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HECKE ALGEBRAS

P. SHAN, E. VASSEROT

ABSTRACT. In this paper we categorify the Heisenberg action on the Fock
space via the category O of cyclotomic rational double affine Hecke algebras.
This permits us to relate the filtration by the support on the Grothendieck
group of O to a representation theoretic grading defined using the Heisenberg
action. This implies a recent conjecture of Etingof.
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1. INTRODUCTION AND NOTATION

1.1. Introduction. In this paper we study a relationship between the represen-
tation theory of certain rational double affine Hecke algebras (=RDAHA) and the
representation theory of affine Kac-Moody algebras. Such connection is not new
and appears already at several places in the literature. A first occurrence is Suzuki’s
functor [R9] which maps the Kazhdan-Lusztig category of modules over the affine
Kac-Moody algebra 5A[n at a negative level to the representation category of the
RDAHA of sl,,. A second one is a cyclotomic version of Suzuki’s functor [@] which
maps a more general version of the parabolic category O of 5A[n at a negative level
to the representation category of the cyclotomic RDAHA. A third one comes from
the relationship between the cyclotomic RDAHA and quiver varieties, see e.g., [,
and from the relationship between quiver varieties and affine Kac-Moody algebras.
Finally, a fourth one, which is closer to our study, comes from the relationship in
[ between the Grothendieck ring of cyclotomic RDAHA and the level ¢ Fock
space Fp, ¢ of 5A[m. In this paper we focus on a recent conjecture of Etingof [E]
which relates the support of the objects of the category O of H(T',,), the RDAHA
associated with the complex reflection group I';, = &,, X (Z¢)", to a representation
theoretic grading of the Fock space Fy = F¢,1. These conjectures yield in particular
an explicit formula for the number of finite dimensional H(T'),)-modules. This was
not known so far. The appearance of the Fock space Fy is not a hazard. It is due
to the following two facts, already noticed in [H] First, by level-rank duality, the
ET[m—module Fm,e carries a level m action on gl,. It carries also a level 1 action
on gA[Z, under which it is identified with F,. Next, the category O of the algebras
H(T,) with n > 1 categorifies F,, ¢ by [B]. Our proof consists precisely to inter-
pret the support of the H(T',,)-modules in terms of the sl,,-action on Fome, and
then to interpret this in terms of the ;[g action on Fy. An important ingredient is
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a categorification (in a weak sense) of the action of the Heisenberg algebra on F
and F,, ;. The categorification of the Heisenberg algebra has recently been studied
by several authors. We’ll come back to this in another publication.

1.2. Organisation. The organisation of the paper is the following.

Section 2 is a reminder on rational DAHA. We recall some basic facts concerning
parabolic induction/restriction functors. In particular we describe their behavior
on the support of the modules.

Section 3 contains basic notations for complex reflection groups, for the cyclo-
tomic rational DAHA H(T',,) and for affine Lie algebras. In particular we introduce
the category O(T',,) of H(T'),)-modules, the functor KZ, Rouquier’s equivalence from
O(6,,) to the module category of the (-Schur algebra. Next we recall the categorifi-
cation of the Fock space representation of ;[m in [@], and we describe the filtration
by the support on O(T';,).

Section 4 is more combinatorial. We recall several constructions related to Fock
spaces and symmetric polynomials. In particular we give a relation between sym-
metric polynomials and the representation ring of the group I';,, and we describe
several representations on the level ¢ Fock space (of Heisenberg algebras and of
affine Kac-Moody algebras).

Section 5 is devoted to the categorification of the Heisenberg action on the Fock
space, using O(T';,). Then we introduce a particular class of simple objects in O(T',,),
called the primitive modules, and we compute the endomorphism algebra of some
modules induced from primitive modules. Finally we introduce the operators ay
which are analogues for the Heisenberg algebra of the Kashiwara’s operators €, fq
associated with Kac-Moody algebras.

Section 6 contains the main results of the paper. Using our previous construc-
tions we compare the filtration by the support on O(T,) with a representation-
theoretic grading on the Fock space. This confirms a conjecture of Etingof, yield-
ding in particular the number of finite dimensional simple objects in O(T',) for
integral ¢-charge (this corresponds to some rational values of the parameters of
H(T,)).

Finally there are two appendices containing basic facts on Hecke algebras, Schur
algebras, quantum groups, quantum Frobenius homomorphism and on the universal
R-matrix.

1.3. Notation. Now we introduce some general notation. Let A be a C-category,
i.e., a C-linear additive category. We’ll write Z(.A) for the center of A, a C-algebra.
Let Irr(A) be the set of isomorphism classes of simple objects of A. If A = Rep(A),
the category of all finite-dimensional representations of a C-algebra A, we abbre-
viate
Irr(A) = Irr(Rep(A)).

For an Abelian or triangulated category let K(A) denote its Grothendieck group.
We abbreviate K(A) = K (Rep(A)). We set

(4] = K(A) ®C.

For an object M of A we write [M] for the class of M in [A]. For an Abelian
category A let D°(A) denote its bounded derived category. We abbreviate D*(A) =
D®(Rep(A)). The symbol H*(P™~1) will denote both the complex

(m) = 6_9 C[-2i] € D*(C)

and the integer m in K(C) = Z. Given two Abelian C-categories A, B which are
Artinian (i.e., objects are of finite length and Hom’s are finite dimensional) we
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define the tensor product (over C)
@:AxXxB—A®B

as in [} sec. 5.1, prop. 5.13]. Recall that for A = Rep(A) and B = Rep(B) we
have A ® B = Rep(A ® B). Given a category A and objects A, A" € A, we write
Hom (A, A") for the collection of morphisms A — A’. Given categories A, B
and functors F, F’ : A — B we write Hom(F, F’) for the collection of morphisms
F — F’. We denote the identity morphism A — A by 14 and the identity morphism
F — F by 1p. Given a category C and a functor G : B — C let G o F be
the composed functor A — C. For a functor G’ : B — C and morphisms of
functors ¢ € Hom(F, F’), v € Hom(G, G") we write ¢ ¢ for the morphism of functors
GoF — G o F’ given by

(¥9)(A) = ¥(F'(A)) o G(¢(A)) € Home (G(F(A)),G'(F'(4))), A€ A

1.4. Acknowledgments. We are grateful to I. Losev for a careful reading of a
preliminary draft of the paper.

2. REMINDER ON RATIONAL DAHA’S

2.1. The category O(W). Let W be any complex reflection group. Let h be the
reflection representation of W. Let S be the set of pseudo-reflections in W. Let
c¢: S — C be a map that is constant on the W-conjugacy classes. The rational
DAHA attached to W with parameter ¢ is the quotient H(W) of the smash product
of CIWW and the tensor algebra of h @ h* by the relations

2,21 =0, [y,4]=0, [y 2] = (2,9) = Y cslas,y)(x, as)s,
ses

for all z, 2’ € b*, y,y’ € h. Here (o, ) is the canonical pairing between h* and b,
the element a; is a generator of Im(s|y — 1) and @& is the generator of Im(sl, — 1)
such that (as,ds) = 2. Let R,, R, be the subalgebras generated by h* and b
respectively. We may abbreviate

Clb] = Re,  C[b'] = Ry.

The category O of H(W) is the full subcategory O(W) of the category of H(W)-
modules consisting of objects that are finitely generated as C[h]-modules and b-
locally nilpotent. We recall from [@, sec. 3] the following properties of O(W). It is
a quasi-hereditary category. The standard modules are labeled by the set Irr(CW)
of isomorphism classes of irreducible W-modules. Let A, be the standard module
associated with the module x € Irr(CW). It is the induced module

Ay = Indfv(;vlgy (X)-

Here x is regarded as a W x R,-module such that h* C R, acts by zero. Let L,,
P, denote the top and the projective cover of A,.

Remark 2.1. The definitions above still make sense if h is any faithful finite dimen-
sional CW-module. To avoid any confusion we may write

O(W,h) = O(W),  H(W.h) = H(W).
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2.2. The stratification of . Let W be a complex reflection group. Let h be the
reflection representation of W. For a parabolic subgroup W’ C W let X, be the
set of points of h whose stabilizer in W is conjugate (in W) to W’. By a theorem
of Steinberg, the sets Xy, ., when W' runs over a set of representatives of the W-
conjugacy classes of parabolic subgroups of W, form a stratification of f by smooth
locally closed subsets, see also [@, sec. 6] and the references there. Let Xy~ be
the closure of X7y, in h. To avoid any confusion we may write Xy, , = Xy, and
Xwrp = Xwr. The set Xy consists of points of ) whose stabilizer is W-conjugate
to W’. We have
Xwey =| | Xipm s,

where the union is over a set of representatives of the W-conjugacy classes of the
parabolic subgroups W of W which contain W’. Further, the quotient Xy /W
is an irreducible closed subset of h/W.

2.3. Induction and restriction functors on O(W). Fix an element b € h. Let
Wy, C W be the stabilizer of b, and

™ b —h/p"
be the obvious projection onto the reflection representation of Wj. The parabolic
induction /restriction functor relatively to the point b is a functor [fl]

Indy, : O(Wy, b/6"") — O(W,h), Resy : O(W, ) — O(Ws, h/5").

Since the functors Indy, Res, do not depend on b up to isomorphism, see [EI7 sec. 3.7,
we may write

OInd%b = Indy, ORes%) = Resy
if it does not create any confusion. The support of a module M in O(W, §) is the
support of M regarded as a C[h]-module. It is a closed subset Supp(M) C b. For any
simple module L in O(W, h) we have Supp(L) = X p for some parabolic subgroup
W' C W. Forb € Xy, , the module Res; (L) is a nonzero finite dimensional module.
See [EI, sec. 3.8]. The ’support of a module is the union of the supports of all its
constituents. So the support of any module in O(W, §) is a union of Xy y’s. Let
us consider the behavior of the support under restriction.

Proposition 2.2. Let W' C W be a parabolic subgroup. Let b’ be the reflection
representation of W'. Let X C b be the support of a module M in O(W,4). Let
X' C b be the support of the module M' = Resy, (M).

(a) We have M’ # 0 if and only if Xwp C X.

(b) Assume that X = Xy with W' C W a parabolic subgroup. If M' # 0
then W' is W-conjugate to a subgroup of W' and we have

X' = UXWhh’ = |_|XI?I/1,I';’;
W1 W1

where W1 runs over a set of representatives of the W' -conjugacy classes of parabolic
subgroups of W' containing a subgroup W -conjugated to W".

Proof. Part (a) is immediate from the definition of the restriction, because for b € b
it implies that Res,(M) # 0 if and only if b € X. Now we prove (b). For a parabolic
subgroup W; C W’ we have

XWhh’ cX = ORGS%; (M/) #0
= OResVVgl (M)#0
= Xwip C Xwrp.

Here the first and third equivalence follow from (a), while the second one follows
from the transitivity of the restriction functor [P§, cor. 2.5]. Therefore Xy, C X
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if and only if Xy, v C X' if and only if W) contains a subgroup W-conjugate to
w”.

O
Remark 2.3. For any closed point b of a scheme X we denote by X" the completion
of X at b (a formal scheme). Assume that M’ = ©Resyy,, (M) is non zero. Let

be the canonical projection h — §' = h/f)W/. For b € X7, ' the definition of the
restriction functor yields the following formula

0en M (X'), X =b+a (X)),

Next, we consider the behavior of the support under induction. Before this we
need the following two lemmas. The C-vector space [O(W)] is spanned by the set
{[Ay]; x € Irr(CW)}. Thus there is a unique C-linear isomorphism

spe : [Rep(CW)] = [OW)],  [x] = [Ay]. (2.1)
The parabolic induction/restriction functor is exact. We’ll need the following
lemma [fll].

Lemma 2.4. Let W C W be a parabolic subgroup. Let i’ be the reflection repre-
sentations of W'. Under the isomorphism ) the maps

Indyy, - [OW',5)] = [O(W.B)],  Resyy, : [O(W, h)] — [O(W', "))
coincide with the induction and restriction
Indjy, : [Rep(CW’)] = [Rep(CW)], Resi : [Rep(CW)] — [Rep(CW')].
We'll also need the following version of the Mackey induction/restriction theorem.

First, observe that for any parabolic subgroup W/ € W and any x € W there is a
canonical C-algebra isomorphism

0r: HW') = Hx 'W'z), w o we, fra ' fo, f o fr,
forwe W', f € R, f' € R,. It yields an exact functor
OW’") = Oz 'W'z), M *M,
where *M is the H(z~'W’z)-module obtained by twisting the H(W')-action on M
by ¢z

Lemma 2.5. Let W/, W" C W be parabolic subgroups. Let b, §" be the reflection
representations of W', W". For M € O(W’, ') we have the following formula in
[OW",§")]

ORGS%H o OInd%/ ([M]) = Z OInd%::mqu/V/z o” (ORQSIVV;///Iflmw/ ([M])), (22)

where x runs over a set of representatives of the cosets in W'\ W/W".

Proof. Use Lemma @ and the usual Mackey induction/restriction theorem asso-
ciated with the triplet of groups W, W/, W". O

Remark 2.6. For a future use, note that the left hand side of (R.9) is zero if and
only if each term in the sum of the right hand side is zero, because each of these
terms is the class of a module in O(W", p").

Now, we can prove the following proposition.

Proposition 2.7. Let W’ Cc W' C W be a parabolic subgroups. Let ' be the
reflection representation of W'. For a simple module L € O(W', §’) with Supp(L) =
Xwr y, we have

OIndy}/ (L) # 0, Supp(olnd%, (L)) = Xworp.
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Proof. First, note that ©Ind}}., (L) # 0 by Lemma @, because
OResty o CIndyy ([L]) = [L] 4 [M]

for some M € O(W',h') and [L] # 0. Therefore ©Indj;. (L) # 0. We abbreviate
M = ©Indyy, (L). To compute the support of M we first check that

Xwrp C Supp(M).
By Proposition E we have
Xwoy C Supp(M) <= Xy y C Supp(M)
— OResly., (M) #0.
By Remark @ the last equality holds if and only if
ORes) g1 (L) # 0
for some x € W. This identity is indeed true for z = 1 because W” c W’ and
Xwn e = Supp(L) = OResiy (L) # 0.
Next we prove the inclusion
Supp(M) C Xw» p.

Any point b of h\ Xy p is contained in the set X Wb for some parabolic subgroup
W' C W such that W is not conjugate to a subgroup of W' : it suffices to set
W' = W,. We must check that for such a subgroup W' C W we have

X‘(;V”’,h ¢ Supp(M)
By Proposition E it is enough to check that
ORCS%/H (M) = 0

Now, by Lemma P.§ we have the following formula in [O(W"", )]

OResyy ((M]) = Indiyimqy -1y, 0 “ (PResyiym g 1w ([L])).-

Here x runs over a set of representatives of the cosets in W'\ W/W"’. Since W" is
not conjugate to a subgroup of W' it is a fortiori not conjugate to a subgroup of
aW" =N W', ie., we have

X;)W”/rlmvv/,b' N Xwrp = 0.
Therefore Proposition E yields
OResy iy (L) = 0,
because Supp(L) = Xy 5. This implies that
OResy ([M]) = 0.

Hence we have also
ORCS%/U (M) == 0
We are done. O
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3. THE CYCLOTOMIC RATIONAL DAHA

3.1. Combinatorics. For a sequence A = (A1, Ag,...) of integers > 0 we set |A| =
A+ Ay +---. Let

A(,n) ={d = (A, A2y .. M) € NS A = n).

It is the set of compositions of n with £ parts. Let P, be the set of partitions of
n, i.e., the set of non-increasing sequences A of integers > 0 with sum |[A\| = n. We
write X' for the transposed partition and I()) for its length, i.e., for the number of
parts in A\. We write also

oy =[] mal, (3.1)

i>1

where m; is the number of parts of A equal to 7. Given a positive integer m and a
partition A we write also

mA = (mA1,mAz,...).

To any partition we associate a Young diagram, which is a collection of rows of
square boxes with A; boxes in the i-th row, ¢ = 1,...,I(A). A box in a Young
diagram is called a node. The coordinate of the j-th box in the i-th row is the pair
of integers (i, 7). The content of the node of coordinate (i, j) is the integer j —i. Let
the set Py consist of a single element, the unique partition of zero, which we denote
by 0. Let P = | ,5,Pxn be the set of all partitions. We'll abbreviate Z; = Z//{Z.
Let P* be the set of (-partitions, i.e., the set of all partition valued functions on Z,.
Let P! be the subset of /-tuples A = (A(p)) of partitions with |\| = >, AP = n.
Let T' be the group of the ¢-th roots of 1 in C*. We define the sets P, PL of
partition valued functions on I' in the same way.

3.2. The complex reflection group I';,. Fix non negative integers ¢, n. Unless
specified otherwise we’ll always assume that £,n # 0. Let &,, be the symmetric
group on n letters and I';, be the semi-direct product &,, x I'", where I'"" is the
Cartesian product of n copies of I'.  We write also &g = ' = I'y = {1}. For
v €I let v; € I'™ be the element with v at the i-th place and with 1 at the other
ones. Let s;; be the transposition (7, ) in &,. We'll abbreviate s; = s; ;1. Write
SZJ = sij%qj_l for v € I, i # j. For p € Zy let xp : I' = C* be the character
v +— yP. The assignment p — X, identifies Z, with the group of characters of I'.
The group I',, is a complex reflection group. For £ > 1 it acts on the vector space
h = C™ via the reflection representation. For ¢ = 1 the reflection representation is

given by the permutation of coordinates on the hyperplane
Ci={z1+ - +z,=0} CC".

We’ll be interested in the following subgroups of T',,.

e To a composition v of n we associate the set
IZ{I,Q,...,TL*1}\{V1,I/1+V2,...}.

Let ', = 6, x I'”, where G, = &7 is the subgroup of G,, generated by the
simple reflections s; ;41 with ¢ € I.

e For integers m,n > 0 and a composition v we set I',,, =T, x &,. If
v = (m?) for some integer j > 0 we abbreviate T, (i) = ['n,. We write
also I'y, i, = I'y, X &,,,. Any parabolic subgroup of I';, is conjugate to I'; .,
for some I, v with [ + |v| < n.
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3.3. Definition of the cyclotomic rational DAHA. Fix a basis (z,y) of C2.
Let x;, y; denote the elements z,y respectively in the i-th summand of (C2)®".
The group I',, acts on (C2)®" such that for distinct 4, j, k we have

Yilwi) =7 i, vilmg) =25, w(w) = v n(ys) =i

sij(xi) = x5, si(yi) = vj,  sij(wk) = 2k, Sij(Yk) = Yk
Fix k € C and ¢y € C for each v € I'. Since I';, is a complex reflection group with
the reflection representation b equal to (C?)®" | see above, we can define the algebra
H(W)=HW,b) for W =T,,. We'll call H(T';,) the cyclotomic rational DAHA. Tt
is the quotient of the smash product of CI',, and the tensor algebra of (C?)®" by

the relations
iz = kY > shi=Y ey, a=-1,

j#i yel yel

i) =k Y sl ifi ]
~yer
(w6, 5] = [y, y;] = 0.

Let R;, Ry be the subalgebras generated by x1, x2, ..., 2, and y1,¥2, ..., yn respec-
tively. We’ll write b, h* for the maximal spectrum of R;, Ry. The C-vector space b
is identified with C™ in the obvious way. We’ll use another presentation where the
parameters are h, h, with p € Z; where k = —h and —cy = > v~ Ph,. Note
that 1 =3" hy.

PEZLy

3.4. The Lie algebras ;[g and ;[g. Given complex numbers hy,, p € Z;, with
Zp h, =1, it is convenient to consider the following level 1 weight

A= hyw, (3.2)

Here the w),’s are the fundamental weights of the affine Lie algebra
sly = (sl ® Clw, @ !]) @ C1,
where 1 is a central element and the Lie bracket is given by
oo y®w]=[ryl®w" " +r(z,y)d -1, (v.y)=1(y"),  (3.3)

where y + y! is the transposition and 7 is the trace. The affine Lie algebra E:\[g is
generated by the symbols e,, f,, p=0,...,¢—1, satisfying the Serre relations. For
p # 0 we have

-1
ep=€pptr1®1, e=e€e 10w, fp=ept1,®1, fo=e®w ~,

where e, , is the usual elementary matrix in sl,. We’ll also use the extended affine

Lie algebras 5~[g, obtained by adding to 5A[g the 1-dimensional vector space spanned
by the scaling element D such that [D,z ® @w"] = rz ® w” and [D,1] = 0. Let &
denote the dual of D, i.e., the smallest positive imaginary root. We equip the space
of linear forms on the Cartan subalgebra of sl, with the pairing such that

(wWp,wq) = min(p, q) — pg/l, (wp,d) =1, (6,0) =0.

Let U (;\[4) be the enveloping algebra of sly, and let U ’(f?[g) be the subalgebra
generated by the elements f, with p=0,...,¢—1. For r > 0 we write U~ (sl;), for

the subspace of U ’(;[4) spanned by the monomials whose weight is the sum of r
negative simple roots.
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3.5. Representations of G,,, I',,. The set of isomorphism classes of irreducible
S,,-modules is
Irr(C&,) = {Lx; ) € P},
see [@, sec. 1.9]. The set of isomorphism classes of irreducible I',-modules is
Irr(CT,,) = {Lx; A € P},

where L is defined as follows. Write A = (A(p)). The tuple of positive integers
vy = (JA(p)]) is a composition in A(¢,n). Let

L) (xp-1) P € Tre(CT )

be the tensor product of the &|y(,)-module EA(p) and the one-dimensional T'I*(®)I-
module (Xp_1)®|>‘(p)‘. The T',-module L) is given by

Ly = IndgzA (EA(I)X?M(I)\ ® E,\(g)x?l’\@” R ® E/\(Z)X?ﬁ(f)l). (3.4)

3.6. The category O(T';,). Consider the C-algebra H(T',) with the parameter A
in (@) The category O of H(T'),) is the quasi-hereditary category O(T,,). The
standard modules are the induced modules

Ay =Indf T3 (L), AePL.
Here L) is viewed as a I',, x Ry-module such that y1,...y, act trivially. Let Ly,
P, denote the top and the projective cover of Ay. Recall the C-linear isomorphism
spe : [Rep(CT,,)] — [O(T,)], [La] = [Ax]. (3.5)

To avoid cumbersome notation for induction/restriction functors in

or) =@or,)

n=0
we’ll abbreviate

©Ind,, = OIndII:" , ORes,, = OResll:"' ,

n—1 n—1

@] _ 0 Cntmr @) _ 0 Tntmr

Indm(mr) = Inan,(mT)’ Resn,(mr) = ReSFn () (3.6)

Tntmr |
OIndnymT = OIndF tmr OResnﬁmr = OReSF mr

n,mr n,mmr

We write also
OInd(mr) = OIndgﬁ” :0(67) = O(6,,,),
ORes(mr) = OResng 0(6Gpy) — O(6]).

r
m

3.7. The functor KZ. For ( € C* and v1,vs,...,u¢ € C* let H¢(n, ) be the
cyclotomic Hecke algebra associated with I',, and the parameters (, vy, ..., v, see
Section [A.d. We'll abbreviate H(T',,) = H¢(n, £). Assume that

¢ =exp(2imh), v, =u0 exp(72i7r(h1 +hg+--+ hp,l)).
Then the KZ-functor [[Ld] is a quotient functor
KZ:O(T',) — Rep(H(T,,)).
Since KZ is a quotient functor, it admits a right adjoint functor
S :Rep(H(T',)) — O(T'y,)

such that KZo S =1. By , thm. 5.3], for each projective module @ € O(T,,) the
canonical adjunction morphism 1 — S o KZ yields an isomorphism

Q — S(KZ(Q)). (3.7)



HEISENBERG AND CHEREDNIK 11

3.8. The functor R. Let H¢(m) be the Hecke C-algebra of G Ly, see Section [A.J.
Let S¢(m) be the ¢-Schur C-algebra, see Appendix E The module categories of
Sc(m), He(m) are related through the Schur functor

®* : Rep(Sc(m)) — Rep(He(m)).
Set
A(m)+ == A(m,m)ﬁZT, ZT = {)\ = (/\1,)\2, . ,)\m) S Zm, )\1 2 )\2 2 e 2 )\m}

The category Rep(S¢(m)) is quasi-hereditary with respect to the dominance order,
the standard objects being the modules AY with A € A(m);. The comultiplication
A yields a bifunctor ([B.§)

@ : Rep(S¢(m)) ® Rep(S¢(m’)) — Rep(S¢(m +m’)).

Now, assume that h is a negative rational number with denominator d and let
¢ € C* be a primitive d-th root of 1. Recall that h is the parameter of the C-
algebra H(GS,,). If h ¢ 1/2 + Z then Rouquier’s functor [R7] is an equivalence of
quasi-hereditary categories

R:0O(&,,) = Rep(Sc(m)), Ay s AS,

such that KZ = ®* o R. For m = m’ + m” we have a canonical equivalence of
categories O(6,, ) R0(&,) = (9((‘5 + X &) and the induction yields a bifunctor

OTnd,nr e = O(G ) @ O(G ) — O(S,,). (3.8)

&) =P 0(S,), Rep(Sc) = @) Rep(Sc(n

n>0 n>0
Proposition 3.1. For h ¢ 1/2 + Z the functor R is tensor equivalence O(&) —
Rep(S¢)-
Proof. We must check that R identifies the tensor product ® with the induction
(B.9). First, fix two projective objects X € O(S,,/) and Y € O(S,,+). We have
&*(R(X)®RR(Y)) = HIndms i (P*R(X) @ D*R(Y))

=H1Ind, nr (KZ(X) @ KZ(Y))

= KZ(°Indy i (X ® Y))

= *R(°Indp m» (X @ Y)).

The first equality follows from Corollary @, the second one and the fourth one
come from KZ = ®* o R, and the third one is the commutation of KZ and the
induction functors, see [R§. Since the modules R(X)®R(Y) and R(®Indy (X ®

Y)) are projective, and since ®* is fully faithful on projectives we get that
R(X)®R(Y) = R(°Indy (X @Y)).

Now, since the functors (@), (@) are exact and coincide on projective objects, and
since the category O(S,,,) has enough projectives, the proposition is proved. (I

We’ll abbreviate

3.9. The categorification of sl,,. Recall that Z(O(Ty,)) is the center of the cat-
egory O(T',). Let D,,(2) be the polynomial in Z(O(T,,))[z] defined in [, sec. 4.2].
For any a € C(z) the projection to the generalized eigenspace of D, (z) with the
eigenvalue a yields an exact endofunctor @ 4 of O(T'),). Next, consider the point

b, =(0,0,...,0,1) €, Hh=C".
The induction and the restriction relatively to b,, yield functors

%Ind,, : O(T,_1) = OT,), ©Res, : OT,) = O, 1).
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Definition 3.2. [@, sec. 4.2] The g-restiction and the g-induction functors
eq: OT,) = O(h1), fq:O0Tn-1) = 0Ty), ¢=0,1,....m—1
are given by
eq = @ Qn—1.0/(s—c1) © “Resy, 0 Qo
a€C(z)
fo= P Quat—co)©Indpo Q1.4
a€C(z)
We’ll abbreviate
E=e®e1® - dem-1, F=fo@f[1D DB fm1.
Following 2§, sec. 6.3], for L € Irr(O(T')) we set

éq(L) = top(eq(L)),  fq(L) = soc(fq(L)), €4(0) = fq(0) = 0.
Now, for each n we choose the parameters of H(T';,) in the following way
h=—-1/m, hy,=(Spt1—sp)/m, sp,€Z, p#0. (3.9)
The following hypothesis is important for the rest of the paper :
from now on we’ll always assume that m > 1.
The C-vector space [O(T')] is canonically isomorphic to the level ¢ Fock space ]:7(5,)2
associated with the (-charge s = (sp), see (b.20) below for details. The latter is
equipped with an integrable representation of 5~[m of level £, see Section @ below.

Proposition 3.3. (a) The functors eq, fq are exact and biadjoint.

(b) We have E = “Res,, and F = ©Ind,, .

(¢) For M € Oy,) we have E(M) = 0 (resp. F(M) = 0) iff E(L) = 0
(resp. F(L) =0) for any constituent L of M.

(d) The operators eq, fq equip [O(T')] with a representation of sln, which is iso-
morphic via the map ([5.24) to fﬁf?e.

(e) The tuple (Irr(O(T)), &y, f4) has a crystal structure. In particular, for L, L' €
Irr(OT")) we have é4(L), fo(L) € Irr(O(I')) U {0}, and é,(L) = L' if and only if
fqo(L") =L.

Proof. Parts (a), (b) follows from @, prop. 4.4], part (e) is contained in [@,
thm. 6.3], part (¢) is obvious, and part (d) is [§, cor. 4.5]. O

3.10. The filtration of [O(T',,)] by the support. Fix a positive integer n. As-
sume that ¢ > 2. In this section we consider the tautological action of I',, on C™.
For an integer I > 0 and a composition v such that [ + |v| < n we abbreviate
Xﬁy = Xr(/)v.,h and X;, = Xw,y where W =1 ,. If v = (mj) for some integer j > 0
such that [ + jm < n we write

(e} (e}
Xl,j = Xl,m Xl-,j = lev-

Therefore X; ; is the set of the points in C™ with [ coordinates equal to zero and
j collections of m coordinates which differ from each other by ¢-th roots of one.
To avoid confusions we may write X; jc» = X; ;. Unless specified otherwise, for
l,7,m,n as above we’ll set

i=n—1—jm. (3.10)

Definition 3.4. For i,j > 0 we set
Irr(O(T)))i,; = {L € Irr(O(T,)) ; Supp(L) = X5}
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Definition 3.5. For ¢,j > 0 let F; ;(I'y) be the C-vector subspace of [O(T'y)]
spanned by the classes of the modules whose support is contained in X ;, with [ as
in (B.10)). If i < 0 or j < 0 we write F; ;(T',) = 0.

Definition 3.6. We define a partial order on the set of pairs of nonnegative integers
(i,7) such that i+ jm < n given by (¢/,5') < (4, 7) if and only if Xy j» C X ;, where
l=n—i¢—jmandl' =n—1 — j'm.

Since the support of a module is the union of the supports of all its constituents,
the C-vector space F; ;(I',,) is spanned by the classes of the modules in Irr(O(T',,))
whose support is contained in X ;, or, equivalently F; ;(I',,) is spanned by the
classes of the modules in

U Irr(O(Fn))i/ﬁj/.
(#,3")<(i.4)
Remark 3.7. We have U, ; Fi ;(I'n) = [O(I's)]. Indeed, for L € Irr(O(T',)) we have
Supp(L) = X, for some [, v, see Section P.3. For b € X7, the H(I',)-module
Resp(L) is finite dimensional. Thus, since the parameter h of H(I';,) is equal to

—1/m the parts of v are all equal to m. Hence we have Supp(L) = X; ; for some
l,j as above.

The subspaces F; ;(T'y,) give a filtration of [O(T',,)]. Consider the associated graded
C-vector space

gr(ly) = @ gr; j (T'n).-

Note that the C-vector spaces F; ;(I',) and gr,; ;(I',) differ slightly from the cor-
responding objects, denoted by F; ;Ko and grEjKo, in [E, sec. 6.5].The images
by the canonical projection Fj;(T',) — gr; ;(I's) of the classes of the modules
in Irr(O(I',));,; form a basis of the C-vector space gr; ;(I'y). So we may regard
gr; ;(I'n) as the subspace of [O(T',)] spanned by Irr(O(I'y,))i ;. We'll abbreviate

Fio(ln) = ZFi,j(Fn), Fe;(Tn) = ZFiJ(F")’
gri,o(l—‘n) = @gri,j(rn)a gro,j(Fn) = @gri,j (T'n).-

Now, let us study the filtration of [O(I',)] in details. The subgroup I'; () of I';, is
contained in the subgroups I'i 1 (i), I't,(mi+1) and I'ip . (mi-1) (up to conjugation
by an element of I',,) whenever such subgroups exist. Thus we have the inclusions

Xiv1,5, X+t Xigm,j—1 C Xij,
Fio1i(Tn); Ficmjr1(Tn), Fij-1(Tn) C Fij(Tn).
Proposition 3.8. (a) We have
Xvjy © Xy = Xvj CXip1,; UXp 1 UXigpm -1
(b) We have an isomorphism of C-vector spaces
gri ;(Tn) = Fj(Cn)/ (Fim1,j(Tn) + Fimmjr1(Tn) + Fj-1(Tn)).

Proof. First we prove (a). Recall that X ; is the set of the points in C" with [
coordinates equal to zero and j collections of m coordinates which differ from each
other by ¢-th roots of one. Therefore we have

Xy C Xy < i—i >max(0,(j' — j)m). (3.11)
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In particular this inclusion implies that I’ > [. We must prove that
Xy @ Xij = Xvjr C X1, UXpjr1 UXipm j-1-

First, assume that I’ = [. Since Xy j C X;; we have ¢ > i’. Then (B.10) implies
that i—i’ = (j'—7)m, hence that 7' > j and i—i' > m. Soi—i > max(m, (' —7)m),
and (B-11)) implies that Xy j C X; 1.

Next, assume that [ +m > I’ > 1. Since Xy j C X;; we have ¢ > ¢/. Further
(B.1d) implies that i —i’ > (j' — j)m and i’ —i > (j — j’ —1)m Thus i > 4’ implies
indeed that i > 4" and 5/ > j. Soi—1—4 > max(0, (' — j)m), and ( ) implies
that Xlg ir C Xl+17J.

Finally, assume that I’ > [ +m. Since Xy j C X;,; we have ¢ > ¢'. Further
(B.1d) implies that i — i’ > (' — j + 1)m. So i —i’ > max(0, (' — j + 1)m), and
(B.11)) implies that Xy ;v C Xjqm j—1-

Part (b) is a consequence of (a) and of the definition of the filtration on [O(T',,)].

O

Remark 3.9. The sets X415, Xi1j+1, Xitm,j—1 do not contain each other. Indeed,
the variety X;; has the dimension ¢ + j. Thus the codimension of X 1 j, X i1,
Xiym,j—1 in X; ; are 1,m — 1,1 respectively. However, since a point in Xl 41 has
only [ coordinates equal to 0, we have X; j41 & Xi41,5 and X; 11 & XHmJ 1.

Remark 3.10. We have F, o(T'y,) = [O(Ty)], because (i,7) < (i + jm, 0).
Remark 3.11. We have (i/,5") < (0,7) if and only if ¢/ =0 and j' < j

Remark 3.12. Consider the set
Fj(Tn)° = Fij(Tp) \ (Fim1,5(Tn) + Fiom j+1(Ca) + Fij—1(Tn)).
For L € Irr(O(I',,)), by Proposition B.§ and Remark B.] we have
[L] € F;;(Tn)° <= Supp(L) = Xy,
~— Le¢ II‘I‘(O(FH))ZJ

Remark 3.13. A representation is finite dimensional if and only if its support is
zero. Thus Irr(O(T'y,))o,0 is the set of isomorphism classes of finite dimensional
modules in O(T',). Note that (0,0) < (4,4) for all (i, 7).

Remark 3.14. If £ = 1 then, by Remark P.1] and Section .4 we have O(&,,) =
0(6,,,Cy). For an integer j > 0 we set X; = XGin,Cg’ ie., X; is the set of the
points in C§ with j collections of m equal coordinates. Then, we set i = n — jm
and the results of this section extend in the obvious way. In particular, we have

XiCX; <= j'>j XyCX; < XjCXjqu.

Remark 3.15. For A € P,, r > 1, the support of the module L,y € Irr(O(&,,,)) is
SUPP( mx) = XG;,COWT-
Indeed, formula () below and Proposition @ imply that
Supp(Lma) C Supp(olnd(mr)(L‘(g":))) = Xer, cipr-
Next, by Remark @ there is 7 =0,1,...,r such that
Supp(Lma) = X@in,(cgw-
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Finally the inclusion XG%,CS” C Xer, cpr implies that j = r by Remark .
Note that this equality follows also from the work of Wilcox [@]
3.11. The action of F, F on the filtration. Let F, F denote the C-linear

operators on [O(T")] induced by the exact functors E, F'. Recall that the parameters
of H(I') are chosen as in (B.9).

Proposition 3.16. Let L € Irr(O(T'},));; and l =n —i—mj.
(a) We have Supp(F(L)) = X j cnt1.
(b) We have E(L) = 0 iff i = 0. We have Supp(£(L)) = X; jcn-1 if i > 0.

Proof. Recall that
Supp(L) = X;; = X1 jcn,  E(L) = %Res, (L), F(L)=%Ind,(L).

Thus by Proposition P.2l we have E(L) = 0 iff b, ¢ X; ;. Since m > 1 the definition
of the stratum X;; in Section shows that b, ¢ X;; iff i = 0. Now, assume
that ¢ > 0. Then [ + mj < n — 1, and Proposition @ yields

Supp(E(L)) = | Xw,cn1,

where W runs over the parabolic subgroups of I';,_; which are I',,-conjugate to
'} (msy (inside the group I',). We claim that a subgroup W C I',,_; as above is
I —1-conjugate to I'y (i) (inside the group I';,_1). Therefore, we have

Supp(E(L)) = X; jcn1.

Indeed, fix &’ € C"~! such that W = (I',_1)pr. For b= (b, 2) with z € C generic we
have (T'y,), = W, where W is regarded as a subgroup of I';, via the obvious inclusion
o1 C Ty. Since W is I'p-conjugate to L'y (,,5), there is an element g € I';, such
that the first | coordinates of g(b) are 0, the next mj ones consist of j collections
of m coordinates which differ from each other by ¢-th roots of one, and the last i
coordinates of g(b) are in generic position. We’ll abbreviate

g(b) € 0'(m)” =" .

Since z is generic it is taken by g to one of the coordinates of g(b) in the packet **.
Composing g by an appropriate reflection in &,, we get an element ¢’ € I';,_1 such
that

g'(b) = (g'(t)),2) € 0'(m)’ +".
Thus we have also
g 1) € 0l(m) i

This implies the claim. Hence, we have

Supp(E(L)) = Xi j cn-1.
Finally, since Supp(L) = X jc», Proposition E implies that

Supp(F(L)) = X jcn+1.

([l

Corollary 3.17. (a) We have E(F; ;(T'y,)) C Fi_1;(Tp—1). Ifi # 0 we have also
E(F;;j(Tn)°) C Fio1,;(T'n-1)°.

(b) For M € O(Ty,) with [M] € F; ;(T',)° we have E([M]) =0 iff i =0.
(C) We have F(FZJ(FH)) C E+17j(rn+1) and F(Fm—(Fn)o) C Fi+17j(Fn+1)°.
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Proof. First, let L € Irr(O(T',)) with [L] € F; ;(T'y). Thus L € Irr(O(T))y ;5 with
(#,5") < (4,7). Proposition yields

Supp(F(L)) = Xl/ i/ ,Cn+1, Supp(E(L)) = Xl/ j/,Cn—1 lf ’L'I 7é 0.

Hence we have F([L]) € Fit1,;(Tn+1) and E([L)) € E 1,j(Tr—1). Part (b) follows
from Proposition B.1q and Remarks B.11], B.19. Part (c) follows from Proposition
and Remark B.12, The second part of (a) follows from Proposition and

Remark . O

Corollary 3.18. Let L € Irr(O(I',)); ;-
(a) If €q(L) # 0 then éq(L) € Irr(O(T'n—1))i-1,;-
(b) If fo(L) # 0 then fo(L) € Irr(O(T'n41))i41,5-

Proof. Set L' = é,(L). Assume that L’ # 0. By Proposition B. we have
L' € Irr(O(T'y-1)), fq(L/) =

Next, since L € Irr(O(T"));,; and since é,(L) is a constituent of E(L), we have
[L'] € F;_1;(T'_1) by Corollary B.17. We must prove that [L/] € F;_; ;(T'n_1)°. If
this is false then we have [L'] € Fs j(I'n—1) with

(i/vj/) = (7’ - 27j)7 (Z —m—= 15] =+ 1)7 (Z - 15] - 1)
Thus, since f,(L') is a constituent of F(L'), by Corollary we have
[L] € gr; j(Tn) N Firg 5 (In). (3.12)

Therefore () yields i’ +1 > 4,804 =i —1and j' = j — 1. So, applying ()
once again we get a contradiction with (B.13). This proves (a). The proof of (b) is
similar. g

Corollary 3.19. (a) For x € [O(T")] we have
(eq(ac) =0, Vg=0,1,...,m — 1) < z € Fp.(D).
(b) For M € O(T') we have
E(M)=0 < E(M])=0 < [M] € Fy.(I').
(c) The space Fy o(T') is spanned by the set
{[1); L € (0o} = {[L]; L € Ix(O(T)), E(L) = 0}
={[L]; L € Irr(O(I")), é,(L) =0, Yg=10,1,...,m—1}.

Proof. For z € [O(T")] we write = ), x[L] where L runs over the set Irr(O(T)).
By | @ lem. 6.1, prop. 6.2], for each ¢ we have

eq(z) =0 <= 1 =0if e4([L]) #0.
Thus the C-vector space
{z € [O)]; eq(x) =0, Vg=0,1,...,m —1}

is spanned by the classes of the simples modules L such that e,([L]) = 0 for all
q¢=0,1,...,m — 1. Then, apply Corollary B.1q. This proves (a). Parts (b), (c) are
obvious. Note that

€q(L) =0, Vg <= e4(L) =0, Vg,

because a non zero finitely generated module has a non zero top. O
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4. THE FOCK SPACE

From now on we’ll abbreviate

R(6) = P[Rep(CS,)], R(T') = @D[Rep(CT ).

n=0 n=0

4.1. The Hopf C-algebra A. This section and the following one are reminders
on symmetric functions and the Heisenberg algebra. First, recall that the C-vector
space R(G) is identified with the C-vector space of symmetric functions

A= (C[.’L'l,.’L'Q, .. .]G“
via the characteristic map [24, chap. T]
ch: R(6G) — A.

The map ch intertwines the induction/restriction in R(&) with the multiplica-
tion/comultiplication in A. It takes the class of the simple module Ly to the Schur
function Sy for each A € P. The power sum polynomials are given by

Px=P\Py,..., P.=)Y 1, Py=1 XeP, r>0.

We equip the C-vector space A with the level 1 action of ;[m given by

eg(S2) =D Sy, fo(S) =D Sy, q=0,...,m—1, (4.1)
v Iz

where v (resp. u) runs through all partitions obtained from A € P by removing
(resp. adding) a node of content ¢ mod m. We equip A with the symmetric bilinear
form such that the Schur functions form an orthonormal basis. The operators e,
fq are adjoint to each other for this pairing.

4.2. The Heisenberg algebra. The Heisenberg algebra is the Lie algebra $ spanned
by the elements 1 and b,, b, r > 0, satisfying the following relations

)y

L, 6] = [br,bs] =0, [bl,bs] =r16,s, 75> 0.

Let U($) be the enveloping algebra of §), and let U~ ($)) C U($)) be the subalgebra
generated by the elements b, with » > 0. Write U~ (), for the subspace of U~ (9)
spanned by the monomials b, b, --- with Y .r; = r. For A € P and f € A we
consider the following elements in U($))

b)\:b)\lb)\Q..., /)\:b/)\l &2...7
by =3 m"PLHbn b= NP,
AEP AEP

where 2 is as in (B.]). For any integer ¢ we can equip A with the level ¢ action
of $ such that b, acts by multiplication by ¢P,. and b/. acts by rd/dp, for r > 0.
The operators b, bl. are adjoint to each other for the pairing on A introduced in
Section [.1. Further, they commute with the sl,,-action in (1), see e.g., Bq]. We
write Vf’ = A regarded as a level £ module of $). Consider the Casimir operator

1 /
0=7 ; bybl.. (4.2)

To avoid any confusion we may call it also the level ¢ Casimir operator. This formal
sum defines a diagonalisable C-linear operator on Vf’ such that

[0,b,] =rb., [0,b]] = —rb..
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Below, we’ll equip A with the $-action of level 1, i.e., we’ll identify A = Vfﬁ, unless
mentioning explicitly the contrary.

4.3. The Lie algebras gA[m and g~[m. We define the Lie algebra alm in the same
way as ;[m, with gl,, instead of sl,,,. We’ll also use the extended affine Lie algebra
gNIm, obtained by adding to alm the 1-dimensional vector space spanned by the
scaling element D such that [D,z®@"] = rz®w” and [D, 1] = 0. The Lie algebra

(st x H)/(m(1,0) = (0,1)). (43)

is isomorphic to gA[m via the obvious map, which takes the element b/, to 221:1 epp ®

" and the element b, to >3 " |

by a glm-module we’ll always mean a module over the Lie algebra (), ie., a -

epp®w " for each r > 0. Unless specified otherwise,

module with a compatible $)-action. Similarly, a gl,,-module we’ll always mean a
gl,,-module with a scaling operator D such that

[Diz@w"|=ree@w", [D,b]=-rb., [D,b]=rb.

By a dominant integral weight of gA[m, g~[m we’ll always mean a dominant integral
weight of g[m, sl,,. We denote the sets of such weights by Pf‘m, Pf‘m or by Pj‘;‘m,

Pfj[m. For X € P_{‘m let Vf[m and Vf ' be the irreducible integrable modules over
5l gl,, with the highest weight A. As a gl,,,-module we have

al,, _ 1/5lm 9
Vam =Vime V).

Let Q%'m, ~P5[m be the root lattice and weight lattice of sl,,. The weights of the
module V3™ are all the weights of the form

p=wo+ B S(BB)6 5, B, >0

Among those, the extremal weights are the weights for which ¢ = 0. The set of the
extremal weights coincide with the set of the mazimal weights, i.e., with the set
of the weights u such that u + § is not a weight of Vof(f’". A weight p of Vjo[m is
extremal if and only if

(b, p) = 0.

Note also that we have (u, u) = —2i if and only if u+ 40 is an extremal weight. See
e.g., [E, sec. 20.3, 20.5] for details. Now, let T, be the standard maximal torus in
SL,,, and let t,, be its Lie algebra. Let ém be the affine symmetric group. It is
the semidirect product &,, x Q°'. Note that Q*' is the group of cocharacters of
T.mn. We'll regard it as a lattice in t,,, in the usual way, and we’ll identify t,, with
t’, via the standard invariant pairing on t,,. The (A‘Sm—action on t, ® Cwo ® CJ, see
e.g., [@, sec. 13.1], is such that the element 3 in Q®' acts via the operator

€+ et p(1)B — (1, B) + 3 (8, Hyu(1)s (4.4)
In particular, we have
Es(wo) =wo + 8 — 5{6, 6)5

We'll use the same notation for the &,,-action on £, ®Cwo ®Co and on t}, ® Cwo,
hoping it will not create any confusion. Therefore, for A € t}, & Cwy the symbol
€s5(\) will denote both the weight ([L4) and the weight p + p(1)3. We can view
the cocharacter f € Q*' as a group-scheme homomorphism G,,, — T},. Thus the
image (w) of the element @ € K lies in T,,(K). For any sl,,-module V let V],
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w e Pam, be the corresponding weight subspace in V. Since the coadjoint action
of B(w) on tf, ® Cwy @ C§ is given by flgl, see e.g., [@], we have also

BVIn) = VIeg  (w)] (4.5)
if V' is integrable.
4.4. The Hopf C-algebra Ar. Now, let us consider the Hopf C-algebras R(T).

Once again, the multiplication/comultiplication on R(T") is given by the induc-
tion/restriction. We equip R(T") with the symmetric C-bilinear form given by

(f,9)=ITul™" > f(@)g(z™"), f.g € [Rep(CT,)].

Here we regard f, g as characters of CI',,. This bilinear form is a Hopf pairing. Next,
we consider the Hopf C-algebra Ar = A®T. We'll use the following elements in Ar

=1 --1f1®---®1, feA, el
with f at the -th place. We abbreviate
Pl =(P.)", P\= HP;(W), peP, \ePl.
yer

The comultiplication in Ar is characterized by

AP )=P'®@1+1®P), r>0, vel.
Following 24, chap. I, app. B, (7.1)] we write

P, =01 ZVPPJ, r>0, péeZy.
vel

We equip Ar with the Hopf pairing such that

(Prp, Psg) = 10p.g0rs, 1,8>0, p,q€Zy.

We may regard P, ,, r > 0, as the r-th power sum of a new sequence of variables
Zip, 1 > 0. We define the following elements in Ar

Sup =Su(@ip), Sh=]] Sxwp wrEP, AP (4.6)
PEZLy

The Hopf C-algebras R(T') and Ar are identified via the characteristic map [@,
chap. I, app. B, (6.2)]

ch: R(F) — AF.
This map intertwines the induction in R(T') with the multiplication in Ar by [@,
chap. I, app. B, (6.3)]. By R4, chap. I, app. B, (9.4)] and (B.4) we have

ch(Ly) = S;x, A€ P, (4.7)
where 7 is the permutation of P* such that (7A)(p) = A(p + 1) for each p € Z;. For
A € PL we write

o = [T 2an 10O,

vyel
where 2y, is as in (B.1), and we define A € PT' by A(y) = A(y~!). Then we have

(S, Su) = Oxp, A p€ P,
(P\, Pg) =\ puzn, A p€ P

The first equality is proved as in [R4], chap. I, app. B, (7.4)], while the second one
is [@, chap. I, app. B, (5.3”)]. By (L.7), (@) the map ch is an isometry. Thus it
intertwines the restriction in R(I") with the comultiplication in Ar.

(4.8)
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Proposition 4.1. (a) The restriction Rep(CI'y,) — Rep(C&,,) yields the C-algebra
homomorphism Resg : Ar — A such that S\ — Hp Sxp)» Prp = Pr.

(b) The induction Rep(CS,,) — Rep(CT,,) yields the C-algebra homomorphism
Indg : A — Ar such that P, +— P} =Y _, P,

pPEZLy ~ TP

Proof. The first part of (a) is easy by Section B.3, and it is left to the reader. For
the second one, observe that

ch(oyp) = Prp, >0,

where o, is the class function on I'; wich takes the value r(yi7y2 - -7,)P on pairs
(w, (71,725 --,7r)) such that w is a r-cycle, and 0 elsewhere, see [@, lem. 5.1].
Now we concentrate on (b). Note that

Resg(P)) =1, Resg(P))=105,1P., r>0.
Therefore, for A € PT' we have

APy 4y i M) = 0 for vy # 1,
Resg (Py) = [ ] Resg (Py) = {0 " else
vyel '

If f,g € [Rep(CT,,)] are the characters of finite dimensional I',-modules V, W,
then (f,g) is the dimension of the space of CI'y,-linear maps V' — W. Hence, by
Frobenius reciprocity the operator Indg is adjoint to the operator Resg. Thus,
Ml(k(l))g/\(l)ﬁ(r) if A(y) =0 for v # 1,

(Ind5 (P,), P.) =
0 else.

This implies that Indg(P.) = aP! for some a. To determine a let A be such that

A(y) =0 if vy # 1 and A\(1) = (r). Then we have
Py, =P!, (P\,P\) =1l

o

This implies that a = 1. (I

Remark 4.2. Let f — f be the C-antilinear involution of Ar which fixes the Py’s
with A e]DF, see [@, chap. I, app. B, (5.2)]. For A € P’ let \ be the (-partition
given by A(p) = A(—p). We have

Popy=P._, Sy\=85, r>0, pcZ, MeP

Remark 4.3. Setting £ =1 in Ar we get the standard Hopf algebra structure and
the Hopf pairing of A.

Remark 4.4. We have @, chap. I, app. B, (7.17)]

PY=> Y PPy, 120, PBl=1 Py,=0dy,.
PELy

4.5. The level 1 Fock space. Fix once for all a basis (e1,...,€y,) of C™. The

level 1 Fock space of ;[m is the space F,, of semi-infinite wedges of the C-vector
space V, = C™ ® C[t,t~1]. More precisely, we have

Fm = Gadez};(g)v

where ]-'T(,fl ) is the subspace spanned by the semi-infinite wedges of charge d, i.e.,
the semi-infinite wedges of the form

Uiy N Uiy N+ i1>i2>..., ui,jm:ei@)tj, (49)



HEISENBERG AND CHEREDNIK 21

where i, =d — k+ 1if k> 0. We write

A d) =uiy Augy Ao--y XEP, dp=X+d—k+1, k>0. (4.10)
The elements |\, d) with A € P form a basis of FD . We equip FP with the
C-bilinear symmetric form such that this basis is orthonormal.

The Fock space .7:7(7? ) is equipped with a level one representation of sl,, in the
following way. First, the C-vector space V,,, is given the level 0 action of sl,,, induced
by the homomorphism

sl = s, @C[t,t7Y, 120, z@w—a®t (4.11)

and the obvious actions of sl,, and C[t,t7!] on V,. Then, taking semi-infinite
wedges, this action yields a level 1 action of 5A[m on }“,(ﬁl), see e.g., .

Next, observe that the multiplication by ¢", r > 0, yields an endomorphism of
V. Taking semi-infinite wedges it yields a linear operator b, on }Z(g ). Let bl be
the adjoint of b,. Then b/, b, define a level m action of $) on }Z(g ). The f?[m—action
and the $-action on ]-'T(,fl ) glue together, yielding a level 1 representation of gA[m on
FP see B] again.

As a gA[m-module we have a canonical isomorphism

Fld) — VE [

m Wd mod m "
It identifies the symmetric bilinear form of }Z(g ) with the Shapovalov form on
Vf;ﬁodm, i.e., with the unique (up to a scalar) symmetric bilinear form such that
the adjoint of b,, e, are b, f, respectively.

Remark 4.5. The C-linear isomorphism

FP S A Nd) Sy, AeP (4.12)

takes the operators ), b,, eq, fy on the left hand side to the operators b, bmr,

€q—d, fq—d on the right hand side.

4.6. The level £ Fock space. Fix abasis (€1, ..., €y) of C™ and a basis (€1, ..., €/)
of C*. The level ¢ Fock space of sl,, is the C-vector space

Fme = ®d€Z }—7(5,)2
of semi-infinite wedges of the C-vector space V,,, = C" @ C*®C|[z, 2~!]. The latter
are defined as in ([.9) with
Uit (j—1ym—kme = € ® &5 ® 2~ (4.13)
Here i = 1,...,m, 7 = 1,...,¢, and k € Z. We define basis elements |\,d),
with A € P, of ]:v(vli)é as in (f.1(), using the semi-infinite wedges above. We equip

]-'7(75{ )e with the C-bilinear symmetric form such that the basis elements |\, d) are
orthonormal. This yields a C-linear isomorphism

FO = A, INd)— Sy, AeP. (4.14)

We equip the C-vector space ]-'7(75{ )e with the following actions, see [ for details :

o The level m¢ action of $) such that b, b, is taken to the operator 0., bimer

on A under the isomorphism (f.14) for > 0.

e The level ¢ action of sl,, defined as follows : equip the C|[z, 2~ !]-module V,,, ;
with the level 0 action of sl,,, given by the evaluation homomorphism (f.11))
and the obvious actions of sl,,, and C[z,27!] on V,;, ;. Taking semi-infinite

wedges we get a level £ action of 5A[m on ‘7:7(:,)2‘
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e The level m action of sA[g which is defined as above by exchanging the role
of m and /.

The actions of 9, E:\[m and 5A[g commute with each other. We call £-charge of weight
d an (-tuple of integers s = (sp,) such that d =3_ s,. Set

-1

(s, m) = (m — s1 + s¢) wo + Z(sp — Spt1)Wp- (4.15)
p=1
The Fock space associated with the /-charge s is the subspace

F& = FO R (s,m)) (4.16)

m

consisting of the elements of weight %(s, m) with respect to the ET[g-action. It is an
[y, X $-submodule of ]-'(d). Consider the basis elements |\, s), A € P¢, of .F(s)

defined in [Bd, sec. 4.1]. The representation of sl on FL )e can be characterized in
the following way, see e.g., E] .

eglhs) =Y [vs), faldos) = Ius), (4.17)
v Iz
where v (resp. 1) runs through all ¢-partitions obtained by removing (resp. adding)

a node of coordinate (4, j) in the p-th partition of A such that ¢ = s, + j — i modulo
m. Consider the C-vector space isomorphism

Ar = FS S As), Ae Pl (4.18)
By [, sec. 4.1] we have an equality of sets
{INs); APl s=(sp) €2, sy =d} = {|\d); A€ P} (4.19)
P

Thus the elements |, s) form an orthonormal basis of () é and the map ((.18) pre-

serves the pairings by @) The representation of § on F,’ () ¢ can be characterized
in the following way.

Proposition 4.6. The operators bl., b,., r > 0, on ]-'(S)é are adjoint to each other.
Further b, acts as the multzplzcatwn by the element P, Z Prrp of Ar under

the isomorphism @)

Proof. The first claim is [, prop. 5.8]. To prove the second one, observe that the
formulas in , sec. 4.1, 4.3 and (25)] imply that the C-linear map

Faoh = @ F5. ) = @ Mp). s
PEZLy PEZLy
intertwines the operator b, on the left hand side and the operator
bRl @1+10b6 310 @1+ +18 011,

on the right hand side. Thus the proposition follows from the definition of the -
action on F,, in Section @ and from the definition of the $-action on A in Section

E3. 0

Remark 4.7. The ;[m-action on ]:7(5,)2 can be extended to an g[m-action such that
the weight of |A, s) is

m—1

(s m5+2w5p7 Z ng(A)ay,

q=0
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see [B{, sec. 4.2]. Here ny()) is the number of g-nodes in A, i.e., it is the sum over
all p’s of the number of nodes of coordinate (i,5) in the p-th partition of A such
that s, +j — i = ¢gmod m. We have also used the notation

14
1
Z<w5p modms Ws, modm> + 5 Zsp(sp/m - 1)

p=1 p=1

A(s,m) =

N | —

In particular, we have

D([A, 8)) = =(A(s,m) +10(A)) A, 5)-

4.7. Comparison of the g~[4-modules ‘7'—7(7?,)@ and V“?UIE. The Fock space Fp, ¢ can

be equipped with a level 1 representation of gl, in the following way. The assignment
2 t" gt i=1,2,...,m,
yields a C-linear isomorphism
Ving =C" @ C @ Clz, 27| = C' @ Clt,t '] = Vi,
Uit (j—1)ym—kmt " Ujt(i—1)—kmés
see ([.9), ([E13). Taking semi-infinite wedges, it yields a C-linear isomorphism
Fme = Fu. (4.21)

(4.20)

Pulling back the representation of gl, on Fy in Section [.q and Remark [t.7 by (.21)
we get a level 1 action of gl, on Fp, ¢ such that :

e For d € 7Z the level 1 representation of g~[4 on Fp, ¢ yields an isomorphism

p -

FO =y . (4.22)

e The level m-action of gA[g in F, ¢ given in Section @ can be recovered from
the level 1 action by composing it with the Lie algebra homomorphism

g[é — é\[éa rR@w —»arxw", 1—ml. (4.23)

e Pulling back the level £ representation of $ on JF; in Section [L.q by ({-21)
we get a level £ action of §) on F,, . The level mf-action of $ in F,, ¢ given
in Section @ can be recovered from the latter by composing it with the
Lie algebra homomorphism

by > by, DL U] 1+— ml. (4.24)

mry

Hence, the action of the level m¢ Casimir operator, i.e., the operator ob-
tained by replacing ¢ by mf in (@), associated with the representation of
$ on Fy, ¢ is the same as the action of the m-th Casimir operator

1
m — bmrb/ 4.2

r>1

associated with the level ¢ representation of $ on Fp, ¢.

e To a partition A we associate an -quotient \*, an £-core A° and a content
polynomial c\(X) as in [P4, chap. T]. In [3, sec. 2.1] a bijection 7 is given
from the set of £-cores to the set of /-charges of weight 0. By [B(, rem. 4.2(i)]
the inverse of the map (f.21]) is such that

m

FO = FOLIN0) e A, T(X)).
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Now, the same argument as in [4, ex. 1.11] shows that
-1
ex(X) = exe(X) JT(X +p)*"! mod ¢. (4.26)
p=0

Further, by Remark Q the scaling element D of the level 1 representation

of gl, on .7-'7(7107)@ is given by

D(|A,0)) = —no(A) [A,0), (4.27)
where ng(\) is the number of 0-nodes in A\. Thus we have the following
relation

D, f] = —fps Vfp € 5l (4.28)
Further we have

D(|X,0)) = —(no(X°) + [A*]) |A, 0). (4.29)

Remark 4.8. We finish this section by several remarks concerning the Fock space
that we’ll not use in the rest of the paper. First, there is a tautological C-linear
isomorphism C™ @ C! = C™. It yields C-linear isomorphisms Vine = Ve and
Fm,e = Fme. Recall that Fp,, is equipped with a level 1 action of ;\[mg, and that
Fm,e is equipped with a level (¢, m)-action of 5A[m X 5A[g. Now, there is a well-known
Lie algebra inclusion

(5L x 8lp)/(m(1,0) — £(0,1)) C 8lppe,  (1,0) — £1,  (0,1) — ml.

This inclusion intertwines the sl,, x sly-action on F,, , and the sl,,¢-action on Fy, o =

Fme. Further, we want to compare the glmg-action on F, ¢ with the level one ;[g—
action on F,, , given in the begining of this section. The C-linear isomorphisms

(B.20) and () yield a C-linear isomorphism
Fo = Fme = Fe- (4.30)

The right hand side is equipped with a level 1 action of ;[mg, and the left hand side
with a level 1 action of sl,. Consider the following elements in sl,, ® C[w, 1]

m—i m
- k k+1
withkm) = e @@ + Y Cirjom @@
j=1 Jj=m—i+1

1<i<m, keZ.
For z € sl,, ® Clw,w '] and p,q = 1,2,...,¢ we define the element (9 €
5o ® Clew, w™1] by
m m
P = Z €it(p—1)m, j+(g—1)m @ a;; for x = Z €5 ® ;.
i,j=1 i,5=1
The following claim is proved by a direct computation which is left to the reader.
Proposition 4.9. (a) There is a Lie algebra inclusion 5A[g C 5A[mg given by
11, e @ @) P) pqg=1,2,....4, reZ

(b) The map (@) intertwines the sly-action on Fy and the sly,e-action on Foy.
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5. THE CATEGORIFICATION OF THE HEISENBERG ALGEBRA

We’ll abbreviate
(o)) = Plor,)].

n=0
Assume that h, h,, are rational numbers as in (B.9). Thus A is a rational weight of
sl, of level 1. Let m be the denominator of h. We’ll assume that m > 2.

5.1. The functors A, A}, Ay . on D°(O(T)). To simplify the exposition, from
now on we’ll assume that ¢ > 1. All the statements below have an analoguous
version for ¢ = 1, by replacing everywhere C"* by Cj. Let n,r be non-negative
integers. Consider the point

bmz(o 0,1, 1) e =CF,

with ; =0 for 1 <7 < n, and z; =1 for n < ¢ < n +r. The centralizer of b, , in
T is the parabohc subgroup I, ». We have

/b = C" x G,

Here C™ is the reflection representation of I';, and Cj is the reflection representation
of &,.. Note that

oI,y =0(T,,,C"xCp), 06, =0(6,,Cp).
In particular we have a canonical equivalence of categories
o, =0T, ®0(6,).
Thus the induction and restriction relative to b, , yield functors
Tnd,, , : O(T,) @ O(&,) = O(Tp1r),
ORes,, : O i) = OT,) @ O(S,).

Now consider the functors OIndnﬁmT, OResnymT. The parameters of H(T'),4,,) and
H(T',) are h, A. The parameter of H(G,,,) is h. Fix a partition A € P,.. We define
the functors

O,) @ O(Gpmyr) — O(y,),
M +— Homes,,,) (M, Lmx)*, M + Homps,,,)(Lmx, M),
as the tensor product of the identity of O(T',) and of the functors
O(Smr) — Rep(C),
M +— Homes,,,) (M, Lmx)*, M+ Homops,,,)(Lmx, M).

Here the upperscript * denotes the dual C-vector space. We denote the correspond-
ing derived functors in the following way

M — RHompg,,,) (M, Lmy)*, M +— RHomeps,,,)(Lmx, M).
Definition 5.1. For A € P, with » > 0 we define the functors
Axt 1 DYO(T i) = DY(O(Ty)), M+ RHompsos,,, ) (CResnmr (M), Linx)*,
AL DY(O(T0)) = DYO@ntmr)), M = “Indmr (M @ Liny),
Axi DO pime)) = DP(O(Ty)), M — RHomps(os,.,))(Lmrs CRespmr (M)).

Proposition 5.2. We have a triple of exact adjoint endofunctors (Ax, A}, Ax )
of the triangulated category D*(O(T)). For M, N € D*(O(T")) we have
RHome(O(F))(AA( ) N) RHOme(O(F))(M, A)\ﬁ*(N»,
RHom pe (o (1)) (Ax,1 (M), N) = RHompeory) (M, AX(N)).
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Proof. Obvious because the functors OIndnﬁmr and OResnymT are exact and biad-

joint, see [}, [Bg. O

5.2. The &,-action on (A))", (A")" and (A.)". For b =l x we write A" = Af,
and A, = A(y),,. Forr > 1, the transitivity of the induction and restriction functors

[@ cor. 2.5] yield functor 1somorph1sms
(A)" = RHome(O(G(mm))( Resy, (mr) (@), L)*,
(A*)" = ©Ind,, () (® ® L) = “Ind,y 1y (¢ @ “Ind ) (L)), (5.1)
(A*)T = RHOme(O(g(mT))) (L, OResn,(mr) (.)) .

Here, to unburden the notation we abbreviate L = L‘?T) The goal of this section

T

is to construct a &,-action on (A", (A*)" and ( , and to decompose these

functors using this action. To do this, let H(I',, m'r‘) H(T ) be as in
Appendix @ with the parameters ¢ and vp as in Sectlon There is an obvious
isomorphism

H(T,, (mr)) = HT,) @ H(S,,)®"
Let 7; € 6,4 mr be the unique permutation such that
e 7; is minimal in the coset &y, ) TiS (1, mr),
o 7;(vwiws . ..’LUT)Ti_l = VW1 .. Wi W; - .. Wy for v € &py Wy, ..., W € Sy
Let 7; denote also the algebra isomorphism H(I',, (p,r)) — H(I'y, (1)) given by
TR QUYr 2 2ZRQYN Q- QUYit1 QY - Q Yy
We have the following relation in H(T',,4)
Trz=1(2)Ty, z€HT, mm) (5.2)

Therefore, the element T, belongs to the normalizer of H(I',, (,ry) in H(Iyymy).
The twist of a module by 7; yields the functor

Ti : Rep(H(Fnﬁ(mT))) — Rep(H(Fnﬁ(mT))),
M®N1®~~~®NT—)M@Nl®~~~®Ni+1®Ni®~~~®NT.

We define the morphism of functors
Hr HIndm(mr) — HMInd,, (uryom, (M) (h®@v) = hTy, @ 7:(v),
he Hpmr), veM, M€ Rep(H(T, mr)))
It is well-defined by (@) Next, the permutation 7; yields also a functor
7t O(Lp, (mry) = O(L'yy (mr))s
MOIN® - QN > MOIN; ®-- - QNi;z1 QN; ® -+ ® Ny.
The functor KZ yields a C-algebra isomorphism [@, lem. 2.4]
KZ : End(®Ind,, () — End(KZo®Ind,, (1)) = End(HInd,, () 0 KZ). (5.3)
For the same reason we have also an isomorphism
KZ : Hom(®Ind,, (snry, “Ind,, (ry o7;) — Hom (PInd,, (;,r) 0 KZ, FInd,, () 07i0KZ).
So there is a unique morphism of functors
©Ind,, (mr) — ©Ind,, ,(m™) OT;
which satisfies the followmg identity
KZ(“r;(M)) = B, (KZ(M)), M € O(Ty (mr))- (5.4)
The functor e ® L yields a map
Hom (®Ind,, (;nr), OIndm(mr) or;) — End((A")"). (5.5)
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Let 7; denote the image of ©7; by this map.

Lemma 5.3. The following relations hold in End((A*)")
° 7‘3 =1,
o T =TT ifjAFL—1,1+1,

TiTi+1Ti = Tit1TiTi41-

Proof. We'll write LS = (L(Sm))®T. Consider the morphism of functors

Hr0 Hnd () — ¥Ind(ry ory, Bl (M) (h @ v) = hTr, @ 7(v),

(5.6)
heH(S,,), veEM, M eRep(H(S,,)%").
It is well-defined by (5.9). By (b.d) there is a unique morphism of functors
OTiO : OInd(mr) — OInd(mr) oT;
such that
KZ(Or(M)) = H70 (KZ(M)). (5.7)
We define the endomorphism 7 of the module OInd(mr)(L) by
7 =9r2(L). (5.8)
The transitivity of the induction functor [B§, cor. 2.5] yields
(A")"(M) = ®Indp mr (M ® “Ind (L)), 59)
7i(M) = ©Ind,, 1, (1 © 72). '
Therefore, we are reduced to check the following relations
o ()2 =1,
o T =m0 j A0 — 1,041,
b 7_'1'0_1'0-1-1%1'0 = 7_—?-1—17_—1'0%1'0-',-1'
To prove this, recall that Rouquier’s functor R yields an equivalence
O(G,,r) = Rep(Sc(mr)). (5.10)
Here ( is a primitive m-th root of 1. We have
R(Lmy) = LS. (5.11)

By Proposition EI we have also
R(®Ind(;,ry(L)) = L®.
Thus the functor R yields a C-algebra isomorphism
Endos,,,) (“Ind (L)) = Ends, () (L)

Therefore, we are reduced to check the following relations in Endg <(,,W)(LS )

o R(7))? =1,

o R(FR(T)) = R(TDR(TY) if j #i—1,i+1,

o R(F)R(TY1)R(T) = R(7 1 )R(T))R(T) 1)
By Proposition B.J there is an isomorphism of functors O(&(mry) — Rep(S¢(mr))

()" 0 R = Ro °Ind , o(e)®".

Since 15 970 1(4)e- is an endomorphism of the right hand side and since R is an
equivalence, there is an unique endomorphism 579 of the functor

()" : Rep(S¢(m)) — Rep(S¢(mr))
such that

K2

ST.O ]_R:]_ROT,L-O 1(.)®T. (512)
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Consider the diagram

End (©Tnd ) o(0)®") —2> End(HInd ) 0 KZ o(e)®")

Rl/

End(()®" o R).

The upper map is invertible by @), the vertical one by Proposition m, and the
lower one by Corollary B4 The diagram is commutative because ®* o R = KZ.

By (5.7) and (5.19) the image of ©r0 1(¢yer is given by

OTiO]_(.)@)r f— HTZ-O ]_KZO(.)®T

| / (513)

STlQ 1R(0)-

Now, recall the endomorphisms of functors Re ;, Se; defined in (B.10), (B.9). By
Corollary @ the functor ®* yields a map

End((e)®") — End(PInd () o(0)% 0 8*), R S (o).
By (b.6) we have
Suri =) (M®"), M € Rep(H(S,,)).
Therefore, by (p.13) we have also
Rari =510 (M), M € Rep(Sc(m)). (5.14)

Now, by (6.9), (b.11) and (5.13) we have
R(7)) = STiO (L(Sm)).

Thus, by () we must check that the operators R LS, i satisfies the same relations
as above. The quantum Frobenius homomorphism yields a functor

Fr* : Rep(S1(r)) — Rep(S¢(mr))

such that Lsm = " (l_/(sl)), see Section @ It is a braided tensor functor by
Proposition @ Thus the claim follows from Proposition @ (]

We can now prove the following, which is the main result of this section.

Proposition 5.4. Letr > 1.
(a) The group &, acts on the functors (A*)", (A.)".
(b) We have the following &, -equivariant isomorphisms of functors

Ay =P Lhieds (A) =@ LioA.
AEP, AEP;

Proof. First, we concentrate on part (a). To unburden the notation we abbreviate
_ 7 ®r S _ S \®r
L=Lg, LS =(L,)%.

By Lemma @ the assignment s; — 7; yields a &,-action on (A*)". Under the ad-

junction (Olndm(mr), OResm(mr)) the isomorphism ©7; yields a (right transposed)
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isomorphism of OResm(mr). We'll denote it by ©r; again. By definition of the right
transposition, the following square is commutative for M € O(T, 411 )

o%r; (L)
OIndy, () (L), M) —— Homor, ) (VIndy, (nr) (L), M)

Or:(M)o,
HOmo(pn,(mr)) (L, OResm(mr) (M)) e Homo(pn’(mr)) (L, OResn,(mr) (M))

HomO(Fnerr) (

Here and in the rest of the proof, we use the canonical isomorphisms
(°Ind,,, (snry(L), M) = Homor, .., (°Ind,, (mry (1:(L)), M),
(L, “Res,,, (mr)(M)) = Homo(r, (L, 7:(°Res,, () (M)))

HOHI@(FT&"”)

HOmo(pn

(m™)) L(m™))

given by 7;(L) = L without mentionning them explicitly. Let (e, o) denote the
canonical pairing

RHome(O(G(mT))) (., L)* X RHOme(O(g(mT)))(O, L) — C.
We define the &,-action on (A.)" by

si(f) = “ri(M) o f,
fe(A) (M) = RHome(O(G(mr))) (L, OReSn,(mT) (M))

Note that the formulas () do define an action of the group &, by Lemma @,
because the square above is commutative.

Now, we prove part (b). It is convenient to rewrite the &,-action on (A*)" in a
slightly different way. Setting n = 0 in the construction above we get a &,-action
on ©Ind,,~ (L) such that s; acts through the operator 7 in (F.§), and by (p.9) the
reflection s; acts on (A*)" through the automorphism

Tnd,, mr (1 ® 970).
We claim that the following identity holds in Rep(C&,.) ® O(S )

Ind ) (L) = @D Lx @ L. (5.16)
AEP,

(5.15)

T

To prove (p.16) we use Rouquier’s functor R as in the proof of Lemma @ It is
enough to check the following identity in Rep(C&,) ® Rep(S¢(mr))

LS = @ Ly L},
AEP,
To do that, note that by Proposition [B.g the functor in Section [B.7

Fr* : Rep(S1(r)) = Rep(S(—1)= (1)) — Rep(S¢(mr))

given by the quantum Frobenius homomorphism is a braided tensor functor. Fur-

ther we have .
B (LY) = Ly, B ((LG)®7) = L7,

mA\»’

where I_/f is the simple S ()-module with the highest weight A. Therefore, to prove
(6.1d) we are reduced to check the following identity in Rep(C&,.) ® Rep(S;(r))

(L) = @ La® L3,
AEP,
This is a trivial consequence of the Schur duality. The decomposition

(A) = P Lae A3 (5.17)
AEP,
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is a direct consequence of (5.14). The decomposition of the functor (A,)" follows
from (p.16) and the commutativity of the diagram above, because it implies that
the canonical isomorphism

(A.)"(M) = RHompi (0(6ur)) (CInd ey (L), “Resyy i (M)

is G,-equivariant. O

Remark 5.5. Using an adjunction (OResnﬁ(mT), OIndny(mr)) for each r, we can con-
struct in a similar way a &,-action on the functor (A;)" such that we have the
decomposition

(A)" = @ Ly® Ay

AEP,

Then, by Propositions@ and @ we have the triple ((A!)T, (A", (A*)T) of adjoint
&,-equivariant functors.

Remark 5.6. We have used the hypothesis m > 2 in the proof of Proposition @
when using Rouquier’s functor R. Probably this is not necessary.

Proposition 5.7. For r > 1 we have an isomorphism of functors
(A)"[2r(1 = m)] = (A)".

Proof. Once again we’ll abbreviate L = L((%;). Let Perv(P™~1) be the category

of perverse sheaves on P! which are constructible with respect to the standard
stratification P! = COUC! U--- UC™ . By [B, thm. 1.3] the category O(S,,)
decomposes as the direct sum of Perv(P™~1) and semisimple blocks. Under this
equivalence the module L., is taken to the perverse sheaf Cpm-1[m — 1]. So, by

Verdier duality [I§, (3.1.8)] we have an isomorphism of functors D*(O(S,,)) —
D*(C)

RHOme(o(gm))(L(m), 0) — RHOme(O(Gm))(O, L(m))*[Q(l — m)] (518)
The tensor power of (.1§) is an isomorphism of functors D*(O(&,,r))) — D*(C)
90 : RHome(o(g(mr)))(L, 0) — RHome(O(G(mr)))(.a L)*[QT(l - m)]

The group &, acts on D’(O(S(,,r)) in such a way that the simple reflection s;
acts via the permutation functor

Tt O(6(mry)) = O(G(mry), Mi®- - @M, = M ®--- @M1 @ M; @---® M,.
The isomorphism 6° is &,-equivariant, i.e., we have
0° (i (M))(7:(f)) = 7o(0°(M)(f)),
M e O(S;,m), fe€ RHome(O(G(mT)))(L,M).
It yields an isomorphism of functors D*(O(T,, (,r))) = D*(O(T'))
0 : RHompi(o(s,,r)) (L: ®) = RHompr o ,,ry)) (@ L) [2r(1 — m)]

such that
0(7i(M))(7:(f)) = 7:(6(M)([)),
M e O(Fn,(mT))a f S RHome(O(G(M)))(L, M)

We define an isomorphism of functors D®(O(T,,1mr)) — DP(O(T,,)) by

(5.19)

/
9 = 9 10Resn,,(mT)'
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More precisely, we have
0 : RHome(O(G(mT)))(L,OResny(mr)(o)) —

— RHOm pi (06 1)) (T RS, () (0), L) " [2r(1 — m)).
By (b.1)) we may view 6’ as an isomorphism (A.)" — (A4)"[2r(1 —m))]. O

Remark 5.8. Probably we can choose the &,-action on (A)” in such a way that the
isomorphism (A.)" — (A1)"[2r(1 —m)] is &,-equivariant. This would imply that
for A € P, we have Ay, [2r(1 —m)] = Ay .. We'll not use this.

Remark 5.9. The transitivity of the induction functor [@, cor. 2.5] yields an iso-
morphism of functors A3 A7, = Ay, A for A, u € P. Taking the adjoint functors we
get also the isomorphisms Ax1 A, = A, 1 Axy and Ay Ay = Apv Axs

Remark 5.10. The functors Ay, A}, Ax . yield linear endomorphisms of the C-
vector space [O(T')]. Let us denote them Ay 1, A%, Ay . again.

Remark 5.11. Recall that (m) = @7, C[~2i]. For any object M of D*(O(T))
there should be a distinguished triangle

)M —— A, A* (M) — A*A, (M) — 2> .

5.3. The functors a3, a) . on O(T') and the $H-action on the Fock space.
For i € Z and b =!, % we consider the endofunctor H'(A, ;) of O(I') given by

H'(Axp)(M) = H' (A, (M)), M e O().
From now on we’ll write Ray, = Ay, and Rlay, = H'(Ay}).

Definition 5.12. Let a} be the restriction of A} to the Abelian category O(T").
Since a3 is an exact endofunctor of O(I'), we may write a} for A} if it does not
create any confusion. We abbreviate ay , = Roa)\ﬁb. The functor ay . is a left exact
endofunctor of O(T'), while ay, is right exact.

Consider the chain of C-linear isomorphisms which is the composition of (@), of
the characteristic map ch, and of (),

[OM)] - RT) — Ar — F, (5.20)
Ay = Ly = S |\s).

Recall that symmetric bilinear form on ]:7(5,)2 defined in Section @
Proposition 5.13. (a) The map ) identifies the symmetric C-bilinear form
on fr(j?e with the C-bilinear form

[O)] x [O(T)] = C, (M,N) Z(_Uidim Extg ) (M, N).

(b) The map ([5.24) identifies the operators bg, 5, on .7-'7(;,)@ with the operators
a}, Ray . on [OT)].

Proof. Part (a) is obvious because we have
dim Extiyp ) (Ax, V) = 6i.00a . [Au] = [Vul, VA u€ P,

because O(T',,) is a quasi-hereditary category, see e.g., [ﬂ, prop. A.2.2]. Now we
concentrate on (b). By (a) and Proposition f.d, the pairs (bsy, b, ) and (a3, Rax )
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consist of adjoint linear operators on ]-'7(;)4. So it is enough to check that under
(b.20) we have the following equality

bs, = al. (5.21)

To do that, observe first that, by Proposition , for r > 0 the map ch : R(T") — Ar
intertwines the operator

R(I') = R(T), M+ Indf, (M ®ch ! (Pp,))
and the multiplication by ZpEZ[ Py, p.- Here we have abbreviated
Indp, & = EB Ind,, -
n,r >0

Next, by Proposition @, the map Ar — fr(j?e above intertwines the multiplication
by Zpezg Py, p and the operator b,. By definition, the plethysm with the power
sum P, is the C-algebra endomorphism

P A= A, e Y 2 (P P
AEP

The discussion above implies that the map R(I') — ]-"7(;7)@ above identifies the action
of bg, on ‘7'—7(:,@ with the operator
R() = R(), M+ Indf, (M @ ch™t¢™(Sy)).
Now, recall the maps
spe : [Rep(CLy)] — [O(I'n)],  spe : [Rep(C&py)] = [O(Epay)]-
By Lemma E, they commute with the induction and restriction. We claim that
speoch™! otp™(S)) = L.

Thus (5.21)) follows from (5.20). To prove the claim, set ¢ equal to a primitive m-th
root of 1. Then Rouquier’s functor yields an isomorphism, see (),

[O(Smr)] = [Rep(S¢(mr))].
Next, the quantum Frobenius homomorphism yields a commutative diagram
Fr*
[Rep(S1(r))] — [Rep(S¢(mr))]
¥ X (5.22)
A a A
where y is the formal character, see e.g., [@, sec. ILH.9]. Consider the chain of

maps
() 61d)

0 : [Rep(C&pmr)] —= [O(Gmr)]

X

[Rep(S¢ (mr))] -
We have
Y(S\) =Ly, 0ch ' (S) =A% XEPr, 1E P
Thus we have
X(0 ch™(S,)) = X(AR) = Sy, 1 € Prr
Therefore we have also
X(0 0 ch™ 0y (Sy)) = ¥ (S3) = X(¥(S3)) = X(Lyn)-

This implies that § o ch™' 0yp™(Sy) = LY, proving the claim and the proposition.
O
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Remark 5.14. It has been conjectured in [E, sec. 6.6] that the Shapovalov form on

Ve ., should be related to the bilinear form on [O(I)] in Proposition f.13. Recall
that
]:'(d) g[[

Wd mod £
and that the Shapovalov form on the right hand side is identified with the symmetric
bilinear form on the left hand side considered in Section [l.§. By ([.19), under the

isomorphism ([L.21]), the latter is identified with the bilinear form on F, (d )é in Section
@ Thus Proposition p.13 implies Etingof’s conjecture.

Proposition 5.15. Let A € P, withr >0
(a) We have a triple of adjoint functors (ax,, a%, axx).
(b) Forb=x,1,¢q=0,1,...,m—1, and i > 0 there are isomorphisms of functors
€q Riaw = Riaw €q, €qQ\=0axe€q, fq Riakb = Riakb fo,  feax =al fq
Proof. By definition of the functors Ay ., Ay we have
Ar(O() € DZP(O(T)),  A\i(O(T)) € DSU(O()).
Thus, by Proposition @ we have the triple of adjoint endofunctors of O(T")
(a’)\,!ﬂ a’;ﬂ az\y*) = (HO(AA,!)v A;ﬂ HO(AN*))'
This proves (a). Next, let us prove part (b). It is enough to give isomorphisms of
functors
eqay = ayeq, [fqa)=a} fq (5.23)
First, observe that we have an isomorphism of functors
Fa) =a) F. (5.24)
Indeed, for M € O(I,,) the transitivity of the induction functor [2§, cor. 2.5] yields
Fai(M) = °Indpymr ©Indpy (M @ L)
OI d Totmrt1 OI d n+mr(M®Lm/\)

n+7n

= OIndp" ™ (M ® Liny),

a3 F(M) = “Ind,, 11 mr (CInd, (M) @ L)
= OIndp" 77 (OInd "+ (M) @ L)

n+1,mr

OInd n4+mr4+1 OI d Tnta, m'r‘(M ® Lm)\)

Tnt1,mr

T (M 6 L)
By (F-24) for each M € O(T,,) we have

@fqai{(M):@a;fq(M)- (5.25)

We must prove that we have also an isomorphism fqaf(M) = a} fo(M). Let
O), € O(T') be the full subcategory consisting of the modules whose class is a
weight vector of weight v of [O(T')]. Here v is any weight of the sl,,-module [O(T)].
Recall that

Lemma 5.16. We have the block decomposition O(T') = @, O(T'),,, where v runs
over the set of all weights of the sl,,-module [O(T)].
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Proof. By [B§ the image by KZ : [O(T')] — [Rep(H(T'))] of the class of a stan-
dard module is the class of a Specht module. By [@, thm. 2.11] we have a block
decomposition

Rep(H(T) = @D Rep(H(T)),,

where v runs over a set of weights of sl,,, and the block Rep(H(T")), is generated by
the constituents of the Specht modules whose classes are the images by KZ of the
class of a standard module in O(T"),. In particular, each Specht module belongs
to a single block of Rep(H(I")). Now, since the standard modules in O(T") are
indecomposable (they have a simple top), each of them belong to a single block
and any block is generated by the constituents of the standard modules in this
block. Finally, by [@] the functor KZ induces a bijection from the blocks of O(T")
to the blocks of Rep(H(T"). Hence two standard modules belong to the same block
of O(T) if and only if their images by KZ belong to the same block of Rep(H(T")).
Therefore O(T'), is a block of O(T"). This proves the lemma. d

Therefore, to prove the isomorphism fg a} (M) = a} fq(M) we may assume that M
lies in O(I"),. Then fq,a}(M) and a} fq(M) belong to O(I'), 44, by Proposition
b.13. Thus the isomorphism above follows from (§.25). The second isomorphism in
(b.23) is proved. Next, let us prove that we have an isomorphism of functors
Ea} =a} E. (5.26)

The first isomorphism in ([.23) follows from (f.26) by a similar argument to the
one above. For M € O(T,,) we have

E a} (M) = “Resptmr CIndp mr (M @ L),

ay E(M) = “Ind,—1,mr(PRes,, (M) @ Liny),
As above, we abbreviate L = L((@T;). By Proposition @ it is enough to prove that
we have a natural isomorphism

OResp+mr Indp,mr (M @ ©Ind (L)) = CIndy—1,mr(PRes, (M) @ ©Ind (L))

that is equivariant with respect to the &,-action induced by the &,-action on
%Ind(,,~ (L) given in (5.1d). To see this, note that Proposition A yields the
following decomposition of functors

HReSntmr 0 BInd,, = (HIndn_l,mr o (HRes, ® 1))®
EB(HIndn,mT_l o(1® HResmT))eﬂ.
Therefore we have also the following decomposition of functors
KZ 0®Resy mr 0 CIndyy oy =
= (KZo°Tnd,, 1 mr 0 (PRes, © 1)) & (KZo Indy pmr1 0 (1 @ Respr)) .

The induction and restriction functors on O(T") take projective modules to projec-
tive ones, because they are exact and biadjoint. Thus, by (E) we have a natural
isomorphism

OResptmr “Indp mr(P) =
= %Ind, 1y (PRes, ® 1)(P) @ (CIndp mr—1 (1 ® OResy, ) (P)) "
for any projective module P € O(T'). Since O(T') has enough projective objects,
this yields an isomorphism of functors

OReanrmT OIndnﬁmr = OIndn,lymT (OResn ®R1)® (Olndnymr,l 1® OResmr))@e
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In particular, the projection yields a morphism of functors
OReanrmr OIndnymT — OIndn,lymT (OResn ®1).
Applying this to the module M ® OInd(mr)(L) yields an &,-equivariant surjective
morphism
U(M) : “Respsmr CIndpymr (M&°Ind ) (L)) = “Indp—1,mr (“Res,, (M)@°Ind ;) (L)).

Now, by (B.1)) the left hand side is equal to E o (a*)"(M) and the right hand side
is equal to (a*)" o E(M). So by Proposition and the fact that the actions of $

and ;[m on ]-"7(;7)@ commute with each other, we have
[E o (a®)"(M)] = [(a")" 0 E(M)].
Thus (M) is indeed an isomorphism. So (5.24) is proved. O

5.4. Primitive modules.
Definition 5.17. A module M € O(T") is primitive if Ra,(M) =0 and E(M) =0

(or, equivalently, if Rla.(M) = e,(M) = 0 for all g,4). Let PI(O(T)) be the set of
isomorphism classes of primitive simple modules.
Proposition 5.18. For L € Irr(O(T'),)) the following are equivalent

(a) L € PI{O(T,,)),

(b) L € Irr(O('s))o.0,

(c) dim(L) < oo.

Proof. Assume that L € Irr(O(T',,)). The equivalence of (b) and (c¢) is Remark
B.1J. Let us prove that (a) = (b). Fix [,j > 0 such that Supp(L) = X ;. Set
i =n—1—mj. We first prove that 7 = 0. Assume that j > 0. Then we have
Fl,(mj) = Fl,(mj—l) X G, Fl,(mjfl) Clyhm.
There are modules M, € O(I';,_y,), t € Py, such that in [O(T, )] we have
[Resn,m (L)] = Z [My ® L]
HEPm

The transitivity of the restriction functor [@, cor. 2.5] yields the following formula
Trnem
[Resi(L)] = Z[RGSQ(MM) ® L,], Res; = ORGSEZ(M), Resy = “Resy,

L(mi—1)
w
The H (T (mms))-module Res;(L) is finite dimensional, because Supp(L) = X ;.
Thus we have Resa(M),) = 0 unless p = (m), and
[Resl(L)] = [ReSQ(M(m)) ® L(m)] (527)
Next, since Ra.([L]) = 0 we have

0 = [Resz Ra.(L)]

= Z [RGSQ(MH) X RHomO(Gm)(L(m), LM)]’
HEPm

= [Resz(M(m)) ® REndos,,) (Lim))]-

Thus, using [@, thm. 1.3] we get Resa(M(y,)) = 0. This yields a contradiction with
(b.27) because Res; (L) # 0. So we have j = 0. Next, since E(L) = 0, by Corollary
B.19 and Remark we have i = 0.

Finally, we prove that (¢) = (a). We must prove that if L is finite dimensional
then it is primitive. This is obvious, because “Res,, ., (L) = “Res,, (L) = 0. O
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Remark 5.19. By Proposition the elements of PI(O(T',)) form a basis of
Foo(Ty).

5.5. Endomorphisms of induced modules. For r > 1 we consider the algebras
B, =6, x Clz1,22,...,2y], DBre= BT/(zﬁ,:cg, .. .,zf).
The following proposition is the main result of this subsection.

Proposition 5.20. Letr > 1.

(a) The C-algebra homomorphism C&, — Endory((a*)") in Proposition ex-
tends to a C-algebra homomorphism B, — Endor)((a*)") such that x1,x,. .., 2,
map to nilpotent operators in Endpry((a*)"(L)) for each L € O(T).

(b) The C-algebra homomorphism B, — Endory((a*)") factors to an isomor-
phism By ¢ = Endoy((a*)" (L)) for L € PI(O(T)).

Proof. The proof of this proposition is done in several steps. Let H(I',, (,r)), H(T',)
and X; be as in Appendix @ Consider the elements

§i = Xngmi—D+1Xntm(i—D+2 " Xntmi, =1,2,...1.
They belong to the centralizer of H(I',, (;,r)) in H(I';14.-). Thus the right multipli-
cation by &,4=1,2,...,r, defines an automorphism H¢; of the functor HIndn,(mT).

More precisely, for a H(I',, (,,,))-module M we set
He(hov)=h&@v, he HTuimr), vE€ M.
The functor KZ yields a C-algebra isomorphism @)
KZ : End(“Ind, () — End(MInd,, () 0 KZ).

Thus there is a unique endomorphism ©¢; of the functor OIndny(mr) such that

KZ(&(M)) = "&(KZ(M)), VM € OTn iur)). (5.28)
The functor e @ L : O(I';,) — O(I'y, () yields a C-algebra homomorphism
End(®Ind, (;,-) — End((a*)"). (5.29)

Let & denote the image of ©¢; by the map () Next, recall the operators
7; € End((a™)") = End((4™)"), i=1,2,...,r—1
defined in Proposition @, see also the proof of Lemma E
Lemma 5.21. The following relations hold in End((a*)") for j #i,i+1
Fio&om =&, Ti Ogj oT; :gj-
Proof. By (5.2§) and (F-4) it is enough to prove that
Mril)o (Mg 1,,) oM =M, Mril.) o (Mg 1,,) oy = He,
To do so, we are reduced to check the following relations in H(T';,4my)
T.&Tr, = &iv1, Tr&Tr =&
Recall that ¢ is a m-th root of 1. Let a; =n+ (¢ — 1)m+ 1, b; = n + im, and
Ky =Ty, ~iTo;—142 - To,+1-2Tb,+1-
A direct computation yields that
T, = KoKy Koo Km_1Km_2 - K1 Ko.
Further, for 0 <1 < m — 1 we have
KXo, Xa1 - Xoy—1-2Xp,—1-1(Xp, ~1: Xp;—142 -+ - X, 11) Ko =
=" X, Xa - X —1-2(Xo,—1-1X0, —141. X, —143 -+ X, 4141),
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and for 0 <! < m — 2 we have
Ki(Xp,—i1Xp,—142 - Xoyp 1) Xy 4142 X0, 4143 - Xopyym Ky =
= N1 Xpi—113  Xyr1—1) X141 Xos 1142 X 1143+ Xosm-
We deduce that
TTI'&Z-T’H == TTiXaiXa.;Jrl cc 'XbiTTi

1424
=P R Ko Xai41 X 43 Xy 4m—2XpmEm—2 - Ko
— (U2t m 2 bme Ly

m2
=" &G
=&it1-
The relation T+, &;T,, = &; for j # 1,7+ 1 is obvious. O

a.;erXaierJrl et Xb.;er

For any element w € &, we set

Tw = 77-1'177-1'2 T 7jik € End((a*)T)

for w = 84, 84, - - - 84, This definition does not depend on the choice of the decom-
position of w by Lemma E Next, for a tuple p = (p1,pa2,...,pr) € Z" such that
0 < p; < { we set

P =eley e, =iy
Lemma 5.22. For any L € Irr(O(")) the elements P 7,,(L) of Endory((a*)" (L)),
with w € &, and p € [0,£)", are linearly independent.

Proof. For w,i1,...,i5,p as above the expression 7;, 7, - - - 7;, is reduced. Let us

define the following elements in H(T';,4p)
129 :Tanﬁ'Q "'T'rikv ép :§f1§§2 éfr
Recall that the elements
X{nXSQ e XanrmrT’wa Pi € [0,6), w e Gn—i-mr;

n—+mnr

form a C-basis of H(I';4nr). Further P centralizes H(I',, (;,,y) and the element
Tiy Tiy - -+ Ti), above is minimal in its right &, ,,»)-coset. Therefore the left H(T,, (;ry)-
submodule of H(T;,4) spanned by

{gptw ;we Gy, pE [O,E)T},

k

is indeed the direct sum

P HT . () Etuw,
p,w

where p runs over [0,¢)" and w over &,. In other words, there is an injective
H(T,, (;5,r))-module homomorphism

H"/) : H(Fn,(mr)ﬁawr! — H(Fnerr)v (hp,w) = th,w fp tw; (53())
p,w
where w, p run over &, [0, £)" respectively. Further, since {” centralizes H(I',, (7)),
the relation (f.9) yields
ngtw = €p2tw = gptw,w—l(z), KAS H(Fn,(mr))a

where w™(z) = 7, -+ 7,75, (2). Therefore By is a (H(Ty (mr)), H(Th (mr)))-
bimodule homomorphism, where the right H(I',, (,r))-action on H(Fm(mr))@ew is
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twisted in the obvious way. Since H4) is injective, and both sides are free H(T,, (e )-
modules, for each M € O(I',, (,,,~y) We have an injective homomorphism

Hy(Kz(M)) : @G wKZ(M) — "Res, (1) 0 HInd,, () KZ(M) =
p,w

= KZo%Res,, (ury © “Ind,, () (M),
where
W= Ty Tiy - Tip, : Rep(H(Ly, (;mr))) — Rep(H(T), (1))
Further, we have
wKZ(M) = KZ(wM),
where
w O(Fn7(m7‘)) — O(Fnﬁ(mr))
is the twist by the permutation
w: HTy, (mry) = HTR) @ H(6,)Y" = H(Ty) © H(6m)%" = H(Ty (mr))-
The canonical adjunction morphism
P — S(KZ(P))

is an isomorphism for each projective module P € O(T'). Here S : Rep(H(T')) —
O(T) is the functor from Section .4 Further, the functors ORes,, (mr) and ©Ind,, (mr)
preserve the projective objects, because they are bi-adjoint and exact. Therefore,
applying the left exact functor S to the map Hwy)(KZ(P)), with P projective in
O('y,, (mr)), we get an injection

O%(P) : @ wP — © Resy, () 0 © Indyy (e (P).
p,w
Since the category O(I',, (n,r)) has enough projective objects and since the functor
© Resp,(mr) © © Ind,, (;,r) is exact, the five lemma implies that there is a functorial
injective morphism
QM) : G wM — © Resy, (mry 0 C Indyy ey (M), M € O(T, (1)

p,w

Now, set M = L. ® LY", with L € Irr(O(T")). Then we have wM = M for all w as

(m)
above. Therefore we get an injective linear map

(CETT! — HOHl(Q(F)(L ® L®T L ® L®T))€B€TT! N

(m)? (m

— Homor) (L ® LE . Resy (mr) @ Indy, ey (L ® L)) = Endory ((a¥)" (L))

(m) (m
It maps the canonical basis elements to the elements &P 7,,(L) with w € &, and
pel0,0). O
Lemma 5.23. For L € PI(O(I'y,)) the following identity holds in [O(I'y, ()]

[OResy (mry(a*)"(L)] = €771 [L @ LE)].

Proof. By Lemma E the left hand side is equal to

O Lo (mmy o Ton (mr) ®
> Cnd, 5" o (PResy ™ (L@ LET])),
xr
where W, = an,(mr):c’l NI, (mry and o Tuns over a set of representatives of the
double cosets in 'y (ry \ Tignr /T (mr).  Since W, is a parabolic subgroup of
[y (mry, it is generated by reflections. Hence we can decompose the group W, in
the following way

W,=W.xW/ W.cT,, W/'ce.,. (5.31)
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Here W, W/ are parabolic subgroups. We have

Fn, mT T n C:n r
OResy " (L ® L((@m)) = OResII:VJ2 (L) ® ORes;VI,, (L?m)),

and a similar decomposition holds for the induction functor. Further, since L €
PI(O(T,,)) we have OResII:I}‘J2 (L) = 0 if W/ is proper by Proposition f.1§ Thus we
can assume that W, = T, i.e., we can assume that x belongs to the subgroup
{1} x Ty C Tpppne. We'll abbreviate

G, ={1} x6;,, Tpr={1} xTpy.
Then we have W) = 267 27! N &!,, and we are reduced to check that

ST T Sy, T — /7 r
> Cmdymy, o (PResy ([LED]) = €t [LET ),

where W, = 267 27! N &’ and x runs over a set of representatives of the double
cosets in &7\ I'y,,. /ST . Now, observe that

OResVGV:;L (L") =0

(m)
unless z&7 x~! = &7, and that &7 27! = &7 if and only if # belongs to

Nr,,.(67), the normalizer of &7, in I',,. Further, we have a group isomorphism
Nr,.(6;,)/6;, =T
This proves the lemma. O

Lemma 5.24. For L € PI(O(T")) the elements &P 7, (L) withw € &, andp € [0,£)"

form a basis of Endpry((a*)"(L)).

Proof. By Lemma it is enough to check that

dim Endopr((a®)"(L)) < €77
For L € PI(O(T',,)) Lemma yields
dim Endpr)((a*)"(L)) = dim Homery (L @ L?ﬂ:), © Resy,,(mry(a®)" (L)) < L7

(I

Lemma 5.25. Fori=1,2,...,7 and L € O(T") the operator &(L)+1 on (a*)"(L)

is milpotent. Further, if L € PI(O(T')) we have (§;(L)+1)* = 0.

Proof. The C-vector space [O(T")] is equipped with an sl,,-action via the isomor-
phism (f.20), see also Remark [L.7. For a weight x of sl,, let O), Cc OT) be the
Serre subcategory generated by the simple modules L whose class in [O(T")] has the
weight p. Set O(T'y), = O(), N O(Ty,). Although we’ll not need this formula,
note that if Ay € O(T',,), then we have

p=po— ) ng(Nag

where po is a weight which does not depend on n, A, and ngy(A) is the number of
g-nodes in the f-partition A. The element

Zn = X1Xo- - X
belongs to the center of H(T,,). Thus it yields an element ¥z, in the center of
Rep(H(T',,)). Since KZ identifies the centers of O(T,,) and Rep(H(T',)), it yields
also an element ©z, in the center of O(T',,). Let L € Irr(O(T,),.). Then ©z, acts on

L by multiplication by the scalar ¢*(*), where v is a linear form such that v(a;) = i
fori=0,1,...,m—1, see e.g., [@, sec. 4.1]. Now the operator a* maps O(I';,), to
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O[T v4m)pu+ts by Proposition . Thus © 2,4, acts on a*(L) by multiplication by
the scalar ¢¥(#+9). Therefore & acts on a*(L) by multiplication by the scalar
Cl/((?) — Cm(m—l)/Q - _1.
By Lemmas [5.21], f.3 this implies that for any L € O(T') we have (§(L) + 1)Y =0
in Endory((a*)"(L)) for i = 1,2,...,r and N large enough.
Now, assume that L € PI(O(I')). Let N; be the minimal integer such that

(&(L) + 1)Ni = 0. By Lemmas [.2], . we have Ny = No = --- = N,.. Hence, by
LemmaWehavealsoszl:Ng:---:NT. O

Now we complete the proof of Proposition . The previous lemmas imply that
the assignment

T &+, s, i=1200r j=1,2,...,r—1, (5.32)
yields a C-algebra morphism B, — Endpr((a*)") such that x; maps to a nilpotent
operator in Endpry((a*)"(L)) for each L € O(T). The action of s; on (a*)" given
above is the same as the action of s; on (A*)" in Proposition @ This proves part
(a). Part (b) follows from Lemmas @, . O

For a module M in O(T") the adjunction yields a morphism

n(M) : M @ LE = “Resy, () (a*)" (M).

Corollary 5.26. Forr > 1 and L € PI(O(T',,)) the C-algebra isomorphism
Bng = Endo(p)((a*)T(L))
yields an isomorphism of By g x H(I'y, (pr))-modules
B/ ®(L® L((%;)) — OResnﬁ(mT)(a*)T(L), wRV OResnﬁ(mT)(w) -n(L)(v).
Proof. The corollary follows from Proposition and Lemma , because
Endo(ry((a*)" (L)) = Homor) (L @ LE, “Resy, (mry(a*)" (L))

(m

is a free B, -module of rank one and, in [O(I',, (,r))], we have

[“Resy, (mr)(a*)"(L)] = dim(By¢) [L ® L{].

O

Definition 5.27. For A € P,, r > 1, we can regard the &,-module Ly as a By -
module such that x1,xs,...,z, act by zero. For L € PI(O(T,,)) we define

ay(L) =Ly ®p,, (a*)" (L) € O[T nimr).
Definition 5.28. For r > 1 we define a functor O(T';,4m:) — Rep(6,) @ O(T,,) by

\II(M) = HOIIlo(@:n) (L%;)a OReSn,(mT) (M))

(OInd(mT) (L®T))a OReSn,mr (M))

(m

= HOmo(g

mr)

The &,-action on ¥(M) is the &,-action on OInd(mr)(Lf@w’;)) in the proof of Propo-

sition p.4. In other words, we have ¥ = (a.)", viewed as a &,-equivariant functor
as in the proof of Proposition [.4.

Corollary 5.29. Forr > 1 and L € PI(O(T',,)) we have an isomorphism
(L LE)2m() — ORes, . (a3(L)
as H(I'y, (mr))-modules, and we have an isomorphism of &, x H(I',)-modules

Ly® L= 0(a(L)).
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Proof. Corollary yields an isomorphism
B,y ®(L® L®T)) = “Res,, (mr) ((a*)"(L))

(m

which factors to an isomorphism

C&, @ (L@ L) = “Resy (e ()7 (L)), (5.33)

(m
with

(a)(L) = (a*)T(L)/Zwi (@)"(L).

Further, taking the isotypic components the isomorphism () factors to an iso-
morphism

(L@ L) 2m N = ORes,, () (a3 (L))
This proves the first claim. To prove the second claim, observe that Corollary
and (5.39) yield compatible &, x &, x H(I',)-module isomorphism

B ®L=V((a")" (L), C&, ®L=5((a*)"(L)). (5.34)

The first S,-action on ¥ ((a*)"(L)) is the &,-action in the definition of ¥, and the
first &,-action on CS,. ® L is the dual of the right &,-action on C&,.. The second
S,-action on ¥((a*)"(L)) is the &,-action on (a*)"(L) in Corollary b.2d, and the
second &,-action on CS,. ® L is the left &,-action on CS,.. To identify the actions
as above, it is enough to note that the isomorphism

B, = Homor, ) (L, Bry ® L) = Homo(r,y (L, ¥(a*)" (L)) =
= Endo(r)((a*)"(L))

given by (6.34) is equal to the isomorphism (5.33), and that the &,-actions on
(a*)"(L) are taken to the left and to the dual right &,-action on B, ¢ by the map

(6.39). Next, write

(5.35)

C&, =P Lr® Ly
as an G, x G,.-module, and take the iso;\ypic component. (I
5.6. Definition of the map a,.
Proposition 5.30. For A € P, with r > 1 we have

ax(Fij(Tn)) C FijirTngme),  ax(Fij(Tn)®) C Fijr(Dngmr)®.
Proof. By Remark we have
Supp(Lma) = Xer, cppr-

Let L € Irr(O(T',)). First, assume that L € Irr(O(T'y,)), 5, i.e., that

Supp(L) = Xy j,cn
by Remark . Hence the module L ® L., has the following support

Supp(L ® L) = X1 jcn X Xer, cmr.
So by Proposition m we have
Supp(ax (L)) = Xi jrcotmr.

Thus the class of a} (L) belongs to F; j4r(I'nimr)® by Remark . Next, assume
that [L] € Fi,j(Fn)y i.e.,

Supp(L) = Xl’,j’,(C"’; Xl’,j’,(C"’ C Xl,j,(C"-

Thus we have
Supp(ax (L") = Xy jryr.cntmer.
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So (B.11)) yields

Xl/,j/+T7(cn+mr C Xl,j+T,Cn+m7"
i.e., the class of a} (L) lies in F; j 1 (Tnimr)- O

Proposition 5.31. Let A € P, with r > 1, and let L € PI(O(T'y,)). The module
top(a3 (L)) has a unique constituent in Irr(O(Lyymyr))o,r-

Proof. Since the module L is primitive, it belongs to Irr(O(T',,))o,0 by Proposition
5.1d. Thus [a}(L)] € Fo,(Tpymr) by Proposition p.3d. Thus the constituents of
a; (L) belong to the set

U Irr(o(rn+mr))0,j

j<r
by Remark . Now, for L’ in Irr(O(Tymr))o,; we have OResny(mr)(L’) =0if
7 <r, and dimoResny(mr)(L’) < o0 if j = r. Further, the constituents of a finite
dimensional module in O(&7,) are all isomorphic to L?ﬂ:), and, using [E, thm. 1.3]
as in the proof of Proposition .4, we get

Extoer ) (Limy: Limy) = 0-

Thus if L' is a constituent of top(a}(L)) then we have a surjective map

W(a (L) — (L) (5.36)
We have also

U(L') = @ L, ® Homoe,,, ) (Lmp, Resnmr(L)).
HEPr

Finally, Corollary yields an isomorphism of &, ® H(T',,)-modules

Ly® L =Y (as(L)).
Thus the surjectivity of () implies that

Homos,,,) (Limus “Respmr (L) =0, Yy # A (5.37)

Since the &, ® H(T',,)-module Ly ® L is simple, the map (f.36) is invertible if it is
nonzero. Assume further that L’ € Trr(O(Ty4mr))o.r- Then Proposition P.g yields

ORes,, (mr) (L") # 0.
Since dim®Res,, (,,r)(L') < oo and the constituents of a finite dimensional mod-

ule in O(&",) are all isomorphic to LY\, we have also W(L') # 0. Therefore

(m)
(p.34) is indeed invertible. This implies that top(a}(L)) has a unique constituent
in Irr(O(Ty4mr))o,r- Indeed, otherwise we would have a surjective map

ax(L)—=L' e L", L' L"err(OTntmr))ors
yielding a surjective map
Ly®L=9@}(L) = ¥(L)oU(L")=(Ly® L)%
This is absurd. U

Definition 5.32. For A € P, and L € PI(O(T")) we define ax(L) to be the unique
constituent of top(a} (L)) in Irr(O(T))o, .

Proposition 5.33. For L € Irr(O(T))o,» there is L' € PI(O(T")), A € P, such that
ax(L') = L. In other words, there is a surjective map

PI(O)) x Py — Lr(O@))or, (L', \) 5 ax(L'). (5.38)
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Proof. By Proposition the module L is primitive if and only if » = 0. Thus
we can assume that r > 0, i.e., that a.(L) # 0 by Corollary , else the claim
is obvious. Now, we first claim that there is a module Ly € Irr(O(T"))o,r—1 with
a surjective morphism a*(L;) — L. Indeed, since a.(L) # 0, the adjunction map
€ : a*(ax(L)) — L is non-zero, hence it is surjective. Hence, there is a constituent
L, of a,(L) such that e yields a surjective morphism a*(L1) — L.

Lemma 5.34. If L € Irr(O(T"))o,» and L1 is a constituent of a+(L) such that a*(L1)
maps onto L then L1 € Irr(O(T))o,r—1-

Fix the integer n such that L; € Irr(O(T',,)). Then &; acts on a*(L1) as the operator
Ozn4m(a”(L1)) 0 a*(%zn(L1)) .

The second factor is a scalar because L; is a simple module. Hence x; acts on
a*(Ly) as an element of the center of O(T,4.), see (6.39). Therefore, since L is
simple and since the operator x1 on a*(Lq) is nilpotent by Proposition , the
operator 21 is 0 on L. Thus the map a*(Ly1) — L factors to a surjective morphism

@*(Ll) — L.

This proves the claim.
Now, assume that for 0 < k < r there is a module Ly € Irr(O(T'))o,—r with a
surjective homomorphism

en: (@ )F(Ly) = L, (a")R(Ly) = (") (Lx /sz

By the claim above, there is a module Ly11 € Irr(O(T))o,r—k—1 with a surjective
homomorphism

a* (LkJrl) — L.

Applying the functor (a*)¥, which is exact, we get a surjective map

(a*)*a* (Lit1) = (a*)*(La).
Taking the quotient by the action of xs, ..., zk, Tr+1 it yields a surjective map

k+1

(@*)"a" (Li+1 /Z 2i(a*)*a" (Liy1) — (a*)F(Ly).

Now, since a* is exact, we have
(@) @ (Li41) = (@) (Lyg1) /21 (@) (i)
Therefore we get a surjective map

k+1
(@)1 (L) = (@) (L /sz a*(Liy1) = (a*)F(Li).

Composing it with €; we get a surjective homomorpism
€xt1 : (a*)FH1(Lgyq) — L.

By induction, this yields a module L, € Irr(O(T"))o,0 with a surjective homomor-
phism

& : (a*)"(Lyr) = L.
Then we have L, € PI(O(T)) by Proposition .18, and there is A € P, such that
a}(L,) maps onto L. The proposition follows from Proposition [.31]. O
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Proof of Lemma . Fix 4,5 > 0 such that L; € Irr(O(T")); ;. By Proposition
.13, since E(L) = 0 we have Ea,(L) = 0. Hence E(L;) = 0 by Proposition B.3.
Thus i = 0 by Corollary . So, by Proposition we have a*(L1) € Fp j1+1(T).
Since a*(L1) maps onto L, we have also [L] € Fp j41(I'). Since L € Irr(O(T))o,,
this implies that » < j + 1 by Remark .

Now, we prove that j + 1 < r. Fix n > 1 such that L € O(T',,). Recall that

a.(L) = Homp s, ,) (L(m), OResn_Wm(L)).
Thus there is an obvious inclusion
a+(L) ® Lim) C “Resp—m,m(L).

Hence, since L is a constituent of a. (L), the module L; ® L, is a constituent of
OResp—m,m(L). Let us abbreviate

W/:Fly(mj), l=n— (j+1)m,

regarded as a subgroup of I',,_,,,. Then W' x &,, C I',,_,, x &,, in the obvious
way. Since Ly € Irr(O(T,,—))o,j, we have

Supp(L1 ® L(m)) = Xw'xs,,,cn-mxcp-
By Proposition E applied to the module M = L, we have also

Supp(L1 ® L(m)) = Xw,, cn-mxcps

where W, is a parabolic subgroup of I'y,_,, ,, containing a subgroup I',,-conjugate
to 'y, (mry- Hence we have Fy j11(I'n) C Fo,r(I'n). Therefore we have j+1 < r
by Remark .11}

O

6. THE FILTRATION OF THE FOCK SPACE AND ETINGOF’S CONJECTURE

Recall that [O(T)] is identified with the Fock space ]:7(5,)2 via the map (5.20). The
aim of this section is to identify the filtration on [O(T")] defined in Section in
terms of supports of irreducible modules, with a filtration on the Fock space given
by representation theoretic tools. We’ll use the following notation : n,m,j,i are
integers with n >0, m > 2,4, >0and it =n —1[ — jm.

6.1. The representation theoretic interpretation of Fj, o(I'). The goal of this
section is to give a representation theoretic interpretation of Fy o(I') using the ac-
tions of sl,, and § on [O(T')] defined in the previous sections. Note that the set
Irr(O(T))o,0 is a basis of the C-vector space Fp o(I"). Further, we have proved that
Irr(O(T))o,0 = PI(O(T)). in Proposition [5.1§. Recall that the operators b, r > 1,

on ]-"7(;7)@ given in Section [t.q act on [O(I)] via the map (5.20).

Lemma 6.1. For L € Irr(O(I")) we have L € PI(OT)) if and only if E([L]) =
b.([L]) =0 in [OT)] for allr > 1

Proof. Tt is enough to prove that for L € PI(O(T")) we have b/.(L) = 0 for all r > 1.
A direct summand of the zero object is zero in any additive category. Further, for
L € PI(O(T")) we have (Ra.)"(L) = 0 for r > 1. Thus we have also Ray (L) =0
for all A € P by Proposition @ By Proposition the map ) identifies the
C-linear operator Ray . on [O(I')] with the action of b, on fr(j?e given in Section
@. This proves the lemma. (I
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In particular the lemma yields an inclusion

Foo(T) € {z € [O(I)]; eq(x) = by(x) =0, Vg, r}.
However it is not obvious that the right hand side is spanned by classes of irreducible
objects of O(T"). This follows indeed from Proposition @ below. Before to prove
it we need the following lemma.
Proposition 6.2. We have

{z € [O(I)]; eq(x) = bj(x) =0, Vg, 1} = Foo(T).
Proof. Consider the set

Foo(l) ={x € Fo.o('); by.(x) =0, ¥r > 1}.
By Corollary it is enough to prove that
Fo,0(T) = Foo(T).
We have
Foo(T) = @Fo,o(Fn>/, Foo(Ty) = Foo(T)' N Foe(Tn).

n>=0
The actions of 5A[m and $ on fr(j?e commute to each other. Thus, by Corollary
the C-vector space Fpo(T") is identified with a $-submodule of ]-"7(;)@ via the map

(6-20), and we have
> dim(Fpe(Ty)) " =Y #Tre(O(Tn))o,e - 7 (6.1)

n>0 n=>0
The representation theory of £ yields the following formula in Z[[¢]]
O dim(Foo(0e)) - ) O 4P - t77) = Y dim(Fy e (T)) - £ (6.2)
k>0 >0 n>0
Finally, Proposition yields a surjective map
PI(O(T'k)) x Pr = Irr(O(Ty))o,r, (L, A) = ax(L) (6.3)
for k,7 > 0 such that n = k 4+ mr. From (f.1) and (5.3) we get
(D_tPUOWTR)) - t*) (Do 4Py - t77) = D dim(Foo(Ln)) - " € N[l (6.4)
k>0 >0 n>0
By Corollary and Lemma p.1] we have PI(O(T'},)) C Fy0(T')’, hence we have
$PI(O(Ty)) < dim(Fo,0(Tk)")-
Therefore, comparing (.2) and (6.4) we get the equality
§PI(O(T'k)) = dim(Fo,0(T'x)").- (6.5)
In other words PI(O(T'y)) is a basis of Fyo(I'x)’. Since PI(O(I'y)) is a basis of
Fy,0(I'x) by Proposition , we have also
Foo(T'k) = Foo(Ty).
(]

Remark 6.3. The proof of Proposition @ and Corollary imply that the map
(6-3) yields a bijection

PI(O('k)) x Pr = Irr(O(T'n))o,r, (L, A) = ax(L)
for k,r > 0 such that n = k + mr. Note that Proposition yields
PI(O(T'k)) = Irr(O(T'k))o,0-
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6.2. The representation theoretic grading on [O(I')]. Using the actions of the
Lie algebras $ and sl,,, we can now define a grading

[Om)] = o).
4,j20
Then, we’ll compare it with the filtration by the support introduced in Section ,
i.e., we’ll compare it with the grading

[om)] = @ eri ;).
i,j>0
To do so, let us consider the level m¢ Casimir operator
1
0=— b,b]
— > bl
r>1

see ([.d). Under the map (5.20) this formal sum defines a diagonalisable C-linear
operator on [O(T")]. For any integer j let [O(T')]s ; be the eigenspace of 0 with the
eigenvalue j. Note that [O(T")]s; = 0 if j < 0. Next, given an integer ¢ > 0 we
define [O(I")];,e to be the image of

DV [u — o] ® Homy (V™ [O(T)])

under the canonical maps

Vet @ Hom, (V2 [O(T)]) — [O(I)].

Sl

Here the sum runs over all sums o of i affine simple roots of s?[m, and over all
dominant affine weight p of sl,,. If i < 0 we set [O(I')];,e = 0.
Definition 6.4. We define a grading on [O(T')] by the following formula

[O@)]i; = [O@)]i,e N[OM)]s55,  [OTn)]i; = [O@)]s,; N [OTn)]
Proposition 6.5. We have dim[O(T',)]; ; = dimgr; ;(I'y) for all n,i,j > 0.
Proof. The vector space [O(T)]o,e is a $-submodule of [O(T")]. Thus it is preserved
by the linear operator 9 and [O(I')]o,; is the eigenspace with the eigenvalue j. Since

the $-action on [O(I')]o,e has the level mf we have [0, b;] = jb; for all j > 0. Next,
we have

[O(D)]o,e = Fo,e(I'), [O(T)]o,0 = Fo,0(I')
by Corollary and Proposition @ Further, the $-action yields an isomorphism

U™ (9); @ [O)]o,0 = [O()]o,;- (6.6)
By Remark @, for n = k + mj we have a bijection
Irr(O(T'%))o,0 X Pj = Irr(O(T'n))o,5, (L, A) — ax(L). (6.7)
Thus the isomorphism (@) yields the following equality
dim [O(T'n)]o,; = #Irr(O(T'n) ), (6.8)

Now, to compare dim [O(T',)];; and §Irr(O(T},));; for any ¢ > 0, we need some
tools from canonical bases. Since the integrable sl,,-module [O(I")] is not simple, the
choice of a canonical basis of this module depends on a choice of a basis of [O(T")]g,-
The general theory of canonical bases yields a bijection G between the canonical
basis of [O(T")] and its crystal basis, the latter being identified with Irr(O(T")) by
Proposition B.3. The bijection G is such that a basis of [O(I')]o,e is given by

{G(L); &4(L) = 0, Yg}.
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By Corollary we have

{L € Irr(O(I")); €4(L) = 0, Vgq} = Irr(O(T))o,e

={ax(L); VA e P, VL € Irr(O(T))o0 }-
We'll choose the canonical basis of [O(T")] such that
G(ax(L)) =aX(L), VAeP, VLeIrr(O))o,o-

Then the set {G(L); L € Trr(O(T))o,;} is a basis of [O(T')]o; by (6.6) and (.7).
The sl,,-action on [O(T')] commutes with the operator 0. Thus [O(T')], ; is an
sl,,-module and the s(,,-action yields a surjective C-linear map

U™ (skn)i @ [O(D)]o,; = [O(D)]i 5. (6.9)
For weight reasons, the crystal of [O(T")] decomposes in the following way
Ir(O(T)) = || Ter(O(1)); 5, Tre(O(T));; = {L € Tre(O(T)) 5 G(L) € [O(T)]s,5}-
4,70
Since {G(L); L € Irr(O(T'))o,;} is a basis of [O(T')]o,;, we have
Irr(O(T))g ; = Irr(O(T))o -
Next Irr(O(T')), ; is the union of connected components of Irr(O(I')) whose high-

est weight vector is in Irr(O(T"))g ;» and by Corollary B.1q, the set Irr(O(T))s,; is
the union of connected components of Irr(O(I')) whose highest weight vector is in
Irr(O(T"))o,;. Thus, for all n we have

Irr(O(T,))s ;s = Irr(O(T'h))e -

oj
By Corollary and (B.9), for all i we have also the inclusion
Irr(O(T)); 5 € Trr(O(Tn))i - (6.10)
Thus ) is indeed an equality. By definition, we have
dimgr;;(Tn) = §1r(O(Tn)ijy - dim [O(Tn)]sj = $Tr(O(T);

VN
Thus the corollary is proved. (I

Remark 6.6. Recall that gr; .(I") is identified with the subspace of [O(T")] spanned
by Irr(O(T"));,;, see Section m Proposition B.5 does not imply that [O(T)],,; is
also spanned by Irr(O(T")); ;. However, since

[OM)]o,0 = {z € [O)]; eq(x) = b.(x) = 0, Vg, 7},

the subspace [O(T)]o,o is indeed spanned by Irr(O(I'))g.0 by Proposition [5.3.

6.3. Etingof’s conjecture. Let oy, be the root of the elementary matrix e 4.
Recall that wg, w1, . ..,wy—1 are the affine fundamental weights. Fix a level 1 weight

A= "hyw,.
p

Definition 6.7. Let ay be the Lie subalgebra of 5[2 spanned by 1, D and the
elements e,  ® w” with p,¢ = 1,2,...,¢ and r € Z such that (A, a, ) — hr € Z.

We abbreviate a = a, and a = an gl,.

We define the set of positive real roots of a to be the set Ai consisting of the real
roots of 5{6 of the form a+ (r — (A, a)/h)é where « is a root of gly and a+ 76 is a
positive real root of gA[e. Let P_E; be the set of dominant integral weights for a, i.e.,
the set of integral weights of 5{6 which are > 0 on Ai. For i € Pff let Vlf‘ be the
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corresponding irreducible integrable a-module. We'll say that a non zero vector of
an a-module is primitive for a or a-primitive if it is a weight vector whose weight
belongs to P“, and if it is killed by the action of the weight vectors of a whose
weights are positive roots of a. Now, let h, hj, be the parameters of the C-algebra
H(T,,) for each n > 0. Assume that & is a rational number with the denominator
m > 1. The elements of §) can be regarded as elements of g~[¢ as in (@) We have
by, 0., € @ for each r > 0. The formal sum

1
Om = — E !
™ me bunr O
r>1

acts on every a-module Va It is the m-th Casimir operator of 5[4 introduced in
() For any weight A and any integer j we denote by V“[/\ j] the subspace of
weight A and eigenvalue j of 0,,,. We are interested in the following conjecture [E
conj. 6.7].

Conjecture 6.8. There exists an isomorphism of C-vector spaces

(T,) = @ Vi [wo — nd, j] ® Homg (V2 vl (6.11)

MK T wWo
where the sum is over all weights i € P$ such that (u, p) = —2i.

Remark 6.9. If A = wy then we have
Ay, = (gl ® Clw™, @ "]) & C1 & CD,

and the map () below yields a Lie algebra isomorphism a,, = 5[5.

Remark 6.10. Assume that the h,’s are rational numbers. Let K be the algebraic
closure of the field K = C((w)). Set

21E
h

p=1

0) € P ®, Q.

We have a(y) = —(A,a)/h for each root a of sl;. We may view 7 as the element
y(w) in Tp(K). We have @ = ad(y) " (dw, ). Now, assume that h, h,, are as in (B.9).
Then we have v € P%%, because

-1
v= E (sp+1 = sp) (wp — wo).
p=1

A short computation using the standard identification of w, — wg with the ¢-tuple

(170°77) — (p/0) (19) (6.12)

shows that 7 belongs to Q®" if and only if the /-charge s has weight 0. In this case
v € Ty(K), more precisely, v is a cocharacter of T;. Thus the element &, of the
affine symmetric group is well-defined. For a future use note that

A(s,m) = €5 (wo)', (6.13)

where 4(s,m) € P is as in (f.19), and that &, (x) € P8 if and only if y/ € Pf[‘*.
Here 4/ is as in (f.16) below.
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6.4. Reminder on the level-rank duality. For A € Z¢ we consider the weights
F(Am) = 4(\,m) — A\, m)é € P,
with 4(A\,m) € P?le, see Remark .7 and ([L.15). Note that 7(\, m) is dominant if
and only if
A€ AWUM) ={( M, A2,y M) €Z5 5 M — A <.
For d € Z we write
A(l,m)a ={XN € A(t,m); > X, =d}.

P
The level-rank duality yields a bijection A(f,m)q — A(m,£)4, A+ AT such that
e we have the equality of weights

m
AM) =Y w51 moa s
p=1

e we have an sl,, X $ x slp-module isomorphism

() _ slm sl
‘Fm,é = @ V::()\w) ® V,j?e & V:f(f\ﬁm) (6.14)
AEA(L,m)a
and there are highest weight vectors vy(xt ), Ume, V5(x,m) of V;i[/’\’} 0 Vn?l’
V;(Ki,m) such that [0, A) = v5(xt,0) @ Ve @ Vy(am) for A € A(l,m)q.

See e.g., [P, (3.17)], [B0, sec. 4.2, 4.3], for details. Let s = (s,) be an {-charge of
weight d. Setting d = 0, the formula ([L.16]) yields

F= @ Ve ovie (Vah . Esm)). (6.15)
AEA(L,m)o

Here the bracket indicates the weight for the glg-action of level m.

6.5. Proof of Etingof’s conjecture for an integral ¢-charge. In this subsec-
tion we prove Etingof’s conjecture in the particular case where the parameters h,
hp are as in (B-9). Note that our terminology differs from [J] because this case cor-
responds indeed to rational (possibly non integral) values of the parameters. From
now on, unless specified otherwise we’ll assume that the parameters h, h, are as in
(@), and we’ll also assume that the f-charge s has weight zero. To any level one
weight p of 5{6 we associate the level m weight u/ given by

-1 1
Wo=muwy+ Z pp(wp —wo)  where p=wp+ Z pp (wp — wo)- (6.16)
p=1 p=1

Note that v € Q3" and that 4(s,m) = & " (wo)’ by (b.13). Using this and (b.15) we
get a 5A[m x $)-module isomorphism

]:7(;,)2 = @ VAYS([ZIM) ® Vr;?e ® (V@S([f\,m) [5;1(“}0)/])'
AEA(L,m)o
Thus, by (f.16), (£.23) and ([.23) we have
Fave = VA6 o)),
where the bracket indicates the weight subspace for the gA[e—action of level 1. Since
the map (5.2() yields an isomorphism [O(T)] = F, (S?e, we get also an isomorphism

m

[O(T)] = VS*[& (wo)]. (6.17)



50 P. SHAN, E. VASSEROT

Under this isomorphism we have

[O(T')] = Vi[85 (wo) — nd)]
by ((.29) and the following lemma.
Lemma 6.11. (a) If \¢ is an £-core such that T(A\°) = s then ng(\°) = %('y,'y}.~
(b) The element |0,s) is an extremal weight vector of the module .7-“7(7(3,)@ = Vo
with the weight £ (wo)-
The formula (.11)) we want to prove is

dimgr; ;(T') = Y dim(V;f[wo — n6. 5] @ Homa(V;i, VEY)).

7 T Wwo

where the sum is over all weights € P® such that (u, ) = —2i. The proof consists
of three steps.

Case 1: First, let us consider the sum over all i’s. We must prove that
dimgr, ;(I'y) = dim(VUf::’f [wo — nd, j]).
Note that N N
dim (V) [wo — nd, j]) = dim (V7 [65" (wo) — nd, 1),

because the Casimir operator d,, commutes with the y-action on Vf;e by (}£.24).
Therefore, by Proposition @ we are thus reduced to prove that under (§.17) we
have

[O(Tn)]e,; = VA€ (wo) —nd, j].
This follows from the equality of the Casimir operators (??) and ([.29), see ([£24).
Case 2 : Next, consider the case i = 0. Let ©,, ¢ be the image of

M T wWo

@ V;[wo —nd, j] ® Homz (VE Vg‘f) (6.18)
i

by the canonical maps Vcl ® Homu(V“ Vof’o[" ) — Vw gl, . Here i runs over the set of
all weights in P with <,u i) = 0. By Proposition @ and the discussion above we
must prove that the image of [O(T',)]o; by (6.17) is isomorphic to ©,,¢ as a vector
space. To do that, observe first that by definition of [O(T,))]o,; the map (b.17) takes
[O(T'»)]o,; onto the subspace

Ve (wo) —ndln D vine @Vl @ V;(lﬁ ) (6.19)
NEA(L,m)o

Note that vs(xt ¢) ® Vol ® Vﬁ(lﬁ\ m) 18 the submodule of ]-"7(731)2 = VU?(,[E generated by

the vector |0, A) for the level m action of gAle. Note also that d., ~ gl, by Remark
@. Finally, the set of weights of Vfo["' is

WH(VEY) = {wo + 85 B € Q°},
see Section .3, and we have the following lemma.

Lemma 6.12. (a) We have v € P, B if and only if V' € Pglf
(b) We have {v'; v € P n Wt(vfjf )} = {3(\,m); A € A(l,m)o}.
Thus, by Lemmas p.11], .19 the space () is indeed equal to
@V“”" ~Hwo) — nd, j, (6.20)
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where the sum is over all extremal weights © in Pi“" N Wt(VfU["') and V,“" is

identified with the a,,-submodule of V“?UIE generated by a non zero extremal weight
vector of weight ©. Now, let us consider the space 0, . Recall that (i, i) = 0

if and only if f is an extremal weight of Voﬁfe. Further an extremal weight have a
one-dimensional weight subspace, see Section @ Thus ©,, is equal to the sum

@fo[wo _n(saj]a (621)

where /i runs over the set of all extremal weights such that Vf;e contains an a-
primitive vector of weight /i, say vz, and V' is identified with the a-submodule of

Vfo["' generated by v;. Now, Remark yields

Awg

a=ad(y) " (dwy), & (i) € PY <= e PL™.
Thus the y-action yields a linear automorphism of Vfé" such that
7 Va0l (wo) = né, 1) = VE aylwo —nd, 4], Vi€ PE.
Thus (6.20) is equal to ©,, by the following lemma.

Lemma 6.13. For all weight p in P_i“’” N Wt(Vf(fE) the module V3 contains a
Ay, -primitive vector of weight fi.

Case 3 : Finally, consider the general case. Fix the integers n,j. Let ©,; be
the image of

@ Vi lwo — nd, j] @ Homg (Vi Vai[z)’

by the canonical maps V,;El ® Homa(VDa, Vfé" ) — V(fo["'. Here the sum is over all
weights 7 € P{ such that (7,7) = —2i. The same argument as for Case 2 implies
that ©,,; =v~'(0], ;) where O], , is the image of

P Vi[5 (wo) — 1. 4] © Homg, (V=0 V),
i

by the canonical maps V; “?@Homg,, (Vl;l “o Vof’(,“’ ) — Vfo["', because the composition

by the automorphism v~ of Vof’(,“’ yields a linear isomorphism
é gl e gl
Homa(Vg(m, V5,t) = Homg, (Vﬂ 0, Vae).

Here the sum is over all weights i € Pi““ such that (fi, i) = —2i. Let us prove that

(6-17) maps [O(T',,)];; onto ©), ;- The proof of Case 2 implies that 6-17) maps
[O(T')]o,; onto ©7, . By (6.9) we have

U™ (stn); ([OTn)lo) = [OTw)]i-
By (.2§) we have also R

U™ (slm)i (©7,0) € O,
because the actions of 5A[m and a,, commute with each other. Therefore, we have
[OT)]ij C O
On the other hand, the proof of the first case implies that
[OT); =P 6.
>0

Thus we have the equality [O(T',)]i; = 6, ;.
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Proof of Lemma [.1]. A direct computation shows that

1 £
=58

p=

N)I»—l
—

Now, consider the partition A\ = (A1,...,A\ge). We choose k to be large enough
such that Axy = 0. Write

ANi—i+1l=(a; = 1)l+b, 1<b; <Y,

i—1=al+0b, 0<V,<l—1.
The number of 0-nodes in the i-th row of the Young diagram associated with A¢ is

equal to a; + a}. So
ke

no(X°) = > (a; +aj).
=1
We have
,_ —k(=k+1)¢

74 4
Yoai = D ((k+D)+(-k+2) 4 +sy)

14
1 —k(—k+1)¢
= Y-l

2
p=1
This proves part (a). For part (b), note that (a) and ([t.27) yield
1
D(|0,5)) = =5 {7110, 5)

Further |0, s) is a weight vector for the level one representation of QT[Z with the weight
wo — 7, see [BA, (28)]. Thus |0, s) is a weight vector for the level one representation
of gl, with the weight
_ 1
& (wo) =wo—7 — 5(%7>5-
The latter is an extremal weight, see Section @ ([

Proof of Lemma . The set of all dominant integral weights of sly is

—1
(A m); A€ A(t,m)} = {(m — M + \o) w0+z —Aps1)wpi A€ A(L,m)}
f{mwoJrZ Ap+1) —wo); A€ A(l,m)}.

Set 8 = Zf;;ll(/\p — Ap+1) (Wp — wp) with A € A(¢,m). Identifying w, — wy with
the (-tuple (6.19), a short computation shows that 8 € Q®" if and only if A €
A(f, m)o. O
Proof of Lemma . Fix a weight p in Pi“" N Wt(Voﬁff). Fix a non zero element
v € Vfo["' of weight i = 1 — 3{(u, u)6. We must prove that v is a.,-primitive. The



HEISENBERG AND CHEREDNIK 53

argument is taken from [, sec. 6.2]. By Remark .9 it is enough to prove that ji+ v

is not a weight of Vfo["' for any element v in the set
{appt1, f—a1p+mé;p=1,2,...,0—1}.
In fact, since g € P_E;, for such a v we have
(p+v, i+v)=(v,v)+2(@,v) =2+ 2(f,v) > 0.

Therefore ji + v is not a weight of V.5 by Section k3 O

Remark 6.14. Assume that the parameters h, h, are as in (@) Since 7 belongs
to Ty(K), it acts on any integrable sl;-module. Let 0° denote the trivial /-charge.

~ ¢ ,
The v-action on the representation of sl, on Fy, ; of level 1 takes }“7(7? e) onto ]-'7(;)4.
Indeed, since 7 is a cocharacter of Ty the formula (@) yields the following equality

Y(FL)) = AFO, fmao))
= (V8 [wo])
— V(¢ (wo))
= Foblés ! (o))

Here the upper script ’ is as in () Therefore, by Section @ we are reduced to
check the following identity

-1
_ 1
&5 (wo) = wo + 7 >y (wp — wo).
p=1
Recall that v = —+ Zfo;ll hp (wp — wo). Thus the claim follows from the formula

(4) for the &;-action on t; ® Cwo @ Co.

APPENDIX A. REMINDER ON HECKE ALGEBRAS

A.1. Affine Hecke algebras. The affine Hecke algebra of type GL,, with param-
eter ( € C* is the C-algebra H¢(n) generated by the symbols X1, Xo,..., Xy,
Ty,Ts,...,T,—1 modulo the defining relations

Xin:Xin, 1<’L,j<n,

T.X; = X;T;, j#ii+1,
TXT = (X1, 1<i<n—1,
(Ti+1)(Ti = ¢) =0, 1<i<n-1,
LTy =TT, 1<i<n—2.

For I  {1,2,...,n—1}let H¢(I) C H¢(n) be the corresponding parabolic subalge-
bra. It is generated by the elements T;, X; withi € I, j =1,2,...,n. For areduced
expression w = $;, 8, - - - 84, of an element w € &,, we write Ty, = T, 15, - - - T;,. We
abbreviate T;; = T,;. Let D; be the set of minimal length representatives of the
left cosets in &,,/&;. We'll abbreviate Dy j = D;l N Dy. For x € Dy ;j the map

GCrrzg — Gp-11q7, W x wz
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defines a length preserving homomorphism. Hence there is a C-algebra isomorphism
He(INzJ) = He(z  NT), To Tprge,  Xj > Xoo105)-
Let
Rep(H¢(z7*INJ)) — Rep(He(INwJ)), M "M

be the corresponding twist functor. The following is well-known.

Lemma A.1 (Affine Mackey theorem). Let M € Rep(H¢(J)). The module
He(n) 1, qHe(n)
ResﬂC(I) Indﬁg(J) (M)
admits a filtration with subquotients isomorphic to

Ho(D)  apaHe)
Indﬂg(mm) Sﬂg(rlmJ)(M)’

one for each x € Dy j. The subquotients are taken in any order refining the Bruhat

order on Dy j. In particular we have the inclusion

H (1) H(J) H:(n) H(n)
Indﬁg(mJ) ReSﬁC(IﬁJ) (M) C Resﬁg(l) Indﬁg(.j)(M).

A.2. Cyclotomic Hecke algebras. The cyclotomic Hecke algebra H¢(n, ) asso-
ciated with I',, and the parameters (,v1,ve,...,v, € C* is the quotient of I:IC(n)
by the two-sided ideal generated by the element

(Xl — ’Ul)(Xl — ’02) N (Xl — ’Ug).

We'll denote the image of the generator X7 in H¢(n, f) by the symbol Ty. For a
subset I C {0,1,...,n— 1} we define I'; C T, as the subgroup &; if 0 € I, or as
the subgroup generated by &\ oy and {y1;7y € T'} else. This yields all parabolic
subgroup of I',,. We consider also the parabolic subalgebra H¢(I,¢) C H¢(n, ()
which is the subalgebra generated by the elements T; with ¢ € I. To unburden the
notation, we abbreviate

H(l'y) = H¢(n,6), H(S,) =Hc(m), H(Ir)=Hc(I,4).
For r >0 and I ={0,1,...,n+mr — 1} \ {n} we write also
H(T,, ) = HTY).

A.3. Induction/restriction for cyclotomic Hecke algebras. We’ll abbreviate

H _ H(T,) H _ H(T,)

Ind,, = IndH(Fnil)7 Res,, = ResH(Fnil),
H _ H(T7 4 mr) H _ H(T7 4 mr)

Indn,(mr) = IndH(Fn:mT))’ Resm(mr) = ReSH(Fn:mT))’ (Al)
Mndy mp = Indgg(7 7, MRes my = Resgp 7).

We write also
HInd(y,r) = TIndgr" : Rep(H(S},)) = Rep(H(Sm,)),
HRes(yry = HResggr : Rep(H(S,,r-)) — Rep(H(S),)).
Now, we consider the Mackey decomposition of the functor
HResypm 0 HIndmm :Rep(H(T,, 1)) = Rep(H(Tpptm—1))-
A short computation shows that a set of representatives of the double cosets in
Logm—1\Tngm/Tnm
is {VYn+m, Snn+m; v € T'}. For
I={0,....n+m—-1}\{n—-1,n}, J={0,....n+m—-2}\{n—-1}
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we have
HT;) cHThm), HTy;)=HTw-1m) CHTtm-1)-
Further, there is an algebra isomorphism
¢ H(Ly) = HT), Tw = Tows—1, Xi = X,
where s = $,8,41 " Spym—1. For each i, p we write X! = (X;)?. We have the

following decomposmon It is well known in the case m = 1 see e.g., . lem. 5.6.1]
in the degenerate case.

Proposition A.2. (a) We have an isomorphism of H(I'p4m—1)-modules
n+m @ @ H(Fn-i-m—l) Tj,n-i-m Xf-
0<p<t1<j<ntm
(b) We have an isomorphism of (H(Fn+m 1), H(Ty,m)) -bimodules
H(4m) = H(p4m-1) ThntmH ) @ @ H(Lyqm-1) 5+mH(Fn,m)-
0<p<t

(¢) There are isomorphisms of (H(Lpim—1), H(I'yn m))-bimodules
H(Fn-i-m—l) Ty n+mH(Fn,m) = H(Fn-i-m—l) OH(T_1.m) H(me),
H(Fn-i-m—l) XﬁerH(me) = H(Fn-i-m—l) OH(T, 1) H(Fn,m)a

where the algebra homomorphism H(T'y_1,m) — H(Tp,m) is given by .

Proof. Part (a) is standard, see e.g., [E, lem. 5.6.1] in the degenerate case. Let us

concentrate on (b). Write t;; = T;T;_1---T; for 1 < i< j, and t;; = 1 for i > j.
By (a) we are reduced to prove the following identities

@ @ n+m 1 thrm 1] — H( n+m71)tn+mfl,n H(Fn,m)v (A2)
0<p<l 1<j<n

@ @ n+m 1 thrm 1] @ H n+m— 1 H(Fn,m)

o<p<e n<]<n+m o<p<t

We have
Utntm—1n = tntm—1,nP(u), € H(n—_1,m), (A.4)
because for : =1,2,...,n—1 and j € J \ {0} we have
Tj thrmfl.,n - thrmfl,nTs(j) - thrmfl.,nSﬁ(Tj);
Xi tn-l—m—l,n - tn-l—m—l,nXi - tn—i—m—l,n(P(Xi)-
Hence, by (a) the right hand side of (A.9) is
= @ @ H(Fnerfl)thrmfl,n H(FI) tnfl,j va

0<p<l 1j<n

= @ @ H(Fnerfl)H(anl,m)thrmfln n— 1]Xp

0<p<1<5<n

@ @ n+m 1 tn-i—m—l,j X;D

0<p<1<5<n

This proves the first identity. Next, a short calculation involving the relation

XP Ty — TjXP € C[X;, X1

proves that the sum

Y. D HTwpm ) tagmo1;X]

o<p<ln<g<n+m
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is indeed a direct sum, i.e., it is equal to the left hand side of (@) Thus the
identity (@) follows from the following equalities

H(Fnerfl) Xﬁ-‘,—m H(Fn,m) = Z H(Fnerfl) Xﬁ-{-m Tj,ner

n<j<n+m

= Z H(Fnerfl)Xﬁer thrmfl,j

n<j<n+m

Z H(Fn—i-m—l)tn—i-m—l,ij-

n<j<n+m

Finally, let us prove (c¢). The second claim is obvious because

H(Fn-i-m—l)Xp

n+m

H(Ty ) = X2y (T )BT ) = H(Tn 1) H(T,0)
as (H(Fner,l), H(Fnym))—bimodules. For the first one we define a map
H(yqm-1) x H(T,m) = H(Lpqm—1) Tongm H(Tnm),
(U, v) = Utpim—1,n.
By (A4) it factors to a surjective homomorphism
Y HCnim-1) @a0, 1) HCnm) = H(Cnpm—1) Tonm H(Tn m).

By (a) the left hand side is a free H(T'),4.,—1)-module on basis

1®tn—1,jX§7, 1<j<n, 0<p<l.
But ¢ maps these elements to
tntm-1,X5, 1<j<n, 0<p<t

Further, the latter form a H(T,,4,,—1)-basis of the right hand side by (a) again.
We are done. 0

APPENDIX B. REMINDER ON (-SCHUR ALGEBRAS

B.1. The quantized modified algebra. Let v be a formal variable. The quan-
tized modified algebra U(n) of gl, is the associative Q(v)-algebra with generators
E;, F; where i =1,....,n—1 and 1, where A\ € Z", with the defining relations [@,
sec. 23]

1n1, = 6x,uln,

EiF; — FiE; = 6i5 ) 5 [N — Aip1]1a,

Eilx = 1xta, B,

IZFi = Filata,

EiEj = EjEi if 4 7& jE1, EEEJ — (1} + ’U_l)EiEjEi + E‘]E‘l2 = 0 else,
FF;=FjF,ifi#j+1, F’F; — (v+v V) F,F;F, + F;F? = 0 else,

where [m] is the usual v-analogue of m for any m € N. The comultiplication of
U(n) is the Q(v)-algebra homomorphism

A:U(n) - H(U(n)h ®U(n)ly)
AN

given by
o A(Ly) =ITaongar Iy @ Ly,
. A(Ellk) = H/\:/\/Jr/\//(Eil)\/ ® 1y + pleiA )1X ® Eilk”),
o A(le,\) = HA:A’-ﬁ-A”(ElX ® ’U*(ai,)\”)l)\// +1yv® Fil/\//).
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Set A = Z[v,v™1]. The integral quantized modified algebra is the A-subalgebra
U4 (n) € U(n) generated by the 1y’s and all quantum divided powers E( ) F(d)
The comultiplication yieds an A-algebra homomorphism U A — U AR U A. For

e € C* we consider the C-algebra

U (n) = U(n) @4 Clo,v7 /(v —e).
For V, V' € Rep(Uc(n)) let sy.yr : V@V’ — V' @V be the permutation v @ v’
v' @ v. The R-matriz is a C-linear endomorphism Ry,y+ of V' ® V' such that the
composed map

Rv,v =svy,y o Ry v

is an isomorphism of U, (n)-modules V@V’ — V/®V. The map Ry v+ decomposes
in the following form

Ryy/(v®v)=Rv®v), R=I6O,
ﬁiHUi()\’/\,)l,\@l)\/, @GH 1)\®U( )1)\/).
AN AN
The notation is chosen to agree with [, sec. 32]. We call R the universal R-
matriz. To avoid confusions we may write R for R. We’ll write Ry, again for
the braiding of right U.(n)-modules V', V’. If € is a primitive 2d-th root of 1 then

we have e’ = (—1)2. Hence the quantum Frobenius homomorphism [B3, sec. 35.1]
is the unique C-algebra homomorphism

Fr:U.(n) - U(_l)d(n)
such that
o Fr(E!™1,) = BT 1,4 if m € dZ and A € dZ", and 0 otherwise,
o Fr(F™1,) = F™'%1, 4 if m € dZ and A € dZ", and 0 otherwise.
The formulas in [E, sec. 3.1.5] imply that
Ao Fr = FroA.

Proposition B.1. We have (Fr @ Fr)(R.) = R(_1ys = HAy)\,(—l)d()‘*X)(l,\ ®1y).

Proof. To avoid confusions we’ll write O, II, for ©, II. If n = 2 the proposition
follows from the formula @, sec. 4.1.4]. More precisely, since
k

6, = H Z(il)kefk(kfl)ﬂ{k}CF(k)1A ® E(k)b\/, {k}. = H(e _ eii),
AN k20 i=1
we have the following formula
(FreFr)(0) = [[(a @ 1x). (B.1)
AN
Further, in U(_l)d(n) ® U(_l)d (n) we have also
(Fr@ Fr)(I) = [[ (- (13 @ 1y), (B.2)
AN
and - - )
Oy =[[@ty), Ty =[N @1y, (B.3)
AN AN

This proves the formula for n = 2. Now, let n be any integer > 2. The braid group
of &, acts on U(n) via the operators 7, Ty, ..., T 1 in B3, sec. 41]. For
1 =1,2,...,n—1 we set
= —k(k— k k
Si = Ti/,ll ® Ti/,llv Oi,c = Z(*l)ke h 1)/2{k}eFi( ) ® Ez( )'
k>0
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For a reduced decomposition s;, s;, - - - S5, of the longuest element in G,,, the uni-
versal R-matrix is given by the following formula, see [@, thm. 3],

O = [[0(a®1x), =S8 S 0iy.c) -+ S (i, )i, e
PV

Thus (B.3) yields
é(,l)d = H(l)\ & 1)\/),
AN

Since the braid group action is compatible with the quantum Frobenius homomor-
phism, see [23, sec. 41.1.9], by (B.1)) we have also

(FroFr)(0) = [[(a @ 1x).
PV

Finally, a direct computation yields

(Fr@ Fr)(Ie) = [[ (- (13 @ 1y) = TI(_yya
AN

This proves the proposition. [

Remark B.2. Tt is proved in [E, prop. 33.2.3] that the assignment
Eily — (_1)id(>\r/\i+1)Ei1/\, Fily — (_1)(i+1)d(>\rAi+1)+dEi1>\’ 1y — 1y

yields a C-algebra isomorphism Uj(n) — U(_l)d(n). Thus we can regard Fr as a
map U.(n) — Uj(n). Note that the isomorphism above does not commute with
the comultiplication.

B.2. The (-Schur algebra. The v-Schur algebra S(n,m) is the associative Q(v)-
algebra with 1 generated by E;, F; where ¢ = 1,...,n — 1 and by 1) where \ €
A(n,m), modulo the defining relations [§, thm. 2.4]

1k1u = 5k,u1ka Z)\ Ix=1,

EiF; — FiE; = 6i5 ) 5 [N — Ai1]1a,

E;1, = 1/\+aiEi if A+ o; € A(n,m), 0 else,

IzE; = Eily_q, if A= a; € A(n,m), 0 else,

Fily =1x_o,Fi if A\—a; € A(n,m), 0 else,

1IzF; = Filyja; f A+ a; € A(n,m), 0 else,

E,E; = E;E; if i # j+ 1, B2E; — (v+ v ) E,E;E; + E;E? = 0 else,

FiF; = FiF; ifi # j £ 1, F2F; — (v + v 1) E;F;F; + F;F2 = 0 else.

The integral v-Schur algebra is the A-subalgebra S 4(n,m) C S(n,m) generated
by the 1,’s and all quantum divided powers EZ-(d), ﬂ(d). In other words, we have a
canonical isomorphism

Sa(m,m) =1, Ua(m)lym, Im= Y 1
AEA(n,m)

The comultiplication of U4 (n) factors through an A-algebra homomorphism
A:Sa(n,m) — @ Sa(n,m’) ®Sa(n,m"). (B.4)
m=m'+m'’
For ¢,e € C* with ¢ = € we consider the C-algebra
SC(”; m) = SA(TL, m) ®A (C[Ua U_l]/(v - 6)
= 1mU€(n)1m.
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Indeed S¢(n, m) depends only on ¢ and not on the choice of e. If ¢ is a primitive d-th
root of 1, we choose € to be a primitive 2d-th root of 1. Then the quantum Frobenius
homomorphism Fr : U.(n) — Uj(n) factors through a C-algebra homomorphism

Fr: S¢(n,dm) — Sqi(n,m). (B.5)
Note that we have used the identification U(_l)d(n) = U, (n) in Remark B2

B.3. The module category of S¢(n,m). For A € Z let AV, LY € Rep(U,(n))
denote the Weyl module and the simple module with highest weight A. Set

A(n,m)y = A(n,m)NZ.

The category Rep(S¢(n,m)) is equivalent to the full subcategory of Rep(Uc(n))
consisting of the modules such that all constituents have a highest weight in the set
A(n,m)4. It is quasi-hereditary with respect to the dominance order, the standard
objects being the modules Ay with A\ € A(n,m);. Here, for A € A(n,m);, we
write

Af = Aga Lf = Lg,

regarded as objects in Rep(S¢(n, m)).

B.4. The Schur functor. Assume that n > m. There is a C-algebra isomorphism
B, sec. 11]

Hc(m) = f Sg(n,m f, f = 1(1m,0n77n,).

Thus the vector space T¢(n,m) = Sc(n,m)f is a (S¢(n, m), He(m))-bimodule, and
Ve(n,m) = fSc¢(n,m) is a (H¢(m), S¢(n, m))-bimodule. Consider the triple of
adjoint functors (@1, ®*, D)

®* : Rep(S¢(n,m)) — Rep(H¢(m)), M w— fM,

@, : Rep(H¢(m)) — Rep(S¢(n,m)), N — Homg, () (Ve(n,m), N),

®, : Rep(H¢(m)) = Rep(S¢(n,m)), M — T¢(n,m) ®H, (m) M.
We call ®* the Schur functor. It is a quotient functor, i.e., it is exact and the counit
®* d, — 1 is invertible. The double centralizer property holds, i.e., we have

S¢(n,m) = Endg, (m)(Ve(n,m)).

Equivalently, the functor ®* is fully faithful on projectives, or, equivalently again,
the unit P — &, ®*(P) is invertible whenever P is projective. See [@, prop. 4.33]
for details. Since ®* is a quotient functor, the functor ®, takes projectives to
projectives and the unit 1 — ®*®, is an isomorphism of functors. For m = m/ +m/
the comultiplication (B-4) yields a functor

@ : Rep(S¢(n,m’)) ® Rep(S¢(n,m”)) — Rep(S¢(n, m)). (B.6)

H¢(m)
H¢(m/)®H¢(m")

Proposition B.3. (a) We have a (S¢c(n,m), He(m') @ He(m'))-bimodules iso-
morphism can : T¢(n,m)@T¢(n,m") — T¢(n,m). For M’ € Rep(H¢(m')), M" €
Rep(H¢(m')) the map can yields an isomorphism
can : & (M Ind,y o (M @ M")) — &(M) @\ (M").
(b) We have an isomorphism of (H¢(m') @ He(m'), S¢(n, m))-bimodules can :
Ve(n,m)@Ve(n,m"”) = V¢(n,m). For M' € Rep(H¢(m')), M" € Rep(H¢(m'))
the map can yields an isomorphism

can : @, (M Ind,y (M @ M) = O, (M) 2P, (M").

We'll abbreviate H Ind,, m» = Ind
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Proof. By definition T¢(n,m) is the v-tensor space in [ﬂ, def. 2.6]. According to [ﬂ,
sec. 3.3, 4.4] it is identified with the m-th tensor power of the natural representation
of the (modified) quantized enveloping algebra of gl,,, in such a way that the H(m)-
action comes from the R-matrix, see also [L]. This proves part (a). Part (b) follows
also by taking the dual spaces. O
Corollary B.4. We have an isomorphism
can : FInd,, i (M @ ®*M") — &*(M'oM")
for M’ € Rep(S¢(n,m)) and M" € Rep(S¢(n,m”)).
Proof. For M’ € Rep(S¢(n,m’)) and M" € Rep(S¢(n, m")), Proposition B.3 yields
an isomorphism
&M Ind, g ("M @ ®*M") = &, M'@P,D* M.
Composing it with ®* we get an isomorphism
B Ind,pys o (0 M @ @ M) = &* (5, M' 0,0 M").

Composing it with the unit 1 — ®,P* we get a functorial map

O*(M'&M") — B Ind,y g (O M’ @ * M)
which is invertible whenever M’, M" are projectives, because the unit is invertible

on projective modules. Thus it is always invertible, because ®* and ¥ Ind,,/ ,,» are
exact and because there are enough projectives in Rep(S¢(n,m)). O

B.5. The braiding and the Schur functor. For M’ € Rep(H¢(m')) and M" €
Rep(H¢(m'")) the R-matrix yields an isomorphism of S¢(n, m)-modules
Roar.oar - OM G0, M — &,M" &0, M.
Let 7 € G,,, be the unique element such that
e 7 is minimal in the coset (S X &, )T(Sppr X Sy ),
o we have 77 1S, X &,y )T = G X S
We have the following formula in H¢(m)
T, (" ®h")y= (R @h")T., h' e€Hc(m'),h" € He(m"). (B.7)
Thus there is a unique functorial H¢(m)-module isomorphism
Svr s B Indpr g (M @ M"Y — B Indprr e (M” @ M)
given by
Svromr(h@ (v @0")) =hTr @ (V" @0'), heHe(m), v e M',v" € M".
Proposition B.5. For M’ € Rep(H¢(m')), M" € Rep(H¢(m')) the following
square is commutative

D, (Sprr mrr)
@, HInd o (M' @ M") —— 5 & HInd, i (M” @ M)

canl canl
R, M/, @y M

O M 2P, M" O M" 2P, M.

Proof. We abbreviate H = H¢(m), H = H¢(m'), H" = He(m"”), V = V¢(n,m),
V' =V¢(n,m') and V' = V¢(n,m"). First, we have a commutative square

RV”,V’

V/I®v/ VI®VH
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where the lower map is the left multiplication with T%-. See [E] and the discussion
in the proof of Proposition @ In particular, we have

Ry v (W' @) = (W@ )Ry v (VV@V"), v e VI " e V' B eH' 1" e H".
Therefore, the composition by Rv v yields a linear map

Hompp gr (V, M’ @ M") = &2 Ind, (M’ @ M) —

— Homurgm (V, M" @ M') = &5 Ind,r pr (M" @ M').

The commutativity of the square (@) implies that this map is equal to @, (Sas arv)-
It is easy to see that this map coincides also with Re, v+ o, m- [l

Corollary B.6. For M’ € Rep(S¢(n,m')), M" € Rep(S¢(n,m")) the following
square is commutative

S@*M/,@*M”

H Indm/m// ((I)*M/ X @*M”) H Indm//m/ (@*M” X @*M/)

l . P* ('R, ’ //) l .
(I)*(MI(X)M”) MM (I)*(M”(X)MI)
Proof. Use the same argument as in the proof of Corollary @ O

Let r > 1and ¢ =1,2,...,7 — 1. For M € Rep(H¢(m)) we consider the automor-
phism of the H¢(mr)-module  Ind,,~ (M®") given by

S = B Indg " (1%L @ Sy @ 19770, (B.9)
H = He(m)®' © He(2m) @ He(m)® ",

For M € Rep(S¢(n,m)) we consider the automorphism of the S¢(n, mr)-module
M®" given by

Rari = 19 @Ry @171 (B.10)
Corollary B.7. For M € Rep(S¢(n,m)), r > 1 andi=1,2,...,7r — 1 we have a
commutative square with invertible vertical maps

Sa*(M),i

H Ind(mr) P* (M)®T H Ind(mr) P* (M)®T

| |

. D" (Rs,i) .
o+ (MET) = o+ (MET)

B.6. The braiding and the quantum Frobenius homomorphism. Recall
that if ¢ is a primitive d-th root of 1 then the quantum Frobenius homomorphism

(B) yields a functor
Fr* : Rep(S1(n,m)) = Rep(S(_1)a(n,m)) — Rep(S¢(n,dm)).
Here we have identified S(_1ya(n, m) and Si(n,m) as in Remark B.d. Let m’/,m” >
0 with m = m’ + m”. By Proposition B.1, for M & Rep(S(_1ya(n,m)), M’ €
Rep(S(_1)¢(n,m’)) the braiding operator
Rarar : MEM' — M'éM
is the composition of the permutation sys - and of the operator

Ry = [[(=1)* ) (15810,
AN
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Proposition B.8. Forr >1,i,j=1,2,...r =1, and M € Rep(S(_1)a(n,m)) the
following relations hold in Ends(il)d(n,mr) (M®T)

° R?M,i =1,
® RuariRum,j = Rm iRy if j#1— 1,1+ 1,
o RuriRuariviRu,i = RariviRar,iRmiv1 f ¢ #£r — 1.

Proof. The first relation is obvious by definition of the braiding operator, see above.
The other relations are consequences of the general properties of a braiding. (I

Further, the functor Fr* is a braided tensor functor, i.e., we have the following.

Proposition B.9. For M € Rep(S(_y)(n,m’)), M" € Rep(S(_1ya(n,m")) we
have a functorial isomorphism Fr*(M®@M') = Fr*(M)® Fr*(M’) in Rep(S¢(n, dm))
such that Fr*(Ras,m) = Res (M), Frs (M) -

Proof. Obvious by Proposition . O

B.7. The algebra S¢(m). We'll abbreviate S¢(m) = S¢(m,m). If n > m the
algebra S¢(n,m) is Morita equivalent to S¢(m), see e.g., [é, lem. 1.3]. Thus ® can
be viewed as a functor (choosing n > m =m' +m”)

@ : Rep(S¢(m')) @ Rep(S¢(m”)) — Rep(S¢(m)).

If ¢ is a primitive d-th root of 1 then the quantum Frobenius homomorphism can
be viewed as a functor (choosing n > dm)

Fr* : Rep(S1(m)) = Rep(S(—1y¢(m)) — Rep(S¢(dm)).
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