N
N

N

HAL

open science

Synchronization of hybrid systems for secure multimedia
streaming

Jeremy Parriaux, Gilles Millérioux

» To cite this version:

Jeremy Parriaux, Gilles Millérioux. Synchronization of hybrid systems for secure multimedia stream-
ing. International Symposium on Communication Systems, Networks and Digital Signal Processing,

CSNDSP, Jul 2010, Newcastle, United Kingdom. pp.CDROM. hal-00540860

HAL Id: hal-00540860
https://hal.science/hal-00540860
Submitted on 29 Nov 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-00540860
https://hal.archives-ouvertes.fr

Synchronization of hybrid systems for secure
multimedia streaming

J. Parriaux*, G. Millerioux*
*Nancy University, Research Center on Automatic Control of Nancy (CRAN), France
jeremy.parriaux @esstin.uhp-nancy.fr, gilles.millerioux @esstin.uhp-nancy.fr

Abstract— The aim of this paper is to propose some solu-
tions to the problems that occur when one tries to implement
cryptosystems with high throughput performances. The
paper describes theoretical and practical aspects regarding
an FPGA implementation of a secure multimedia streaming
setup. The class of hybrid dynamical systems is addressed
with special emphasis on piecewise linear dynamical systems.

I. INTRODUCTION

Nowadays, electronic devices are everywhere and often
need to interact with each other. They sometimes process
critical information that needs to be securely exchanged
for various purposes. This requirement has led to the
development of cryptology. Cryptology is a topic that
gathers cryptography and cryptanalysis. Cryptography is
the art of secrecy, it deals with authentication and confi-
dentiality of digital communications. The algorithms used
for these purposes are parametrized with a secret (often
called the key) that only the legitimate part must know.
Cryptanalysis essentially consists in seeking for possible
weakness of cryptosystems. One has to point out that
the security of an algorithm has to rely entirely on the
key. As a result, every single part of the algorithm is
supposed to be publicly known. This assumption is known
as Kerckhoffs’ principle [2].

Cryptographers have developed several algorithms to
securely exchange information. They are based on the
confusion and diffusion principles stated by Shannon
in [4]. Diffusion is a property that makes the relation
between the key and the ciphertext complex and is such
that a small change (as small as one bit) in the key or in
the plaintext results in a completely different cryptogram.
Confusion is a property that makes the relationship be-
tween the plaintext, the ciphertext and the key very
complex. The first difference that can be made among
the cryptographic algorithms is that some of them need
the same key for ciphering and deciphering and the other
ones use a different key. In the first case they are called
symmetric (or private key) algorithms and in the second
one they are called asymmetric (or public key) algorithms.

Symmetric algorithms can be divided in two subcate-
gories: block ciphers and stream ciphers. Block ciphers
are algorithms that take fixed size inputs and produce
fixed size outputs through a fixed transformation called
ciphering function. One problem that arises for such a
class of algorithms lies in that the same plaintext results
in the same ciphertext. This might be a problem in some
situations, redundancy on plaintexts for example, because
even though an attacker does not know the exact meaning

of the data exchanged, he can extract partial information.
One way to solve this problem is to use a stream cipher. In
a stream cipher, the successive ciphertexts are ciphered by
mean of a function which not only depends on the secret
key but also on a time-varying quantity called running
key. Such a time-varying key is a function of the internal
state of the cipher. Therefore the ciphering function is a
set of transformations indexed by the current state of the
cipher. Unlike block ciphers, stream ciphers require an
internal memory to store the state. Usual stream ciphers
are RC4 (used in the WEP encryption in WIFI), CSA
(used in the digital TV), AS (used in mobile phones), etc.
Another advantage of stream ciphers is that they usually
have less hardware complexity which makes them faster.
They are especially well suited when one needs to cipher
data at a high throughput. For stream ciphers, the internal
state of the decipher has to be kept synchronized with the
internal of the cipher for proper decryption. Therefore
when using stream ciphers one must resort to a synchro-
nization scheme between the cipher and the decipher.
To this end, one can insert synchronization flags in the
communication stream or resorting to resynchronization
protocols. Among the stream ciphers, there is a special
kind of algorithms called self-synchronizing stream ci-
phers (SSSC for short). One of their important properties
is that they do not require any external synchronization.
Indeed, if for any reason the cipher and the decipher lose
their synchronization, assuming a correct transmission
for a short while, the two systems will resynchronize
automatically: it is an intrinsic property. One can easily
understand the relevance of this class of ciphers.

The rest of the document will discuss how to implement
the special SSSC presented in [5] and how to build the
corresponding circuit. In order to show that it is possible
to build an implementation that is able to work fast
enough for a real application, we will use an FPGA-based
circuit to cipher and decipher a video stream on the fly.

The outline of the document is the following. In Sec-
tion II, after giving some generalities on SSSC, we focus
on the special algorithm presented in [5]. In Section III,
we discuss the points, which have been omitted in [5],
having in mind in the present paper a practical implemen-
tation. Section IV is devoted to the hardware description
along with performances. We ends up by suggesting a list
of open problems that could be used as hints for further
studies to improve the performances of the circuit.

II. THEORETICAL DESCRIPTION OF THE ALGORITHM
A. Self-synchronizing stream ciphers in a nutshell

The canonical description of a Self-Synchronizing
Stream Ciphers admits the equations:

{ T = O'gs(yk,l, ..

~,ykfsz)
1
yr = e(wp, ug) M

ug, Yy and xzp stand respectively for the plaintext, the
ciphertext and the running key. o;° is the function that
generates the time-varying key zy. It is parametrized by
0 which acts as the secret key. [is a non-negative integer
standing for a possible delay and M is called the delay of
memorization. e is the ciphering function. Insofar as op°
depends on a fixed number of past values of y, it is clear
that SSSC do not require any external synchronization
protocol between the state of the cipher and the state of
the decipher. The synchronization is an intrinsic property
of the algorithm. The self-synchronization property po-
tentially offers two advantages. First, because there is no
need for any synchronization flags, fast throughput can
be obtained. Furthermore, it is possible to implement one
way communication scenarios. For instance, it is possible
to broadcast a ciphered stream (say a video stream) over
a large area to low power end-terminals. These low power
devices can’t necessary send information to the emitter to
synchronize their state (and even if it could, the emitter
can’t necessary handle the synchronization of thousands
of devices).

B. Background on piecewise linear dynamical systems

The algorithm to be implemented is deeply described
in [5]. It involves a special class of hybrid systems,
namely piecewise linear systems. It uses theoretical con-
cepts borrowed from automatic control. This Section aims
at recalling some backgrounds.

Dynamical systems are commonly used to describe
the evolution in time of a system. Linear systems can
be described by the set of equations, called state space
representation:

Tpq1 = Axy + Buy,)
yr = Cxp + Duy, ’
with
e A a matrix of dimension n called the dynamical
matrix;

e B a vector (for a single input system) of dimension
n x 1 called the input vector,

o C avector (for a single output system) of dimension
1 x n called the output vector,

e D a scalar (for a single input/output system) called

the direct transfer matrix,

e ug a scalar corresponding to the input of the system,

e 1z} a vector of dimension n standing for the internal

state of the system,

e Y1 ascalar corresponding to the output of the system.
The first equation of (2) describes the evolution of the
internal state of the system and is named dynamical
equation. The second one describes the value of the

output y;, with respect to the current internal state xy
and possibly the input u; (whenever D is not 0).

For switched linear dynamical system, a special class of
hybrid systems, the matrix A, B, C' and D may change
at each iteration. They belong to a finite set of size J.
They can be described by the state space representation

{ 1 = Ao T + Bo gy 3)

Yk = Cor)Tk + Do(ryur

with 0 : N = {1,...,J}; o(k) = ¢; o is called the
switching function (or commutation rule) and ¢ is called
the mode.

Three properties of dynamical systems play an central
role when a cryptographic application is sought.

o the relative degree. It is an integer value denoted
hereafter r. r is the smallest quantity so that the
output ¥4, at time k + r depends explicitly of the
input uy at time k.

o left-invertibility. It is a property that ensures to
recover in a unique way the input wu; from
the knowledge of a finite sequence of outputs
Yk, Yt 1, - - - Yyt With [< o0,

o flatness. It is a property that guarantees that the
internal state xj; can be expressed by mean of a
function whose arguments are finite number of the
output y;, and/or its backward and forward iterates.

C. Ciphers based on piecewise linear dynamical systems

The class of piecewise linear systems (PWL) has been
largely proposed in the literature to design cryptosystems.
Indeed, when u; = 0, (3) turns into an autonomous
system which can exhibit, for suitable choices of param-
eters (entries of the dynamical matrices A;) and suitable
switching rule o, a chaotic behaviour. If so, the sequence
of the successive z; and so of the successive y; is a
random-looking sequence even though it is generated
by deterministic equations. The sequence can be used
to scramble information. The simplest scrambling is the
mere addition. This is typically what happens in the well-
known additive masking proposed for the first time in [6].
The ciphering consists in considering (3) with u; = 0 and
performing:

Ck = Yk + Mg

where my is the plaintext (the information to be
encrypted) and ¢, stands for the corresponding ciphertext.

Resorting directly to (3) as a ciphering algorithm is
an alternative. For this scheme, the plaintext is precisely
uy and the corresponding ciphertext is yx. Such a cipher
is called message-embedding. Indeed, the plaintext uy is
embedded (injected) into a dynamics which is expected
to be chaotic. A central question arises. Indeed, chaos,
in particular its major property of sensitivity on initial
conditions, makes sense for autonomous systems. On
the other hand, chaos makes no longer sense for non
autonomous systems unless the magnitude of wuy with
respect to the state xj, is small. Indeed, if so, embedding

uy into the dynamics can be merely considered as a
small modulation. "Chaoticity", and so complexity of
the ciphering, is thereby more or less preserved. Let us
note that few works have been carried out to really bring
out a correspondence between chaoticity (in terms for
example of Lyapunov exponents) and security. Hence,
the relevance of resorting to the message-embedding
involving chaotic dynamics is somewhat questionable.

The recent paper [3] provides a survey on the different
chaotic ciphering proposed so far in the literature and
brings out a connection with standard cryptography. It
has been shown therein that, regardless the dynamics
(chaotic or not), the message embedding can be
structurally equivalent to a standard Self-Synchronizing
Stream Cipher. Such an equivalence is guaranteed
under the conditions that the dynamical system has
finite relative degree, is left invertible and flat. It has
been particularized in [5] for piecewise linear systems.
Thorough theoretical developments on left invertibility
and flatness for discrete-time piecewise linear systems
can be found in [7]. Let us note that the problem of
left-invertibility in connection with chaos synchronization
problem has been addressed also for SISO discrete-time
systems in [8]. The result on equivalence rises a new
interest on the message-embedding. Indeed, the result
is interesting regarding the discussion on chaoticity and
security. Since (3) can reduce to a standard SSSC, all the
tools assessing the security of standard SSSC still apply
for (3). In particular, since the equivalence is structural,
it is independent from the dynamics (chaotic or not)
and the assumption stating that u; must be “small” can
be relaxed. It is of first importance if (3) is no longer
defined on the set of real numbers R but on discrete
sets. Yet observe that in digital applications, precisely
our context, (3) is defined on finite sets.

The dynamical system (3) being considered as a cipher,
we must define the equations of the decipher. It is shown
in [5] that, under the condition of finite relative degree,
left invertibility and flatness, the equations of the decipher
read:

jk:+r+1 = Pg(k)i'kJrr + Ba(k)(ﬂéz))_lyk+r
e = —(T30) " Cotin ALy ik (@)
+ (7_;(7]3))_12/764-7'
with 7 the relative degree of the system,
ro_ 0 \—1 o(k+r—1)
Priey = Aoy = Boe)(T7 (1)) Cotorn) Ag (1) (%)

and

Aggﬁég = Ao Ac(ki—1) - Aoy if k1 > ko ©
=1, otherwise
and
Toii) = “<’€+i>AZ§IZI;111))Bo<k+j) if j<i—1
7:&) = Do (k+i) otherwise
)

III. PRACTICAL ISSUES

The equations (3)-(7) describe the cryptosystem setup.
However in order to implement this algorithm, one has to
further address the following matters:

« How to involve the key, hereafter denoted 6, in the
system?

o What are the possible structures for the matrices A;,
Bi, CZ and Dz?

o Which relevant function to use for the commutation
rule o?

e On which set the dynamical systems must be de-
fined?

From a security point of view we could also investigate
the following issues:

o What should be the dimension of the system?

« How many modes should the system have for the
system to be secure?

o What should be the key size?

Now, let us try to answer the first set of questions.

A. How to involve the key bits in the system?

The only places where the key bits of 6 can be
involved are the matrices A;, B;, C; and D; and/or the
commutation rule. A more detailed answer to this question
is given in the following sections when discussing the
matrices and commutation rule structures.

B. Matrices structures

We have previously stressed that for the dynamical
system (3) to guarantee the existence of an inverse
system and the self-synchronizing property, altogether
left-invertibility, flatness and finite relative degree must
apply. An important point to consider is the number of
operations required to compute the output (ciphertext) of
the system. It is easy to understand that using sparse
matrices (especially for A;) will reduce the number of
required operations, thus reducing the area, the power and
the time required. Taking into account these constraints,
we suggest to use an horizontal companion structure for
the A; matrices. They are built as follows: the A;s entries
are 1 on the superdiagonal, all the other entries are zero
except for the last row. For the special dimension n = 4
chosen for our circuit, they read as:

0 1 0 0

0 0 1 0

0 0 0 1 ®)
—a; =B =y =

A=

Actually, ay, B, 7; and J;, and more generally the entries
of the last row, are the coefficients of the characteristic
polynomials of the matrices A;. For the sake of compu-
tational cost, the matrices B; and C; and D; are chosen
to be constant and they read

By = (0 0)" vk
and

Coy=(1 0

Besides the sparsity and the related computational effi-
ciency, this choice has been made because it is interesting
insofar as left-invertibility and flatness are ensured for
any values of the characteristic polynomial coefficients
and any switching rule o. Finally, the equality 7, = 1
which is a further advantage from a computational point
of view always applies.

C. Commutation Rule

The aim of the commutation rule is to generate the
index ¢ corresponding to the mode. First, to guarantee
self-synchronization, the sequence generated by the com-
mutation rule has to be the same in the cipher as in
the decipher (at least after a few iterations). Second,
the sequences of modes must not be directly accessible
for any unauthorized party (eavesdropper). Therefore, a
solution consists in choosing a commutation rule o (k) of
the generic form:

a(k) = f0,[yks- - Ye—1]))

where f is a function that depends on 6 (the secret key)
and on a finite number y;, (the outputs of the cipher) fixed
by a positive integer [. The function f has to be chosen
so that if the secret key 6 is unknown, it is a hard task
to get o(k) even though the successive y; are accessible
(indeed, they are conveyed through a public channel). The
proposed function which fulfills these constraints is the
dot product between the elements of the key and the past
outputs, that is

o(k)=0[yr, i) (10)

D. Finite sets

Another problem that must be solved when trying to
implement the algorithm is the set of input symbols used
and output symbols generated. Usually, when dealing with
dynamical systems the quantities being manipulated are
real numbers. This is typically what happens for chaotic
systems (see the discussion provided in Subsection II-
C). On the other hand, it is not possible for the in-
tended application because digital processing require a
representation of the input and output symbol with a
bounded number of bits. This means that we can’t use real
numbers as input or output symbols when implementing
this system. An alternative could be resorting to floating
point numbers but this is a poor solution because the
quantities are inevitably rounded. The behaviour would
be machine dependent and it is clearly redhibitory.

In order to overcome this problem we look into
mathematics and in particular algebra. Algebra defines
structures called fields that are of particular interest. A
field FF is a set together with two operations usually called
addition and multiplication and respectively denoted by +
and - so that the following axioms hold:

1) For all a and b in F both a +b and a-b are in [F,

2) For all a, b and ¢ in T, associativity holds: a + (b+
¢)=(a+b)+canda-(b-c)=(a-b) ¢,

3) For all a and b in F, commutativity holds: a + b =
b+aand a-b="5>-aq,

4) There exists an element of [F, called the additive
identity element and denoted by O such that for
all @ in F, a + 0 = a. Likewise there is an
element, called the multiplicative identity element
and denoted by 1, such that foralla inF, a-1 = a.
The element denoted O and the one denoted 1 have
to be different,

5) For every a in F, there exists an element —a in I
such that ¢ + (—a) = 0. Similarly, for any a in F
other than 0, there exists an element ¢! in F such
that a-a~! =1,

6) For all a, b and c in F distributivity of the mul-
tiplication over the addition holds: a- (b + ¢) =
(a-b)+ (a-c).

A finite field is a field with a finite number of
elements. These are the ones that we can use in digital
processing. The following subsections detail two of them.

1) Prime fields: Interestingly, the set of integers
modulo an integer n, that is the structure Z/nZ, is a
field if n is prime. And since it has a finite number of
elements it could be used for our purpose. But using this
kind of field might be not suitable because its order (the
number of elements) has to be a prime which means that
except for a field with two elements we can’t use all the
possible bit combinations. For instance, if one chooses a
field with five elements, one would need [log2(5)] = 3
bits to encode the different numbers. Hence, we would
only use five out of eight bit combinations, which is
clearly a non optimal use of the bits. Moreover, we are
dealing with a hardware implementation. This means
that every basic operation can have a great impact on the
efficiency of the algorithm especially if we target a highly
parallelized circuit as it is the case here. Indeed, except
the case when one chooses p = 2, the parallel hardware
implementation requires a huge area and has long time
critical pathes that limit the maximum frequency at
which the circuit can operate. This is mainly due to the
modulus reduction which is time consuming and quite
heavy in term of circuit area if p is not a power of two.
The next section suggests the use of another kind of field
which allows the use of all the bit combinations of any
k bits length word.

2) Field extensions: A field extension is a field based
on a smaller field. Elements of a field extension are
vectors whose components belong to the underlying field
(the smaller field). If the base field is of order p and that
the elements of the field extension are of dimension n
then, there are p” possible combinations. This gives an
idea about how to build the set of elements. In order for
that set to be a field, we also need to define an addition
and a multiplication such that the field axioms 1)-6)
are fulfilled. To this end, we consider elements of the
field extension as polynomials where each component of
the vector corresponds to the coefficient of a monomial
of the polynomial. For instance if we consider the
element (a, 3,7) of the extension field F,s it can be
seen as the polynomial a-2% + B-x + v-1 where «

and [and + belong to the field F,. It is therefore quite
natural to use the polynomial addition and multiplication
to define the two field operations. We will see in
the following paragraphs that adding two elements
is straightforward and that it is a bit more tricky to
multiply them. The examples in the next paragraphs
are given with p = 2 and n = 3 but the same kind
of result holds for any prime p and any positive integer n.

a) Addition: The polynomial addition only consists
in adding each monomial component over the field they
are defined on. For instance, we can take the two follow-
ing elements A = 110 (or A = 2? +z) and B = 101 (or
B = 22 + 1) of Fys. Applying the polynomial addition
and performing the operation of the coefficients of the
monomials in Fy yields

1 1 O 2 +x +0
+ 1 0 1 or + x2 +0 +l1
0o 1 1 0 +x +1

It is easy to see that whatever the elements of this structure
are, the result of the addition remains in the structure. We
will see that the multiplication has not this property and
requires an additional operation.

b) Multiplication: Let us turn to the polynomial
multiplication involving the two elements of the previous
example:

1 1 0
X 1 0 1
1 1 0

0 0 O
+ 1 1 0 . .
1 1 1 1 0

The result of the polynomial multiplication is a poly-
nomial of degree at most the sum of the degree of the
two multiplied polynomials. Thus, in some cases the
resulting polynomial won’t be an element of the original
structure. To tackle this problem, in the same way we
build a field from the ring Z by reducing the elements
modulus a prime, we can build a field from the polynomial
ring F5[X] by reducing the elements by an irreducible
polynomial. An irreducible polynomial is the polynomial
equivalent of a prime that is, a polynomial that can’t be
written as a product of two or more polynomial different
from 1 and itself. In the example above the irreducible
polynomial 234+ x+1 can be used. Applying the modular
reduction with this polynomial, we get the following
result:

1 1 1 1 0
-1 0 1 1
01 0 O

- 1 0 1 1

0 0 1 1

The result of the modular reduction is now an element of
Fys. It can be shown that there exists at least one such
polynomial for any n which means that it is possible to
build a field with p™ elements for any n as long as p is
a prime.

E. Key size

According to the points discussed earlier, we can derive
the key size of the system. Let b be the number of bits of
an element of the alphabet of the plaintext or ciphertext,
let n be the dimension of the system and J the number of
modes of the system. If one wants to use distinct values
in each A; matrix, there is a need of n times J values.
Each value is b bits length, therefore the number of bits
of the key is given by

Keysize =n-J-b. (11)

In order for the algorithm to have a minimum security
with respect to an eavesdropper, Keys;.. must be large
enough so that an exhaustive search would not succeed in
reasonable time. We could then consider choosing a key
size ranging from 128 to 256 bits. That induces constraints
onn, J and b.

IV. CIrRCUIT

As said in the introduction stream ciphers are partic-
ularly well suited when high throughputs are required.
Therefore, we decided to build a device that is able
to cipher and decipher a video stream on the fly. We
used an Altera development kit based on the Cyclone III
FPGA in order to build this device. An analog source
broadcasts a video stream. This stream is then ciphered
and deciphered. Then, a multiplexor selects the signal to
be displayed on the screen (input stream, ciphered stream
or deciphered stream).

A. Implementation and performances

The aim of the circuit is to build a high throughput
secure streaming device. Therefore, we have chosen a
fully parallel implementation of (3)-(7). When comparing
the equations (3) (cipher) and (4) (decipher), it turns out
that the structure of the cipher and of the decipher looks
alike. However, the differences lies in the complexity
which is mainly due to the computation of the matrices
P;(k) and Ag(zég (see Equations (5) and (6)) for the
decipher.

In order to get an idea of the minimum throughput
that the system should reach to build our video streaming
system, one needs to compute the throughput of the
input stream. The analog to digital converter produces
3 x 8 bits at frequency 25 MHz. For our application, we
have chosen b = 8 so the system can only process 8 bits
at a time. Therefore, it should work at least at frequency
75 MHz. And the throughput of the system should be
8x75x10% = 600 000 000 bits per second. We succeeded
to build the circuits (the cipher and the decipher) so that
they work fast enough for our application. It terms of
area, it uses 903 (respectively 969) logical elements for
the cipher (respectively the decipher). A picture of the
setup is shown on the Figure 1. It shows the analog source
connected to the device. The output is displayed on the
screen.

We then wondered what was the maximum frequency
to which the circuit could work. At first, one should
note that the structure of the circuit (and therefore the

Alt&\zelopment kit

Analog source

Fig. 1: Picture of the setup

n (dimension) 4 5 6 7 8
Cipher 216 | 186 | 194 | 178 | 168
Decipher 168 | 155 | 162 | 152 | 149

TABLE I: Maximum frequency (in MHz) of the system
with J = 4 modes and symbols of b = 8 bits.

maximum frequency) heavily depends on the value of
the three circuit parameters which are the dimension
n of the dynamical system, the number J of modes
and the number b of bits per symbol. Moreover, due
to the obvious complexity of the decipher compared to
the cipher, one can easily guess that these two circuits
have different timing and area characteristics and that the
maximum frequency of the decipher is much lower that
the one of the cipher. Therefore, when investigating the
performances of this cryptosystem, it is better to focus
on the decipher which represents the worst case scenario.
Table I shows different results of the system after having
synthesized a circuit with b = 8 and J = 4 using Quartus
for a Cyclone III FPGA. The option of the synthesizer
gave the advantage to the time optimization over the area
optimization.

Table I highlights what was expected about the perfor-
mance differences between the cipher and the decipher.
One recall that the size of the key associated with these
systems can be calculated with the formula given by the
Equation (11). For instance, for a system of dimension
n = 8, with J = 4 modes and b = 8 bits per symbol,
Keygie = 8 x4 x 8 = 256 bits. One can now investigate
the evolution of the throughput of the system according
to the parameter n (the dimension of the system): there
is no pipeline and the circuit is fully parallel, symbols
are processed one at a time each clock cycle, meaning
that the throughput of the system is simply the value of
the maximum frequency times the number of bits per
symbol. For instance, if one chooses again the system
n = 8,J = 4,b = 8, the throughput is limited by the
decipher and is 8 x 149 x 10% =1.192 Gbit/s!.

"Note that this is a theoretical value. So far, no experiment has been
done to validate this result.

B. Improvements and concluding remarks

A first and obvious improvement which can be done
targets the IF'o» multipliers. Due to the structure of the al-
gorithm they are heavily used and any small improvement
can have a significant impact on the performances. So far,
these components are implemented intuitively meaning
that we perform a polynomial multiplication followed by
a modular reduction. These blocks can be replaced with
efficient ones widely described in the literature.

It may be also interesting to find another commutation
rule. There are two reasons for this. The first one is due
to the large area required to implement this part of the
algorithm compared to the rest of it. Indeed, it takes
more than half of the area of the decipher and even more
in the cipher. The second reason is for cryptographic
sake. The commutation rule is implemented as a dot
product and the linear property of this function might
be a problem. So far, there is no formal investigation
concerning its impact on the security. Yet observe that
huge part of the nonlinearity of the system relies on the
commutation rule. This points requires thorough insights.

Finally, the difference on the complexity of the cipher
and the decipher must be reduced. From an automatic
control point of view, the decipher is a left inverse dy-
namical system. As a result, we must look into structures
of dynamical systems playing the role of the cipher which
leads to simple structure of left inverse. Actually, such
a purpose is an open issue which deserves theoretical
insights but with high impact for hardware sakes.

ACKNOWLEDGMENT

We would like to thank Philippe Guillot who gave
us some precious advices. We also thank Phuoc Vo-Tan
for his work. Finally, we express our gratitude to Yves
Berviller, Serge Weber and Sébastien Calvi for their
implication in the achievement of the test device.

REFERENCES

[1] Ahlquist, Brent Nelson and Rice “Optimal finite field multipliers for
fpgas” In: FPL *99: Proceedings of the 9th International Workshop
on Field-Programmable Logic and Applications. Springer-Verlag.
London, UK. pp. 51-60, 1999.

[2] Delfs and Knebl “Introduction to cryptography: principles and
applications”. Springer-Verlag New York, Inc.. New York, NY,
USA, 2001.

[3] Millérioux, Amigé and Daafouz “A connection between chaotic and
conventional cryptography” IEEE Trans. on Circuits and Systems I:
Regular Papers, 2008.

[4] Shannon “Communication theory of secrecy systems” Bell Systems
Tech. Journ., 28, 657-715, 1949.

[5] Vo-Tan, Millérioux and Daafouz, “Left invertibility, flatness and
identifiability of switched linear dynamical systems: a framework
for cryptographic applications”, International Journal of Control,
83(1), 145-153, 2010.

[6] Wu and Chua, “A simple way to synchronize chaotic systems
with applications to secure communications systems” International
Journal of Bifurcation and Chaos, 3(6), 1619-1627, 1993.

[7] G. Millérioux and J. Daafouz, “Flatness of switched linear discrete-
time systems” IEEE Trans. on Automatic Control 54(3), 615-
619, 2009.

[8] 1. Belmouhoub, M. Djemai, and J.-P. Barbot, “Observability
Quadratic Normal Form for Discrete-Time Systems” [EEE Trans.
on Automatic Control, 50(7), 1031-1038, 2005.

