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Identification of a planar crack in Zener type viscoelasticity

H. D. Bui • S. Chaillat • A. Constantinescu • E. Grasso

Abstract The paper addresses the identification of a

planar crack for Zener type linear viscoelastic solids. Under

the condition of low frequency, the Zener model of vis-

coelasticity establishes the equivalence between visco-

elasticity and elasticity and the equations are reduced to a

Helmholtz type problem for time harmonic loadings. The

solutions to the crack identification problems are then

obtained from the corresponding solutions in elasticity,

using only one frequency.

Keywords Viscoelasticity � Crack identification �
Inverse problems � Elastodynamics

1 Introduction

Inverse problems for defects identification in viscoelastic

materials arise in different domains of applications like

medicine, composite materials, geology, etc. In medical

applications elastography techniques for detecting breast

cancer (see [29]) benefit from recent progress in data

measurements and computational inversion of equations. In

aerospace applications, composite materials which are

considered for their viscoelastic behaviour also present

cracks as a consequence of delamination at the interface of

laminates. The identification of these cracks is also a dif-

ficult problem.

Within the variety of viscoelastic materials models,

there is always a difficulty when dealing with application,

which is the choice of constitutive model which is close

to reality and permits easy and robust identification.

Within the class of generalized spring-dashpot models

(see [19, 30]) we can cite the models of Voigt, Maxwell

and Zener.

Most works consider simple models for the inversion,

for example Voigt’s model described by a linear relation

between stress, strain and strain rate and loadings such as

antiplane shear under the assumption of an unbounded

solid. For example in [29] plane shear waves are used and

finally a numerical inversion of the derived scalar Helm-

holtz conducts to the solution.

In applications where the viscoelastic model is used over

a large range of characteristic times and as a consequence

the choice of constitutive law goes to the Boltzmann con-

volution expression for the relaxation kernel. In these case

most inverse problems discuss the recovering the memory

kernels in the case of a homogeneous solids (see [17, 20,

28, 36]). However it is not simple for defects identification

problems dealing with discontinuities in solids. For general

papers on viscoelasticity theory, one can refer to [19, 21,

22]. For experimental determination of constants, we refer

to [33].

In this paper we propose to discuss the crack identifi-

cation problem in the particular case of the Zener model of
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linear viscoelasticity. This constitutive model has previ-

ously been considered for example in [27] in the case of

rolling contact, in [10] for the cyclic modelling of poly-

amide fibre straps or in Sack et al. [32] and in Wuerfel

et al. [35] for medical applications in soft tissues.

The problem of identifying a crack from overspecified

data has received a lot of attention in the inverse problem

community in the last two decades. Most of the results

were obtain for the electric conductivity problem already

discussed by Friedman and Vogelius in [25]. Later Bryan

and Vogelius [11] and Alessandrini [2] discussed the

uniqueness of the crack determination for single or multi-

ple crack systems under a small number of measurements.

Other aspects were also discussed by Alessandrini in dif-

ferent papers: the stabilty of the solution with respect to

measurements was discussed in [1, 2]. However the tech-

niques used in this paper is different from the preceeding

citations and it is based on the reciprocity principle and

more precisely on the symmetry lost (or loss of reciprocity)

[12]. Different planar crack identification problems using

this technique have already been discussed in [6, 7].

This paper starts with the presentation of the equiva-

lence between elasticity and viscoelasticity under the

condition of low frequency as exploited in [18] for a

boundary integral equation approach. This framework will

be applied for the identification of planar crack problem

using boundary data. Different mathematical aspects of the

inversion are addressed, particularly the identifiability of a

planar crack in a 3D bounded solid, using exact boundary

data, without considering numerical aspects. The main

result for determining the crack plane in viscoelasticity is a

direct method to compute the normal and location of the

plane and also the complete crack extension in the crack

plane. The zero crossing method introduced in our previous

works appears to be a very simple proof of the identifi-

ability of the normal and the crack plane.

2 A visco-elastic model

2.1 Stress–strain law

Various rheological models, generalization of the spring

dashpot networks, are used for the representation of the

viscoelastic behavior of a material [19, 26]. Within the

most simple and popular ones, we count the Kelvin-Voigt

model which is suited for solids and the Maxwell model

used for fluids.

The rheological model used in this paper is a Zener one

with a dashpot impedance g and elastic constants k0 and k1

as represented schematically in Fig. 1. One can character-

ize the behaviour of the model at very slow or vary large

loading rates. If the strain rate goes to zero, i.e. in an

infinitesimal slow loading when _� ¼ 0; the dashpot has no

effect and the model has a ‘‘delayed modulus’’ and is

equivalent to two springs connected in series. For instant-

enous loading, conducting to large strain rates, i.e. if _� ¼
1; then the dashpot is blocked and it the model exhibits an

instantaneous modulus.

The usual formulation of isotropic visco-elastic law is

given by the Boltzmann functional representation of the

relaxation kernel:

rijðtÞ ¼
Z t

0

kðt � sÞdij _�kkðsÞdsþ
Z t

0

2lðt � sÞ_�ijðsÞds ð1Þ

with k(t) and l(t) being relaxation functions.

The Zener constitutive law is given by the differential

equation:

1

g
rþ _r ¼ K1:

1

c
�þ _�

� �
ð2Þ

where K? = k?I2� I2 ? 2l?I4 is the instantaneous

elastic moduli tensor, defined by instantaneous Lame’s

constants k?, l? and c, g are respectively creep time and

relaxation times.

It is important to understand that it is always possible to

express Eq. 2 in the form Eq. 1 with exponential relaxation

functions (by integrating Eq. 2 in time). However the opposite

is not true, if Boltzmann’s relaxation functions k(t) and l(t)

are not of the exponential type, as is the case in general.

As a consequence, the Boltzman functional representa-

tion of the relaxation kernel, i.e. Eq. 1 is more general than

Zener’s model. Moreover it is equivalent to a differential

form model using various orders of time derivatives.

We further remark that in Eq. 2 the delayed modulus is

g/c times the instantaneous modulus.

In the sequel, we rewrite Eq. 2 in the form proposed by

Goriacheva [27] with the using delayed elastic tensor K
defined with respect to the Lame’s moduli k, l as:

rþ b _r ¼ K : ð�þ a_�Þ ð3Þ

The coefficients a, b defined as:

Fig. 1 Zener model of visco-elasticity
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a ¼ g
k1

; b ¼ g
k0 þ k1

ð4Þ

can easily be determined from the scheme in Fig. 1 as

explained next. The 1D rheological model satisfies the

following relations r ¼ k0e1 ¼ g_e2 þ k1e2 and e = e1 ? e2

where e1 is the strain of the first spring with stiffness k0,

and e2 is the strain of the second spring with stiffness k1.

Eliminating e1 and e2 we obtain the stress strain law rþ
g

k0þk1
_r ¼ k0k1

k0þk1
ðeþ g

k1
_eÞ; in which (k0k1)/(k0 ? k1) is

exactly the overall delayed stiffness E. Consequently

rþb _r ¼ Eðeþ a_eÞ. Equation 3 is nothing but the formal

generalization of the 1D model, which has been introduced

by Goriacheva [27].

We introduce the transformed stress, displacement and

strain

r� ¼ rþ b or
ot

u� ¼ uþ a ou
ot

�� ¼ �þ a o�
ot

8<
: ð5Þ

The tensors r* and e* are linked by the constitutive

equation of isotropic elasticity with the Lame coefficients k
and l of the delayed moduli

r� ¼ K : �� ð6Þ

With uðx; tÞ ¼ vðxÞ cosðxtÞ the displacement rate _uðx; tÞ is

dephased of p/2. Using Eq. 5, we obtain u�ðx; tÞ ¼
vðxÞðcosðxtÞ � ax sinðxtÞÞ: Defining the angle w such

that tanw ¼ ax (0 B w\ p/2, i.e. cosw = 0) it follows

u�ðx; tÞ ¼ vðxÞ
cosðwÞ cosðxt þ wÞ ð7Þ

It is now clear that variables u� and u are out of phase of

angle w but have the same circular frequency x. Then,

suppose that rðx; tÞ ¼ wðxÞ cosðxt þ hÞ; we obtain

r�ðx; tÞ ¼ wðxÞ½cosðxt þ hÞ � bx sinðxt þ hÞ�: Defining

in the same manner the angle / such that

tan/ ¼ bxð0�/\p=2Þ it follows:

r�ðx; tÞ ¼ wðxÞ
cosð/Þ cosðxt þ /þ hÞ ð8Þ

The variables r* and u� are known to satisfy the

constitutive Eq. 6, so that they have to be in phase. It

follows that w = / ? h. Finally, r and u have to be out of

phase of h = w - /.

2.2 Remarks on the stress–strain law

Physically, most dissipative media, like soils and sand, can

be considered as a mixture of fluid and solid particles so

that their overall behaviors are also a combination of

elastic law and viscous one. A good example is found in

Wear Mechanics. The ‘‘third’’ body which represents the

interface between two sliding solids, in the presence of

wear and a fluid, behaves like an elastic solid in com-

pression (normal to the interface) and as a viscous fluid in

tangential shear, see [23, 24]. Both variables and their time

derivatives are present in the physical law. Therefore a

simple model for taking account of viscous dissipation

consists in modifying a perfect law, for example

U = kgrad u by adding terms involving derivatives with

respect to time of various orders. The simplest one is

suggested by Zener’s model (Eq. 3), which includes time

derivatives of order 1. When the rates are small, the rela-

tion between stress and strain rþ b _r ¼ K : ð�þ a_�Þ is

interpreted as a delayed response r ¼ K : �; while the

relation between stress and strain rates, at high rates, cor-

responds to the rapid response b _r ¼ aK : _�: Mixed rela-

tions existing between dominant terms, for example r and

a_�; describe a viscous fluid behavior etc.

It is worth noting that the Zener model, like any other

time dependent constitutive law, is especially valid for

some time scale. Viscoelastic constitutive laws are

obtained by a best fit with experiments or observations

which can be made in some range of time at a fixed tem-

perature. Therefore creep time a and relaxation time b can

only be obtained by tests, although b is not often reported

in the literature, perhaps because of difficulties to carry out

relaxation tests. However there are some theoretical rea-

sons for a and b to be of the same order, since according to

Eq. 4, for one-dimensional model constants, k0 and k1 are

comparable. Sometimes b is set to zero.

Consider the case of rocks. If the time of laboratory

experiments is short, creep time is generally small, typi-

cally a&0.001–0.01 s, for rocks and also for metals at high

temperature. Now consider a long term deformation of

rocks of the continental crust which can undergo large

deformation over millions of years (My). These rocks

which are elastic in laboratory tests become viscoelastic in

geological time, with more or less a & , 1 My. Values for

asphalt coating of roads are a & 0.1–10 s for the temper-

ature in the range [0, 50�C]. Small values of creep time in

laboratory tests a & 0.01–1 s are known for rubber like

materials (rubber, plastics, etc) [34]. Smaller values of

creep time a & 10-7–10-5 s are reported for YBa2Cu3O7

oxide ceramic [31].

2.3 Equation of motion

The quantities r* and u� which are linked by the elastic

law, are now shown to satisfy the equation of motion

approximately. The assumed forms of fields r and u are

compatible with the equation of motion divr� q€u ¼ 0 if

and only if the out of phase angle h is very small. More

precisely, the modification introduced in the dynamic

equation by the phase difference between r and u is
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proportional to qx2h. Since for small h, we have h&|a -

b|x and thus qx2h & qx3|a - b|, where a and b are

defined by Eq. 4 using uðx; tÞ ¼ vðxÞ cos xt: It follows that

div r� � q€u� ¼ qðb� aÞot€u � qx3ja� bjkvk

The latter term can be neglected in comparison with

qx2kvk if and only if

h � ja� bjx� 1 ð9Þ

Therefore, the frequency of the experiment must be

much less than the limit frequency x1 = 1/|a - b|. The

static case x = 0 obviously satisfies the latter condition.

Since |a - b| is proportional to the viscosity coefficient g,

the lower the coefficient g, the higher the limit frequency

x1 (in solid mechanics g is indeed small, so that x1 is

large). Also x1 is large when |a - b| is small for some

rheological models. For example, rubber like materials

have a&0.01–1 s. Assuming that b = 0, we can take

x1 = 1–100 hz. The limit frequency depends on the nature

of materials. For values of x1 \ 1 hz, the quasi-static

assumption may be used in practice.

Finally, provided that x � x1, the change of func-

tions using u� and r* leads to the same elastodynamic

equation div r� þ qx2u� ¼ 0; r� ¼ K : ��: This corre-

spondence between viscoelasticity and elasticity making

use of a real Helmholtz equation has been exploited in

[18] for a new approach of real boundary integral

equation. In what follows, we address the identifiability

of a planar crack in viscoelasticity. We show that the

solution of crack inverse problems in viscoelasticity

reduces to the solution of an inverse problem for the

vectorial Helmholtz equation. Let us remark that the

antiplane loading is a particular case of the general

model considered in this paper. In the dynamic antiplane

case, we shall deal with a crack inverse problem for the

scalar acoustic Helmholtz equation, for which we can use

the solutions provided by Alves and Ha Duong [4, 5] and

Ben Abda et al. [9].

Let us also remark that crack inverse problems in the

quasistatic case k = 0 have been widely considered in the

literature, see [2, 3, 6, 8, 13, 15]. These solutions can be

used for crack inverse problems in 2D, 3D viscoelasticity,

via the transformed displacements and transformed stress.

3 Identification of a planar crack for the vectorial

Helmholtz equation

We consider a time harmonic loading on a 3D viscoelastic

solid X weaken by a planar crack F, with frequency x. The

elastodynamic equation for the transformed displacement

u� becomes, with k2 = qx2

ldivðgrad u�Þ þ ðkþ lÞgradðdiv u�Þ þ k2u�

¼ 0; in X n F ð10Þ

Let us denote the boundary transformed displacement and

transformed stress vector by u� ¼ ud and r� � n ¼ Td

respectively. These boundary vectors are used as data for

the inverse problem. The planar crack is stress free, r� �
n ¼ 0 on F ±. The boundary of the cracked solid consists

of the external boundary qXext and internal boundaries

F ± . The crack geometry is denoted by F, with the normal

n chosen as n ¼ n� ¼ �nþ:
The method of solution is based on the use of various

adjoint fields w satisfying the same Helmholtz equation

over the uncracked domain X

ldivðgrad wÞ þ ðkþ lÞgradðdiv wÞ þ k2w ¼ 0; in X

ð11Þ

Multiply Eq. 10 by w and Eq. 11 by u�; then substract

the results, integrate over the cracked domain and finally

transform the volume integral into boundary integrals.

Using the continuity of w across F, the stress free condition

on r�:n ¼ 0 on F ±, and denoting by ½½u��� ¼ u�þ � u�� the

crack displacement jump, we can derive the following

variational equationZ

F

½½u��� � r½w� � n ¼
Z

oXext

ðw � r½u�� � n� u� � r½w� � nÞdS

¼ Rðw; Td; udÞ
ð12Þ

for any adjoint field w: In Eq. 12 Rðw; Td; udÞ denotes the

second integral in which boundary data have been inserted.

R is called the reciprocity gap functional introduced in our

previous works on the identifiabilty of a planar crack in 3D

[6, 12, 14, 16].

We now choose particular adjoint fields in order to

determine first the normal to the crack plane, then the

location of the crack plane and finally the crack geometry.

3.1 The normal to the crack plane

We consider an adjoint S-wave field w depending on two

orthogonal vectors of the same norm,

p � p? ¼ 0; kp?k ¼ kpk
w ¼ sinðx � p?Þp ð13Þ

The adjoint field w satisfies the wave equation if these

orthogonal vectors are on the sphere S of radius k=
ffiffiffi
l
p

or

kpk2 ¼ k2

l
ð14Þ

Inserting Eq. 13 in Eq. 12 we get
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l ðp?j njÞpi þ ðpjnjÞp?i
h i Z

F

½½u�i ��cosðx � pÞdS ¼ Rðp; p?Þ

ð15Þ

where for brevity we set Rðp; p?Þ :¼ Rðp; p?; Td; udÞ:
Function Rðp; p?Þ vanishes when vectors p; p? are

orthogonal to n; i.e when they are parallel to the crack

plane. Thus vector q ¼ p	 p?=kpk on the same sphere S is

along n: Therefore, because of a priori assumption on a

single planar crack, the normal direction is uniquely

determined by a zero crossing method. The solutions 
n

correspond to the poles or the zeros of function RðqÞð¼
Rðp; p?ÞÞ of q on the sphere S, for any p; p? in the equa-

torial plane, Fig. 2.

3.2 The location of the crack plane

Once the normal has been obtained, we consider Ox3 along

the normal. The crack plane is defined by x3 - D = 0 with

D to be determined by a zero crossing method, using a P-

wave adjoint field depending on a scalar parameter g

wðx; gÞ ¼ cosðqðx3 � gÞÞe3 ð16Þ

Field wðx; gÞ satisfies the wave equation if we take

q ¼ kffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kþ 2l
p ð17Þ

Inserting Eq. 17 into Eq. 12 with x3 - D = 0 on the crack

F, we obtain

�qðkþ 2lÞsinðqðD� gÞÞ
Z

F

½½u�3��dSx ¼ RðgÞ ð18Þ

If we choose k such that the wave length 2p/q [ L is larger

than the size L of X, then according to Eq. 18 the reci-

procity gap RðgÞ :¼ RðwðgÞ; Td; udÞ which is function of

parameter g has a unique zero g = D corresponding to the

crack plane location. The other zeros of sin(q(D - g)) = 0

correspond to non physical planes outside the solid.

3.3 Identification of the crack geometry

Since the crack plane is determined, it is convenient to take

the origin on the crack plane P = Ox1x2. We need to

introduce adjoint fields which depend on 2D real vectors

p ¼ ðp1; p2; 0Þ of arbitrary norm. We introduce two com-

plex vectors

ZðpÞ
 ¼ p
 ickpke3 ð19Þ

and two vector fields

w
ðx; pÞ ¼ rxexpð�iZðpÞ
:xÞ ð20Þ

Fields w ± satisfy the vectorial Helmholtz equation if

c2 ¼ 1� k2

ðkþ 2lÞkpk2
ð21Þ

The adjoint displacement and adjoint normal stress are

then given respectively by

vðx; pÞ ¼ wþðx; pÞ þ w�ðx; pÞ ð22Þ

r33½v� ¼ 2ðkðc2 � 1Þ þ 2lc2Þkpk2
expð�ip � xÞ ð23Þ

The reciprocity gap functional becomes

2ðkðc2 � 1Þ þ 2lc2Þkpk2

Z

F

½½u3ðxÞ��expð�ip � xÞdSx

¼ Rðud;Td; vðpÞÞ ð24Þ

The Fourier transform of the jump ½½u3�� is completely

determined and thus the jump is given by

½½u3ðxÞ�� ¼
1

ð2pÞ2
Z

Pðp3¼0Þ

expðþip � xÞ
2ðkðc2 � 1Þ þ 2lc2Þkpk2

	 Rðud;Td; vðpÞÞdp1dp2 ð25Þ

Therefore the crack geometry is explicitly identified by

the support of the jump function u3(x1, x2) in the whole

plane P.

4 Conclusions

In this paper we have considered a particular form of vis-

coelastic constitutive equations described by a first order

differential equation of the Zener type.

For low frequencies of the load, the constitutive equa-

tion of the transformed stress and strain for viscoelasticity,

is approximately the same as in elasticity while it is strictly

equivalent to elasticity in quasistatic loadings. These

transformed functions are simpler than functions obtained

by Fourier transforms of fields.

The main advantage of the method is to allow inverse

problems for crack identification to be solved in a

straightforward manner by considering existing solutions to
Fig. 2 Vectors q ¼ p	 p?=kpk such that RðqÞ ¼ 0 are along the

pole axis which is parallel to the normal to the crack plane
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the same inverse problem for the Helmholtz equation (in

dynamics) or the elastic equation (in quasistatics). For the

planar crack detection, a new result for identifying the

crack normal, the crack plane and geometry has been

presented for the elastic Helmholtz equation.

Methods of solution to inverse problems considered in

this paper are based on the study of the zeros of the

functional R. By choosing adjoint fields depending on

adequate parameters explicitly, we are dealing with func-

tion R of these parameters. The detection of crack is

obtained by studying the transition between zero and non

zero values of function R while varying the parameters of

the adjoint field. The reciprocity gap R is indeed a defect

indicator.
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