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Abstract. In this paper a spectral characterization of the synchroniza-
tion property of Boolean dynamical systems is provided. Conditions on
the spectrum of the next-state function are derived for two systems cou-
pled in a unidirectional way - also called master-slave configuration -
to guarantee self-synchronization. Two kinds of self-synchronization are
discussed: the statistical one and the finite one. Next, some conditions
are stated for a specific input sequence to allow the system to be self-
synchronizing. Some of the results are based on the notion of influence of
variables, a notion that is extended to vectorial Boolean functions for the
purpose of the paper. A potential application to cryptography is finally
given.

1 Introduction

Dynamical systems are commonly used to model natural or engineering based
processes. We can distinguish two kinds of systems. The continuous ones, R
valued and discrete ones, finite-set valued. The latter can be either an approx-
imation of a continuous system or can be intrinsically discrete. Let us stress
that the terminology continuous or discrete refers to the state variables of the
system regardless the time which can be continuous or discrete. Among a wide
variety of discrete dynamical systems, the class of Boolean Dynamical Systems
(BDS for short) is of special interest. In this paper, we focus on non-autonomous
BDS, that is with input. The specificity of BDS lies in that the internal state,
the input and the output are Boolean variables and therefore the transition and
output functions are Boolean functions.

In this paper we deal with the issue of synchronization of BDS which is the
process through which two systems are brought to the same state. Although
several structural conditions to guarantee synchronization have been provided
in the open literature, few works deal with BDS. Moreover, these studies address
the synchronization issue in the time. In this paper we propose a spectral point
of view. The interest of the spectral approach lies in that the composition of
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functions can be expressed in terms of product of matrices well suited for design
purpose. Spectral characterization is also well appropriate in the perspective of
ensuring special cryptographic properties when the dynamical systems under
consideration are involved in a ciphering setup.

More precisely we investigate the problem of self-synchronization. By self-
synchronization, it is intended a dynamical behavior which do no longer depend
on the initial condition after a transient time. Besides the spectral characteri-
zation, the novelty of the study lies in that the problem is viewed through the
notion of influence of variables. Roughly speaking, influence describes the ability
of a subset of the input variables of a function to change its output. Here the
set of variables under consideration is the initial condition of the dynamical sys-
tem. For the purpose of the paper we also had to extend this notion to vectorial
Boolean functions.

The layout is the following. In Section 2, we recall some background on
Boolean functions and tools of spectral analysis in particular Walsh transform.
Section 3 is devoted to the problem statement, namely the issue of self-synchro-
nization between two dynamical systems coupled in a unidirectional way. Distinc-
tion between statistical and finite time self-synchronization is made. Section 4
deals with the Walsh transform of the iterated function of a dynamical system
as a prerequisite for deriving the main result. In Section 5, the notion of self-
synchronizing sequence is developed. The main result of the paper is stated in
Section 6 wherein, based on the notion of influence, we derive conditions on the
spectrum of the next-state function for a BDS to be self-synchronizing. Finally
Section 7 is devoted to illustrative examples. An example potentially interesting
for cryptographic applications involving the so called Self-Synchronizing Stream
Ciphers (SSSC for short) is provided.

2 Preliminaries and Definitions

In this section, we recall the basics about spectral analysis of Boolean functions
which is the main tool used in this paper. Let F2 denotes the two elements field.
For any positive integer n, the n–dimensional vector space over F2 is denoted
Fn2 . A Boolean function f is a mapping Fn2 −→ F2. If f is a Boolean function, we

denote by f̂ its Fourier transform, which is by definition the real valued mapping
Fn2 −→ R defined, for any n–dimensional binary vector u, by

f̂(u) =
∑
x∈Fn

2

f(x)(−1)x·u, (1)

where x · u = x1u1 + · · ·+ xnun. This transform is invertible and the inverse is
given by: ̂̂

f = 2nf (2)

Let us recall Parseval’s theorem (see [1]):
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Theorem 1 (Parseval’s theorem). For any Boolean function f : Fn2 −→ F2,
and any vector u ∈ Fn2 , the following relation holds:∑

u∈Fn
2

f̂2(u) = 2n
∑
x∈Fn

2

f2(x). (3)

When dealing with Boolean functions, we rather resort to the Walsh transform
which gets nicer properties in most cases. The Walsh transform of a Boolean
function f is simply the Fourier transform of its sign function fχ where fχ =
(−1)f(x) = 1− 2f(x) that is,

f̂χ(u) =
∑
x∈Fn

2

(−1)f(x)+x·u (4)

As shown in [1], the correspondence between the Fourier and the Walsh trans-
forms is given by

∀u ∈ Fn2 , f̂χ(u) = 2nδ0(u)− 2f̂(u), (5)

where δ0(u) is the Kronecker symbol, equals 1 if u is the n–dimensional zero
vector, and equals 0 elsewhere.

An (n,m) vectorial Boolean function, or simply an (n,m)–function, is a
function over the vector space Fn2 to Fm2 . Any of the output components de-
fines a Boolean function. Therefore, an (n,m)–function f is nothing but a m–
dimensional vector where each component is a n–variable Boolean function. The
jth coordinate is denoted by fj . The Walsh matrix of any (n,m)–function is the
2m × 2n dimensional matrix Wf =

(
wfu,v

)
so that (see [2]):

∀u ∈ Fm2 , ∀v ∈ Fn2 , wfu,v =
∑
x∈Fn

2

(−1)u·f(x)+v·x (6)

In other words, the rows indexed by u ∈ Fm2 of this matrix are the Walsh trans-
forms of the linear combinations of the functions fi defined by x 7−→ u · f(x).
The coefficients of the Walsh matrix of a function are called the spectrum of the
function.

N.B. Matrices indexes may be without ambiguity either an integer or a binary
vector representing the same integer in natural binary coding. Thus, if u and v
are vectors of same dimension, we may write u < v. It means that the number
represented by u is smaller than the one represented by v.

An interesting property relates the Walsh matrices of composed functions.

Proposition 1 (see [2]). If f is a (n,m)–function and g is a (p, n)–function
then

Wf◦g =
1

2n
Wf ×Wg. (7)
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3 Problem Statement

Let us consider a compound system involving two BDS coupled in a unidi-
rectional way, a setup called master-slave configuration. The system obeys the
following equations{

xk+1 = F (xk, uk)
yk = G(xk, uk)

(Master equation) (8)

{
x̂k+1 = f(x̂k, yk)
ûk = g(x̂k, yk)

(Slave equation) (9)

where xk and x̂k are n dimensional vectors. The subscript k stands for the dis-
crete time. The (n+ 1, n)–functions F and f are called the next-state functions.
The (n + 1, 1)–functions G and g are called the output functions. The input
and output of (8) (respectively (9)) are uk and yk (respectively yk and ûk). The
situation is depicted Figure 1. We are interested in self-synchronization. Before

F

xk

G

uk

yk

Master

f

x̂k

g
ẑk

Slave

Fig. 1: Overall system

proceeding further, let us introduce some formal definitions.

Definition 1 (Synchronizing sequence). A sequence (u) is synchronizing
for (8)–(9) if there exists an integer ku so that for all initial states x0 and x̂0:

∀k ≥ ku, xk = x̂k (10)

Remark 1. This definition can be generalized by adding a constant delay r so
that (10) turns into ∀k ≥ ku, xk = x̂k+r.

Definition 2 (Finite time synchronization). The overall system (8)–(9) is
finite time synchronizing if the minimum value ku is upper bounded when (u)
stands in the set of all input sequences. The upper bound is called the synchro-
nization delay.
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Remark 2. If (u) is a random sequence then, (u) turns into (U) and ku turns
into KU which is a random variable.

Definition 3 (Statistical synchronization). A system is statistically syn-
chronizing if lim

k→+∞
Prob(KU ≤ k) = 1.

In the sequel, we will focus on the slave system. The synchronizing properties
of this subsystem are entirely defined by those of the (n + 1, n)–function f .
Therefore, the previous definitions may be transposed as follow:

Definition 4 (Self-Synchronizing sequence). A sequence (y) is self-synchro-
nizing for f if there exists an integer ky so that for all initial state x0 and x̂0

∀k ≥ ky, xk = x̂k (11)

Definition 5 (Finite time self-synchronization). The function f is finite
time self-synchronizing if the minimum value ky is upper bounded when (y)
stands in the set of all input sequences. The upper bound is called the self-
synchronization delay of f .

Definition 6 (Statistical self-synchronization). A function f is statisti-
cally self-synchronizing if lim

k→+∞
Prob(KY ≤ k) = 1, where KY is the random

synchronization delay for the random sequence (Y ).

For our purpose, we must define, for any positive integer i, the iterated function
φi that expresses the internal state after i+ 1 iterations by means of the initial
internal state and the input sequence. More precisely, for the sequence (y) =
(y0, . . . , yi) ∈ Fi+1

2 and x ∈ Fn2 , the value φi(y, x) is:

φi(y, x) = f(yi, f(yi−1, f(. . . , f(y0, x) · · · ))) (12)

This function plays a central role in the sequel.

4 Walsh Transform of the Iterated Function

In this section, the Walsh spectrum of the iterated function φi is expressed
by means of the spectrum of the next-state function f . We then observe the
consequences on the synchronization properties of f .

Let us denote by f0 (respectively f1) the (n, n)–function which is the restric-
tion of f to the input bit y = 0 (respectively to y = 1). For a given fixed input
sequence y = (y0, . . . , yi), we denote by φyi the (n, n)–function that expresses the
internal state after i+ 1 iterations: φyi : x 7−→ φi(y, x). We express the spectrum
of the function φyi .

Proposition 2. The Walsh matrix of φyi is

Wφy
i

=
1

2n·i
WfyiWfyi−1 × · · · ×Wfy0 . (13)
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Proof. The proof is a direct consequence of Proposition 1.

For two vectors u = (u0, . . . , ui) and v = (v0, . . . , vn−1), their concatenation, de-
noted u|v is by definition the (n+i+1)–dimensional vector u|v = (u0, . . . , ui, v0, . . . , vn−1).

Proposition 3. Let v, t ∈ Fn2 , u ∈ Fu+1
2 , z = u|v and

(
w
φy
i
t,v

)
= Wφy

i
. The

entries of the Walsh matrix of the iterated function φi are defined by

wφi

t,z = wφi

t,u|v =
∑

y∈Fi+1
2

(−1)u·yw
φy
i
t,v (14)

Proof. By definition of the Walsh coefficients,

wφi

t,z = wφi

t,u|v =
∑
x∈Fn

2 ,y∈F
i+1
2

(−1)t·φi(y,x)+(u|v)·(y|x)

=
∑
y∈Fi+1

2

∑
x∈Fn

2
(−1)t·φi(y,x)+u·y+v·x =

∑
y∈Fi+1

2
(−1)u·yw

φy
i
t,v

According to (13), the Walsh matrix of φi can be expressed as sums and differ-
ences of the Walsh matrices Wφy

i
obtained for all the possible sequences (y) of

length i+1. Therefore, we get the expression of the spectrum of φi as a function
of the spectrum of f .

5 Self-Synchronizing Sequences

In this section we are interested in characterizing the sequences (y) that self-
synchronize the function based on the spectrum of the function φyi .

Proposition 4. The Walsh matrix of the iterated function is

Wφy
i

=


2n 0 · · · 0
±2n 0 · · · 0

...
...

...
±2n 0 · · · 0

 (15)

if and only if (y) is a self-synchronizing sequence for this function.

Proof. By definition, if (y) is a self-synchronizing sequence φyi (x) does not de-
pend on x thus, φyi is a constant function. The converse can be derived by
applying (2) to the rows of the above matrix (which are the Walsh transforms
of the linear combinations of the component functions fj .

The matrix Wφy
i

can easily be worked out with (13).

Remark 3. If (y) is a self-synchronizing sequence for the function f then, any
other sequence that contains (y) as a subsequence is also self-synchronizing for
f .

Proposition 5. If f has at least one self-synchronizing sequence then f is sta-
tistically self-synchronizing.
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Proof. A self-synchronizing sequence has a finite length, therefore, its probability
of occurrence is one in a sequence whose length approaches infinity.

These results can be used to check in the spectral domain whether a given
sequence is self-synchronizing or not. But more importantly it gives some con-
ditions on the Walsh spectrum of the function that can be used to build self-
synchronizing systems that have the form (9).

6 Influence of Variables

Roughly speaking, influence reveals the ability of a variable to change the output
of a function. Let us stress that the notion of variable influence has been used
in several papers (e.g. [3–5] to mention a few). For reasons explained later on,
we must revisit the existing formal definitions of such a notion because they are
not suited for our purpose.

6.1 Influence of a Single Variable

Let f be a boolean function of the variable x. The influence of one variable xi
over a Boolean function f is defined as the probability that the value of f(x)
changes if the value of the component xi is changed, the other components being
set randomly. This definition may be expressed in an equivalent way.

Definition 7. Let f : Fn2 −→ F2 be a Boolean function and i ∈ {1, . . . , n} a set
of integers. Let ei be the n–dimensional vector whose components are zero except
the ith one which equals 1. The influence of xi on f is:

If (i) =
1

2n

∑
x∈Fn

2

[
f(x) + f(x+ ei)

]
Remark 4. This is related to the so called auto-correlation function of f which

is rf (u) =
∑
x∈Fn

2
(−1)f(x)+f(x+u) that is, If (i) = 2n−1 − 1

2
rf (ei).

6.2 Influence of a Set of Variables

There exists several ways to extend Definition 7. None is more natural than the
others. The choice of the right definition depends on what need to be studied.
The influence of a subset3 S of components of x can be defined as the probability
that the value of f(x) changes if one of the variables in S changes too. It does
not take into account the number of possibilities of choosing the values of the
variables that changes the output of the function. A more suitable definition for
our purpose should involve the balancedness of the restricted function obtained
by fixing the variables not in the set S. Next, the expression of the influence

3 Note that a variable may be identified to its index. Thus for short S may be also
considered as a set of indexes in {1, . . . , n}.
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of a set containing more than one element is a complex function of its spectral
representation and is therefore not suitable for the proposed approach. This
is the reason why we rather introduce a new definition of the influence that
takes these points into account. The support of a vector u is by definition:
supp(u) =

{
i ∈ {1, . . . , n} | ui 6= 0

}
.

Definition 8. Let f(x) be a Boolean function of n variables, S be a set of k
components of x. The influence If (S) is:

If (S) =
1

2n(2k − 1)

∑
x∈Fn

2

∑
u∈Fn

2 |u6=0, supp(u)⊂S

[f(x) + f(x+ u)] (16)

In other words, the influence of a set of variables is the mean of the probabil-
ities that f(x) changes when x is uniformly randomly chosen, the mean being
computed for all possible changes of the value of the variables in S.

Remark 5. When the set S contains one element, then Definitions 7 and 8 are
equivalent.

6.3 Spectral Expression of the Influence

The influence of a set of variables over a Boolean function f can simply be
expressed by means of its spectral representation.

Proposition 6. Let f(x) be a Boolean function of n variables, S be a set of k
components of x. The influence If (S) is:

If (S) =
2k−1

22n(2k − 1)

∑
v∈Fn

2 | supp(v)∩S 6=∅

f̂χ
2
(v) (17)

Proof. For any vector u, let fu : x 7−→ f(x) − f(x + u). It is easy to see that
fu(x) = 0 if f(x) = f(x+ u) and fu(x) = ±1 if f(x) 6= f(x+ u). This implies

that [fu(x)]
2

= f(x) + f(x+ u). Therefore, by using (3),

If (S) =
1

22n(2k − 1)

∑
v∈Fn

2

∑
u∈Fn

2 |u 6=0, supp(u)⊂S

[
f̂u(v)

]2
. (18)

By expressing f̂u(v) by means of f̂(v), we get

f̂u(v) =
∑
x∈Fn

2

f(x)(−1)v·x(1− (−1)v·u) = (1− (−1)v·u)f̂(v),

By using this expression of f̂u(v) in (18), we get

If (S) =
1

22n(2k − 1)

∑
v∈Fn

2

f̂2(v)
∑

u∈Fn
2 |u6=0, supp(u)⊂S

[1− (−1)v·u]
2
,
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and thus:

If (S) =
1

22n−2(2k − 1)

∑
v/ supp(v)∩S 6=∅

f̂2(v),

and finally using (5) the desired result stands.

Remark 6. This definition of the influence of variables is very close, up to a
factor that depends on the cardinality of S, to the definition of the so called
variable variation given in [4].

Proposition 7. Let f be a Boolean function.

1. f is bent if and only if for all non-empty subset S of variable indexes, one

has If (S) =
1

2
,

2. f does not depend on the variables in the subset S if and only if If (S) = 0.

Proof. 1. If f is bent, then ∀u ∈ Fn2 , f̂χ(u) = ±2n/2. Then replacing this
expression in (17), we get

If (S) =
2k−1 × 2n

22n(2k − 1)

∑
v/ supp(v)∩S 6=∅

1 =
2k−1 × 2n

22n(2k − 1)
(2n − 2n−k) =

1

2

Conversely, if for all non-empty subset of variable indexes S of k elements,
one has If (S) = 1/2, then, by replacing in relation (17), one gets

2k−1

22n(2k − 1)

∑
v| supp(v)∩S 6=∅

f̂χ
2
(v) =

1

2
.

By Parseval’s Theorem, and as supp(v) ∩ S = ∅ ⇐⇒ supp(v) ⊂ S, where S
denotes the complementary set of S,

22n −
∑

v| supp(v)⊂S

f̂χ
2
(v) = 22n−k(2k − 1),

Thus: ∑
v| supp(v)⊂S

f̂χ
2
(v) = 22n − 22n−k(2k − 1) = 22n−k (19)

When applying this relation with S = {1, . . . , n}, the sum (19) has only

one term which is f̂χ(0)2 = 22n−n = 2n. The other values are obtained by
induction on the weight of vector u. Let v be a non-zero vector. Let us choose
S such that S = supp(u). One can split the sum of relation (19) into the

term f̂χ
2
(v) and the 2n−k−1 others terms which all equal 2n by the induction

hypothesis as they all have weight strictly lower than the weight of v. Thus,

f̂χ
2
(u) + (2n−k − 1) · 2n = 22n−k and the result holds.

2. If f is constant with respect to the variables in S, ∀x, ∀v ∈ supp(S), f(x) +
f(x + v) = 0 thus, If (S) = 0. Conversely, If (S) = 0 implies that for all v
the terms f(x) + f(x+ v) equal 0 since If (S) is a sum of positive terms.
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6.4 Extension of the Influence to Vectorial Boolean Functions

In this section, we extend the definition of the influence to vectorial Boolean
functions in order to characterize the self-synchronization property of f .

Definition 9. The influence of a set of variables S over a vectorial Boolean
function f is the mean of the influence of S over each coordinate function fj.

If (S) =
1

q

q∑
j=1

Ifj (S) (20)

Proposition 8. If f does not depend on the variables in S then, the influence
is If (S) = 0.

Proof. This is a simple consequence of Proposition 7.

6.5 Self-synchronization vs influence

We aim at relating the self-synchronization property of the function f stated
in Definition 5 and 6 to the influence of the initial state on the corresponding
iterated function φi. Let Sx denote the subset of variables that corresponds to
the initial state x.

Proposition 9. The function f is finite time self-synchronizing if and only if,
there exists an integer i large enough so that for any finite sequence (y) of length
i+ 1, the iterated function φi(y, x) does not depend on the internal state compo-
nent x. In other words, the variable x of φi(y, x) has no longer influence after a
transient time that is, Iφi

(Sx) = 0

Proposition 10. The function f is statistically self-synchronizing if and only
if, there exists an integer i large enough so that for at least one sequence (y) of
length i+ 1, the iterated function φi(y, x) does not depend on the internal state
component x. In other words, there is at least one input sequence (y) so that the
variable x of φyi (x) has no influence over φyi thus, Iφy

i
(Sx) = 0.

It can be inferred from (14) that this implies for Wφi
to be sparse. The only

possible non-zero coefficients are located on the column v so that supp(v)∩S = ∅.

7 Examples

7.1 Academic Example

We now show how to use the previous results to build a (n + 1, n)–function f
that is statistically self-synchronizing. Let f : F2 × Fn2 −→ Fn2 , and f0 (respec-
tively f1) the restriction of f to y = 0 (respectively y = 1). A statistically self-
synchronizing function f can be obtained by selecting the appropriate functions
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f0 and f1 so that there exists an admissible way to multiply the corresponding
Walsh matrices Wf0 and Wf1 (or their powers) yielding (15). From this per-
spective, we can consider a lower triangular matrix with zeros on the diagonal
except the entry located at row 0 and column 0. Such a matrix has the inter-
esting property that the successive right multiplications with any other matrix
tends to produce a matrix of form (15). Therefore we can select f0 such that its
Walsh matrix has the aforementioned structure, f1 being any vectorial Boolean
function. Note that this choice is arbitrary and the role of f0 and f1 can be
reversed.

Let us provide a constructive approach to find out a suitable (n, n)–function
f0. First, let us recall that the uth row of Wf0 is the Walsh transform of the
Boolean function defined by x 7−→ u · f0(x). That is, the uth row is the Walsh
transform of the linear combination of the coordinate functions f0j such that the
components uj equal 1. Let ej be the canonical vector whose components are 0
except the jth one which equals 1. Considering the rows u = ej for j ∈ {1, . . . , n}
is equivalent to select each coordinate function f0j . Thus, the other rows can be
obtained by calculating the Walsh transform of the linear combinations of the
functions f0j . Interestingly, the functions that depend only on the first k variables

have zeros after the first 2k coefficients.

Proposition 11. Let f be a n–variable Boolean function. The function f de-
pends only on the first jth variables (j ≤ n) if and only if

∀u, supp(u) /∈ {1, . . . , j}, f̂χ(u) = 0

Proof. Let us express the Walsh transform of a n–variable function f that indeed
depends only on the first jth variables. It can be expressed, for u ∈ F

j
2 and

v ∈ Fn−j2 , as

f̂χ(u|v) =
∑

y∈Fn−j
2

(−1)v·y
∑
x∈Fj

2

(−1)f(x|0)+u·x.

This implies that f̂χ(u|v) = 0 if v 6= 0, which proves that Conversely, for x ∈ Fj2
and y ∈ F

n−j
2 , one has fχ(x|y) = 1

2n
̂̂
fχ(x|y) = 1

2n

∑
u,v f̂χ(u|v)(−1)x·u+v·y.

As it is assumed that, for v 6= 0, one has f̂χ(u|v) = 0, we deduce f(x|y) =
1
2n

∑
u f̂χ(u|0)(−1)u·x. It is clear that this expression does not depend on y and

the result holds.

This proposition implies that if the coordinate functions f0j are chosen so that
it depends only on the first j − 1 variables then, Wf0 is of the form (15). This
is true since the rows u < ej are Walsh transforms of linear combinations of
functions that depend on the first j− 1 variables. Note that the function f00 has
to be constant, its value is therefore either 0 or 1.

We propose to construct a (3, 3)–function f0 so that its Walsh matrix has the
desired structure of an upper triangular matrix. According to the aforementioned
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considerations, a function f0 which fulfills the required constraints can be

f0 =

f00 = 0
f01 = x0
f02 = x1 + x0x1

(21)

Its Walsh transform is

Wf0 =



8 0 0 0 0 0 0 0
8 0 0 0 0 0 0 0
0 8 0 0 0 0 0 0
0 8 0 0 0 0 0 0
4 −4 4 4 0 0 0 0
4 −4 4 4 0 0 0 0
−4 4 4 4 0 0 0 0
−4 4 4 4 0 0 0 0


(22)

As pointed out before, there are no particular restriction on the function f1. The
sole lower triangular structure of Wf0 suffices to guarantee that any sequence
that contains three 0s self-synchronizes the system.

This is one approach to build self-synchronizing functions. But as it can be
seen the lower triangular structure of Wf0 implies a very specific structure to
f0. It would now be interesting to find out other constructions that release the
constraint on f0.

7.2 Application to Self-Synchronizing Stream Ciphers

In this section, we are interested in the self-synchronizing property for crypto-
graphic purposes and more exactly for the design of a so called Self-Synchronizing
Stream Cipher (SSSC for short). The reader may refer to [6, 7] for examples of
SSSC proposed through the eSTREAM European project devoted to stream ci-
phers. At the transmitter side, the canonical equations governing an SSSC readxk = ϕ`(yk−1, . . . , yk−`)

zk = h(xk, yk−1)
yk = zk + uk

(23)

and at the receiver side, the equations read x̂k = ϕ`(yk−1, . . . , yk−`)
ẑk = g(x̂k, yk−1)
ûk = ẑk + yk

(24)

The sequences (z) and (ẑ) are the respective key-streams, xk and x̂k are the
respective internal states. The ciphering is performed by the exclusive-OR be-
tween the key-stream and the plain-text while the deciphering is performed
by the exclusive-OR between the key-stream and the cipher-text. Let us note
that (23) and (8) can not directly be identified. It is clear that proper decryption
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is achieved whenever ẑk = zk. Actually, since ϕ` depends at both ends on the
same arguments, such a condition is always fulfilled. It is nothing but a synchro-
nization condition.
We propose to resort to the dynamical system (9) for delivering the key-stream
instead of a static function like ϕ`. The objective of resorting to a recursive
approach is to get a more complex ciphering function with a same computa-
tional cost. However not all dynamical systems are admissible. Indeed, in (9),
f must have the self-synchronization property. Assuming that (9) is finite time
self-synchronizing, the state vector x̂k must have to be precisely expressed as a
function ϕ` that does not depend on x̂k−`. It must read{

x̂k = φ`(yk−1, . . . , yk−`, x̂k−`) = ϕ`(yk−1, . . . , yk−`)
ẑk = g(x̂k, yk−1)

, (25)

where φ` is the iterated function. It has been stressed in [8] and [9] that this is
related to the flatness property borrowed from control theory.

If f has the statistical self-synchronization property, it means that ` is not
bounded and this may increase the complexity of the next-state function f caus-
ing the diffusion/confusion properties of the cipher to increase. Besides, if ` is
not bounded, the canonical representation cannot be obtained in an explicit way.
That prevents from any practical implementation. We illustrate the statistical
self-synchronizing property. Let us turn back to the example of Section 7.1. It
has been pointed out that f1 can be arbitrary. We define for example f1 as

f1 =

f10 = x0x1 + x1x2 + x0x1x2
f11 = x0x1 + x2
f12 = x1x2 + x0

(26)

Consequently, the function f is defined as

f(y, x) = (y + 1)f0(x) + yf1(x) (27)

Below is given the third iterated function φ2.

φ2 =



(φ2)0 = x0x2yk−2yk−1yk + x0x1x2yk−2yk−1yk
(φ2)1 = x0x1yk−2yk−1 + x0x2yk−2yk−1 + x1x2yk−2yk−1 + x0x1x2yk−2yk−1

+x0yk + x0yk−2yk + x2yk−2yk + x1x2yk−2yk + x0yk−1yk
+x0yk−2yk−1yk + x0x1yk−2yk−1yk + x2yk−2yk−1yk + x0x2yk−2yk−1yk

(φ2)2 = x0x1yk−2 + x1x2yk−2 + x0x1x2yk−2 + x1yk−1 + x0x1yk−1
+x0yk−2yk−1 + x1yk−2yk−1 + x0x1yk−2yk−1 + x0x2yk−2yk−1
+x1x2yk−2yk−1 + x0x1yk−2yk + x1x2yk−2yk + x0x1x2yk−2yk
+x1yk−1yk + x0x1yk−1yk + x0yk−2yk−1yk + x1yk−2yk−1yk
+x0x2yk−2yk−1yk

(28)
Such a simple example illustrates the relevance of resorting to a recursive ap-
proach. Indeed we can easily imagine the complexity of implementing the canon-
ical form instead of the recursive equations when ` is large. Besides, as stressed
above, when ` is not bounded, an explicit expression cannot be obtained.
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8 Conclusion

In this paper a spectral characterization of the synchronization property of
Boolean dynamical systems has been provided. Conditions on the spectrum of
the next-state function have been derived for two systems coupled in a unidirec-
tional way to guarantee self-synchronization. Two kinds of self-synchronization
have been considered: the statistical one and the finite one. Next some condi-
tions have been stated for a specific input sequence to allow the system to be
self-synchronizing. Some of the results have been based on the notion of influence
of variables, a notion that have been extended to vectorial Boolean functions for
the purpose of the paper. A potential application to cryptography has finally
been given as an illustrative example. To obtain a complete cryptosystem setup,
further work will investigate relevant classes of boolean functions as well as
cryptanalysis aspect.
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