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The objective of this paper is to define a strategy for the swing up of a doublelink pendulum and its stabilization in the unstable equilibrium state with both erected links. The first joint of this double-link pendulum, which is the suspension joint, is actuated and the second joint is passive. This double-link pendulum, usually called pendubot, is an underactuated system. The double-link pendulum is straightened during the energy boosting process. The swing up control switches to the balancing mode at the instant when the system comes to the basin of attraction. The limits on the torque amplitude are taken into account. The gains of the saturated balancing control are chosen to ensure the basin of attraction as large as possible. Simulation results demonstrate that our strategy is efficient.

Introduction

Motivation. The pendulums with more joints than actuators are mechanical systems, which belong to the family of underactuated systems. They represent an attractive but also a difficult challenge for the control theory. During the World Exhibition EXPO 2010 in Shangai the German Pavilion has featured a larges interactive 3D-pendulum as its main attraction [START_REF] Eberhard | The big expo 2010 world exhibition pendulum-dynamics and control[END_REF]. A mechanical system is considered as underactuated if the number of actuators is less than the number of degrees of freedom [START_REF] Aoustin | Numerical and experimental study of the virtual quadruped -semiquad[END_REF]. During a walking gait a modification of contact conditions can lead to an underactuated walking robot, [START_REF] Schiehlen | Energy-optimal design of walking machines[END_REF] and [START_REF] Zaoui | Simulations of the dynamic behavior of a bipedal robot with trunk and arms subjected to 3d external disturbances in a vertical posture, during walking and during object handling[END_REF]. The inverted pendulums can play the role of a didactic platform, see for example [START_REF] Lewis | Applied Optimal Control and Estimation[END_REF], where usual digital controls are illustrated with an inverted pendulum on a cart, the so-called Cart-Pole System. The pendulum systems attract also the attention of researchers in control as a benchmark for testing and evaluating of control strategies, to mention a little set of references only, see [START_REF] Spong | The swing up control problem for the acrobot[END_REF][START_REF] Albouy | On the use of dynamic invariants and forwarding for swinging up a spherical inverted pendulum[END_REF][START_REF] Astrom | Swinging up a pendulum by energy control[END_REF][START_REF] Fantoni | Energy based control of the pendubot[END_REF][START_REF] Shiriaev | Vss-version of energy based control for swinging up a pendulum[END_REF][START_REF] Olfati-Saber | Normal forms for underactuated mechanical systems with symmetry[END_REF][START_REF] Zhang | Hybrid control of the pendubot[END_REF][START_REF] Furuta | Control of pendulum: From super mechano-system to human adaptive mechatronics[END_REF][START_REF] Chernous'ko | Methods of control of nonlinear mechanical systems[END_REF][START_REF] Muskinja | Swinging up and stabilization of a real inverted pendulum[END_REF][START_REF] Reschmin | Method of decomposition in the problem of control of inverted double-link pendulum using one control torque[END_REF][START_REF] Lai | Comprehensive unified control strategy for underactuated two-link manipulators[END_REF].

For the pendulums usually two problems have to be taken into account, which are the swing up to reach an upright unstable equilibrium and the stabilization in this position.

Acrobot. For example with an acrobot, which is a two-link pendulum, whose first link is not actuated whereas the second one is actuated, authors of [START_REF] Spong | The swing up control problem for the acrobot[END_REF] and [START_REF] Bortoff | Pseudolinearisation of the acrobot using spline functions[END_REF] define a method in two stages. At first, a slow swinging up process, founded on a passivity-based approach, brings the acrobot close to the upright position. After switching control to a balancing linear controller, the pendulum is locally asymptotically stabilized around its upright equilibrium position. A new control law to swing up an acrobot and to stabilize it in the upright position is developed in [START_REF] Formal'skii | On global stabilization of the double inverted pendulum with control at the hinge between the links[END_REF]. A swing-up controller that can bring a n-link revolute acrobot is considered by Xin et al [START_REF] Xin | Swing-up control based on virtual composite links for n-link underactuated robot with passive first joint[END_REF]. The first joint of the acrobot is passive and the others are actuated. The swing-up controller can bring the robot into any arbitrarily small neighborhood of the upright equilibrium point with all links in the upright position. The strategy is first to iteratively devise a series of virtual composite links to be used for designing a coordinate transformation on the angles of all the active joints. Second, an energy-based swing-up controller that uses a new Lyapunov function based on that transformation is devised. Conditions on the control parameters are established to ensure attainment of the swing-up control objective.

Pendubot. In [START_REF] Spong | The pendubot: A mechatronic system for control reaserch and education[END_REF] and [START_REF] Block | Mechanical design and control of the pendubot[END_REF], the underactuated planar revolute robot, usually called pendubot, is presented. A pendubot is also a two-link pendulum with an actuator at the shoulder, but no actuator at the elbow. One very interesting distinction of the pendubot over both the classical cart-pole system and Furuta's system is the continuum of equilibrium positions. The partial feedback linearization technique is used to design the control that swings the two links from their hanging stable equilibrium to the unstable erected position. A linear state feedback is designed to balance the pendulum at the erected equilibrium. The LQR or pole placement technique can be used to find the feedback gains. In [START_REF] Fantoni | Energy based control of the pendubot[END_REF], an algorithm has been proposed to swing up a pendubot. This algorithm brings the pendulum close to the top unstable equilibrium. The second link remains swinging while getting closer and closer to the top equilibrium. In [START_REF] Zhang | Hybrid control of the pendubot[END_REF], the swing up controller switches to a hybrid controller for feedback stabilization among the erected position of an experimental pendubot. This hybrid controller is composed of a continuous-time control part, which contributes for partial feedback linearization, and a discrete-time control part, which can be regarded as cancelation of the drift terms. A pendubot is also considered in [START_REF] Orlov | Swing up and balancing control of pendubot via model orbit stabilization: algorithm synthesis and experimental verififcation[END_REF]. A variable structure controller from [START_REF] Orlov | Finite-time stability and robust control synthesis of uncertain switched systems[END_REF], based on the second order sliding mode method, drives the pendubot to a periodic reference orbit in finite time. A modified Van der Pol oscillator is involved into the controller synthesis as a reference model. The resulting closed-loop system is capable of moving from one orbit to another by changing the parameters of the Van der Pol oscillator.

In [START_REF] Astr Öm | A new family of smooth strategies for swinging up a pendulum[END_REF], authors investigate some properties of the simple strategies for swinging up a one-link pendulum based on energy approach. The position and the velocity of the pivot are not considered. The global behavior of the swing up is completely characterized by the ratio of the maximum acceleration of the pivot and the acceleration of gravity. The swing up and the stabilization problems for the considered one-link pendulum with a limited actuator, are simultaneously solved with a single, smooth law by authors. The idea is to shape the potential energy and to introduce in the control law an additional dumping or pumping term following the state of the pendulum. In [START_REF] Lozano | Stabilisation of the inverted pendulum around its homoclinic orbit[END_REF], the problem of the stabilization a one-link inverted pendulum around its homoclinic orbit is addressed. A control strategy, based on an energy approach of the cart and pendulum system is proposed to balance the inverted pendulum and raise it to its upper equilibrium position while the cart displacement is brought to zero. A one-link pendulum with an inertia-wheel is considered in [START_REF] Beznos | A pendulum controlled by a flywheel[END_REF]. Taking into account the limits of the actuator, authors have designed a swing up control law. The switching time between the swing up control and the stabilization control is defined by comparing the global energy of the pendulum to its potential energy in the upright equilibrium and getting its basin of attraction. Using the Jordan form of the equations of motion, the authors extract the unstable mode. Suppressing this unstable mode, they obtain a basin of attraction, which is as large as possible. The experimental results show the remarkable efficient of the design control.

Lai et al. [START_REF] Lai | Comprehensive unified control strategy for underactuated two-link manipulators[END_REF] propose a unified treatments of the motion control of underactuated twolink manipulators, including acrobots and pendubots. The global stability of the control system is analyzed and guaranteed by using arguments from the Lyapunov's theory. In [START_REF] Aoustin | Stabilisation of unstable equilibrium postures of a two-link pendulum using a flywheel[END_REF], a stabilization control of a two-link inverted pendulum with an inertia-wheel is designed for the three unstable equilibriums.

An approach of the nonlinear control design is proposed in [START_REF] Olfati-Saber | Nonlinear control of underactuated mechanical systems with application to robotics and aerospace vehicles[END_REF] for underactuated mechanical systems and results of global stabilization for an acrobot, a Cart-pole system, an inertia-wheel pendulum, a rotating pendulum are presented. This approach is based on an explicit change of coordinates and control that transform several classes of underactuated mechanical systems into cascade nonlinear systems with structural properties that are convenient for the control design purposes.

In literature for the swing up and the local stabilization of a pendubot, to our best knowledge, first, there is no explicit way to avoid antagonistic movements of the swing links during the process of swinging up. Secondly, during the process of stabilization, it does not exist a control law with saturation, founded on the basin of attraction (or its approximation, the largest possible) and treating explicitly the unstable modes. However it is very important to take into account the limits of the actuators, see Val á šek and Šika, [START_REF] Valasek | Evaluation of dynamic capabilities of machines and robots[END_REF] who provide us a global overview about the dynamic capabilities of a mechanical system, i.e. about the accessible motion described by accessible positions, accessible velocities, accessible accelerations and the required (given) forces.

Contribution. The paper proposes a control strategy that makes a pendubot upright by swinging up, and stabilizing the erected position. The limits on the torque amplitude in the suspension point are taken into account. The original switching control scheme consists of three parts:

-When the pendulum is in some neighborhood of the downward resting position, a local controller, based on the energy boosting algorithm, is employed. -When the pendulum is out of this neighborhood, a saturated nonlinear controller is used in order to straighten the double-link pendulum (to make it close to a one-link pendulum). -When the pendulum reaches the basin of attraction of the upright position, a saturated linear feedback is used.

The novelty in our control strategy is the following. We take into account the limits imposed on the control torque. In the process of swinging up, the pendubot with the designed control performs a number of vibrations from side to side with increasing amplitude as a one-link pendulum. Remind, under algorithm designed in [START_REF] Fantoni | Energy based control of the pendubot[END_REF], the first link converges to the top position after several initial oscillations, while the second link performs oscillations with increasing amplitude. Second, the gains of the saturated balancing control are chosen to ensure the basin of attraction as large as possible. The swing up control switches to the balancing mode at the instant when the system comes to the basin of attraction.

Structure of the paper. Section 2 is devoted to the model of the double pendulum. The linearized model is discussed in Section 3. The statement of the problem is defined in Section 4. Section 5 presents the controls for the local stabilization of the double-link pendulum in the unstable equilibrium posture. Section 6 is devoted to the definition of the swing up strategy. Simulation results are presented in Section 7. Finally, Section 8 presents our conclusion and perspectives.

Model Description of the Double-Link Pendulum

Let us consider a mechanical system with two rigid bodies depicted in Figure 1. The DC motor actuates the suspension joint O 1 . We assume a direct drive shaft for the actuated joint. But there is no actuator in the inter-link joint O 2 . Let C 1 and C 2 be the centers of mass of the first and second link respectively. The center of mass

C 1 is located on line O 1 O 2 . Let the following lengths be O 1 O 2 = l, O 1 C 1 = r 1 and O 2 C 2 = r 2 .
Let m 1 and m 2 be the masses of the first and second links. The moment of inertia of the first link about joint O 1 plus the moment of inertia of the rotor of the actuator is denoted I 1 , the moment of inertia of the second link about joint O 2 is denoted I 2 .

The generalized coordinates are the angles ϕ and γ, Figure 1. The joint variable α = γ-ϕ is also used in our study. So, our system has two degrees of freedom, but one actuator only. Thus, this system has one degree of underactuation. Consider the following constraint imposed on torque Γ, which is developed by the motor in the suspension point O 1 :

|Γ| ≤ Γ 0 , Γ 0 = const (1)
Considering inequality (1) we assume the back electromotive force in the motor sufficiently small. For the pendulum stabilization in upward position this assumption is well justified. In this case, inequality (1) corresponds to limits imposed on the voltage.

The expressions for the kinetic energy T and the potential energy Π of the two-link pendulum are well-known:

2T = a 11 φ2 + 2a 21 cos(γ -ϕ)γ φ + a 22 γ2 , Π = b 1 cosϕ + b 2 cosγ
Here

a 11 = I 1 + m 2 l 2 , a 21 = m 2 r 2 l, a 22 = I 2 , b 1 = (m 1 r 1 + m 2 l)g, b 2 = m 2 r 2 g (g is the gravity acceleration).
Lagrangian L = T -Π yields the following well known equations of motion:

a 11 φ + a 21 cos(γ -ϕ)γ -a 21 sin(γ -ϕ)γ 2 -b 1 sinϕ = Γ (2)
a 21 cos(γ -ϕ) φ + a 22 γ + a 21 sin(γ -ϕ) φ2 -b 2 sinγ = 0 (3) 
The angular momentum K with respect to the suspension joint O 1 of the double-link pendulum is

K = ∂T ∂ φ = a 11 φ + a 21 cos(γ -ϕ)γ (4) 
System ( 2), ( 3) with Γ = 0 has the unstable equilibrium state:

ϕ e ≡ 0, 2π, γ e ≡ 0, 2π (5) 
We consider the problem to transfer the double pendulum to the equilibrium posture (5) from the stable equilibrium posture

ϕ ≡ π, γ ≡ π (6) 
3 Linearized Model of the Double-Link Pendulum

In the last phase of the pendulum transferring process to the desired final position, we stabilize it. The linear model, but with limits (1) imposed on the control torque is used to design the feedback for the stabilization. Let us denote the state vector by

x = ϕ -ϕ e , γ -γ e , φ, γ * = ϕ, γ, φ, γ * .
Star * means transposition. Equations ( 2), (3) linearized near the equilibrium (5) have the following matrix form:

ẋ = Ax + pΓ = 0 2×2 I 2×2 D -1 E 0 2×2 x +   0 2×1 D -1 1 0   Γ (7) 
Matrices D and E are:

D = a 11 a 21 a 21 a 22 , E = b 1 0 0 b 2 . ( 8 
)
The determinant of the Kalman controllability matrix [START_REF] Kalman | Topics in mathematical system theory[END_REF] of the model ( 3), ( 8) is

- b 2 2 a 2 21 (a 11 a 22 -a 2 21 ) 4 (9) 
Value a 11 a 22a 2 21 = 0 because it is the determinant of the inertia matrix with α = 0. Thus, the linear model is Kalman controllable, if and only if r 2 = 0 and l = 0.

Introducing a nondegenerate linear transformation x = Sy with a constant matrix S, it is possible to obtain the well-known Jordan form of the matrix equation (3) ẏ = Λy + dΓ [START_REF] Shiriaev | Vss-version of energy based control for swinging up a pendulum[END_REF] where Λ is a diagonal matrix

Λ = S -1 AS =     λ 1 0 . . 0 λ 4     , d = S -1 p = (d 1 , d 2 , d 3 , d 4 ) * . (11) 
Here, λ 1 , ..., λ 4 are the eigenvalues of the matrix A. They are the roots of the characteristic equation for the linear system (3) with Γ = 0. This characteristic equation is biquadratic

a 0 λ 4 + a 1 λ 2 + a 2 = 0 (12)
because the system (2), ( 3) is conservative.

Statement of the Problem

The upright equilibrium posture ( 5) is unstable. The objective is to design a feedback control, satisfying the constraint (1), to swing up the pendulum and to stabilize it in this unstable equilibrium posture.

We consider the problem of local stabilization of equilibrium (5) firstly, whereas the stabilization is the last phase of the transferring pendulum process. The asymptotic local stabilization around the unstable equilibrium is realized here with an approach defined in [START_REF] Formal'skii | On stabilization of an inverted double pendulum with one control torque[END_REF].

Local Stabilization of the Double-Link Pendulum

The coefficients of the characteristic equation [START_REF] Zhang | Hybrid control of the pendubot[END_REF] for the system (3), ( 8) are:

a 0 = a 11 a 22 -a 2 12 = detD > 0, a 1 = -(a 11 b 2 + a 22 b 1 ) < 0, a 2 = b 1 b 2 = detE > 0
The leading coefficient a 0 is positive because it is the determinant of the positive definite matrix D; a 1 < 0 because a 11 , a 22 , b 1 and b 2 are positive values. Consequently equation [START_REF] Zhang | Hybrid control of the pendubot[END_REF] has two real positive roots λ 1 , λ 2 and two real negative roots

λ 3 = -λ 1 , λ 4 = -λ 2 .
We intend to design an admissible (satisfying the inequality (1)) feedback control Γ(x) to ensure the asymptotic stability of the equilibrium state x = 0 of system (3) or [START_REF] Shiriaev | Vss-version of energy based control for swinging up a pendulum[END_REF] with the largest possible basin of attraction (the larger the basin of attraction, the more robust the control).

Let us consider the first two scalar differential equations of the system (10), [START_REF] Olfati-Saber | Normal forms for underactuated mechanical systems with symmetry[END_REF], corresponding to the positive eigenvalues λ 1 and λ 2 :

ẏ1 = λ 1 y 1 + d 1 Γ, ẏ2 = λ 2 y 2 + d 2 Γ (13) 
The system (3), ( 8) is Kalman controllable. Therefore, the subsystem ( 13) is also controllable (see [START_REF] Kalman | Topics in mathematical system theory[END_REF]) and

d 1 = 0, d 2 = 0.
Let W be the set of the piecewise continuous functions Γ(t), satisfying the inequality (1). Let Q be the set of the initial states x(0) of the system (3), from which origin x = 0 can be reached, using an admissible control functions Γ(t) ∈ W . In other words, the system (3) can reach the origin x = 0 with control Γ(t) ∈ W , only starting from the initial states x(0) ∈ Q. Set Q is called controllability domain. If matrix A has eigenvalues with positive real parts and the control variable Γ is restricted, then the controllability domain Q for the system ( 3) is an open subset of the phase space X (see [START_REF]Controllability and stability of systems with limited ressources[END_REF]).

For any admissible feedback control Γ = Γ(x) (with the saturation |Γ(x)| ≤ Γ 0 ) the corresponding basin of attraction B belongs to the controllability domain: B ⊂ Q. Here, as usual, B is the set of the initial states x(0), from which the system (3), with the feedback Γ = Γ(x) asymptotically tends to the origin x = 0 as t → ∞.

The controllability domain Q ′ of the system (13) in plane y 1 , y 2 is an open bounded set with the following boundaries (see [START_REF]Controllability and stability of systems with limited ressources[END_REF], [START_REF] Boltyansky | Mathematical methods of optimal control[END_REF])

y 1 (τ) = ± d 1 Γ 0 λ 1 2e -λ1τ -1 , y 2 (τ) = ± d 2 Γ 0 λ 2 2e -λ2τ -1 (0 ≤ τ < ∞) (14) 
The boundary of the controllability region Q ′ has two corner points depicted in Figure 2:

y 1 = -d 1 Γ 0 λ 1 , y 2 = -d 2 Γ 0 λ 2 ; y 1 = d 1 Γ 0 λ 1 , y 2 = d 2 Γ 0 λ 2 (15) 
These points [START_REF] Muskinja | Swinging up and stabilization of a real inverted pendulum[END_REF] are the equilibrium points of the system (13) under the constant controls:

Γ = ±Γ 0 (16) 
We can "suppress" the instability of equilibrium y 1 = 0, y 2 = 0 of the system (13) by a linear feedback control,

Γ = k 1 y 1 + k 2 y 2 (17) 
with k 1 , k 2 = const. It is shown in the paper [START_REF] Hu | Stabilization of exponentially unstable linear systems with saturating actuators[END_REF] and the book [START_REF] Hu | Control systems with actuator saturation, analysis and design[END_REF] that using a linear feedback [START_REF] Lai | Comprehensive unified control strategy for underactuated two-link manipulators[END_REF] with saturation (β = const),

Γ =    Γ 0 , i f β(k 1 y 1 + k 2 y 2 ) ≥ Γ 0 β(k 1 y 1 + k 2 y 2 ), i f |β(k 1 y 1 + k 2 y 2 )| < Γ 0 -Γ 0 , i f β(k 1 y 1 + k 2 y 2 ) ≤ -Γ 0 ( 18 
)
the basin of attraction B ′ of the system (13), ( 18) can be made arbitrary close to the controllability domain Q ′ .

The straight line crossing two points [START_REF] Muskinja | Swinging up and stabilization of a real inverted pendulum[END_REF] is the following:

k 1 y 1 + k 2 y 2 = 0 with k 1 = - d 2 λ 2 , k 2 = d 1 λ 1 ( 19 
) If signβ = sign (d 1 d 2 (λ 1 -λ 2 ))
and |β| → ∞, then the basin of attraction B ′ of the system (13) under the nonlinear control [START_REF] Bortoff | Pseudolinearisation of the acrobot using spline functions[END_REF] with the coefficients [START_REF] Formal'skii | On global stabilization of the double inverted pendulum with control at the hinge between the links[END_REF] tends to the controllability region Q ′ . Consequently, using the gains [START_REF] Formal'skii | On global stabilization of the double inverted pendulum with control at the hinge between the links[END_REF], basin B ′ (two-dimensional) can be made arbitrary close to domain Q ′ . If |β| → ∞, the control (18) tends to the bang-bang control. Solutions y 1 (t) and y 2 (t) of equations ( 13) with control (18) tend to 0 as t → ∞ for the initial values y 1 (0), y 2 (0), belonging to the basin of attraction B ′ . But if y 1 (t) → 0 and y 2 (t) → 0, then, according to the expression [START_REF] Bortoff | Pseudolinearisation of the acrobot using spline functions[END_REF], Γ(t) → 0. Therefore, solutions y 3 (t), y 4 (t) of the third and fourth equations of system [START_REF] Shiriaev | Vss-version of energy based control for swinging up a pendulum[END_REF] with any initial conditions y 3 (0), y 4 (0) converge to zero as t → ∞, because λ 3 , λ 4 < 0. Thus, under control [START_REF] Bortoff | Pseudolinearisation of the acrobot using spline functions[END_REF] with coefficients [START_REF] Formal'skii | On global stabilization of the double inverted pendulum with control at the hinge between the links[END_REF], the basin of attraction B (four-dimensional) of system ( 10), ( 18) is described by the same relations, which describe the basin of attraction B ′ (two-dimensional) of system ( 13), [START_REF] Bortoff | Pseudolinearisation of the acrobot using spline functions[END_REF]. Basin B (and controllability domain Q) is limited in unstable coordinates y 1 , y 2 only. The boundary of the basin B ′ is the periodical cycle of the system (13), [START_REF] Bortoff | Pseudolinearisation of the acrobot using spline functions[END_REF]. This cycle can be computed, using the backward motion of the system (13), ( 18) from a state close to the origin y 1 = y 2 = 0.

Variables y 1 and y 2 depend on the original variables from the vector x, according to transformation y = S -1 x. Due to this, formula (18) defines a nonlinear feedback control, which depends on vector x of the original variables.

According to Lyapounov's theorem (see [START_REF] Khalil | Nonlinear systems[END_REF]), the equilibrium state x = 0 of the nonlinear system (2), ( 3) is asymptotically stable under the control (18) because system (2), ( 3), (18) linearized near the state x = 0 is asymptotically stable.

A similar approach to design the control law with a large basin of attraction has been applied to an original circular beam and ball system, which has two unstable modes [START_REF] Aoustin | Ball on a beam: Stabilization under saturated input control with large basin of attraction[END_REF].

The double-link pendulum is here assumed with similar homogeneous links and parameters:

m 1 = m 2 = 0.2 kg, l = 0.15 m, Γ 0 = 0.2 N . m ( 20 
)
With parameters [START_REF] Xin | Swing-up control based on virtual composite links for n-link underactuated robot with passive first joint[END_REF] the positive eigenvalues λ 1 , λ 2 are the following: λ 1 = 18.5611, λ 2 = 6.920. Using formulas [START_REF] Chernous'ko | Methods of control of nonlinear mechanical systems[END_REF] we design the controllability domain Q ′ depicted in Figure 2. The boundary of this domain is shown in Figure 2 by dashed line; the boundary of the basin of attraction B ′ with β = 0.025 is shown by solid line. If β = 0.1, then basin B ′ is very close to domain Q ′ and it is difficult to see on the sketch the difference between them. In this case, we can use domain Q ′ as a basin of attraction.

Swing up Via Energy and An Intuitive Control

In this Section, we describe two stages of the developed control. The process of the local stabilization starts after these two stages. 

Energy approach

The process of the double-link pendulum transferring from the stable equilibrium ( 6) to the unstable one (5) contains several phases. First, the pendulum is swinging up to increase its total mechanical energy T + Π. This energy in the desired unstable equilibrium state, which is the upright position ( 5) equals to the potential energy

P = b 1 + b 2 .
In the area

π -∆ϕ ≤ ϕ ≤ π + ∆ϕ (21) 
the following control

Γ = Γ 0 /σ, i f φ > 0 -Γ 0 /σ, i f φ ≤ 0 ( 22 
)
is used. Here ∆ϕ = const > 0, σ > 1 are parameters, which we choose by simulation. Under the control [START_REF] Block | Mechanical design and control of the pendubot[END_REF] (in area ( 21)), the total energy T + Π increases monotonically because its time derivative changes according to the equality:

d(T + Π) dt = Γ φ = | φ|Γ 0 /σ (23) 

Double pendulum straightening

Out of area ( 21) we try to keep angle α near zero, because α = 0 in the desired upward equilibrium state [START_REF] Lewis | Applied Optimal Control and Estimation[END_REF]. Also straightening the double pendulum, we try to avoid the movements of the links in the opposite directions. If angle α is close to zero, then the double-link pendulum is "similar" to a one-link pendulum and it is naturally to swing up a one-link pendulum with the control [START_REF] Block | Mechanical design and control of the pendubot[END_REF].

From system (2), (3) to make the exact partial input-output feedback linearization such that α = -c 2 αc 1 α,

the control torque is: [START_REF] Astr Öm | A new family of smooth strategies for swinging up a pendulum[END_REF] Here c 1 and c 2 are positive feedback gains. The denominator in expression ( 25) is far from zero, if angle α is close to zero. Under control [START_REF] Astr Öm | A new family of smooth strategies for swinging up a pendulum[END_REF], system (2), ( 3) has (independently of the behavior of angle ϕ) an asymptotically stable solution:

Γ = Γ d = -a 21 ( φ + α) 2 sinα -b 1 sinϕ + (c 1 α + c 2 α)(
α(t) = 0 (ϕ(t) = γ(t)) (26) 
If the inequality ( 1) is taken into account, the saturated control law can be defined instead of ( 25):

Γ =    Γ 0 , i f Γ d ≥ Γ 0 Γ d , i f |Γ d | < Γ 0 -Γ 0 , i f Γ d ≤ -Γ 0 (27) 
Let us note:

-If we put α = α = 0 in formula ( 25), then we obtain the following expression:

Γ = a 11 + a 21 a 21 + a 22 b 2 -b 1 sinϕ
Under this control torque, the system (2), (3) has solution [START_REF] Lozano | Stabilisation of the inverted pendulum around its homoclinic orbit[END_REF].

The simulation demonstrates that in order to straighten the pendulum it is also possible to use control simpler than [START_REF] Astr Öm | A new family of smooth strategies for swinging up a pendulum[END_REF]:

Γ = a 11 + a 21 a 21 + a 22 b 2 -b 1 sinϕ + c 1 α + c 2 α -Consider system α = v, |v| ≤ v 0 , v 0 = const (28) 
The time-optimal control v(α, α), which brings system [START_REF] Aoustin | Stabilisation of unstable equilibrium postures of a two-link pendulum using a flywheel[END_REF] to origin α = α = 0 is [START_REF] Boltyansky | Mathematical methods of optimal control[END_REF][START_REF] Pontryagin | The Mathematical Theory of Optimal Processes[END_REF]:

v = -v 0 sign(2v 0 α + α| α|) (29) 
Instead of the discontinuous function [START_REF] Olfati-Saber | Nonlinear control of underactuated mechanical systems with application to robotics and aerospace vehicles[END_REF] it is better for the realization to use the following continuous function

v = -v 0 th(τ[2v 0 α + α| α| ]) (30) 
with τ as parameter. Substituting expression (30) instead of -c 1 αc 2 α in formula [START_REF] Astr Öm | A new family of smooth strategies for swinging up a pendulum[END_REF] we obtain

Γ = Γ d = -a 21 ( φ + α) 2 sinα -b 1 sinϕ + v 0 th(τ[2v 0 α + α| α| ])(a 22 a 11 -a 2 21 cos 2 α) a 21 cosα + a 22 + (a 11 + a 21 cosα)[b 2 sin(ϕ + α) -a 21 φ2 sinα] a 21 cosα + a 22 (31) 
We also tested successfully control [START_REF] Kalman | Topics in mathematical system theory[END_REF] with several parameters v 0 and τ on the stages of the pendulum straightening.

Each stage of our control strategy is provided by mathematical consideration. But the demonstration of the efficiency of the complete control strategy is supported by successful computer simulation and intuition only (see below).

Simulation

The double-link pendulum is simulated with the numerical parameters [START_REF] Xin | Swing-up control based on virtual composite links for n-link underactuated robot with passive first joint[END_REF], and we have chosen ∆ϕ = π/12. But the control law is not very sensitive to the value ∆ϕ; the values ∆ϕ in the interval [π/24, π/6] are also acceptable. If the value ∆ϕ decreases, interval [START_REF] Spong | The pendubot: A mechatronic system for control reaserch and education[END_REF] and the time of the energy boosting decreases. Due to this the time of the swing up increases. But the control law remains applicable. For example, if instead of ∆ϕ = π/12 we use ∆ϕ = π/16, the time of swing up increases by 33%.

The appropriate coefficients c 1 = 144 s -2 and c 2 = 28 s -1 of the feedback control [START_REF] Beznos | A pendulum controlled by a flywheel[END_REF] are chosen in the simulation. The gains c 1 , c 2 , which significantly differ from the chosen values can be also used successfully. We tested successfully, for example, values c 1 = 5.76 s -2 , c 2 = 5.76 s -1 . Thus, our approach is robust to the variations of the mentioned above parameters.

As we see in simulation under control [START_REF] Block | Mechanical design and control of the pendubot[END_REF], [START_REF] Beznos | A pendulum controlled by a flywheel[END_REF], the pendulum sways from side to side and its energy T + Π increases "in average" (not monotonically). The stages of the energy boosting (see control [START_REF] Block | Mechanical design and control of the pendubot[END_REF]) and the straightening of the pendulum (see control [START_REF] Beznos | A pendulum controlled by a flywheel[END_REF]) are alternating.

If value Γ 0 /σ is too large, the pendulum may race through the desired equilibrium [START_REF] Lewis | Applied Optimal Control and Estimation[END_REF]. In simulation the value σ = 7 is used. This means that with the control law [START_REF] Block | Mechanical design and control of the pendubot[END_REF] we do not use all the amplitude diapason of the torque of the actuator. During the pendulum straightening phase and then during the upward stabilization phase all resources can be used.

After several vibrations, control [START_REF] Block | Mechanical design and control of the pendubot[END_REF], [START_REF] Beznos | A pendulum controlled by a flywheel[END_REF] brings the double-link pendulum close to the upright position [START_REF] Lewis | Applied Optimal Control and Estimation[END_REF] with angular velocities close to zero and to the basin of attraction. (Remind we try to obtain the basin of attraction as large as possible.) When the system reaches the basin of attraction, the control law [START_REF] Block | Mechanical design and control of the pendubot[END_REF], [START_REF] Beznos | A pendulum controlled by a flywheel[END_REF] switches on the stabilization control law [START_REF] Bortoff | Pseudolinearisation of the acrobot using spline functions[END_REF] (with β = 0.1). At this time, the phase of the pendulum stabilization in the equilibrium (5) starts. This is the last phase of the pendubot transferring process.

To design a more robust control it is useful to increase the coefficient σ, when the full energy becomes closer to the potential energy P = b 1 + b 2 of the pendulum in the upright position [START_REF] Lewis | Applied Optimal Control and Estimation[END_REF].

In Figure 3, the process of the pendubot swinging up and its stabilization in erected pose is shown. The amplitude of angle α vibrations becomes large initially, but after it becomes small and the pendubot sways from side to side like a one-link pendulum. (Note, control [START_REF] Block | Mechanical design and control of the pendubot[END_REF] is natural to swing up the one-link pendulum.) The amplitude of these vibrations increases. After some number of vibrations, at time 14.7 s approximately, the system comes to the basin of attraction and after to the desired equilibrium. 22), [START_REF] Beznos | A pendulum controlled by a flywheel[END_REF] and stabilization in state [START_REF] Lewis | Applied Optimal Control and Estimation[END_REF] with control [START_REF] Bortoff | Pseudolinearisation of the acrobot using spline functions[END_REF], ϕ → 0, α → 0, Γ → 0.

In Figure 4, the graph of the total energy T + Π is shown. The energy increases "in average" and at the end becomes the desired constant P = b 1 + b 2 . In Figure 5, snapshots of the swing-up maneuver are depicted in six sequences (times). In area [START_REF] Spong | The pendubot: A mechatronic system for control reaserch and education[END_REF], instead of ( 22), the control law

Γ = Γ 0 /σ, i f K > 0 -Γ 0 /σ, i f K ≤ 0 ( 32 
)
can be also used. Here K is the angular momentum (4). In Figure 6, the corresponding process of the swinging up and stabilization is plotted. We can observe the effect of control [START_REF] Formal'skii | On stabilization of an inverted double pendulum with one control torque[END_REF] at the beginning of the swing up control process, where the torque switches between Γ 0 /σ and -Γ 0 /σ until time 2 s. The maximal amplitude of the angle α vibrations is less than with control [START_REF] Block | Mechanical design and control of the pendubot[END_REF]. 32), [START_REF] Beznos | A pendulum controlled by a flywheel[END_REF] and stabilization in state ( 5), ϕ → 0 with control (18), α → 0, Γ → 0.

Using the designed controls we can bring the pendubot to the upright position (5) not from the initial downward position [START_REF] Spong | The swing up control problem for the acrobot[END_REF] only, but also from some another initial states. For example, Figure 7 shows that it is possible to erect both links, starting from the state ϕ = π, γ = π + π/3 (α = π/3), φ = γ = 0, which significantly differs from the state (6).

In our paper, the basin of attraction of the desired upright unstable equilibrium of the pendulum for its local stabilization is designed taking into account the limits for the control torque. This basin depends on the limits and increases, if the limits increase. Designing the control law, we tried to obtain this basin as large as possible with the given limits. The basin of attraction was constructed using the linearized model of the system. At the instant when the phase trajectory of our system intersects the boundary of the basin of attraction the control torque becomes Γ 0 or -Γ 0 . We see this instant, for example, in Figure 7 (see time instant 14 s). Sometimes we do not see such an instant in the figures, may be due to nonlinear effect.

It is obvious that the double-link pendulum can be transferred to the stable equilibrium (6) from any initial state. Thus, the control law that transfers pendulum from the downward equilibrium (6) to the upward equilibrium (5) ensures the global stability of this upward equilibrium. 32), [START_REF] Beznos | A pendulum controlled by a flywheel[END_REF] and stabilization in state [START_REF] Lewis | Applied Optimal Control and Estimation[END_REF] with control (18), ϕ → 0, α → 0, Γ → 0.

In this paper we have tried to bring the pendulum in the unstable equilibrium state [START_REF] Lewis | Applied Optimal Control and Estimation[END_REF]. But the pendubot has a continuum of equilibrium positions. We cannot affirm that our intuitive strategy can be applied for this continuum of equilibrium positions. Currently we have successfully used the same strategy for the two following unstable equilibrium states: ϕ e ≡ 0, 2π, γ e ≡ π, -π, [START_REF]Controllability and stability of systems with limited ressources[END_REF] ϕ e ≡ π, -π, γ e ≡ 0, 2π.

If the goal of our control is equilibrium, ϕ e = 0, γ e = π, then out of area [START_REF] Spong | The pendubot: A mechatronic system for control reaserch and education[END_REF] we try to keep the angle γ close to π. If the goal of our control is equilibrium, ϕ e = π, γ e = π, then out of area [START_REF] Spong | The pendubot: A mechatronic system for control reaserch and education[END_REF] we try to bring the angle γ to 0.

However, here we have described with details only the most difficult case with erection of the both links. Note, system (2), (3) linearized near unstable equilibrium (5) has two unstable modes, but the same system linearized near unstable equilibriums [START_REF]Controllability and stability of systems with limited ressources[END_REF] and [START_REF] Boltyansky | Mathematical methods of optimal control[END_REF] has only one unstable mode.

Conclusion

The pendulum systems have become an exciting topic in the theory of control for mechanical multibody systems. The object of this paper is a double-link pendulum. This pendulum belongs to the family of the double-link pendulums, so-called pendubot. A theoretical and numerical study is done with simulation of its swing up and stabilization in the unstable equilibrium state with two erected links. The strategy is founded on the nonlinear control law. This control is based on the combining of the energy and intuitive approaches. The number of parameters, which are needed to find by simulation is small. Furthermore all of them have a physical sense. Under the designed feedback control, the pendubot performs a number of vibrations from side to side with increasing amplitude as a one-link pendulum. At every cycle we slightly increase the energy of the system. The tested algorithms can be used during on-line control process, if computer in the feedback control loop is fast enough.

We have successfully developed and tested two energy boosting algorithms and several algorithms to straighten the pendulum.

The basin of attraction is a natural criterion to define the switching time between the swing up process and the stabilization of the pendulum in the equilibrium state. The larger the basin of attraction, the more robust the control law and the shorter the duration of the erection process. Thus, it is important to have a basin of attraction as large as possible. The basins of attraction for the nonlinear model and for the linear model are close. We think that our study is of a theoretical interest and is also interesting for the education. The simulation tests demonstrate that the perspective of our swing up control and the stabilization of an experimental two-link pendulum is realistic.
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 1 Fig. 1: Scheme of the double-link pendulum.
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 22 Fig. 2: The boundaries of the controllability domain Q ′ (dashed line) and of the basin of attraction B ′ (solid line) with β = 0.025.
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 3 Fig.3: Swing up with control (22),[START_REF] Beznos | A pendulum controlled by a flywheel[END_REF] and stabilization in state[START_REF] Lewis | Applied Optimal Control and Estimation[END_REF] with control[START_REF] Bortoff | Pseudolinearisation of the acrobot using spline functions[END_REF], ϕ → 0, α → 0, Γ → 0.
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 4 Fig. 4: Swing up with control (22), (27) and stabilization in state (5) with control (18), T + Π → b 1 + b 2 .
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 5 Fig. 5: Snapshots of the swing-up maneuver during the swing up and the stabilization of the double pendulum.
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 6 Fig.6: Swing up with control (32),[START_REF] Beznos | A pendulum controlled by a flywheel[END_REF] and stabilization in state (5), ϕ → 0 with control[START_REF] Bortoff | Pseudolinearisation of the acrobot using spline functions[END_REF], α → 0, Γ → 0.

Fig. 7 :

 7 Fig.7: α(0) = π/3, Swing up with control (32),[START_REF] Beznos | A pendulum controlled by a flywheel[END_REF] and stabilization in state[START_REF] Lewis | Applied Optimal Control and Estimation[END_REF] with control[START_REF] Bortoff | Pseudolinearisation of the acrobot using spline functions[END_REF], ϕ → 0, α → 0, Γ → 0.
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