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Pendubot: Combining of Energy and Intuitive Approaches
to Swing up, Stabilization in Erected Pose

Yannick Aoustin, Alexander Formal’skii and Yuri
Martynenko

Abstract The objective of this paper is to define a strategy for the swing up of a double-
link pendulum and its stabilization in the unstable equilibrium state with both erected links.
The first joint of this double-link pendulum, which is the suspension joint, is actuated and
the second joint is passive. This double-link pendulum, usually called pendubot, is an un-
deractuated system. The double-link pendulum is straightened during the energy boosting
process. The swing up control switches to the balancing modeat the instant when the system
comes to the basin of attraction. The limits on the torque amplitude are taken into account.
The gains of the saturated balancing control are chosen to ensure the basin of attraction as
large as possible. Simulation results demonstrate that ourstrategy is efficient.

Keywords
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1 Introduction

Motivation. The pendulums with more joints than actuators are mechanical systems, which
belong to the family of underactuated systems. They represent an attractive but also a diffi-
cult challenge for the control theory. During the World Exhibition EXPO 2010 in Shangai
the German Pavilion has featured a larges interactive 3D-pendulum as its main attraction [1].
A mechanical system is considered as underactuated if the number of actuators is less than
the number of degrees of freedom [2]. During a walking gait a modification of contact con-
ditions can lead to an underactuated walking robot, [3] and [4]. The inverted pendulums can
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play the role of a didactic platform, see for example [5], where usual digital controls are
illustrated with an inverted pendulum on a cart, the so-called Cart-Pole System. The pendu-
lum systems attract also the attention of researchers in control as a benchmark for testing
and evaluating of control strategies, to mention a little set of references only, see [6–17].

For the pendulums usually two problems have to be taken into account, which are the
swing up to reach an upright unstable equilibrium and the stabilization in this position.

Acrobot. For example with an acrobot, which is a two-link pendulum, whose first link
is not actuated whereas the second one is actuated, authors of [6] and [18] define a method
in two stages. At first, a slow swinging up process, founded ona passivity-based approach,
brings the acrobot close to the upright position. After switching control to a balancing linear
controller, the pendulum is locally asymptotically stabilized around its upright equilibrium
position. A new control law to swing up an acrobot and to stabilize it in the upright posi-
tion is developed in [19]. A swing-up controller that can bring a n-link revolute acrobot is
considered by Xinet al [20]. The first joint of the acrobot is passive and the others are ac-
tuated. The swing-up controller can bring the robot into anyarbitrarily small neighborhood
of the upright equilibrium point with all links in the upright position. The strategy is first
to iteratively devise a series of virtual composite links tobe used for designing a coordi-
nate transformation on the angles of all the active joints. Second, an energy-based swing-up
controller that uses a new Lyapunov function based on that transformation is devised. Condi-
tions on the control parameters are established to ensure attainment of the swing-up control
objective.

Pendubot. In [21] and [22], the underactuated planar revolute robot, usually called pen-
dubot, is presented. A pendubot is also a two-link pendulum with an actuator at the shoulder,
but no actuator at the elbow. One very interesting distinction of the pendubot over both the
classical cart-pole system and Furuta’s system is the continuum of equilibrium positions.
The partial feedback linearization technique is used to design the control that swings the
two links from their hanging stable equilibrium to the unstable erected position. A linear
state feedback is designed to balance the pendulum at the erected equilibrium. The LQR or
pole placement technique can be used to find the feedback gains. In [9], an algorithm has
been proposed to swing up a pendubot. This algorithm brings the pendulum close to the
top unstable equilibrium. The second link remains swingingwhile getting closer and closer
to the top equilibrium. In [12], the swing up controller switches to a hybrid controller for
feedback stabilization among the erected position of an experimental pendubot. This hy-
brid controller is composed of a continuous-time control part, which contributes for partial
feedback linearization, and a discrete-time control part,which can be regarded as cancela-
tion of the drift terms. A pendubot is also considered in [23]. A variable structure controller
from [24], based on the second order sliding mode method, drives the pendubot to a periodic
reference orbit in finite time. A modified Van der Pol oscillator is involved into the controller
synthesis as a reference model. The resulting closed-loop system is capable of moving from
one orbit to another by changing the parameters of the Van derPol oscillator.

In [25], authors investigate some properties of the simple strategies for swinging up a
one-link pendulum based on energy approach. The position and the velocity of the pivot
are not considered. The global behavior of the swing up is completely characterized by the
ratio of the maximum acceleration of the pivot and the acceleration of gravity. The swing
up and the stabilization problems for the considered one-link pendulum with a limited actu-
ator, are simultaneously solved with a single, smooth law byauthors. The idea is to shape
the potential energy and to introduce in the control law an additional dumping or pumping
term following the state of the pendulum. In [26], the problem of the stabilization a one-link
inverted pendulum around its homoclinic orbit is addressed. A control strategy, based on an
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energy approach of the cart and pendulum system is proposed to balance the inverted pen-
dulum and raise it to its upper equilibrium position while the cart displacement is brought
to zero. A one-link pendulum with an inertia-wheel is considered in [27]. Taking into ac-
count the limits of the actuator, authors have designed a swing up control law. The switching
time between the swing up control and the stabilization control is defined by comparing the
global energy of the pendulum to its potential energy in the upright equilibrium and getting
its basin of attraction. Using the Jordan form of the equations of motion, the authors extract
the unstable mode. Suppressing this unstable mode, they obtain a basin of attraction, which
is as large as possible. The experimental results show the remarkable efficient of the design
control.

Lai et al. [17] propose a unified treatments of the motion control of underactuated two-
link manipulators, including acrobots and pendubots. The global stability of the control
system is analyzed and guaranteed by using arguments from the Lyapunov’s theory. In [28],
a stabilization control of a two-link inverted pendulum with an inertia-wheel is designed for
the three unstable equilibriums.

An approach of the nonlinear control design is proposed in [29] for underactuated me-
chanical systems and results of global stabilization for anacrobot, a Cart-pole system, an
inertia-wheel pendulum, a rotating pendulum are presented. This approach is based on an
explicit change of coordinates and control that transform several classes of underactuated
mechanical systems into cascade nonlinear systems with structural properties that are con-
venient for the control design purposes.

In literature for the swing up and the local stabilization ofa pendubot, to our best knowl-
edge, first, there is no explicit way to avoid antagonistic movements of the swing links during
the process of swinging up. Secondly, during the process of stabilization, it does not exist
a control law with saturation, founded on the basin of attraction (or its approximation, the
largest possible) and treating explicitly the unstable modes. However it is very important
to take into account the limits of the actuators, seeValášek and Šika, [30] who provide
us a global overview about the dynamic capabilities of a mechanical system, i.e. about the
accessible motion described by accessible positions, accessible velocities, accessible accel-
erations and the required (given) forces.

Contribution. The paper proposes a control strategy that makes a pendubot upright by
swinging up, and stabilizing the erected position. The limits on the torque amplitude in the
suspension point are taken into account. The original switching control scheme consists of
three parts:

– When the pendulum is in some neighborhood of the downward resting position, a local
controller, based on the energy boosting algorithm, is employed.

– When the pendulum is out of this neighborhood, a saturated nonlinear controller is used
in order to straighten the double-link pendulum (to make it close to a one-link pendu-
lum).

– When the pendulum reaches the basin of attraction of the upright position, a saturated
linear feedback is used.

The novelty in our control strategy is the following. We takeinto account the limits im-
posed on the control torque. In the process of swinging up, the pendubot with the designed
control performs a number of vibrations from side to side with increasing amplitude as a
one-link pendulum. Remind, under algorithm designed in [9], the first link converges to
the top position after several initial oscillations, whilethe second link performs oscillations
with increasing amplitude. Second, the gains of the saturated balancing control are chosen
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to ensure the basin of attraction as large as possible. The swing up control switches to the
balancing mode at the instant when the system comes to the basin of attraction.

Structure of the paper. Section 2 is devoted to the model of the double pendulum. The
linearized model is discussed in Section 3. The statement ofthe problem is defined in Sec-
tion 4. Section 5 presents the controls for the local stabilization of the double-link pendulum
in the unstable equilibrium posture. Section 6 is devoted tothe definition of the swing up
strategy. Simulation results are presented in Section 7. Finally, Section 8 presents our con-
clusion and perspectives.

2 Model Description of the Double-Link Pendulum

Let us consider a mechanical system with two rigid bodies depicted in Figure 1. The DC
motor actuates the suspension jointO1. We assume a direct drive shaft for the actuated joint.
But there is no actuator in the inter-link jointO2. Let C1 andC2 be the centers of mass of

Fig. 1: Scheme of the double-link pendulum.

the first and second link respectively. The center of massC1 is located on lineO1O2. Let
the following lengths beO1O2 = l, O1C1 = r1 andO2C2 = r2. Let m1 andm2 be the masses
of the first and second links. The moment of inertia of the firstlink about jointO1 plus the
moment of inertia of the rotor of the actuator is denotedI1, the moment of inertia of the
second link about jointO2 is denotedI2.

The generalized coordinates are the anglesϕ andγ, Figure 1. The joint variableα = γ−ϕ
is also used in our study.

So, our system has two degrees of freedom, but one actuator only. Thus, this system has
one degree of underactuation. Consider the following constraint imposed on torqueΓ, which
is developed by the motor in the suspension pointO1:

|Γ| ≤ Γ0, Γ0 = const (1)

Considering inequality (1) we assume the back electromotive force in the motor sufficiently
small. For the pendulum stabilization in upward position this assumption is well justified. In
this case, inequality (1) corresponds to limits imposed on the voltage.
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The expressions for the kinetic energyT and the potential energyΠ of the two-link
pendulum are well-known:

2T = a11ϕ̇2 +2a21cos(γ−ϕ)γ̇ϕ̇+a22γ̇2,
Π = b1cosϕ+b2cosγ

Herea11 = I1 + m2l2, a21 = m2r2l, a22 = I2, b1 = (m1r1 + m2l)g, b2 = m2r2g (g is the
gravity acceleration).

LagrangianL = T −Π yields the following well known equations of motion:

a11ϕ̈ + a21cos(γ−ϕ)γ̈ − a21sin(γ−ϕ)γ̇2− b1sinϕ = Γ (2)

a21cos(γ−ϕ)ϕ̈ + a22γ̈ + a21sin(γ−ϕ)ϕ̇2 − b2sinγ = 0 (3)

The angular momentumK with respect to the suspension jointO1 of the double-link
pendulum is

K =
∂T
∂ϕ̇

= a11ϕ̇+a21cos(γ−ϕ)γ̇ (4)

System (2), (3) withΓ = 0 has the unstable equilibrium state:

ϕe ≡ 0, 2π, γe ≡ 0, 2π (5)

We consider the problem to transfer the double pendulum to the equilibrium posture (5)
from the stable equilibrium posture

ϕ ≡ π, γ ≡ π (6)

3 Linearized Model of the Double-Link Pendulum

In the last phase of the pendulum transferring process to thedesired final position, we stabi-
lize it. The linear model, but with limits (1) imposed on the control torque is used to design
the feedback for the stabilization. Let us denote the state vector by

x =
(

ϕ−ϕe, γ− γe, ϕ̇, γ̇
)∗

=
(

ϕ, γ, ϕ̇, γ̇
)∗

.

Star * means transposition. Equations (2), (3) linearized near the equilibrium (5) have the
following matrix form:

ẋ = Ax+ pΓ =

(

02×2 I2×2

D−1E 02×2

)

x+





02×1

D−1

(

1
0

)



Γ (7)

MatricesD andE are:

D =

(

a11 a21

a21 a22

)

, E =

(

b1 0
0 b2

)

. (8)

The determinant of the Kalman controllability matrix [31] of the model (3), (8) is

−
b2

2a2
21

(a11a22−a2
21)

4
(9)
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Value a11a22− a2
21 6= 0 because it is the determinant of the inertia matrix withα = 0.

Thus, the linear model is Kalman controllable, if and only ifr2 6= 0 andl 6= 0.
Introducing a nondegenerate linear transformationx = Sy with a constant matrixS, it is

possible to obtain the well-known Jordan form of the matrix equation (3)

ẏ = Λy+dΓ (10)

whereΛ is a diagonal matrix

Λ = S−1AS =









λ1 0
.
.

0 λ4









,

d = S−1p = (d1, d2, d3, d4)
∗.

(11)

Here,λ1, ...,λ4 are the eigenvalues of the matrixA. They are the roots of the characteristic
equation for the linear system (3) withΓ = 0. This characteristic equation is biquadratic

a0λ4 +a1λ2 +a2 = 0 (12)

because the system (2), (3) is conservative.

4 Statement of the Problem

The upright equilibrium posture (5) is unstable. The objective is to design a feedback control,
satisfying the constraint (1), to swing up the pendulum and to stabilize it in this unstable
equilibrium posture.

We consider the problem of local stabilization of equilibrium (5) firstly, whereas the
stabilization is the last phase of the transferring pendulum process. The asymptotic local
stabilization around the unstable equilibrium is realizedhere with an approach defined in
[32].

5 Local Stabilization of the Double-Link Pendulum

The coefficients of the characteristic equation (12) for thesystem (3), (8) are:

a0 = a11a22−a2
12 = detD > 0,

a1 = −(a11b2 +a22b1) < 0,
a2 = b1b2 = detE > 0

The leading coefficienta0 is positive because it is the determinant of the positive definite
matrixD; a1 < 0 becausea11, a22, b1 andb2 are positive values. Consequently equation (12)
has two real positive rootsλ1, λ2 and two real negative rootsλ3 = −λ1, λ4 = −λ2.

We intend to design an admissible (satisfying the inequality (1)) feedback controlΓ(x)
to ensure the asymptotic stability of the equilibrium statex = 0 of system (3) or (10) with
the largest possible basin of attraction (the larger the basin of attraction, the more robust the
control).
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Let us consider the first two scalar differential equations of the system (10), (11), corre-
sponding to the positive eigenvaluesλ1 andλ2:

ẏ1 = λ1y1 +d1Γ, ẏ2 = λ2y2 +d2Γ (13)

The system (3), (8) is Kalman controllable. Therefore, the subsystem (13) is also con-
trollable (see [31]) andd1 6= 0, d2 6= 0.

Let W be the set of the piecewise continuous functionsΓ(t), satisfying the inequality
(1). Let Q be the set of the initial statesx(0) of the system (3), from which originx = 0
can be reached, using an admissible control functionsΓ(t) ∈ W . In other words, the system
(3) can reach the originx = 0 with controlΓ(t) ∈ W , only starting from the initial states
x(0) ∈ Q. SetQ is called controllability domain. If matrixA has eigenvalues with positive
real parts and the control variableΓ is restricted, then the controllability domainQ for the
system (3) is an open subset of the phase spaceX (see [33]).

For any admissible feedback controlΓ = Γ(x) (with the saturation|Γ(x)| ≤ Γ0) the
corresponding basin of attractionB belongs to the controllability domain:B ⊂ Q. Here, as
usual,B is the set of the initial statesx(0), from which the system (3), with the feedback
Γ = Γ(x) asymptotically tends to the originx = 0 ast → ∞.

The controllability domainQ′ of the system (13) in planey1, y2 is an open bounded set
with the following boundaries (see [33], [34])

y1(τ) = ±
d1Γ0

λ1

(

2e−λ1τ −1
)

,

y2(τ) = ±
d2Γ0

λ2

(

2e−λ2τ −1
)

(0≤ τ < ∞)

(14)

The boundary of the controllability regionQ′ has two corner points depicted in Figure 2:

y1 = −d1
Γ0

λ1
, y2 = −d2

Γ0

λ2
;

y1 = d1
Γ0

λ1
, y2 = d2

Γ0

λ2

(15)

These points (15) are the equilibrium points of the system (13) under the constant controls:

Γ = ±Γ0 (16)

We can “suppress” the instability of equilibriumy1 = 0, y2 = 0 of the system (13) by a
linear feedback control,

Γ = k1y1 + k2y2 (17)

with k1,k2 = const. It is shown in the paper [35] and the book [36] that using a linear
feedback (17) with saturation (β = const),

Γ =







Γ0, i f β(k1y1 + k2y2) ≥ Γ0

β(k1y1 + k2y2), i f |β(k1y1 + k2y2)| < Γ0

−Γ0, i f β(k1y1 + k2y2) ≤−Γ0

(18)

the basin of attractionB′ of the system (13), (18) can be made arbitrary close to the control-
lability domainQ′.
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The straight line crossing two points (15) is the following:

k1y1 + k2y2 = 0

with

k1 = −
d2

λ2
, k2 =

d1

λ1
(19)

If
signβ = sign(d1d2 (λ1−λ2))

and|β| → ∞, then the basin of attractionB′ of the system (13) under the nonlinear control
(18) with the coefficients (19) tends to the controllabilityregionQ′. Consequently, using the
gains (19), basinB′ (two-dimensional) can be made arbitrary close to domainQ′. If |β|→ ∞,
the control (18) tends to the bang-bang control.

Solutionsy1(t) and y2(t) of equations (13) with control (18) tend to 0 ast → ∞ for
the initial valuesy1(0), y2(0), belonging to the basin of attractionB′. But if y1(t) → 0 and
y2(t)→ 0, then, according to the expression (18),Γ(t)→ 0. Therefore, solutionsy3(t), y4(t)
of the third and fourth equations of system (10) with any initial conditionsy3(0), y4(0)
converge to zero ast → ∞, becauseλ3,λ4 < 0. Thus, under control (18) with coefficients
(19), the basin of attractionB (four-dimensional) of system (10), (18) is described by the
same relations, which describe the basin of attractionB′ (two-dimensional) of system (13),
(18). BasinB (and controllability domainQ) is limited in unstable coordinatesy1, y2 only.
The boundary of the basinB′ is the periodical cycle of the system (13), (18). This cycle can
be computed, using the backward motion of the system (13), (18) from a state close to the
origin y1 = y2 = 0.

Variablesy1 and y2 depend on the original variables from the vectorx, according to
transformationy = S−1x. Due to this, formula (18) defines a nonlinear feedback control,
which depends on vectorx of the original variables.

According to Lyapounov’s theorem (see [37]), the equilibrium statex = 0 of the nonlin-
ear system (2), (3) is asymptotically stable under the control (18) because system (2), (3),
(18) linearized near the statex = 0 is asymptotically stable.

A similar approach to design the control law with a large basin of attraction has been
applied to an original circular beam and ball system, which has two unstable modes [38].

The double-link pendulum is here assumed with similar homogeneous links and param-
eters:

m1 = m2 = 0.2kg, l = 0.15m, Γ0 = 0.2N.m (20)

With parameters (20) the positive eigenvaluesλ1, λ2 are the following:λ1 = 18.5611, λ2 =
6.920.

Using formulas (14) we design the controllability domainQ′ depicted in Figure 2. The
boundary of this domain is shown in Figure 2 by dashed line; the boundary of the basin of
attractionB′ with β = 0.025 is shown by solid line. Ifβ = 0.1, then basinB′ is very close to
domainQ′ and it is difficult to see on the sketch the difference betweenthem. In this case,
we can use domainQ′ as a basin of attraction.

6 Swing up Via Energy and An Intuitive Control

In this Section, we describe two stages of the developed control. The process of the local
stabilization starts after these two stages.
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Fig. 2: The boundaries of the controllability domainQ′ (dashed line) and of the basin of attractionB′ (solid
line) with β = 0.025.

6.1 Energy approach

The process of the double-link pendulum transferring from the stable equilibrium (6) to the
unstable one (5) contains several phases. First, the pendulum is swinging up to increase its
total mechanical energyT +Π. This energy in the desired unstable equilibrium state, which
is the upright position (5) equals to the potential energyP = b1 +b2.

In the area
π−∆ϕ ≤ ϕ ≤ π+∆ϕ (21)

the following control

Γ =

{

Γ0/σ, i f ϕ̇ > 0
−Γ0/σ, i f ϕ̇ ≤ 0

(22)

is used. Here∆ϕ = const > 0, σ > 1 are parameters, which we choose by simulation. Under
the control (22) (in area (21)), the total energyT + Π increases monotonically because its
time derivative changes according to the equality:

d(T +Π)

dt
= Γϕ̇ = |ϕ̇|Γ0/σ (23)

6.2 Double pendulum straightening

Out of area (21) we try to keep angleα near zero, becauseα = 0 in the desired upward equi-
librium state (5). Also straightening the double pendulum,we try to avoid the movements of
the links in the opposite directions. If angleα is close to zero, then the double-link pendu-
lum is ”similar” to a one-link pendulum and it is naturally toswing up a one-link pendulum
with the control (22).

From system (2), (3) to make the exact partial input-output feedback linearization such
that

α̈ = −c2α̇− c1α, (24)
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the control torque is:

Γ = Γd = −a21(ϕ̇+ α̇)2sinα−b1sinϕ+
(c1α+ c2α̇)(a22a11−a2

21cos2α)

a21cosα+a22
+

(a11+a21cosα)[b2sin(ϕ+α)−a21ϕ̇2sinα]

a21cosα+a22

(25)

Herec1 andc2 are positive feedback gains. The denominator in expression(25) is far from
zero, if angleα is close to zero. Under control (25), system (2), (3) has (independently of
the behavior of angleϕ) an asymptotically stable solution:

α(t) = 0 (ϕ(t) = γ(t)) (26)

If the inequality (1) is taken into account, the saturated control law can be defined instead of
(25):

Γ =







Γ0, i f Γd ≥ Γ0

Γd, i f |Γd | < Γ0

−Γ0, i f Γd ≤−Γ0

(27)

Let us note:

– If we put α = α̇ = 0 in formula (25), then we obtain the following expression:

Γ =

(

a11+a21

a21+a22
b2−b1

)

sinϕ

Under this control torque, the system (2), (3) has solution (26).
The simulation demonstrates that in order to straighten thependulum it is also possible
to use control simpler than (25):

Γ =

(

a11+a21

a21+a22
b2−b1

)

sinϕ+ c1α+ c2α̇

– Consider system
α̈ = v, |v| ≤ v0, v0 = const (28)

The time-optimal controlv(α, α̇), which brings system (28) to originα = α̇ = 0 is [34,
39]:

v = −v0sign(2v0α+ α̇|α̇|) (29)

Instead of the discontinuous function (29) it is better for the realization to use the fol-
lowing continuous function

v = −v0th(τ[2v0α+ α̇|α̇| ]) (30)

with τ as parameter. Substituting expression (30) instead of−c1α−c2α̇ in formula (25)
we obtain

Γ = Γd = −a21(ϕ̇+ α̇)2sinα−b1sinϕ+
v0th(τ[2v0α+ α̇|α̇| ])(a22a11−a2

21cos2α)

a21cosα+a22
+

(a11+a21cosα)[b2sin(ϕ+α)−a21ϕ̇2sinα]

a21cosα+a22
(31)
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We also tested successfully control (31) with several parametersv0 andτ on the stages of
the pendulum straightening.

Each stage of our control strategy is provided by mathematical consideration. But the
demonstration of the efficiency of the complete control strategy is supported by successful
computer simulation and intuition only (see below).

7 Simulation

The double-link pendulum is simulated with the numerical parameters (20), and we have
chosen∆ϕ = π/12. But the control law is not very sensitive to the value∆ϕ; the values∆ϕ
in the interval[π/24, π/6] are also acceptable. If the value∆ϕ decreases, interval (21) and
the time of the energy boosting decreases. Due to this the time of the swing up increases. But
the control law remains applicable. For example, if insteadof ∆ϕ = π/12 we use∆ϕ = π/16,
the time of swing up increases by 33%.

The appropriate coefficientsc1 = 144 s−2 andc2 = 28 s−1 of the feedback control (27)
are chosen in the simulation. The gainsc1, c2, which significantly differ from the chosen val-
ues can be also used successfully. We tested successfully, for example, valuesc1 = 5.76 s−2,
c2 = 5.76 s−1.

Thus, our approach is robust to the variations of the mentioned above parameters.

As we see in simulation under control (22), (27), the pendulum sways from side to side
and its energyT + Π increases ”in average” (not monotonically). The stages of the energy
boosting (see control (22)) and the straightening of the pendulum (see control (27)) are
alternating.

If valueΓ0/σ is too large, the pendulum may race through the desired equilibrium (5). In
simulation the valueσ = 7 is used. This means that with the control law (22) we do not use
all the amplitude diapason of the torque of the actuator. During the pendulum straightening
phase and then during the upward stabilization phase all resources can be used.

After several vibrations, control (22), (27) brings the double-link pendulum close to the
upright position (5) with angular velocities close to zero and to the basin of attraction. (Re-
mind we try to obtain the basin of attraction as large as possible.) When the system reaches
the basin of attraction, the control law (22), (27) switcheson the stabilization control law
(18) (with β = 0.1). At this time, the phase of the pendulum stabilization in the equilibrium
(5) starts. This is the last phase of the pendubot transferring process.

To design a more robust control it is useful to increase the coefficient σ, when the full
energy becomes closer to the potential energyP = b1 + b2 of the pendulum in the upright
position (5).

In Figure 3, the process of the pendubot swinging up and its stabilization in erected pose
is shown. The amplitude of angleα vibrations becomes large initially, but after it becomes
small and the pendubot sways from side to side like a one-linkpendulum. (Note, control (22)
is natural to swing up the one-link pendulum.) The amplitudeof these vibrations increases.
After some number of vibrations, at time 14.7 s approximately, the system comes to the
basin of attraction and after to the desired equilibrium.
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Fig. 3: Swing up with control (22), (27) and stabilization instate (5) with control (18),ϕ → 0, α → 0, Γ → 0.

In Figure 4, the graph of the total energyT + Π is shown. The energy increases ”in
average” and at the end becomes the desired constantP = b1 +b2.
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Fig. 4: Swing up with control (22), (27) and stabilization instate (5) with control (18),T +Π → b1 +b2.

In Figure 5, snapshots of the swing-up maneuver are depictedin six sequences (times).
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a) Initial
configuration

b) Swing up with
control (22)

c) Double pendulum straightening
with control (27)

d) Energy
increases

e) Stabilization of the double pendulum
with control (18)

f) Final
configuration

Fig. 5: Snapshots of the swing-up maneuver during the swing up and the stabilization of the double pendulum.

In area (21), instead of (22), the control law

Γ =

{

Γ0/σ, i f K > 0
−Γ0/σ, i f K ≤ 0

(32)

can be also used. HereK is the angular momentum (4). In Figure 6, the corresponding
process of the swinging up and stabilization is plotted. We can observe the effect of control
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(32) at the beginning of the swing up control process, where the torque switches between
Γ0/σ and−Γ0/σ until time 2 s. The maximal amplitude of the angleα vibrations is less
than with control (22).
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Fig. 6: Swing up with control (32), (27) and stabilization instate (5),ϕ → 0 with control (18),α → 0, Γ → 0.

Using the designed controls we can bring the pendubot to the upright position (5) not
from the initial downward position (6) only, but also from some another initial states. For
example, Figure 7 shows that it is possible to erect both links, starting from the stateϕ = π,
γ = π+π/3 (α = π/3), ϕ̇ = γ̇ = 0, which significantly differs from the state (6).

In our paper, the basin of attraction of the desired upright unstable equilibrium of the
pendulum for its local stabilization is designed taking into account the limits for the control
torque. This basin depends on the limits and increases, if the limits increase. Designing the
control law, we tried to obtain this basin as large as possible with the given limits. The
basin of attraction was constructed using the linearized model of the system. At the instant
when the phase trajectory of our system intersects the boundary of the basin of attraction
the control torque becomesΓ0 or −Γ0. We see this instant, for example, in Figure 7 (see
time instant 14s). Sometimes we do not see such an instant in the figures, may bedue to
nonlinear effect.

It is obvious that the double-link pendulum can be transferred to the stable equilibrium
(6) from any initial state. Thus, the control law that transfers pendulum from the downward
equilibrium (6) to the upward equilibrium (5) ensures theglobal stability of this upward
equilibrium.
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Fig. 7: α(0) = π/3, Swing up with control (32), (27) and stabilization in state (5) with control (18),ϕ → 0,
α → 0, Γ → 0.

In this paper we have tried to bring the pendulum in the unstable equilibrium state (5).
But the pendubot has a continuum of equilibrium positions. We cannot affirm that our intu-
itive strategy can be applied for this continuum of equilibrium positions. Currently we have
successfully used the same strategy for the two following unstable equilibrium states:

ϕe ≡ 0, 2π, γe ≡ π, −π, (33)

ϕe ≡ π, −π, γe ≡ 0, 2π. (34)

If the goal of our control is equilibrium,ϕe = 0, γe = π, then out of area (21) we try to
keep the angleγ close toπ. If the goal of our control is equilibrium,ϕe = π, γe = π, then out
of area (21) we try to bring the angleγ to 0.

However, here we have described with details only the most difficult case with erection
of the both links. Note, system (2), (3) linearized near unstable equilibrium (5) has two
unstable modes, but the same system linearized near unstable equilibriums (33) and (34)
has only one unstable mode.

8 Conclusion

The pendulum systems have become an exciting topic in the theory of control for mechanical
multibody systems. The object of this paper is a double-linkpendulum. This pendulum
belongs to the family of the double-link pendulums, so-called pendubot. A theoretical and
numerical study is done with simulation of its swing up and stabilization in the unstable
equilibrium state with two erected links. The strategy is founded on the nonlinear control
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law. This control is based on the combining of the energy and intuitive approaches. The
number of parameters, which are needed to find by simulation is small. Furthermore all of
them have a physical sense. Under the designed feedback control, the pendubot performs a
number of vibrations from side to side with increasing amplitude as a one-link pendulum.
At every cycle we slightly increase the energy of the system.The tested algorithms can be
used during on-line control process, if computer in the feedback control loop is fast enough.

We have successfully developed and tested two energy boosting algorithms and several
algorithms to straighten the pendulum.

The basin of attraction is a natural criterion to define the switching time between the
swing up process and the stabilization of the pendulum in theequilibrium state. The larger
the basin of attraction, the more robust the control law and the shorter the duration of the
erection process. Thus, it is important to have a basin of attraction as large as possible. The
basins of attraction for the nonlinear model and for the linear model are close. We think that
our study is of a theoretical interest and is also interesting for the education. The simulation
tests demonstrate that the perspective of our swing up control and the stabilization of an
experimental two-link pendulum is realistic.
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