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Abstract: In this paper, we consider the data detection problem involved in distributed esti-
mation over unknown non-orthogonal fading channel. In general, when studying the distributed
estimation problem, the impairments induced by communication channels are restricted to
additive noise, quantization or packet loss. In addition, communication protocols are often of
TDMA or FDMA type. Herein, by modulating the local data with doubly spread waveforms,
we show that although each node receives a mixture of data transmitted by its neighbors, these
data exhibit a trilinear structure, which can be used for separating the neighbors contributions.
We state identifiability conditions and study the embedding of the data detection steps in a
distributed estimation problem.
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PARAFAC decomposition.

1. INTRODUCTION

A wireless sensor network (WSN) is constituted with nodes
spatially distributed for collecting information of interest.
The collected information can be aggregated at a fusion
center or shared between neighbors using wireless trans-
missions. Each sensor in the network makes an observa-
tion of the quantity of interest, generates a local signal
(either analog or digital), and then sends it to the fusion
center or to other nodes in its neighborhood, where the
received signals are combined to produce a final estimate
of the observed quantity. Analog or digital transmission
methods can be used. For the analog approach, the local
observation is transmitted via analog modulation with an
adequate amplification. Such a scheme is named Amplify-
and-forward, Cui et al. (2007). In digital transmission,
observations are quantized, digitized into bits, possibly
compressed and/or encoded, and transmitted via digital
modulation.

An important application of WSNs concerns distributed
estimation of an unknown data using discrete-time sam-
ples collected across sensors. Such an estimation can be
performed at a fusion center. However high transmission
power, proportional to the covered geographic area, is
required at each sensor to transmit its local information to
the fusion center. In addition, such a scheme is not robust
in case of fusion center failure, Schizas et al. (2008). On
the contrary, WSNs whereby each sensor communicates
only with its neighbors do not encounter these drawbacks
and the estimation task can be performed in a totally
distributed way.

Distributed estimation using WSNs is based on successive
refinements of local estimates maintained at individual
sensors. Each iteration of the algorithm comprises a com-
munication step where the sensors interchange information

with their neighbors, and an update step where each sensor
uses this information to refine its local estimate, Schizas
et al. (2008), generally using the notion of average consen-
sus.

Consensus averaging schemes are challenged by the pres-
ence of non ideal sensor links. Much of the literature de-
voted to non ideal links has focused on finite-rate transmis-
sions of quantized sensor observations and additive noise.
In addition, in most of works, the used network is the one
where each sensor processes its individual measurements
and transmits the result over an orthogonal multiple-access
channel (MAC) to its neighbors. In such channels, colli-
sions and interferences between nodes are avoided so that
the main impairment of the communication channel con-
cerns additive and quantization noise. Orthogonal MAC
can be obtained using TDMA (Time Division Multiple
Access), FDMA (Frequency Division Multiple Access) or
CDMA (Code Division Multiple Access) protocols. In the
first one, the time is divided into slots allocated to each
node. Such a scheme induces a latency that can be crucial
for some tasks (in control applications for example). In
the second one, the bandwidth is divided into sub-band
allocated to each user. The bandwidth being limited, scal-
ability is a crucial question in this case. For the third
scheme, each node is assigned a signaling waveform (or
code) generally assumed to be orthogonal, equi-correlated
and perfectly correlated with a perfect synchronization in
sensor transmissions, Wimalajeewa and Jayaweera (2007).
In the literature, other MAC protocols have been pro-
posed; that is the case of Type based MAC, Mergen and
Tong (2006), and likelihood-based MAC, Marano et al.
(2007), both devoted to fusion center based WSNs.

In fact, in addition to noise, wireless transmissions are also
subject to fading. In most works on distributed estimation,
fading is in general ignored or assumed to be known. In a



recent work, a distributed estimation scheme including a
channel estimation using pilot signals has been suggested,
Senol and Tepedelenlioglu (2008). The derivations were
made for parallel channels in a fusion center based WSN.
It is necessary to point out that the number of parallel
channels is limited by the bandwidth and the number of
nodes in the network.

In this paper, we consider an adhoc WSN with transmis-
sions via non-parallel channels subject to noise and fading.
By introducing a particular waveform design, we show
that the data samples at each sensor node constitute a
three dimension array, or equivalently a third-order tensor.
Therefore, at each sensor node, after data reception, the
first step is to separate the contributions of its neighbors
by means of a tensor decomposition.

Notations: Vectors are written as boldface lower-case let-
ters (a,b,· · · ), matrices as boldface capitals (A,B,· · · ) and
tensors as blackboard letters (A, B,· · · ). IN denotes the
N ×N identity matrix. AT stands for the transpose of the
matrix A. diag(.) is the operator that forms a diagonal
matrix from its vector argument. The symbol ◦ denotes the
vector outer product. The Kronecker product is denoted by
⊗, whereas ¯ denotes the Khatri-Rao product defined for
two arbitrary matrices A and B, having the same number
of columns N , as A ¯ B = ( A.1 ⊗B.1 · · · A.N ⊗B.N )
where A.i (resp. Ai.) stands for the ith column (resp. row)
of A. For arbitrary matrices A ∈ <I×K and B ∈ <J×K

we have the following property:

A¯B =




Bdiag(A1.)
...

Bdiag(AI.)


 (1)

2. ESTIMATION PROBLEM

Consider the sensing model
x(k) = θθθ + n(k), k = 1, · · · , K (2)

where θθθ ∈ <N is a real-valued unknown vector of parame-
ters, n(k) denotes the observation noise vector assumed to
be jointly independent, and x(k) is the measurement at the
kth sensor. Without any assumption on the observation
noise, we make use of the least squares estimator that
corresponds to the mean of the observations. It is now
well known that such an estimator can be carried out in a
distributed way using average consensus.

Let G = {K, E} be an undirected connected graph rep-
resenting the communication graph between the sensors.
K = {1, · · · ,K} and E denote respectively the node
set and the edge set, where each edge {i, j} ∈ E is an
unordered pair of distinct nodes. Let θ̂θθk(0) be a vector
assigned to node k at time t = 0, i.e. θ̂θθk(0) = x(k). The
distributed average consensus problem consists in comput-

ing the average (1/K)
K∑

k=1

θ̂θθk(0) at every node, via local

communication and computation on the graph. So, node k
carries out its update, at each step, based on its local state
and communication with its neighbors Ki = {j|{i, j} ∈ E}.
There are several simple methods for distributed average
consensus. For example, each node can store a table of

all initial node values known at that time. At each step
each pair of neighbors exchange tables of initial values and
update their tables. In this flooding algorithm, all nodes
know all initial values in a number of steps equal to the
diameter of the graph, at which point each can compute
the average, Xiao et al. (2007). In widely used average
consensus algorithms, each node updates itself by adding
a weighted sum of differences between neighboring node
values and its own. In matrix form, we get:

θ̂θθk(t + 1) = θ̂θθk(t) +
∑

j∈Ki

wk,j

(
θ̂θθj(t)− θ̂θθk(t)

)
, (3)

where wk,j is a weight associated with the edge {k, j} and
Ki is the subset of K corresponding to the nodes in the
neighborhood of the ith node. Asymptotic convergence of
the average consensus algorithm is achieved by choosing
the weights according to uniform, Laplacian, maximum
degree, or Metropolis schemes.

The consensus algorithm (3) is efficient for ideal links.
For noisy links, some authors proposed the use of a
time-varying step-size for reducing noise accumulation,
Mosquera et al. (2008); Huang and Manton (2009). For
unknown and non parallel fading channels, it is neces-
sary to first derive a data detection process between two
consecutive consensus steps. Recall that in such a case,
a given node receives a mixture of signals sent by its
neighbors. Despite the properties of the data detector, its
performance is impacted by the additive noise. Therefore,
average consensus algorithms with data detection steps
should be aware of data detection errors induced by the
additive noise.

In additive noise, instead of using average consensus based
methods, one can resort to data aggregation methods
where noise accumulation is avoided. After a finite number
of communication the overall information is available at
each node or at a given number of nodes, heads of clusters
for example. For large networks, such a scheme can induce
an important latency except if efficient multiple access
schemes are used. In the sequel, we derive the data detec-
tion approach for the suggested multiple access scheme.

3. DATA DETECTION

Let us consider K nodes transmitting their data, at the
same time and within the same frequency band, towards
their neighbors through quasi-static flat fading channels.
Each node makes use of a single antenna. The kth sensor
node has to transmit a sequence {sj,k}j=1,··· ,J after mod-
ulation with two spreading waveforms. The modulation
scheme can be viewed as a doubly spreading one, Wong
and Lok (2000), i.e. the baseband signal transmitted by
the kth sensor node is given by:

xk(t) =
J∑

j=1

sj,kfk(t− jTs), (4)

Ts being the symbol period and fk(.) the modulating
waveform given by:

fk(t) =
Q∑

q=1

bq,kek(t− qTf ), ek(t) =
I∑

i=1

ci,kgk(t− iTc)

gk(.) being a pulse-shape filter. In the sequel, the spreading
sequences {bq,k} and {ci,k}, and the pulse-shape filter are



assumed to be strictly local and unknown to the other
nodes of the network. Note that the informative sequence
to be transmitted contains the N entries of the current
local estimate θθθ(k) and some additional entries to be
specified latter.

In the noiseless case, the baseband signal yl(t) received by
the lth sensor node is given by:

yl(t) =
∑

k∈Kl

βl,kxk(t− τl,k), (5)

where βl,k stands for the fading factor associated with
the link between the lth and the kth sensors while τl,k

denotes the associated delay that holds propagation delay
and asynchronism, Nion and De Lathauwer (2008). By
sampling the received signal at time instant t = jTs +
qTf + iTc, we get:

y
(l)
j,q,i =

∑

k∈Kl

sj,kbq,kh
(l)
i,k (6)

where
h

(l)
i,k = βl,kci,kgk(t− jTs − qTf − iTc − τl,k)|t=jTs+qTf+iTc

.

The data in (6) can be viewed as a third-order multiway
array or tensor admitting the so-called PARAFAC model,
Harshman (1970).

Using vector outer product, the third-order tensor Y(l),
with y

(l)
j,q,i, j = 1, · · · , J , i = 1, · · · , I, q = 1, · · · , Q, as

entries, can be written as follows:

Y(l) =
∑

k∈Kl

S(l)
.k ◦B(l)

.k ◦H(l)
.k , (7)

meaning that the tensor is completely characterized by
the three loading, or factor, matrices S(l) ∈ <J×Kl ,
B(l) ∈ <Q×Kl , and H(l) ∈ <I×Kl . PARAFAC model allows
writing a given tensor as a sum of rank-one tensors. It
can then be viewed as an analogue of the singular values
decomposition without orthogonality constraints.

The data detection problem consists in retrieving the
factor matrices, S(l) in particular, given Y(l). That is an
inverse problem. For solving such a problem, uniqueness
of the factor matrices is crucial.

3.1 Uniqueness conditions

PARAFAC is certainly the most popular tensor model
that can be found in the literature. That is surely due
to its essential uniqueness, which means that each factor
matrix can be determined up to column scaling and
permutation, i.e. two sets of matrices {S(l),B(l),H(l)}
and {S̃(l), B̃(l), H̃(l)} giving rise to the same tensor Y(l)

are linked by the following relations S̃(l) = S(l)Π∆Π∆Π∆1,
B̃(l) = B(l)Π∆Π∆Π∆2, H̃(l) = H(l)Π∆Π∆Π∆3, with ∆∆∆1∆∆∆2∆∆∆3 = IKl

,
where ΠΠΠ is a Kl×Kl permutation matrix whereas ∆∆∆1,∆∆∆2,
and ∆∆∆3 are Kl × Kl diagonal matrices, Kl being the
number of collaborating nodes in the neighborhood of the
lth sensor. A sufficient condition for such an uniqueness,
called Kruskal’s condition, states that the PARAFAC
decomposition (6) is essentially unique if, Kruskal (1977),

kS(l) + kB(l) + kH(l) ≥ 2(Kl + 1), (8)
where kA denotes the Kruskal-rank, also called k-rank, of
A, i.e. the greatest integer kA such that any set of kA

columns of A is independent. The rank and the Kruskal-
rank of A are linked by the following inequality kA ≤
rank(A). The distinction between these two notions is
important. kA = r requires that every r columns are
linearly independent, whereas rank = r simply requires
that there exists at least r linearly independent columns,
Sidiropoulos et al. (2000).

We can note that node-wise independent fading and inde-
pendent design of the pulse-shape filters imply that H(l)

is full rank and full k-rank with high probability. That
is also the case for the B(l) owing to independence of
the spreading sequence {bq,k}, not restricted to belong to
a finite alphabet. We can therefore rewrite the Kruskal
condition as follows:

kS(l) + min(Q,Kl) + min(I, Kl) ≥ 2(Kl + 1). (9)

By setting, Q ≥ Kl and I ≥ Kl, we get:

kS(l) ≥ 2, (10)

meaning that the columns of S(l) must be pairwise inde-
pendent. If S(l) only contains the estimate of the neighbors
of the lth node then S(l) could be equal to diag(ααα)11T ,
meaning that kS(l) = 1. To prevent such a situation each
node should transmit an augmented version of its local
estimate by inserting some local data possibly known to
its neighbors. Therefore, we set:

S(l) =
(

z1 · · · zKl

θ̂θθ1(0) · · · θ̂θθKl
(0)

)
(11)

with linearly independent vectors zq. For all the nodes of
the network, the length of the spreading sequences should
be chosen such that

Q ≥ max(Kl), I ≥ max(Kl). (12)

With these conditions, from the received data, each node
can retrieve the informations sent by its neighbors up to
columns scaling and permutation. The most penalizing
ambiguity being the scaling one. Indeed, associating a
given sequence to the actual sender is not necessary since
we aim to compute an average value by summing the
available data. The scaling ambiguity can be removed by
setting the first entry to an arbitrary known value. If we
assume that the nodes have an a priori knowledge of the
coding sequence of their neighbors both permutation and
scaling ambiguity can easily be removed.

3.2 Data detection method

Given the tensor Y(l), various algorithms can be used for
estimating the factor matrices H(l), B(l), and S(l). The
alternating leas squares (ALS) algorithm is the most used
one. It acts as follows: each time, update a subset of
parameters using least squares conditioned on previously
obtained estimates of the remaining parameters; proceed
to update another subset of parameters; repeat until con-
vergence. A distributed version of the ALS algorithm has
been derived recently,Kibangou and de Almeida (2010).

Given noisy observations Ỹ(l), we aim to estimate the three
factor matrices H(l), B(l), and S(l). Let us first define
different slices of the tensor obtained by fixing one index
of the multiway array. We get:



Yj..,l =




y
(l)
j,1,1 · · · y

(l)
j,1,I

...
. . .

...
y
(l)
j,Q,1 · · · y

(l)
j,Q,I


 = B(l)diag(S(l)

j. )H(l)T ∈ <Q×I

Y.q.,l =




y
(l)
1,q,1 · · · y

(l)
J,q,1

...
. . .

...
y
(l)
1,q,I · · · y

(l)
J,q,I


 = H(l)diag(B(l)

q. )S(l)T ∈ <I×J

Y..i,l =




y
(l)
1,1,i · · · y

(l)
1,Q,i

...
. . .

...
y
(l)
J,1,i · · · y

(l)
J,Q,i


 = S(l)diag(H(l)

i. )B(l)T ∈ <J×Q

By concatenating slices of the same mode, we get the
following three unfolded matrices:

For a third-order tensor Y(l), there are three unfolded
matrices: Y1,l ∈ <JQ×I , Y2,l ∈ <QI×J , and Y3,l ∈ <IJ×Q

defined as:

Y1,l =




Y1..,l

...
YJ..,l


 =

(
S(l) ¯B(l)

)
H(l)T ∈ <JQ×I , (13)

Y2,l =




Y.1.,l

...
Y.Q.,l


 =

(
B(l) ¯H(l)

)
S(l)T ∈ <QI×J , (14)

Y3,l =




Y..1,l

...
Y..I,l.


 =

(
H(l) ¯ S(l)

)
B(l)T ∈ <JQ×I . (15)

When the noise is modeled as temporally and spatially
white Gaussian, the maximum likelihood estimation and
the least squares fitting result on:

min
H(l),B(l),S(l)

∥∥∥Ỹ1,l −
(
S(l) ¯B(l)

)
H(l)T

∥∥∥
2

F

Ỹn,l, n = 1, 2, 3, being the noisy version of Y1,l and
‖‖F denoting the Frobenius norm. It follows that the
conditional least squares update of H(l) is

H(l) =
(
Ỹ1,l

(
S(l) ¯B(l)

)†)T

where † stands for the matrix pseudo-inverse.

Similarly, the conditional least squares updates of the two
other matrices are given by

S(l) =
(
Ỹ2,l

(
B(l) ¯H(l)

)†)T

B(l) =
(
Ỹ3,l

(
H(l) ¯ S(l)

)†)T

.

As stated by Sidiropoulos et al. (2000), the conditional
update of any given matrix may either improve or main-
tain but cannot worsen the current fit. Global monotone
convergence to (at least) a local minimum follows directly
from this observation. The convergence speed can be ac-
celerated if the node knows the spreading sequence of its
neighbors or by using extended line search methods, Rajih
et al. (2008).

After convergence, the node can recover the data contained
in S(l) for improving its own estimate. Note that a scaling
correction should be achieved before recovering the useful
data.

4. DISTRIBUTED ESTIMATION SCHEMES

4.1 Average consensus in noiseless links

As stated previously, estimating the average value over
the network can be carried out by means of the average
consensus algorithm. In the framework proposed herein,
a data detection step is included between two average
consensus step. We illustrate the behavior of the proposed
method by considering first a small network of 11 nodes
described by the graph of Fig. 1. Then we will consider
a larger network. For both networks, the data vector to
be estimated is θθθ = (2, 4,−1)T . The variance of the local
estimates is set to 0.001.
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Fig. 1. Connection topology of the simulated network

Figure 2 depicts the average consensus based estimation
over an unknown channel in the noiseless case, for the first
network. The Weights were computed as W = I − εL,
where L denotes the Laplacian matrix and ε = 0.2. The
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Fig. 2. Average consensus over unknown fading channel in
the noiseless case: Normalized mean square error (top
left), estimated average values (top right, bottom)

stop criterion for the ALS algorithm used for the data
detection method was the number of iterations set to
1000. As depicted in Fig. 2, the data detection method



does not induce significant detection errors. However,
we can note, for one node, a brutal variation due to
a data detection error. Despite such an error, all the
nodes converge to the same value very close to the actual
mean. In fact, the convergence property of the consensus
algorithm remains valid owing to a very low probability
of detection error. Note that for this network the factor
matrices were randomly initialized at each data detection
step.

Now, we consider a network with 100 nodes distributed in a
10× 10 grid. The communication between two nodes was
possible when the distance between them was less than
unity. For the first consensus iteration, the data detec-
tion method was initialized with random matrices, from a
Gaussian distribution. Then, the estimated matrices were
used for initializing the data detection of the next step.
For the random initialization part, 20 independent initial-
izations were run and then the best one was selected in
the tensor reconstruction error sense. The ALS algorithm
were stopped after 2000 iterations. In Fig. 3 and Fig. 4
we can note that the behavior of the average consensus
algorithm is not disturbed by the data detection method.
However, a deeper performance analysis should be carried
out in further works.
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Fig. 3. Normalized Mean Square error of a consensus based
distributed estimation (case of a 100 nodes network)

4.2 Distributed estimation in cluster-based sensor networks

In this subsection, we consider the estimation problem in a
cluster-based sensor network (see Fig. 5). We assume that
the network is cast in clusters. Inside a given cluster, each
node is connected to the head of the cluster. In addition,
the head of the clusters are all connected. We assume
that the communication protocol is divided in three slots
in time. A sub-band of frequencies is allocated to each
cluster. Inside a given cluster the nodes can communicate
simultaneously owing to the MAC scheme proposed in
this paper. The head of cluster compute the mean of the
cluster and then sends it to the other heads of cluster. The
heads of clusters compute the mean of the overall network.
And at the last step, each head communicates the average
value to the other nodes of the cluster. The communication
protocol is described in Fig. 6.
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Fig. 4. Distributed parameter estimation using the average
consensus over unknown fading channel (case of a 100
nodes network)
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In table 1, we give some simulation results obtained for a
network with 30 nodes and 5 clusters; each cluster having
the same number of nodes. As in the previous case, for a
noiseless channel, we get the actual average value, in mean.
The results presented here being averaged values over 50
independent runs. The additive noise was a Gaussian one.
Random initialization was used for data detection and the
ALS algorithm was stopped after 1000 iterations.

Table 1. Estimation in a cluster based sensor
network

Actual average Estimated average value

2.003 2.003

4.005 4.004

-2.996 -2.996

Fig. 7 depicts the NMSE according to the SNR value. We
can note a severe degradation of the NMSE for low and
medium SNR values. The initialization scheme and the
stopping criterion of the ALS algorithm are certainly the
cause of such degradation. Performance can certainly be
improved by resorting to other initialization strategies or
to other PARAFAC fitting methods.
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Fig. 7. NMSE for a cluster-based sensor network.

5. CONCLUSION

We have presented a new scheme for distributed estimation
over unknown fading channel. Non orthogonal multiple
access fading channels have been considered. By using
doubly spread waveforms for modulating the local data,
the nodes can communicate simultaneously. Although the
sensor node receives a mixture of the data sent by its
neighbors, these data exhibit a trilinear structure that can
be used for separating the data. Such a separation can be
carried out using the so-called PARAFAC decomposition.
Based on the Kruskal’s condition, we have derived suffi-
cient conditions ensuring identifiability or uniqueness of
the detected data. Therefore, the proposed data detection
can be embedded in distributed estimation methods such
as average consensus. However, the detection error induced
by the channel noise can degrade the overall estimation
process. A further analysis of the performance of the pro-
posed data detection is still under investigation.

ACKNOWLEDGEMENT

This work was supported by the EU project FeedNetBack.

REFERENCES

S. Cui, J.-J. Xiao, A. Goldsmith, Z.-Q. Luo, and V. Poor.
Estimation diversity and energy efficiency in distributed
sensing. IEEE Trans. on Signal Proc., 55(9):4683–4695,
September 2007.

R.A. Harshman. Foundation of the PARAFAC procedure:
models and conditions for an ”explanatory” multimodal
factor analysis. UCLA working papers in phonetics, 16:
1–84, 1970.

M. Huang and J. Manton. Coordination and consensus of
networked agents with noisy measurements: stochastic
algorithms and asymptotic behavior. SIAM J. Control
Optim., 48(1):134–161, 2009.

A.Y. Kibangou and A.L.F. de Almeida. Distributed
PARAFAC based DS-CDMA blind receiver for wireless
sensor networks. In Proc. of IEEE Int. Workshop
on Signal Processing Advances for Wireless Comm.
(SPAWC), Marrakech, Morocco, June 20-23 2010.

J.B. Kruskal. Three-way arrays: rank and uniqueness of
trilinear decompositions, with application to arithmetic
complexity and statistics. Linear Algebra Applicat., 18:
95–138, 1977.

A. Marano, V. Matta, L. Tong, and P. Willett. Bandwidth
scaling for efficient inference over a power-limited MAC.
In Proc. of ICASSP, Honolulu, HI, USA, 2007.

G. Mergen and L. Tong. Type based estimation over
multiaccess channels. IEEE Trans. on Signal Proc., 54
(2):613–626, February 2006.

C. Mosquera, R. Lopez-Valcarce, and S.K. Jayaweera.
Distributed estimation with noisy exchanges. In Proc.
of SPAWC, pages 236–240, Recife, Brazil, July 2008.

D. Nion and L. De Lathauwer. An enhanced line search
scheme for complex-valued tensor decompositions. Ap-
plication in DS-CDMA. Signal Processing, 88(3):749–
755, March 2008.

M. Rajih, P. Comon, and R. Harshman. Enhanced line
search : a novel method to accelerate PARAFAC. 30(3):
1148–1171, September 2008.

I. Schizas, A. Ribeiro, and G. Giannakis. Consensus
in ad hoc WSNs with noisy links-part I: Distributed
estimation of deterministic signals. IEEE Trans. on
Signal Proc., 56(1):350–364, January 2008.

H. Senol and C. Tepedelenlioglu. Performance of dis-
tributed estimation over unknown parallel fading chan-
nels. IEEE Trans. on Signal Proc., 56(12):6057–6068,
December 2008.

N.D. Sidiropoulos, G.B. Giannakis, and R. Bro. Blind
PARAFAC receivers for DS-CDMA systems. IEEE
Trans. on Signal Processing, 48(3):810–823, March 2000.

T. Wimalajeewa and S.K. Jayaweera. Power efficient
distributed estimation in a bandlimited wireless sensor
network. In Proc. of 41st Asilomar Conf. on Signals,
Systems and Computers, Pacific Grove, CA, USA, 2007.

T.F. Wong and T.M. Lok. Doubly spread DS-CDMA
for efficient blind interference cancellation. IEE Proc.
Commun., 147(5):299–304, 2000.

L. Xiao, S. Boyd, and S.-J. Kim. Distributed average
consensus with least-mean-square deviation. J. Parallel
Distrib. Comput., 67:33–46, 2007.


