
HAL Id: hal-00540841
https://hal.science/hal-00540841

Submitted on 28 Mar 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

Decentralized publish-subscribe system to prevent
coordinated attacks via alert correlation

Joaquin Garcia Alfaro, Fabien Autrel, Joan Borrell, Sergio Castillo, Frédéric
Cuppens, Guillermo Navarro

To cite this version:
Joaquin Garcia Alfaro, Fabien Autrel, Joan Borrell, Sergio Castillo, Frédéric Cuppens, et al.. Decen-
tralized publish-subscribe system to prevent coordinated attacks via alert correlation. ICICS 2004: 6th
International Conference on Informa- tion and Communications Security, Oct 2004, Malaga, Spain.
pp.223 - 235, �10.1007/978-3-540-30191-2_18�. �hal-00540841�

https://hal.science/hal-00540841
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://hal.archives-ouvertes.fr

Decentralized Publish-Subscribe System

to Prevent Coordinated Attacks via Alert Correlation

Joaquin Garcia1, Fabien Autrel2, Joan Borrell1, Sergio Castillo1,

Frederic Cuppens3, and Guillermo Navarro1

1 Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain

{jgarcia,jborrell,scastillo,gnavarro}@ccd.uab.es
2 ONERA-CERT, 2 Av. E. Belin, 31055 Toulouse, France

fabien.autrel@enst-bretagne.fr
3 GET/ENST-Bretagne, 35576 Cesson Sévigné, France

frederic.cuppens@enst-bretagne.fr

Abstract. We present in this paper a decentralized architecture to correlate alerts

between cooperative nodes in a secure multicast infrastructure. The purpose of

this architecture is to detect and prevent the use of network resources to per-

form coordinated attacks against third party networks. By means of a cooperative

scheme based on message passing, the different nodes of this system will collab-

orate to detect its participation on a coordinated attack and will react to avoid it.

An overview of the implementation of this architecture for GNU/Linux systems

will demonstrate the practicability of the system.

Keywords: Intrusion Detection, Publish-Subscribe Systems, Alert Correlation

1 Introduction

The use of distributed and coordinated techniques is getting more common among the

attacker community, since it opens the possibility to perform more complex tasks, such

as coordinated port scans, distributed denial of service, etc. These techniques are also

useful to make their detection more difficult and, normally, these attacks will not be

detected by exclusively considering information from isolated sources of the network.

Different events and specific information must be gathered from all of these sources and

combined in order to identify the attack. Information such as suspicious connections,

initiation of processes, addition of new files, sudden shifts in network traffic, etc., have

to be considered.

In this paper, we present an intrusion detection system which provides a decentral-

ized solution to prevent the use of network resources to perform coordinated attacks

against third party networks. Our system includes a set of cooperative entities (preven-

tion cells) which are lodged inside resources of the network. These entities collaborate

to detect when the resources where they are lodged are becoming an active part of

a coordinated attack. Prevention cells must be able to prevent the use of their asso-

ciated resources (where they are lodged in) to finally avoid their participation on the

detected attack. Thus, the main difference between our proposal and other related tools

is that each node that lodges a prevention cell is expected to be the source of one of the

1

different steps of a coordinated attack, not its destination. Traditional technology that

prevents against these attacks remains rooted in centralized or hierarchical techniques,

presenting an easily-targeted single point of failure.

The rest of this paper is organized as follows. Section 2 presents some related work

dedicated to the detection of distributed attacks, whose contributions and designs have

been used as the starting point of this work. Our system is presented in Section 3 and the

use of our system inside a real scenario is described in Section 4. A first implementation

of the system is presented in Section 5.

2 Related Work

Currently, there are a great number of publications related to the design of detection sys-

tems that detect and prevent coordinated and distributed attacks. The major part of these

works are conceived like centralized or hierarchical systems that usually present a set

of problems associated with the saturation of the service offered by centralized or mas-

ter domain analyzers. Centralized systems, such as DIDS [16], process their data in a

central node despite their distributed data collection. Thus, these schemes are straight-

forward as they simply place the data at a central node and perform the computation

there. On the other hand, hierarchical approaches, such as Emerald [14], have a layered

structure where data is locally preprocessed and filtered. Although they mitigate some

weaknesses present at centralized schemes, they still carry out bottleneck, scalability

and fault tolerance vulnerabilities at the root level.

Alternative approaches, such as Sparta [11], propose the use of mobile agent tech-

nology to gather the pieces of evidence of an attack. The idea of distributing the de-

tection process to different mobile agents, has some advantages regarding centralized

and hierarchical approaches. For example, these schemes keep the whole system load

relatively low and the consumption of the needed resources takes place only where the

agents are running. Unfortunately, these systems present very simplistic designs and

suffer from several limitations. In most of these approaches the use of agent technology

and mobility is unnecessary and counterproductive.

Message passing designs, such as Quicksand [10], try to eliminate the need for ded-

icated elements. Instead of having a central monitoring station to which all data has to

be forwarded, there are independent uniform working entities at each host performing

similar basic operations. In order to be able to detect coordinated and distributed at-

tacks, the different entities have to collaborate on the intrusion detection activities and

cooperate to perform a decentralized correlation algorithm. These architectures have

the advantage that no single point of failure or bottlenecks are inherent in their design.

3 Prevention Cells System

In this section we present the design of a system whose main purpose is to detect and

prevent coordinated attacks. By means of a set of cooperative entities which will be

lodged inside the network, the system will avoid the use of network resources to perform

coordinated attacks against third party networks. The aim of this system is not to detect

incoming attacks against these entities, but to detect when these nodes are the source of

one of the different steps of a coordinated attack to avoid it.

2

The design of our system has two main goals. The first goal is to obtain a modular

architecture composed by a set of cooperative entities. These entities will collaborate

to detect when the resources where they are lodged are becoming an active part of a

coordinated attack against the network where they are located or against a third party

network. Once an attack has been detected, they must be able to prevent the use of

their associated resources to finally avoid their participation on the detected attack. The

second goal is to achieve a complete independent relationship between the different

components which form these cooperative entities. In this case, we will be able to dis-

tribute these components according to the needs of each resource we want to disarm.

The remainder of this section is organized as follows. First, we present the essential

features of the communication architecture of this system and the model used to design

it. Then, we show the elements which make up the different nodes of this architecture.

Finally, we introduce the mechanisms used by the cooperative nodes to perform the

correlation of alerts.

3.1 Multicast Communication Architecture

To achieve the first design goal listed above, a multicast architecture is proposed for the

communication between the different cooperative entities. Through this architecture,

each one of these entities, called prevention cell, will exchange a set of cooperative

messages to collaborate in the decentralized detection process. To do that, we propose

the use of a publish-subscribe model where each prevention cell will be able to produce

and consume messages on the shared multicast bus.

According to [8], in a publish-subscribe system the different components will pro-

duce messages and announce (or publish) them on a shared bus. Other components may

listen to (or be subscribed to) these messages. Once listened, they will be consumed by

the components. Components can be objects, processes, servers, applications, tools or

other kinds of system runtime entities. The messages, or events, exchanged between

these components may be simple names or complex structures. The key feature of this

model is that components do not know the name, or even the existence, of listeners

that receive events that they announce. Thus, some immediate advantages in using this

model for our proposal are the relatively easiness to add or remove components, as

much as the introduction of new kind of messages, the registration of new listeners, and

the modification of the set of announcers for a given message.

3.2 Prevention Cells

Taking into account the advantages of the publish-subscribe model discussed above,

it is also useful to achieve the independence between components that we have an-

nounced as the second goal. Thus, we also propose the use of the publish-subscribe

model for the relationship between the internal elements of each prevention cell. All

these internal elements have been proposed according to the basic components of any

IDS, that is, sensors, analyzers, managers and response units. The messages exchanged

between these components will be three: events (between sensors and analyzers), alerts

(between analyzers and managers), and actions (between managers and response units).

3

host

data source

analyzers

sensors

s_1 s_2 s_n

network

data source

host

response units

ru_1 ru_2 ru_n

network

events

ea_1 ea_2 ea_n

local alert

database

attack

scenarios

counter measure managers

cmm_1 cmm_2 cmm_n

display and

analysis

web interface

control and

configuration

shell interface

local

alerts

assesment

alerts

cooperation

manager

database

manager

correlated

alerts

cooperative

alerts

all

alerts
external

alerts
local and

external alerts

correlation

manager

correlated and

assesment alerts

actions

Fig. 1. Basic scheme of a prevention cell

These components, and the different messages exchanged between them, are shown in

Figure 1.

– Sensors, which look for suspicious data over the host or over the network where

they are installed and publish this information to a specific event scope. We propose

the use of network and host based sensors.

– Analyzers, which listen to the events published by sensors, to perform a low level

correlation process. Thus, these components will consume events and produce local

alerts inside the prevention cell. We propose the use of misuse and anomaly based

analyzers.

– Correlation manager, which listens for local and external alerts on their specific

scopes and uses the data consumed against its associated coordinated attack sce-

narios. This component will perform a higher correlation process and will be in-

volved in the relative part of the decentralized correlation process associated to the

prevention cell where it is installed. It is also responsible for publishing correlated

and assessment alerts.

– Database manager, which listens to all of the alert scopes to consume all the alerts

produced inside and outside the prevention cell. Then, it will store all these alerts

on the local database where it is installed.

– Cooperation manager, which listens for cooperative alerts published outside the

prevention cell where it is installed and publishes external alerts inside the preven-

tion cell. It also listens correlated alerts and publishes cooperative alerts outside the

prevention cell.

4

– Counter measure managers, which listen for assessment alerts published by the

correlation manager inside the prevention cell. These managers will be responsible

for consuming the assessment alerts and transforming them to the correct actions

that will be sent to the associated response units.

– Response Units, which take actions produced by their associated counter measure

manager to initiate them. Each action is generated to prevent one of the different

steps of the detected coordinated attack, and will be performed against the node

where the prevention cell is installed. Like sensors, we also propose the use of

network and host based response units.

3.3 Correlation of Alerts

The notion of alert correlation needs to be precisely defined since it has been presented

in several articles but the definition differs from one article to another. Two main defi-

nitions have been given. The first one presents alert correlation as the process of aggre-

gating attack detection alerts related to the same event. Alerts are aggregated in clusters

of alerts [9, 1, 3] through the use of a similarity operator or function. This approach is

called alert aggregation and fusion in [3]. The second definition presents attack detec-

tion alert correlation as the process of finding a set of alerts, organized into an attack

scenario, into the stream of attack detection alerts generated by some IDS [13, 5, 4, 2].

In order to detect attack scenarios, each prevention cell includes a correlation man-

ager that performs alert correlation by using the second definition introduced above.

The chosen formalism is exposed in the following subsections.

Attack modelization. The attack process is modeled as a planning activity [4]. The

intruder can use a set of actions. His goal is to find a subset of actions that can allow

him to change the state of a system so that the attack objectives he has planned have

been reached. In this final state the system security policy is infringed. The chosen

approach and formalism is the same as [4]. Actions are represented by their pre and post

conditions. Pre conditions correspond to the conditions the system state must satisfy to

perform the action. Post conditions correspond to the effects on the system state of the

action execution.

Scenario modelization. As exposed in [4] we do not need to explicit the scenario, we

just have to model the actions composing the scenario. Then, correlation rules are gener-

ated from these models and used by the correlation engine to detect the scenario. Those

correlation rules represent all the possible correlation between the actions available to

the intruder.

Let us consider the scenario representation of a Mitnick attack. This attack tries

to exploit the trust relationship between two computers to achieve an illegal remote

access using the coordination of three techniques. First, a SYN flooding DoS attack to

kept the trusted system from being able to transmit. Second, a TCP sequence prediction

against the target system to obtain its following TCP sequence numbers. And third, an

unauthorized remote login by spoofing the IP address of the trusted system (while it is

in a mute state) and using the sequence number that the target system is expecting.

5

Action syn-flood(A, H1, ns)
Pre: remote-access(A, H1),

send-multiple-tcp-syns(A, H1, ns)
Post: deny-of -service(H1)

Action tcp-sequence-prediction(A, H2, n)
Pre: remote-access(A, H2),

obtain(A, following-tcp-sequence(H2 , n))
Post: knows(A, following-tcp-sequence(H2 , n))

Action spoofed-remote-login(A, U, H1, H2, n)
Pre: remote-access(A, H2),

knows(A, following-tcp-sequence(H2 , n)),
deny-of -service(H1),
spoof -address(A, H1, n, remote-login-connection(U, H2))

Post: remote-login(A, U, H2)

Objective illegal-remote-login(A, U, H2)
State: remote-login(A, U, H2)

not(authorized(remote-login(A, U, H2)))

Fig. 2. Modelling the Mitnick scenario

Action undo-deny-of -service(A, H1, ns)
Pre: deny-of -service(H1),

send-multiple-tcp-resets(A, H1, ns)
Post: not(deny-of -service(H1))

Action kill-remote-login(A, U, H2)
Pre: remote-login(A, U, H2)
Post: not(remote-login(A, U, H2))

Fig. 3. Counter measures for the Mitnick scenario

Figure 2 presents the models for each action that composes the scenario. The ac-

tions are represented using the LAMBDA language [6]. We must also modelize the

attack objective for this scenario. The attack objective is modeled as a condition on the

system state. Attack objective correlation rules are also generated to allow the correla-

tion engine to correlate actions with attack objectives.

Counter measure management. Each prevention cell has its response units respon-

sible for launching actions allowing the termination of ongoing scenarios. In order to

detect when a counter measure must be launched, we use the anti-correlation mecha-

nism defined in [2]. On the modelization point of view, the counter measures are not

different from the models representing the set of actions available for the intruder. Ac-

tually a counter measure is an action C anti-correlated with another action A, i.e one

of the predicates in its post-condition is correlated with the negation of one predicate in

the pre-condition of action A.

Figure 3 presents the models for each action representing the available counter

measures for the Mitnick scenario. The predicate not(deny-of -service(H1)) in the

post condition of action undo-deny-of -service(A, H1, ns) is anti-correlated with the

6

predicate deny-of -service(H1). Also, the predicate not(remote-login(A, U, H2)) of

action kill-remote-login(A, U, H2) is anti-correlated with the predicate remote-lo-

gin(A, U, H2) of attack objective illegal-remote-login(A, U, H2).

Detecting the scenario. The attack detection alert correlation mechanism allows to

find a set of actions belonging to the same scenario and leading to an attack objective.

However, we need a mechanism to be able to decide when to execute a counter measure

once the scenario has been partially observed and that the next expected action can be

blocked through an anti-correlated action.

This mechanism is provided by the correlation engine through the hypothesis gen-

eration mechanism [2]. Each time a new alert is received, the correlation engine finds

a set of action models that can be correlated in order to form a scenario leading to an

attack objective. This set of hypothesis is then instantiated into a set of virtual alerts.

The correlation engine then looks for actions models that can be anticorrelated with

the virtual actions. This set of anti-correlated actions forms the set of counter measures

available for the hypothesis represented by the partially observed scenario.

A counter measure C for an action A must be executed before the action A occurs.

If the correlation engine receives an alert for which a correlated virtual alert exists, it

will notify the response units to execute the associated counter measure. For exam-

ple, if the correlation engine receives an alert corresponding to the execution of syn-

flood(A, H1, ns), it will generate a virtual alert corresponding to spoofed-remote-

login(A, U, H1, H2, n). Since undo-deny-of -service(A, H1, ns) is anti-correlated

with spoofed-remote-login(A, U, H1, H2, n) and that an occurrence of action syn-

flood(A, H1, ns) has been observed, the correlation engine notify the response units

to execute undo-deny-of -service(A, H1, ns) with the parameters extracted from the

syn-flood(A, H1, ns) alert.

4 Sample Prevention of a Coordinated Attack

In this section we will discuss the prevention of the Mitnick attack scenario introduced

above by using the prevention cells system presented in this paper. Although the Mitnick

attack is several years old, it is an excellent example to show how the components of

our architecture handle a possible coordinated attack.

The correlation and anti-correlation graph for this coordinated attack is shown in

Figure 4. In the first step of this model, A (the agent that performs the whole attack)

floods a given host H1. In the second step, A sends a TCP sequence prediction attack

against host H2 to obtain its following TCP sequence numbers. Then, by using these

TCP sequence numbers, A starts a spoofed remote login session to the host H2 as it

would come from host H1. Since H1 is in a mute state, H2 will not receive the RST

packet to close this connection. If this third step has success, A will establish an illegal

remote login session as user root to system H2.

The model of Figure 4 also proposes two counter measures to prevent the coor-

dinated attack. First, as soon as the host which is performing the SYN flooding DoS

against H1 would detect it, it will neutralize the attack by sending the same number of

RST TCP packets to H1 as SYN TCP packets it has send. And second, as soon as the

7

attack syn-flood(A,H
1
,n

s
)

pre : remote-access(A,H
1
)

send-multiple-tcp-syns(A,H
1
,n

s
)

post: deny-of-service(H
1
)

attack tcp-sequence-prediction(A,H
2
,n)

pre : remote-access(A,H
2
)

obtain(A,following-tcp-sequence(H
2
,n))

post: knows(A,following-tcp-sequence(H
2
,n))

attack spoofed-remote-login(A,U,H
1,

H
2
,n)

pre : remote-access(A,H
2
)

knows(A,following-tcp-sequence(H
2
,n))

deny-of-service(H
1
)

spoof-address(A,H
1
,n,remote-login-connection(U,H

2
))

post: remote-login(A,U,H
2
)

objective ilegal-remote-login(A,U,H
2
)

state : remote-login(A,U,
,
H

2
)

not(authorized(remote-login(A,U,H
2
)))

counter-measure kill-remote-login(A,U,H
2
)

pre : remote-login(A,U,H
2
)

post: not(remote-login(A,U,H
2
))

counter-measure undo-deny-of-service(A,H
1
,n

s
)

pre : deny-of-service(H
1
)

send-multiple-tcp-resets(A,H
1
,n

s
)

post: not(deny-of-service(H
1
))

Correlation

Anti-correlation

Fig. 4. Correlation and anti-correlation graph for the Mitnick attack

host where the third action (the spoofed remote login against H2) is detected, it will kill

the remote login process to avoid the illegal user access.

To show how the components of our architecture would handle the coordinated at-

tack model described in Figure 4, we consider the sequence of alerts described in Figure

5. We assume that an attacker targeting the network victim.org will use resources

from another corporate network to perform the coordinated attack. This corporate net-

work is protected with our prevention cells system. The different parts of the attack are

detected by three protection cells, named pcell1, pcell2, and pcell3 (see Figure 5). For

each prevention cell we show the most relevant IDMEF compliant alerts [7] published

and consumed by components of the cell. We have simplified quite a lot the information

and format of each alert for clarity reasons. We also assume the correlation and anti-

correlation graph for the Mitnick attack is not stored in the attack scenario database of

the other prevention cells for clarity reasons. Each alert is denoted with ordered identi-

fiers ti, which correspond to the DetectionTime field of the IDMEF alert format.

The first indication of the attack is detected by sensors from pcell1. The sensors

detect the SYN flooding DoS, and generate the local alert t1. This alert is received

by the correlation engine of the cell, which in turn generates the assessment alert t2
informing that the DoS needs to be neutralized. The assessment alert is observed by

the counter measure manager of the prevention cell, which will signal a response unit

to block the DoS. Then, by means of the cooperative manager, the prevention cell will

send the cooperation alert t3 to the other prevention cells of the system. This alert is

received by the other prevention cells as an external alert notifying that a SYN flooding

DoS attack against n1.victim.org has been detected and prevented in pcell1.

At this point, the prevention cell pcell1 has prevented the DoS attack against the

host n1.victim.org, which is the first step of the illegal remote login scenario.

8

Local alert(t
1
):

 classification=syn-flood

 source=pcell1

 destination=n1.victim.org

additionaldata=n
s

Assessment alert(t
2
):

-send-tcp-resets(n1.victim.org,n
s
)

Cooperative alert(t
3
):

 classification=syn-flood

 sourcer=pcell1

 destination=n1.victim.org

External alert(t
3
):

 classification=syn-flood

 source=pcell1

 destination=n1.victim.org

Local alert(t
4
):

 classification=TCP-sequence-prediction

 source=pcell2

 destination=n2.victim.org

Cooperative alert(t
5
):

 classification=TCP-sequence-prediction

 source=pcell2

 destination=n2.victim.org

External alert(t
3
):

 classification=syn-flood

 source=pcell1

 destination=n1.victim.org

External alert(t
5
):

 classification=TCP-sequence-prediction

source=pcell2

 destination=n2.victim.org

Local alert(t
6
):

classification=illegal-rlogin

 user=root

 source=n1.victim.org

 destination=n2.victim.org

Local alert(t
7
):

classification=ip-spoofing

 source=n1.victim.org

 destination=n2.victim.org

Assessment alert(t
8
):

 -kill-process(rlogin,root,

n1.victim.org,

n2.victim.org)

Cooperative alert(t
9
):

 classification=illegal-user-access

 source=pcell3

 destination=n2.victim.org

(b)

(c)

(a)

pcell2

pcell1

pcell3

Fig. 5. Sequence of alerts raised inside each prevention cell

Nevertheless, we cannot ensure that the whole attack is frustrated. It is reasonable to

assume that the attacker will try to use another resource not covered by the prevention

cells system to commit the final attack. Thus, it is important to try to detect all the steps

of the attack and to be able to correlate them in order to identify the whole attack.

The next step of the attack, a TCP sequence prediction attack against n2.vic-

tim.org, is detected by sensors of pcell2 that publish it as the local alert t4. The

correlation manager of pcell2 consumes the alert and produces a corresponding coop-

erative alert t5. This alert is sent to the other prevention cells, making them aware that

the TCP sequence prediction attack has been detected in pcell2.

Finally, the coordinated attack detection will be completed when the attacker tries

the spoofed remote login on the target system (n2.victim.org) from the host that

lodges the prevention cell pcell3. The sensors from pcell3 detect a spoofed rlogin con-

nection against the host n2.victim.org producing local alerts t6 and t7. These

alerts, together with the external alerts t3 and t5, are correlated by the correlation en-

gine of pcell3, resulting in the detection of the coordinated illegal user access. This

detection step will produce the assessment alert t8 to kill the remote login process exe-

cuted. Furthermore, it also involves the production of the cooperative alert t9 to notify

the other prevention cells that the illegal remote login has been detected from nodes

pcell1, pcell2, and pcell3, against the target n2.victim.org and its trusted system

n1.victim.org.

9

5 Current Development

This section presents a brief overview of a platform which implements our publish-

subscribe system and that deploys all the basic components proposed in this paper.

This platform is currently being developed for GNU/Linux systems in C and C++. The

combination of free high-quality documentation, development and network solutions

provided by GNU/Linux operating systems eased the analysis of requirements and the

development of this platform.

The main difference between our proposed system and other related tools, is that the

node that lodges each prevention cell is expected to be the source of one of the different

steps of a coordinated attack, not its destination. This fact implies some considerations

in the analysis of requirements for both sensors and response units. First, the number

of sensors and response units must be enough representative to detect and react against

the different steps of the attack scenarios the system knows. Second, both analyzers and

counter measure managers need a fast communication with sensors and response units

to be able to gather or to provide events and actions.

Sensors and response units. In order to fulfill the requirements showed above, we

started the development of this platform working on the design and implementation

of a set of sensors and response units embedded in the Linux 2.4.x series as kernel

modules. Even though, third party sensors and third party response units could easily

be integrated in our platform.

The use of sensors and response units embedded as kernel modules involves a set

of advantages. First, the privileged location of the modules within the operating system

allows the platform to have access to all the necessary information in an efficient and

trustworthy way. Second, the load produced by the exchange of information from kernel

space to user space is reduced, transferring information only at the moment that an event

is produced. As a result of this previous point, the throughput of analyzed patterns (e.g.

network datagrams or executed commands) is maximized.

The implementation of the proposed network sensors and response units is based

on the netfilter subsystem, a framework for packet manipulation that enables packet

filtering, network address translation and other packet mangling on Linux 2.4.x and

upper series. On the other hand, the implementation of the proposed host sensors and

host response units is based on the interception of some system calls. In this manner,

is possible to obtain useful information in the search process of illicit or suspicious

activities and provide the needed mechanisms to prevent the associated action related

with the step of the attack to avoid.

Communication of events and actions. The complexity of the analyzers and counter

measure managers, as well as the limitation that supposes to work in a kernel scope,

entails to design them like a daemon processes in user space. Thus, a specific com-

munication mechanisms between kernel space and user space is needed. Among the di-

verse alternatives for performing this communication, we have chosen the use of netlink

sockets to bind the proposed sensors and response units with the analyzers and counter

measure managers. Netlink sockets is a Linux specific mechanism that provides con-

nectionless and asynchronous bidirectional communication links. Although the use of

netlink sockets is focused for implementing protocols of IP services, this mechanism

10

can also be used as a standard interface to perform a communication link between the

kernel modules and user space processes. Netlink sockets allows us to use the well

known primitives from the socket treatment, providing us transparency with the buffer-

ing mechanisms.

Analyzers and managers. The implementation of analyzers and managers is based on

a plug-in mechanism to facilitate the development and the maintenance of the different

features that these components will offer. Thus, through the use of netlink sockets, both

the event watcher analyzer and the counter measure manager will consume or produce

information. But, to generate this information, or to manage it, different plug-ins will

be enabled or disabled. Some of these plug-ins will be launched in a multi-threading

fashion.

The analyzer in charge for obtaining the events produced by the sensors, for exam-

ple, will launch the different plug-ins to handle the events received from the sensors

using this multi-threading mechanism. This way, it is possible to parallelize the gather-

ing of the different events produced by the set of sensors. Other plug-ins, such as the

one responsible for sending actions to the response units, the one responsible for man-

aging external alerts and transform them to internal alerts, etc. will not need the use of

this multi-threading mechanism to perform its work.

One of the plug-ins which will be present on all the analyzers and managers is the

responsible for generating, parsing and communicating the IDMEF compliant alerts

[7]. This plug-in is based on the library libidmef, an ANSI C library compliant with

the IDMEF format and uses Libxml to build and parse IDMEF messages. The use of

libidmef, besides to provide a free and easy library to develop our components, also

makes it easy for third party managers and analyzers to communicate with the different

components of our system.

Communication of alerts. The communication between the analyzers and managers,

as much inside of each prevention cell as between the other prevention cells of our ar-

chitecture, will be performed by using the Elvin publish-subscribe system [15]. Elvin is

a network communication product that provides a simple, flexible and secure commu-

nication infrastructure. To be able to use the infrastructure offered by the Elvin publish-

subscribe system, both the analyzers and the managers of our implementation have been

developed by using libelvin and e4xx, two portable C and C++ libraries for the Elvin

client protocol. On the other hand, each host with a prevention cell lodged inside will

run an Elvin server to route all the alerts published inside each prevention cell.

To share the cooperative alerts produced by the different prevention cells in a secure

multicast fashion, we use the federation and reliable local-area multicast protocol pro-

vided by Elvin, and other interesting features offered by this publish-subscribe system,

such as fail-over and cryptographic settings. By using SSL at the transport layer, for

example, we guarantee the confidentiality, integrity and authenticity of the cooperative

alerts communicated between each prevention cell.

6 Conclusions and Further Work

We have presented the design of a publish-subscribe system for the detection and pre-

vention of coordinated attacks from network resources. This system uses multicast com-

11

munication between different entities to avoid their participation in a coordinated attack

against third party networks or even the local network. Our approach can be merged into

any existing corporate network becoming a common framework for the prevention of

coordinated attacks from these network environments. We have also outlined in this pa-

per how our system can detect and prevent the Mitnick attack, exploiting the distribution

and coordination of the system components.

We have briefly introduced the implementation of a platform, which is currently

being developed and which implements the major part of the components of the archi-

tecture previously proposed for GNU/Linux systems. Although the detection and re-

action components of this platform (sensors and response units implemented as Linux

modules) are at this moment developed only for Linux 2.4, we plan to upgrade them to

Linux 2.6 in very near future.

As further work, we will study the possibility to incorporate other alert correlation

contributions in our work, such as the formal data model proposed in M2D2 [12] . We

will also make a more in-depth study of the IDMEF format [7] to solve unnecessary

duplicated calculus inside each prevention cell. Finally, we will study and incorporate

current intrusion tolerant mechanisms to make our system more reliable when the host

that lodges a prevention cells is infected.

Acknowledgments

The work of J. Garcia, J. Borrell, S. Castillo and G. Navarro has been partially funded

by the Spanish Government Commission CICYT, through its grant TIC2003-02041,

and the Catalan Government Department DURSI, with its grant 2001SGR-219.

References

1. D. Andersson, M. Fong, and A. Valdes. Heterogeneous sensor correlation: A case study of

live traffic analysis. In 3rd Annual Information Assurance Workshop, United States Military

Academy, West Point, New York, USA, June 2002.

2. S. Benferhat, F. Autrel, and F. Cuppens. Enhanced correlation in an intrusion detection

process. In Mathematical Methods, Models and Architecture for Computer Network Security

(MMM-ACNS 2003), St Petersburg, Russia, September 2003.

3. F. Cuppens. Managing alerts in a multi-intrusion detection environment. In 17th Annual

Computer Security Applications Conference (ACSAC’01), New Orleans, Lousiana, Decem-

ber 2001.

4. F. Cuppens, F. Autrel, A. Miège, and S. Benferhat. Recognizing malicious intention in an in-

trusion detection process. In Second International Conference on Hybrid Intelligent Systems

(HIS’2002), Santiago, Chile, October 2002.

5. F. Cuppens and A. Miège. Alert correlation in a cooperative intrusion detection framework.

In IEEE Symposium on Security and Privacy, Oakland, USA, 2002.

6. F. Cuppens and R. Ortalo. LAMBDA: A language to model a database for detection of

attacks. In Third International Workshop on the Recent Advances in Intrusion Detection

(RAID’2000), Toulouse, France, 2000.

7. D. Curry, H. Debar, and B. Feinstein. Intrusion detection message exchange format data

model and extensible markup language (xml) document type definition. Internet draft, Jan-

uary 2004.

12

8. D. Garlan, S. Khersonsky, and J. S. Kim. Model checking publish-subscribe systems. In

Proceedings of the 10th International SPIN Workshop, Portland, Oregon, USA, May, 2003.

9. K. Julich. Using root cause analysis to handle intrusion detection alarms. ACM journal

name, 2:111–136, October 2002.

10. C. Kruegel. Network Alertness - Towards an adaptive, collaborating Intrusion Detection

System. PhD thesis, Technical University of Vienna, June 2002.

11. C. Kruegel and T. Toth. Flexible, mobile agent based intrusion detection for dynamic net-

works. In European Wireless, Italy, February 2002.

12. B. Morin, L. Mé, H. Debar, and M. Ducassé. M2D2: a formal data model for intrusion alarm

correlation. In Proceedings of the 5th Recent Advances in Intrusion Detection (RAID2002),

Zurich, Switzerland, October 2002.

13. P. Ning, Y. Cui, and D. S. Reeves. Analyzing intensive intrusion alerts via correlation. In Fifth

International Symposium on Recent Advances in Intrusion Detection (RAID2002), pages 74–

94, Zurich, Switzerland, October 2002.

14. P. A. Porras and P. G. Neumann. EMERALD: Event monitoring enabling responses to

anomalous live disturbances. In Proceedings of the 20th National Information Systems Se-

curity Conference, pages 353–365, October 1997.

15. B. Segall and D. Arnold. Elvin has left the building: A publish/subscribe notification service

with quenching. In Proceedings of the third annual technical conference of AUUG 1997,

pages 243–255, Brisbane, September 1997.

16. S. R. Snapp, J. Brentano, G. V. Dias, T. L. Goan, L. T. Heberlein, C. Ho, K. N. Levitt,

B. Mukherjee, S. E. Smaha, T. Grance, D. M. Teal, and D. Mansur. DIDS (distributed

intrusion detection system) - motivation, architecture and an early prototype. In Proceedings

14th National Security Conference, pages 167–176, October, 1991.

13

	1 Introduction
	2 Related Work
	3 Prevention Cells System
	3.1 Multicast Communication Architecture
	3.2 Prevention Cells
	3.3 Correlation of Alerts

	4 Sample Prevention of a Coordinated Attack
	5 Current Development
	6 Conclusions and Further Work
	References

