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Pendubot: Combining of Energy and Intuitive Approaches
to Swing up, Stabilization in Erected Pose

Yannick Aoustin, Alexander Formal'skii and Yuri
Martynenko

Abstract The objective of this paper is to define a strategy for the gwip of a double-
link pendulum and its stabilization in the unstable equilim state with both erected links.
The first joint of this double-link pendulum, which is the pasasion joint, is actuated and
the second joint is passive. This double-link pendulumallgcalled pendubot, is an un-
deractuated system. The double-link pendulum is stramgiiteluring the energy boosting
process. The swing up control switches to the balancing rabtife instant when the system
comes to the basin of attraction. The limits on the torquelénae are taken into account.
The gains of the saturated balancing control are chosensurerthe basin of attraction as
large as possible. Simulation results demonstrate thattoategy is efficient.
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1 Introduction

Motivation. The pendulums with more joints than actuators are mechiasystems, which

belong to the family of underactuated systems. They repteseattractive but also a diffi-
cult challenge for the control theory. During the World Ebition EXPO 2010 in Shangai
the German Pavilion has featured a larges interactive 3iglydam as its main attraction [1].
A mechanical system is considered as underactuated if thbe&wof actuators is less than
the number of degrees of freedom [2]. During a walking gaitaglification of contact con-

ditions can lead to an underactuated walking robot, [3] @hdllhe inverted pendulums can
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play the role of a didactic platform, see for example [5], véhasual digital controls are

illustrated with an inverted pendulum on a cart, the soecbCart-Pole System. The pendu-
lum systems attract also the attention of researchers itratas a benchmark for testing

and evaluating of control strategies, to mention a littiecdeeferences only, see [6—-17].

For the pendulums usually two problems have to be taken ictoumt, which are the
swing up to reach an upright unstable equilibrium and thieil&tation in this position.

Acrobot. For example with an acrobot, which is a two-link pendulumpe# first link
is not actuated whereas the second one is actuated, auflj6fsaod [18] define a method
in two stages. At first, a slow swinging up process, founded passivity-based approach,
brings the acrobot close to the upright position. After shiihg control to a balancing linear
controller, the pendulum is locally asymptotically stast around its upright equilibrium
position. A new control law to swing up an acrobot and to si&bit in the upright posi-
tion is developed in [19]. A swing-up controller that canrlgria n-link revolute acrobot is
considered by Xiret al [20]. The first joint of the acrobot is passive and the otheesaa-
tuated. The swing-up controller can bring the robot into arbjtrarily small neighborhood
of the upright equilibrium point with all links in the uprigiposition. The strategy is first
to iteratively devise a series of virtual composite linkso® used for designing a coordi-
nate transformation on the angles of all the active joinesdBd, an energy-based swing-up
controller that uses a new Lyapunov function based on thasformation is devised. Condi-
tions on the control parameters are established to engaieraent of the swing-up control
objective.

Pendubot. In [21] and [22], the underactuated planar revolute robstially called pen-
dubot, is presented. A pendubot is also a two-link pendulitim an actuator at the shoulder,
but no actuator at the elbow. One very interesting distimctf the pendubot over both the
classical cart-pole system and Furuta’s system is the rmaunti of equilibrium positions.
The partial feedback linearization technique is used tagdethe control that swings the
two links from their hanging stable equilibrium to the undéaerected position. A linear
state feedback is designed to balance the pendulum at ttie@equilibrium. The LQR or
pole placement technique can be used to find the feedback.daiff], an algorithm has
been proposed to swing up a pendubot. This algorithm brihggpendulum close to the
top unstable equilibrium. The second link remains swingirngje getting closer and closer
to the top equilibrium. In [12], the swing up controller selies to a hybrid controller for
feedback stabilization among the erected position of arerx@ntal pendubot. This hy-
brid controller is composed of a continuous-time contrat,pahich contributes for partial
feedback linearization, and a discrete-time control pahnich can be regarded as cancela-
tion of the drift terms. A pendubot is also considered in [Z8Variable structure controller
from [24], based on the second order sliding mode methogesithe pendubot to a periodic
reference orbit in finite time. A modified Van der Pol oscifliais involved into the controller
synthesis as a reference model. The resulting closed-ksipra is capable of moving from
one orbit to another by changing the parameters of the VaRdlevscillator.

In [25], authors investigate some properties of the simpktegies for swinging up a
one-link pendulum based on energy approach. The positidrntten velocity of the pivot
are not considered. The global behavior of the swing up ispteiely characterized by the
ratio of the maximum acceleration of the pivot and the aceaélen of gravity. The swing
up and the stabilization problems for the considered amegendulum with a limited actu-
ator, are simultaneously solved with a single, smooth lavaumyors. The idea is to shape
the potential energy and to introduce in the control law aditamhal dumping or pumping
term following the state of the pendulum. In [26], the prablef the stabilization a one-link
inverted pendulum around its homoclinic orbit is addresgecbntrol strategy, based on an



energy approach of the cart and pendulum system is propogsealance the inverted pen-
dulum and raise it to its upper equilibrium position while ttart displacement is brought
to zero. A one-link pendulum with an inertia-wheel is comséatl in [27]. Taking into ac-
count the limits of the actuator, authors have designed agsup control law. The switching
time between the swing up control and the stabilizationrabig defined by comparing the
global energy of the pendulum to its potential energy in hegit equilibrium and getting
its basin of attraction. Using the Jordan form of the equmestiof motion, the authors extract
the unstable mode. Suppressing this unstable mode, thayna@bbasin of attraction, which
is as large as possible. The experimental results show tharkable efficient of the design
control.

Lai et al. [17] propose a unified treatments of the motion control ofaradtuated two-
link manipulators, including acrobots and pendubots. Tlba stability of the control
system is analyzed and guaranteed by using arguments feohy#punov’s theory. In [28],
a stabilization control of a two-link inverted pendulum lvén inertia-wheel is designed for
the three unstable equilibriums.

An approach of the nonlinear control design is proposed 9 f@ underactuated me-
chanical systems and results of global stabilization foeambot, a Cart-pole system, an
inertia-wheel pendulum, a rotating pendulum are presefiteid approach is based on an
explicit change of coordinates and control that transfoewesl classes of underactuated
mechanical systems into cascade nonlinear systems witttstal properties that are con-
venient for the control design purposes.

In literature for the swing up and the local stabilizatioragfendubot, to our best knowl-
edge, first, there is no explicit way to avoid antagonistiwements of the swing links during
the process of swinging up. Secondly, during the processabflzation, it does not exist
a control law with saturation, founded on the basin of attoac(or its approximation, the
largest possible) and treating explicitly the unstable esodHowever it is very important
to take into account the limits of the actuators, Sekasek and Ska, [30] who provide
us a global overview about the dynamic capabilities of a rapifal system, i.e. about the
accessible motion described by accessible positionsssitie velocities, accessible accel-
erations and the required (given) forces.

Contribution. The paper proposes a control strategy that makes a pendptightuby
swinging up, and stabilizing the erected position. Thetbnoin the torque amplitude in the
suspension point are taken into account. The original igccontrol scheme consists of
three parts:

— When the pendulum is in some neighborhood of the downwatthgegosition, a local
controller, based on the energy boosting algorithm, is eygul.

— When the pendulum is out of this neighborhood, a saturatatimear controller is used
in order to straighten the double-link pendulum (to makdase to a one-link pendu-
lum).

— When the pendulum reaches the basin of attraction of thehippiosition, a saturated
linear feedback is used.

The novelty in our control strategy is the following. We takéo account the limits im-
posed on the control torque. In the process of swinging wpptndubot with the designed
control performs a number of vibrations from side to sidehviiicreasing amplitude as a
one-link pendulum. Remind, under algorithm designed in {8 first link converges to
the top position after several initial oscillations, whitee second link performs oscillations
with increasing amplitude. Second, the gains of the sadrbalancing control are chosen



to ensure the basin of attraction as large as possible. Theg sy control switches to the
balancing mode at the instant when the system comes to tivedfatraction.

Structure of the paper. Section 2 is devoted to the model of the double pendulum. The
linearized model is discussed in Section 3. The statemethiegbroblem is defined in Sec-
tion 4. Section 5 presents the controls for the local stadtilbn of the double-link pendulum
in the unstable equilibrium posture. Section 6 is devotethéodefinition of the swing up
strategy. Simulation results are presented in Sectionnalllyj Section 8 presents our con-
clusion and perspectives.

2 Model Description of the Double-Link Pendulum

Let us consider a mechanical system with two rigid bodiesateq in Figure 1. The DC
motor actuates the suspension jdit We assume a direct drive shaft for the actuated joint.
But there is no actuator in the inter-link joif,. Let C; andC, be the centers of mass of

Fig. 1: Scheme of the double-link pendulum.

the first and second link respectively. The center of n@asis located on lineD;0,. Let
the following lengths b&®;0, =1, 0;C; = r; andO,C, = r,. Letmy andm, be the masses
of the first and second links. The moment of inertia of the firdt about jointO; plus the
moment of inertia of the rotor of the actuator is denotgdthe moment of inertia of the
second link about join®, is denoted,.

The generalized coordinates are the angllasdy, Figure 1. The joint variable =y—¢
is also used in our study.

So, our system has two degrees of freedom, but one actudyoibus, this system has
one degree of underactuation. Consider the following caimgtimposed on torquie, which
is developed by the motor in the suspension p@int

M| < To, Mo = congt D

Considering inequality (1) we assume the back electroradtitce in the motor sufficiently
small. For the pendulum stabilization in upward positiais tssumption is well justified. In
this case, inequality (1) corresponds to limits imposedhaenvbltage.



The expressions for the kinetic enerlyand the potential energyl of the two-link
pendulum are well-known:

2T = a110? + 28,1C08(Y — 0) Vb + a2y,
M = bycosd + bpcosy

Hereay; = Iy + mypl?, o1 = myral, @2 = I, by = (Myra+myl)g, by = mprag (g is the
gravity acceleration).

LagrangiarL = T — I yields the following well known equations of motion:
11§ + @1005(y— ¢)Y — axsin(y—¢)y* — bising =T 2

a1c03(y— §)§ + @y + axsin(y— ¢)¢2 — bpsiny=0 (3

The angular momentur{ with respect to the suspension joi@§ of the double-link
pendulum is
oT

K=3 = 2110 +a21C08(Y— )y 4)
System (2), (3) withh = 0 has the unstable equilibrium state:
$e=0,2m V=0, 21 )

We consider the problem to transfer the double pendulum ecetfuilibrium posture (5)
from the stable equilibrium posture

b=m y=m (6)

3 Linearized Model of the Double-Link Pendulum

In the last phase of the pendulum transferring process tdehieed final position, we stabi-
lize it. The linear model, but with limits (1) imposed on thentrol torque is used to design
the feedback for the stabilization. Let us denote the settov by

X= (¢*¢e» Y—Ye, 4)7 V)*I (4)7 Ys ¢7y)*

Star * means transposition. Equations (2), (3) linearizedrrihe equilibrium (5) have the
following matrix form:

x=Ax+pr = (022 122 )y 02X11 r @
— PR = bk 0,0 D! (0)
MatricesD andE are:
a1 a1 by O
D= E= . 8
(a21a22)’ (Obz) ®
The determinant of the Kalman controllability matrix [3X]tbe model (3), (8) is

o bgagl (9)

(an182 — a5,)*



Value ;18 — @3, # 0 because it is the determinant of the inertia matrix weith 0.
Thus, the linear model is Kalman controllable, if and onlyit4 0 andl # 0.

Introducing a nondegenerate linear transformatienSy with a constant matris, it is
possible to obtain the well-known Jordan form of the matgxation (3)

y=Ay+dlr (10)
whereA is a diagonal matrix
MO
A=S1IAS= ) ,
0 A (11)

d=S"1p=(dy, dy, d3, ds)".

Here,A1,...,A\4 are the eigenvalues of the matéx They are the roots of the characteristic
equation for the linear system (3) wikh= 0. This characteristic equation is biquadratic

aM* +aA’+a, =0 (12)

because the system (2), (3) is conservative.

4 Statement of the Problem

The upright equilibrium posture (5) is unstable. The oljeds to design a feedback control,
satisfying the constraint (1), to swing up the pendulum andtabilize it in this unstable
equilibrium posture.

We consider the problem of local stabilization of equililn (5) firstly, whereas the
stabilization is the last phase of the transferring penduprocess. The asymptotic local
stabilization around the unstable equilibrium is realibede with an approach defined in
[32].

5 Local Stabilization of the Double-Link Pendulum

The coefficients of the characteristic equation (12) forstyetem (3), (8) are:

ap = ay1dx — a2, = detD > 0,
a1 = —(a11bp +apby) <0,
a = b]_bz =detE >0

The leading coefficiengy is positive because it is the determinant of the positivendefi
matrix D; a; < 0 becausey, azz, by andb, are positive values. Consequently equation (12)
has two real positive roofs;, A, and two real negative roodg = —A1, Ay = —Az.

We intend to design an admissible (satisfying the inequéli}) feedback contrdr (x)
to ensure the asymptotic stability of the equilibrium state O of system (3) or (10) with
the largest possible basin of attraction (the larger thenlmsattraction, the more robust the
control).



Let us consider the first two scalar differential equatiohihie system (10), (11), corre-
sponding to the positive eigenvalugsandA;:

Yi=Ay1+dil, Yo =Azy2 +dol (13)

The system (3), (8) is Kalman controllable. Therefore, thiesgstem (13) is also con-
trollable (see [31]) and; # 0, d, # 0.

Let W be the set of the piecewise continuous functibiiy, satisfying the inequality
(1). Let Q be the set of the initial stateg0) of the system (3), from which origix = 0
can be reached, using an admissible control functighs € W. In other words, the system
(3) can reach the origin = 0 with controll"(t) € W, only starting from the initial states
X(0) € Q. SetQ is called controllability domain. If matrix has eigenvalues with positive
real parts and the control varialleis restricted, then the controllability domainfor the
system (3) is an open subset of the phase siacee [33]).

For any admissible feedback contiol=I'(x) (with the saturationl (x)| < o) the
corresponding basin of attracti@belongs to the controllability domaif C Q. Here, as
usual,B is the set of the initial stateq0), from which the system (3), with the feedback
I =I'(x) asymptotically tends to the origin= 0 ast — co.

The controllability domairQ’ of the system (13) in plang,, y, is an open bounded set
with the following boundaries (see [33], [34])

yi(1) =+ (2eMT—1),
A1
(14)
olo o
y2(1) = t5— (2e'—-1) (0<T< )
2

The boundary of the controllability regid) has two corner points depicted in Figure 2:

I I
Y1=—d1}\—f» YZ:_dZ)\_z;
(15)
., To ., To
Y1—d1)\—17 yz—dz}\2

These points (15) are the equilibrium points of the syste8y (hder the constant controls:
M=+l (16)

We can “suppress” the instability of equilibriuya = 0, y, = 0 of the system (13) by a
linear feedback control,

= klyl + k2y2 (17)

with kg, ko = congt. It is shown in the paper [35] and the book [36] that using &din
feedback (17) with saturatiofs & const),

Mo, if B(kuyr +kay2) > Tg
I= ¢ B(kiyr +kay2), if [B(kiy1+kay2)| < To (18)
—lo, if B(kayr +kay2) < —To

the basin of attractioB’ of the system (13), (18) can be made arbitrary close to theaen
lability domain@'.



The straight line crossing two points (15) is the following:
kiyr+kay2 =0

with
do di

klzf— k2:}\—l

"~ (19)

signB = sign(didz (A1 — A2))

and|B| — o, then the basin of attractid¥ of the system (13) under the nonlinear control
(18) with the coefficients (19) tends to the controllabiliggionQ’. Consequently, using the
gains (19), basiB’ (two-dimensional) can be made arbitrary close to dor@irf || — oo,
the control (18) tends to the bang-bang control.

Solutionsy; (t) andy,(t) of equations (13) with control (18) tend to O fas> « for
the initial valuesy;(0), y»(0), belonging to the basin of attractidi. But if y;(t) — 0 and
y2(t) — 0, then, according to the expression (18)) — 0. Therefore, solutiongs(t), ya(t)
of the third and fourth equations of system (10) with anyiahitonditionsys(0), y4(0)
converge to zero as— o, because\z,A4 < 0. Thus, under control (18) with coefficients
(19), the basin of attractioB (four-dimensional) of system (10), (18) is described by the
same relations, which describe the basin of attradioftwo-dimensional) of system (13),
(18). BasinB (and controllability domairQ) is limited in unstable coordinateg, y, only.
The boundary of the basH is the periodical cycle of the system (13), (18). This cyaa ¢
be computed, using the backward motion of the system (18),f{@m a state close to the
originy; =y, =0.

Variablesy; andy, depend on the original variables from the vectprccording to
transformationy = S~x. Due to this, formula (18) defines a nonlinear feedback chntr
which depends on vectarof the original variables.

According to Lyapounov’s theorem (see [37]), the equilibnistatex = 0 of the nonlin-
ear system (2), (3) is asymptotically stable under the cbiiti8) because system (2), (3),
(18) linearized near the state= 0 is asymptotically stable.

A similar approach to design the control law with a large basiattraction has been
applied to an original circular beam and ball system, whiab two unstable modes [38].

The double-link pendulum is here assumed with similar hoenegus links and param-
eters:

my =mp =0.2kg, | =0.15m, 'y = 0.2N-m (20)

With parameters (20) the positive eigenvaldgsh\, are the followingA; = 185611 A, =
6.920.

Using formulas (14) we design the controllability dom&hdepicted in Figure 2. The
boundary of this domain is shown in Figure 2 by dashed line;bibundary of the basin of
attractionB’ with 3 = 0.025 is shown by solid line. Ip = 0.1, then basim’ is very close to
domain@’ and it is difficult to see on the sketch the difference betwthem. In this case,
we can use domai@’ as a basin of attraction.

6 Swing up Via Energy and An Intuitive Control

In this Section, we describe two stages of the developeddaoiithe process of the local
stabilization starts after these two stages.



Fig. 2: The boundaries of the controllability dom#& (dashed line) and of the basin of attractiBh(solid
line) with 3 = 0.025.

6.1 Energy approach

The process of the double-link pendulum transferring fromgtable equilibrium (6) to the
unstable one (5) contains several phases. First, the pendslswinging up to increase its
total mechanical energy +IN. This energy in the desired unstable equilibrium statectvhi
is the upright position (5) equals to the potential eneéfgy by + b,.

In the area
n—-Ad < ¢ < 1+Ad (21)
the following control
N ro/O'7 if (l) >0
r‘{—ro/o, it g<0 (22)

is used. Herd¢ = congt > 0, 0 > 1 are parameters, which we choose by simulation. Under
the control (22) (in area (21)), the total enefgy- N increases monotonically because its
time derivative changes according to the equality:

d(T-+1)

= =T = [blro/o (23)

6.2 Double pendulum straightening

Out of area (21) we try to keep anglenear zero, because= 0 in the desired upward equi-
librium state (5). Also straightening the double pendulura try to avoid the movements of
the links in the opposite directions. If angleis close to zero, then the double-link pendu-
lum is "similar” to a one-link pendulum and it is naturally $wing up a one-link pendulum
with the control (22).

From system (2), (3) to make the exact partial input-outpetiback linearization such
that

0 = —C0 — 0, (24)
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the control torque is:

(€10 + Co0) (agp811 — 83,C0S%QN) N

Mr=rqg=-a a)2sina — by sin
d p1($ +a) 1sind + 2010050 1 o

(25)
(@11 + a21€080) [boSin(¢ + o) — ax1h2sina]
ap1COSO + apo

Herec; andc; are positive feedback gains. The denominator in expreg&®nis far from
zero, if anglea is close to zero. Under control (25), system (2), (3) hasefeshdently of
the behavior of anglé) an asymptotically stable solution:

at) =0 (o(t) =vt)) (26)

If the inequality (1) is taken into account, the saturatesticd law can be defined instead of
(25):

Fo, iflg>Tg
Fr=¢ Mg, if Mgl <lo (27)
—Fo, if Fg<—To

Let us note:

— If we puta = a = 0 in formula (25), then we obtain the following expression:

r— (311 +ap1
1+ ax

b2 — b1> Sln(l)

Under this control torque, the system (2), (3) has solutis).(
The simulation demonstrates that in order to straightep#melulum it is also possible
to use control simpler than (25):

r— ( a11t+ax
a1+ a2

b, — bl) S|n¢ +c10+Coa

— Consider system
a=v, [v|<w, Vo=cong (28)
The time-optimal controV(a, &), which brings system (28) to origim= & = 0 is [34,
39
V= —Vosign(2voa +alay) (29)
Instead of the discontinuous function (29) it is better foe tealization to use the fol-
lowing continuous function

v=—veth(t[2voa +ala| ]) (30)

with T as parameter. Substituting expression (30) insteaecpdt — c 0 in formula (25)
we obtain

Voth(t[2voa + || ]) (aeaq1 — 83,cos%a) N

Mr=ry=—a a)2sina — bysin
d p1(d +a) 1Sind + 2510050 + g

(a11 +ap1€080) [DSiN(¢ + ) — ap1d?sinal
a»1COSa + apo

31)
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We also tested successfully control (31) with several patarsvy andt on the stages of
the pendulum straightening.

Each stage of our control strategy is provided by mathemlaticnsideration. But the
demonstration of the efficiency of the complete controlteggg is supported by successful
computer simulation and intuition only (see below).

7 Simulation

The double-link pendulum is simulated with the numericalapaeters (20), and we have
chosem¢ = 11/12. But the control law is not very sensitive to the vali§e the value\p

in the interval[rt/24, 11/6] are also acceptable. If the valli@ decreases, interval (21) and
the time of the energy boosting decreases. Due to this theedfrine swing up increases. But
the control law remains applicable. For example, if instefatlh = 11/12 we use\p = 11/16,
the time of swing up increases by 33%.

The appropriate coefficients = 144s2 andc, = 28 s of the feedback control (27)
are chosen in the simulation. The gaisc,, which significantly differ from the chosen val-
ues can be also used successfully. We tested successiulxgmple, values, = 5.76s 2,
c;=5.76s1.

Thus, our approach is robust to the variations of the meet@bove parameters.

As we see in simulation under control (22), (27), the penausways from side to side
and its energyl + I increases "in average” (not monotonically). The stagehefanergy
boosting (see control (22)) and the straightening of thedpkem (see control (27)) are
alternating.

If valuel¢/0 is too large, the pendulum may race through the desiredibquih (5). In
simulation the value = 7 is used. This means that with the control law (22) we do net us
all the amplitude diapason of the torque of the actuatoririguhe pendulum straightening
phase and then during the upward stabilization phase alliress can be used.

After several vibrations, control (22), (27) brings the Hmulink pendulum close to the
upright position (5) with angular velocities close to zerml&o the basin of attraction. (Re-
mind we try to obtain the basin of attraction as large as ptes$iWwhen the system reaches
the basin of attraction, the control law (22), (27) switcbesthe stabilization control law
(18) (with = 0.1). At this time, the phase of the pendulum stabilizatiorhia ¢quilibrium
(5) starts. This is the last phase of the pendubot transfgmiocess.

To design a more robust control it is useful to increase thedficient o, when the full
energy becomes closer to the potential end?gy by + b, of the pendulum in the upright
position (5).

In Figure 3, the process of the pendubot swinging up andatsigation in erected pose
is shown. The amplitude of angtevibrations becomes large initially, but after it becomes
small and the pendubot sways from side to side like a onegémidulum. (Note, control (22)
is natural to swing up the one-link pendulum.) The amplitafithese vibrations increases.
After some number of vibrations, at time .Z4s approximately, the system comes to the
basin of attraction and after to the desired equilibrium.
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Fig. 3: Swing up with control (22), (27) and stabilizationsitate (5) with control (18 — 0,a — 0, — 0.

In Figure 4, the graph of the total enerd@y+ N is shown. The energy increases "in
average” and at the end becomes the desired corBtarit; + b,.
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T+M0 ()

0 5 10 15 20 time(s) 25

Fig. 4: Swing up with control (22), (27) and stabilizationsiate (5) with control (18)T + M — by + by.

In Figure 5, snapshots of the swing-up maneuver are depittE® sequences (times).



14

a) Initial b) Swing up with
configuration control (22)
¢) Double pendulum straightening d) Energy
with control (27) increases
e) Stabilization of the double pendulum f) Final
with control (18) configuration

Fig. 5: Snapshots of the swing-up maneuver during the swirend the stabilization of the double pendulum.

In area (21), instead of (22), the control law

[ To/o, ifK>0
r—{fro/o, if K<0 (32)

can be also used. Hei€ is the angular momentum (4). In Figure 6, the corresponding
process of the swinging up and stabilization is plotted. \afe @bserve the effect of control
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(32) at the beginning of the swing up control process, whieeetdrque switches between
lNo/o and—To/c until time 2 s. The maximal amplitude of the angte vibrations is less
than with control (22).

10 T T T T

¢ (rad)

0
0 5 10 15 20 25
2 T T T T
=1l i
8
= OW\/\N\AJW——-——\/,
—1 ; ; ; ;
0 5 10 15 20 25
0.2 . . . .
€
2 o
—
-0.2 i i i i _
5 10 15 20 time(s) 25

Fig. 6: Swing up with control (32), (27) and stabilizationsitate (5)$ — 0 with control (18),a — 0, — 0.

Using the designed controls we can bring the pendubot tophight position (5) not
from the initial downward position (6) only, but also fromnse another initial states. For
example, Figure 7 shows that it is possible to erect bottslistarting from the state =11,
y=T1+T11/3 (0 = 1/3), § = y= 0, which significantly differs from the state (6).

In our paper, the basin of attraction of the desired uprigtstable equilibrium of the
pendulum for its local stabilization is designed takingiatcount the limits for the control
torque. This basin depends on the limits and increases ifrttits increase. Designing the
control law, we tried to obtain this basin as large as possiith the given limits. The
basin of attraction was constructed using the linearizedehof the system. At the instant
when the phase trajectory of our system intersects the laoyraf the basin of attraction
the control torque becomds, or —I"o. We see this instant, for example, in Figure 7 (see
time instant 14s). Sometimes we do not see such an instant in the figures, mduéé&
nonlinear effect.

It is obvious that the double-link pendulum can be transfito the stable equilibrium
(6) from any initial state. Thus, the control law that trarsfpendulum from the downward
equilibrium (6) to the upward equilibrium (5) ensures tiiebal stability of this upward
equilibrium.
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20 time(s) 25

Fig. 7:a(0) = 1/3, Swing up with control (32), (27) and stabilization in st@b) with control (18)$ — O,
a—0,—0.

In this paper we have tried to bring the pendulum in the ustaguilibrium state (5).
But the pendubot has a continuum of equilibrium positions.dahnot affirm that our intu-
itive strategy can be applied for this continuum of equilibr positions. Currently we have
successfully used the same strategy for the two followirggalie equilibrium states:

¢e = 07 2T[7 Ye=TL —TT, (33)

be=TL T, Ye=0, 21 (34)

If the goal of our control is equilibriumpe = 0, ye = 11, then out of area (21) we try to
keep the anglg close tort If the goal of our control is equilibriume = 11, Yo = 11, then out
of area (21) we try to bring the angjego 0.

However, here we have described with details only the mdistuli case with erection
of the both links. Note, system (2), (3) linearized near aibl&t equilibrium (5) has two
unstable modes, but the same system linearized near ungqbilibriums (33) and (34)
has only one unstable mode.

8 Conclusion

The pendulum systems have become an exciting topic in tloeytloé control for mechanical
multibody systems. The object of this paper is a double-fiekdulum. This pendulum
belongs to the family of the double-link pendulums, soedibendubot. A theoretical and
numerical study is done with simulation of its swing up anabsization in the unstable
equilibrium state with two erected links. The strategy isrfded on the nonlinear control
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law. This control is based on the combining of the energy awwitive approaches. The
number of parameters, which are needed to find by simulasiemill. Furthermore all of

them have a physical sense. Under the designed feedbaaklctim: pendubot performs a
number of vibrations from side to side with increasing atoplké as a one-link pendulum.
At every cycle we slightly increase the energy of the sysféne tested algorithms can be
used during on-line control process, if computer in the lieett control loop is fast enough.

We have successfully developed and tested two energy bgagorithms and several
algorithms to straighten the pendulum.

The basin of attraction is a natural criterion to define théching time between the
swing up process and the stabilization of the pendulum irethelibrium state. The larger
the basin of attraction, the more robust the control law ddshorter the duration of the
erection process. Thus, it is important to have a basin cdcitbn as large as possible. The
basins of attraction for the nonlinear model and for thedimaodel are close. We think that
our study is of a theoretical interest and is also intergdtin the education. The simulation
tests demonstrate that the perspective of our swing upacenid the stabilization of an
experimental two-link pendulum is realistic.
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