of this simulation are shown in Table 5.

The ‘‘–’’ sign indicates that the error did not go asymptotically

to zero even at very high threshold values. Hence we cannot

define a threshold value for the code.

To further verify the results, Monte-Carlo simulations are

carried out for different clipping scenarios. A moderate size (3,6)-

regular length-816 code is used and runs for 50 iterations. The

internal and channel LLRs are clipped according to Table 5. The

results confirm the outcome from the DE analysis (see Fig. 11).

The graph confirms the DE results that clipping values of less

than about 7 result in serious degradation of performance.

In order to make the simulations closer to the actual circuit

behavior, we run the Monte-Carlo simulations using (37) for

b¼ 0:001,0:005 and 0.01. Fig. 12 shows the simulation results for

the (3,6)-regular code. The leakage-included curves show worse

performance compared to simple clipping of the LLRs.

Our simulations show that for values of b smaller than 0.001

the effect of LLR clipping is minor for most code ensembles up to

bit error rate of 10�6. Therefore as long as we can control the
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Fig. 10. Circuit simulations and analytical plots of output LLR versus differential

input voltage for different leakage current values.

Table 5

DE analysis of clipping in LDPC codes.

Code ensemble/threshold IBound: 6.9 IBound: 5.29 IBound: 4.6

CBnd Th CBnd Th CBnd Th

(5,10)-2.008 7.00 2.008 5.30 2.028 4.7 2.090

(4,8)-1.538 6.95 1.538 6.00 1.557 4.6 1.615

(3,4)-0.957 8.00 0.957 5.29 0.960 4.65 0.975

(4,10)-1.729 7.00 1.729 5.29 1.769 – –

(3,5)-0.888 7.80 0.888 5.35 0.903 – –

(3,6)-1.101 7.00 1.102 5.30 1.135 – –

(3,9)-1.747 7.00 1.752 – – – –

(3,15)-2.586 – – – – – –
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Fig. 11. The effect of hard clipping the internal LLRs in a (3,6)-regular length-816

code.
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leakage currents or use a large enough normalizing current

source, the effect of clipping can be controlled.

9. Thermal noise

The variance of the drain current noise in weak inversion is

given by [37]

s2
In
¼ 2qIDSð1þe�VDS=VT ÞDf , ð38Þ

where q is the electron charge. In order to calculate the maximum

value of s2
In
, we need to know the current IDS and the bandwidth

Df . The maximum current in the decoder is the normalizing

current IU. A reasonable value for the normalizing current that we

used in this paper is 1mA. Using the average convergence speed of

the designed nodes, the average bandwidth is 20MHz. From these

values sIn is 2.53nA. Such a change in current can be caused by a

threshold variation with sVt
¼ 0:063mV which according to

mismatch analysis is negligible. Therefore we can ignore the

effect of thermal noise.

10. Convergence speed

Unlike discrete time decoders, analog decoding happens

asynchronously. The information adds up until the decoder

converges. Hemati et al. have previously studied this problem

using a methods of relaxation in a Monte-Carlo simulation setting

[44,45]. In this paper, we use Gaussian DE to predict the speed of

analog decoders. In an analog LDPC decoder, part of the delays

stem from the interconnects which connect variable node

processors to check nodes using long on-chip wires and part of

the delay is due to the internal node delays. The node delays are a

function of transistor sizing and are mainly constrained by

mismatch sizing rules. The interconnect part of the delay is a

function of the number computational nodes, N, in the decoder.

Assuming these nodes are densely-packed on a square grid, the

length of one side scales with
ffiffiffiffi

N
p

. In a random code, since wires

should be randomly-placed, average wire length scales with
ffiffiffiffi

N
p

.

Both the resistance and the capacitance of a wire are proportional

to the wire length. Hence, the delay associated with these

interconnects is proportional to N.

The total delays in the circuit can be modeled with a first order

t¼ RC delay. Similar concept has been explained in more details

in [45]. Eq. (39) shows the change in the output after Dt using the

RC delay model.

Outputðt0þDtÞ ¼Outputðt0ÞþðInputðt0Þ�Outputðt0ÞÞð1�e�Dt=tÞ,
ð39Þ

where Output(t0) is the value of Output before changing the input

and Input(t0) is value of the input step function at t0. Using this

model for both a check node and a variable node and assuming

the inputs from the channel are already present, we have

LLRv-cðiDtÞ ¼
2

s2
ð1�e�iDt=tÞ

þð1�e�Dt=tÞðdv�1Þ
X

i

j ¼ 2

LLRc-vðjDtÞðe�ði�jÞDt=tÞ ð40Þ

LLRc-vððiþ1ÞDtÞ ¼ ð1�e�Dt=tÞ
X

i

j ¼ 1

mðLLRv-cðjDtÞÞðe�ði�jÞDt=tÞ, ð41Þ

where i, j are integer numbers larger than 0, 2=s2 ¼�4=N0 is the

mean of the probability density function of the log-likelihood

messages at the receiver in a Gaussian channel with noise

variance s2
noise ¼N0=2, LLRv-cðtÞ is the message sent from a

variable node to check nodes at time instance t, LLRc-vðtÞ is the

message sent from a check node to variable nodes at time

instance t and mðxÞ represents the check node operation from

[59, p. 270].

Using this delay-based DE we can compare the convergence

time between discrete (synchronous) decoders and continuous

(asynchronous) decoders. Fig. 13 shows DE results for both cases

at Eb/N0¼1.17dB. We used the parameter Dt=t¼ 1=5 for the

continuous case. The simulations show that the analog DE

requires approximately 2� t� number of discrete, Dt steps to

achieve the same LLR mean.

It is interesting to notice that as we increase the signal to noise

ratio and move further from the threshold, both the required

number of discrete iterations and continuous DE decrease while

their ratio remains constant. Simulations show that for Eb/N0¼1.27

we require 37 discrete iterations, 22 for Eb/N0¼1.47 and 13 for

Eb/N0¼1.97 and an analog decoder will correspondingly converge

faster at higher signal-to-noise ratios. Many of the state of the art

digital implementations of LDPC decoders use between 8 to 15

iterations [60–62]. Therefore based on the DE analysis an analog

decoder requires 2� t� 15 seconds for decoding a frame.
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Fig. 12. The effect of LLR limitation due to leakage currents in a (3,6)-regular

length-816 code, evaluated using (37).

0 200 400 600 800 1000 1200 1400

×

0 20 40 60 80 100 120 140

0

2

4

6

8

10

12

14

16

18

20

Fig. 13. DE analysis of a (3,6)-regular LDPC code under Gaussian channel

assumption.

10



In order to estimate this value, we used post-layout simulation

results from our implemented LDPC nodes. We simulated a three

input variable node, driving a six input check node. The connection

between the variable node and check node is through a 1mmwire.

The choice of wire length was based on parallel decoder

architectures found in the literature for practical codes [10,21,63].

Using post-layout simulations we calculated the average value

of t. This number is t¼ 0:0258ms for small ½Each Transistor¼
0:14ðmmÞ2� nMOS based 90nm node and equals, t¼ 0:523ms for

the large ½Each Transistor¼ 3:90ðmmÞ2� nMOS based circuit

in 65nm. These values translate to throughputs between

N�1.3Mb/s to N �64kb/s. The node delay depends on many

different factors such as transistor sizing, wire length, normalizing

current and node architecture. Larger nodes are immune against

mismatch but have slower response. Increasing the normalizing

current reduces the convergence time but increases the power

consumption. In addition, different node architectures result in

different convergence times. While the dependence of accuracy

and speed stems from many design parameters, using the faster

designs discussed in this paper, and tolerating higher mismatch

values, energy per bit consumption values of less than 10pJ/bit

can be computed as achievable.

11. Conclusion

In this paper we studied different phenomena that affect the

scaling of sub-threshold analog decoders down to the nanometer

regime. Here we focused on LDPC decoders, but the approach

should be applicable to any analog decoder (e.g. Turbo or Turbo

Product decoder) that employs Gilbert Multipliers. The effect of

different short-channel effects as well as leakage currents and

mismatch on sub-threshold analog decoders was discussed in

detail. We showed that mismatch has the largest impact and

imposes a lower limit on transistor sizing. Hence, process

miniaturization is not likely to be beneficial for larger codes, as

it results in approximately the same size decoders with the same

speed and energy per bit values. That is, potential benefits of sub-

threshold analog decoding flatten out around the 90nm technol-

ogy, as the value of AD does not scale anymore. However, small

code sizes can still benefit from scaling in CMOS technologies.

Since the threshold mismatch effect is more severe in the sub-

threshold region, moving to strong inversion is likely to alleviate

this issue. Here we note the work in analog min-sum decoders

[21], where transistors operate in strong inversion, and where

scaling may be easier to achieve. Further investigation of this

issue would be required.

Another possible solution is a hybrid analog-digital decoder,

where the analog decoder would perform a fast, power-efficient

initial decoding phase, and after some point an ‘‘accurate’’ digital

decoder would take over to correct any residual errors. Since most

of the incorrect bits have already been corrected by the analog

decoder, the dynamic power consumption of the digital decoder

is reduced. These digitally assisted solutions require further

investigation and are still at a preliminary stage.
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