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Abstract

A simple and basic problem is formulated about symmetric partial
differential operators. The symmetries considered here are other than
Lie symmetries.

1. A Starting Remark

Let

(1.1) S(Rn)

be the set of all C∞-smooth functions f : Rn −→ R which are sym-
metric.

We consider C∞-smooth partial differential operators of the form

(1.2) P (x, D)U(x) = F (x, U(x), . . . , DpU(x), . . .), x ∈ Rn
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acting on C∞-smooth functions U : Rn −→ R, where F is a real val-
ued C∞-smooth function defined for all real values of all its arguments,
while p ∈ Nn, |p| ≤ m, for a certain given m ≥ 1.

We call P (x, D) symmetric, if and only if

(1.3) S(Rn) 3 U 7−→ P (x, D)U ∈ S(Rn)

Obviously, the partial differentials Dx1 , . . . , Dxn : C∞(Rn) −→ C∞(Rn)
are not symmetric. On the other hand, simple examples of symmetric
partial differential operators are given by

(1.4) Dx1U(x) + . . . + DxnU(x)− F (U(x)), x = (x1, . . . , xn) ∈ Rn

or by the Poisson operators

(1.5) D2
x1

U(x) + . . . + D2
xn

U(x)− F (U(x)), x = (x1, . . . , xn) ∈ Rn

where F : R −→ R is any C∞-smooth function.

One can note that the above symmetries are not of Lie type.

2. A Simple Example

For convenience, let us start by noting a few facts when n = 2.

First, as mentioned, the implication does not hold

(2.1) f ∈ S(R2) =⇒ Dx1f, Dx2f ∈ S(R2)

on the other hand, also as noted, we have

(2.2) f ∈ S(R2) =⇒ Dx1f + Dx2f ∈ S(R2)

Let us consider the converse of (2.2). Namely, given g ∈ S(R2), then
let us see whether
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(2.3) f ∈ C∞(R2), Dx1f + Dx2f = g =⇒ f ∈ S(R2)

As a particular case of (2.3), we recall that, for a given g ∈ C∞(R2),
the solution of the PDE

(2.4) Dx1f + Dx2f = g

with the initial condition

(2.5) f(x1, 0) = h(x1), x1 ∈ R

for a specified h ∈ C∞(R), is given by

(2.6) f(x1, x2) = h(x1−x2)+
∫ x2

0
g(x1+(ξ−x2), ξ)dξ, (x1, x2) ∈ R2

Thus

(2.7) f(x2, x1) = h(x2−x1)+
∫ x1

0
g(x2+(ξ−x1), ξ)dξ, (x1, x2) ∈ R2

and therefore, f is symmetric, if and only if

h(x1 − x2) +
∫ x2

0
g(x1 + (ξ − x2), ξ)dξ =

= h(x2 − x1) +
∫ x1

0
g(x2 + (ξ − x1), ξ)dξ, (x1, x2) ∈ R2

or equivalently, if and only if, for (x1, x2) ∈ R2, we have

(2.8)
∫ x1

0
g(x2 + (ξ − x1), ξ)dξ −

∫ x2

0
g(x1 + (ξ − x2), ξ)dξ =

= h(x1 − x2)− h(x2 − x1)

However, h ∈ C∞(R) in (2.5) can be arbitrary, and (2.6) will give a
corresponding solution f ∈ C∞(R2) of (2.4), (2.5).

Clearly, no matter how g ∈ C∞(R2) is given, there are h ∈ C∞(R) for
which (2.8) need not hold.

Indeed, for given g ∈ C∞(R2), the relation (2.8) implies on h ∈ C∞(R)
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the following condition

(2.9) h(x)−h(−x) =
∫ x1

0
g(x2+(ξ−x1), ξ)dξ−

∫ x2

0
g(x1+(ξ−x2), ξ)dξ

where

(2.10) x = x1 − x2, (x1, x2) ∈ R2

therefore

(2.11) h(x)− h(−x) =
∫ (x+x2)

0
g(ξ − x, ξ)dξ −

∫ x2

0
g(x + ξ, ξ)dξ

and then the issue is whether the right hand term in (2.11) does in-
deed not depend on x2.

In this regard we note that the derivative with respect to x2 of the
right hand term in (2.11) is

g(x + x2 − x, x + x2)− g(x + x2, x2)

thus it vanishes whenever g is a symmetric function.

Consequently, for every symmetric function g ∈ C∞(R2), the relation
(2.11) takes the form

(2.12) h(x)− h(−x) = G(x), x ∈ R

where G ∈ C∞(R) is defined by g through the right hand term in
(2.11).

Clearly, in (2.12), we can choose h arbitrary on (−∞, 0), provided
that it is C∞-smooth, and then we obtain on (0,∞, 0) the C∞-smooth
function

(2.13) h(x) = h(−x) + G(x), x ∈ (0,∞)

As for x = 0, the relation (2.12) gives
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(2.14) G(0) = 0

and leaves h(0) undetermined. However, (2.12) allows as well the ar-
bitrary C∞-smooth choice of h on (−∞, 0]. And then, with (2.13), we
obtain h being C∞-smooth on R, and satisfying (2.12).

In this way we obtain

Proposition 1

Given f ∈ C∞(R2), then

(2.15) f ∈ S(R2) =⇒ Dx1f + Dx2f ∈ S(R2)

while conversely, the relation

(2.16) Dx1f + Dx2f ∈ S(R2)

does not imply

(2.17) f ∈ S(R2)

Remark 1

In view of the above, the mappings

(2.18) S(R2) 3 f 7−→ Dx1f + Dx2f ∈ S(R2)

(2.19) C∞(R2) 3 f 7−→ Dx1f + Dx2f ∈ C∞(R2)

are surjective.

3. A Problem

The above motivates the formulation of a general problem.
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Problem 1

Given a C∞-smooth symmetric partial differential operator P (x, D),
with x ∈ Rn, such that the mapping

(3.1) C∞(Rn) 3 f 7−→ P (x, D)f ∈ C∞(Rn)

is surjective.

Is then the mapping

(3.2) S(Rn) 3 f 7−→ P (x, D)f ∈ S(Rn)

also surjective ?
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