
HAL Id: hal-00540662
https://hal.science/hal-00540662v1

Preprint submitted on 29 Nov 2010 (v1), last revised 5 Feb 2011 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Heisenberg algebras and rational double affine Hecke
algebras

P. Shan, Eric Vasserot

To cite this version:
P. Shan, Eric Vasserot. Heisenberg algebras and rational double affine Hecke algebras. 2010. �hal-
00540662v1�

https://hal.science/hal-00540662v1
https://hal.archives-ouvertes.fr


HEISENBERG ALGEBRAS AND RATIONAL DOUBLE AFFINE

HECKE ALGEBRAS

P. SHAN, E. VASSEROT

Abstract. In this paper we categorify the Heisenberg action on the Fock
space via the category O of cyclotomic rational double affine Hecke algebras.
This permits us to relate the filtration by the support on the Grothendieck
group of O to a representation theoretic grading defined using the Heisenberg
action. This implies a recent conjecture of Etingof.
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1. Introduction and notation

1.1. Introduction. In this paper we study a relationship between the represen-
tation theory of certain rational double affine Hecke algebras (=RDAHA) and the
representation theory of affine Kac-Moody algebras. Such connection is not new
and appears already at several places in the literature. A first occurrence is Suzuki’s
functor [27] which maps the Kazhdan-Lusztig category of modules over the affine

Kac-Moody algebra ŝln at a negative level to the representation category of the
RDAHA of slm. A second one is a cyclotomic version of Suzuki’s functor [29] which

maps a more general version of the parabolic category O of ŝln at a negative level
to the representation category of the cyclotomic RDAHA. A third one comes from
the relationship between the cyclotomic RDAHA and quiver varieties, see e.g., [12],
and from the relationship between quiver varieties and affine Kac-Moody algebras.
Finally, a fourth one, which is closer to our study, comes from the relationship in
[26] between the Grothendieck ring of cyclotomic RDAHA and the level ℓ Fock

space Fm,ℓ of ŝlm. In this paper we focus on a recent conjecture of Etingof [8]
which relates the support of the objects of the category O of H(Γn), the RDAHA
associated with the complex reflection group Γn = Sn ⋉ (Zℓ)

n, to a representation
theoretic grading of the Fock space Fℓ = Fℓ,1. These conjectures yield in particular
an explicit formula for the number of finite dimensional H(Γn)-modules. This was
not known so far. The appearance of the Fock space Fℓ is not a hazard. It is due
to the following two facts, already noticed in [8]. First, by level-rank duality, the
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ŝlm-module Fm,ℓ carries a level m action on ĝlℓ. It carries also a level 1 action

on ĝlℓ, under which it is identified with Fℓ. Next, the category O of the algebras
H(Γn) with n > 1 categorifies Fm,ℓ by [26]. Our proof consists precisely to inter-

pret the support of the H(Γn)-modules in terms of the ŝlm-action on Fm,ℓ, and

then to traduce this in terms of the ŝlℓ action on Fℓ. An important ingredient is
a categorification (in a weak sense) of the action of the Heisenberg algebra on Fℓ
and Fm,ℓ. The categorification of the Heisenberg algebra has recently been studied
by several authors. We’ll come back to this in another publication.

1.2. Organisation. The organisation of the paper is the following.
Section 2 is a reminder on rational DAHA. We recall some basic facts concerning

parabolic induction/restriction functors. In particular we describe their behavior
on the support of the modules.

Section 3 contains basic notations for complex reflection groups, for the cyclo-
tomic rational DAHA H(Γn) and for affine Lie algebras. In particular we introduce
the categoryO(Γn) ofH(Γn)-modules, the functor KZ, Rouquier’s equivalence from
O(Sn) to the module category of the ζ-Schur algebra. Next we recall the categorifi-

cation of the Fock space representation of ŝlm in [26], and we describe the filtration
by the support on O(Γn).

Section 4 is more combinatorial. We recall several constructions related to the
Fock space and symmetric polynomial. In particular we give a relation between
symmetric polynomial and the representation ring of the group Γn, we describe
several representations on the level ℓ Fock space (of Heisenberg algebras and of
affine Kac-Moody algebras),

Section 5 is devoted to the categorification of the Heisenberg action on the Fock
space, usingO(Γn). Then we introduce a particular class of simple objects in O(Γn),
called the primitive modules, and we compute the endomorphism algebra of some
modules induced from primitive modules. Finally we introduce the operators ãλ
which are analogues for the Heisenberg algebra of the Kashiwara’s operators ẽq, f̃q
associated with Kac-Moody algebras.

Section 6 contains the main results of the paper. Using our previous construc-
tions we compare the filtration by the support on O(Γn) with a representation-
theoretic grading on the Fock space. This confirms a conjecture of Etingof, yield-
ding in particular the number of finite dimensional simple objects in O(Γn) for
integral ℓ-charge (this corresponds to some rational values of the parameters of
H(Γn)).

Finally there are two appendices containing basic facts on Hecke algebras, Schur
algebras, quantum groups, quantum Frobenius homomorphism and on the universal
R-matrix.

1.3. Notation. Now we introduce some general notation. Let A be a C-category,
i.e., a C-linear additive category. We’ll write Z(A) for the center of A, a C-algebra.
Let Irr(A) be the set of isomorphism classes of simple objects of A. If A = Rep(A),
the category of all finite-dimensional representations of a C-algebra A, we abbre-
viate

Irr(A) = Irr(Rep(A)).

For an Abelian or triangulated category let K(A) denote its Grothendieck group.
We abbreviate K(A) = K(Rep(A)). We set

[A] = K(A)⊗ C.

For an object M of A we write [M ] for the class of M in [A]. For an Abelian
categoryA letDb(A) denote its bounded derived category. We abbreviateDb(A) =
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Db(Rep(A)). The symbol H∗(Pm−1) will denote both the complex

〈m〉 =
m−1⊕

i=0

C[−2i] ∈ Db(C)

and the integer m in K(C) = Z. Given two Abelian C-categories A, B which are
Artinian (i.e., objects are of finite length and Hom’s are finite dimensional) we
define the tensor product (over C)

⊗ : A× B → A⊗ B

as in [4, sec. 5.1, prop. 5.13]. Recall that for A = Rep(A) and B = Rep(B) we have
A⊗ B = Rep(A⊗B).

2. Reminder on rational DAHA’s

2.1. The category O(W ). Let W be any complex reflection group. Let h be the
reflection representation of W . Let S be the set of pseudo-reflections in W . Let
c : S → C be a map that is constant on the W -conjugacy classes. The rational
DAHA attached toW with parameter c is the quotient H(W ) of the smash product
of CW and the tensor algebra of h⊕ h∗ by the relations

[x, x′] = 0, [y, y′] = 0, [y, x] = 〈x, y〉 −
∑

s∈S

cs〈αs, y〉〈x, α̌s〉s,

for all x, x′ ∈ h∗, y, y′ ∈ h. Here 〈•, •〉 is the canonical pairing between h∗ and h,
the element αs is a generator of Im(s|h∗ − 1) and α̌s is the generator of Im(s|h − 1)
such that 〈αs, α̌s〉 = 2. Let Rx, Ry be the subalgebras generated by h∗ and h

respectively. We may abbreviate

C[h] = Rx, C[h∗] = Ry.

The category O of H(W ) is the full subcategory O(W ) of the category of H(W )-
modules consisting of objects that are finitely generated as C[h]-modules and h-
locally nilpotent. We recall from [11, sec. 3] the following properties of O(W ). It is
a quasi-hereditary category. The standard modules are labeled by the set Irr(CW )
of isomorphism classes of irreducible W -modules. Let ∆χ be the standard module
associated with the module χ ∈ Irr(CW ). It is the induced module

∆χ = Ind
H(W )
W⋉Ry

(χ).

Here χ is regarded as a W ⋉ Ry-module such that h∗ ⊂ Ry acts by zero. Let Lχ,
Pχ denote the top and the projective cover of ∆χ.

Remark 2.1. The definitions above still make sense if h is any faithful finite dimen-
sional CW -module. To avoid any confusion we may write

O(W, h) = O(W ), H(W, h) = H(W ).

2.2. The stratification of h. Let W be a complex reflection group. Let h be the
reflection representation of W . For a parabolic subgroup W ′ ⊂ W let X◦

W ′ be the
set of points of h whose stabilizer in W is conjugate (in W ) to W ′. By a theorem
of Steinberg, the sets X◦

W ′,h, when W
′ runs over a set of representatives of the W -

conjugacy classes of parabolic subgroups of W , form a stratification of h by smooth
locally closed subsets, see also [10, sec. 6] and the references there. Let XW ′ be
the closure of X◦

W ′ in h. To avoid any confusion we may write X◦
W ′,h = X◦

W ′ and
XW ′,h = XW ′ . The setXW ′,h consists of points of h whose stabilizer isW -conjugate
to W ′. We have

XW ′,h =
⊔
X◦
W ′′,h,
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where the union is over a set of representatives of the W -conjugacy classes of the
parabolic subgroups W ′′ of W which contain W ′. Further, the quotient XW ′,h/W
is an irreducible closed subset of h/W .

2.3. Induction and restriction functors on O(W ). Fix an element b ∈ h. Let
Wb ⊂W be the stabilizer of b, and

πb : h → h/hWb

be the obvious projection onto the reflection representation of Wb. The parabolic
induction/restriction functor relatively to the point b is a functor [1]

Indb : O(Wb, h/h
Wb) → O(W, h), Resb : O(W, h) → O(Wb, h/h

Wb).

Since the functors Indb, Resb do not depend on b up to isomorphism, see [1, sec. 3.7],
we may write

OIndWWb
= Indb,

OResWWb
= Resb

if it does not create any confusion. The support of a module M in O(W, h) is the
support ofM regarded as a C[h]-module. It is a closed subset Supp(M) ⊂ h. For any
simple module L in O(W, h) we have Supp(L) = XW ′,h for some parabolic subgroup
W ′ ⊂W . For b ∈ X◦

W ′,h the module Resb(L) is a nonzero finite dimensional module.

See [1, sec. 3.8]. The support of a module is the union of the supports of all its
constituents. So the support of any module in O(W, h) is a union of XW ′,h’s. Let
us consider the behavior of the support under restriction.

Proposition 2.2. Let W ′ ⊂ W be a parabolic subgroup. Let h′ be the reflection
representation of W ′. Let X ⊂ h be the support of a module M in O(W, h). Let

X ′ ⊂ h′ be the support of the module M ′ = OResWW ′(M).
(a) We have M ′ 6= 0 if and only if XW ′,h ⊂ X.
(b) Assume that X = XW ′′,h with W ′′ ⊂ W a parabolic subgroup. If M ′ 6= 0

then W ′′ is W -conjugate to a subgroup of W ′ and we have

X ′ =
⋃

W1

XW1,h′ =
⊔

W1

X◦
W1,h′ ,

where W1 runs over a set of representatives of the W ′-conjugacy classes of parabolic
subgroups of W ′ containing a subgroup W -conjugated to W ′′.

Proof. Part (a) is immediate from the definition of the restriction, because for b ∈ h

it implies that Resb(M) 6= 0 if and only if b ∈ X. Now we prove (b). For a parabolic
subgroup W1 ⊂W ′ we have

XW1,h′ ⊂ X ′ ⇐⇒ OResW
′

W1
(M ′) 6= 0

⇐⇒ OResWW1
(M) 6= 0

⇐⇒ XW1,h ⊂ XW ′′,h.

Here the first and third equivalence follow from (a), while the second one follows
from the transitivity of the restriction functor [26, cor. 2.5]. Therefore X◦

W1,h′ ⊂ X ′

if and only if XW1,h′ ⊂ X ′ if and only if W1 contains a subgroup W -conjugate to
W ′′.

�

Remark 2.3. For any closed point b of a scheme X we denote by X∧
b the completion

of X at b (a formal scheme). Assume that M ′ = OResWW ′(M) is non zero. Let π

be the canonical projection h → h′ = h/hW
′

. For b ∈ X◦
W ′,h the definition of the

restriction functor yields the following formula

0 ∈ π−1(X ′), X∧
b = b+ π−1(X ′)∧0 .
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Next, we consider the behavior of the support under induction. Before this we
need the following two lemmas. The C-vector space [O(W )] is spanned by the set
{[∆χ];χ ∈ Irr(CW )}. Thus there is a unique C-linear isomorphism

spe : [Rep(CW )] → [O(W )], [χ] 7→ [∆χ]. (2.1)

The parabolic induction/restriction functor is exact. We’ll need the following
lemma [1].

Lemma 2.4. Let W ′ ⊂ W be a parabolic subgroup. Let h′ be the reflection repre-
sentations of W ′. Under the isomorphism (2.1) the maps

OIndWW ′ : [O(W ′, h′)] → [O(W, h)], OResWW ′ : [O(W, h)] → [O(W ′, h′)]

coincide with the induction and restriction

IndWW ′ : [Rep(CW ′)] → [Rep(CW )], ResWW ′ : [Rep(CW )] → [Rep(CW ′)].

We’ll also need the following version of the Mackey induction/restriction theorem.
First, observe that for any parabolic subgroup W ′ ⊂ W and any x ∈ W there is a
canonical C-algebra isomorphism

ϕx : H(W ′) → H(x−1W ′x), w 7→ x−1wx, f 7→ x−1fx, f ′ 7→ x−1f ′x,

for w ∈W ′, f ∈ Rx, f
′ ∈ Ry. It yields an exact functor

O(W ′) → O(x−1W ′x), M 7→ xM,

where xM is the H(x−1W ′x)-module obtained by twisting the H(W ′)-action onM
by ϕx.

Lemma 2.5. Let W ′,W ′′ ⊂W be parabolic subgroups. Let h′, h′′ be the reflection
representations of W ′, W ′′. For M ∈ O(W ′, h′) we have the following formula in
[O(W ′′, h′′)]

OResWW ′′ ◦OIndWW ′([M ]) =
∑

x

OIndW
′′

W ′′∩x−1W ′x ◦
x
(
OResW

′

xW ′′x−1∩W ′([M ])
)
, (2.2)

where x runs over a set of representatives of the cosets in W ′ \W/W ′′.

Proof. Use Lemma 2.4 and the usual Mackey induction/restriction theorem asso-
ciated with the triplet of groups W , W ′, W ′′. �

Remark 2.6. For a future use, note that the left hand side of (2.2) is zero if and
only if each term in the sum of the right hand side is zero, because each of these
terms is the class of a module in O(W ′′, h′′).

Now, we can prove the following proposition.

Proposition 2.7. Let W ′′ ⊂ W ′ ⊂ W be a parabolic subgroups. Let h′ be the
reflection representation of W ′. For a simple module L ∈ O(W ′, h′) with Supp(L) =
XW ′′,h′ , we have

Supp
(
OIndWW ′(L)

)
= XW ′′,h.

Proof. We abbreviate M = OIndWW ′(L). First we prove that

XW ′′,h ⊂ Supp(M).

By Proposition 2.2 we have

XW ′′,h ⊂ Supp(M) ⇐⇒ X◦
W ′′,h ⊂ Supp(M)

⇐⇒ OResWW ′′ (M) 6= 0.

By Remark 2.6 the right hand side holds if and only if

OResW
′

xW ′′x−1∩W ′(L) 6= 0
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for some x ∈W . This identity is indeed true for x = 1 because W ′′ ⊂W ′ and

XW ′′,h′ = Supp(L) ⇒ OResW
′

W ′′(L) 6= 0.

Next we prove the inclusion

Supp(M) ⊂ XW ′′,h.

Any point b of h\XW ′′,h is contained in the set X◦
W ′′′,h for some parabolic subgroup

W ′′′ ⊂ W such that W ′′ is not conjugate to a subgroup of W ′′′ : it suffices to set
W ′′′ =Wb. We must check that for such a subgroup W ′′′ ⊂W we have

X◦
W ′′′,h 6⊂ Supp(M).

By Proposition 2.2 it is enough to check that

OResWW ′′′ (M) = 0.

Now, by Lemma 2.5 we have the following formula in [O(W ′′′, h)]

OResWW ′′′([M ]) =
∑

x

OIndW
′′′

W ′′′∩x−1W ′x ◦
x
(
OResW

′

xW ′′′x−1∩W ′([L])
)
.

Here x runs over a set of representatives of the cosets in W ′ \W/W ′′′. Since W ′′ is
not conjugate to a subgroup of W ′′′ it is a fortiori not conjugate to a subgroup of
xW ′′′x−1 ∩W ′, i.e., we have

X◦
xW ′′′x−1∩W ′,h′ ∩XW ′′,h′ = ∅.

Therefore Proposition 2.2 yields

OResW
′

xW ′′′x−1∩W ′(L) = 0,

because Supp(L) = XW ′′,h′ . This implies that

OResWW ′′′ ([M ]) = 0.

Hence we have also
OResWW ′′′ (M) = 0.

We are done. �

3. The cyclotomic rational DAHA

3.1. Combinatorics. For a sequence λ = (λ1, λ2, . . . ) of integers > 0 we set |λ| =
λ1 + λ2 + · · · . Let

Λ(ℓ, n) = {ν = (ν1, ν2, . . . νℓ) ∈ Nℓ ; |ν| = n}.

It is the set of compositions of n with ℓ parts. Let Pn be the set of partitions of
n, i.e., the set of non-increasing sequences λ of integers > 0 with sum |λ| = n. We
write λ′ for the transposed partition and l(λ) for its length, i.e., for the number of
parts in λ. We write also zλ =

∏
i>1 i

mi mi! where mi is the number of parts of λ
equal to i. Given a positive integer m and a partition λ we write also

mλ = (mλ1,mλ2, . . . ).

To any partition we associate a Young diagram, which is a collection of rows of
square boxes with λi boxes in the i-th row, i = 1, . . . , l(λ). A box in a Young
diagram is called a node. The coordinate of the j-th box in the i-th row is the pair
of integers (i, j). The content of the node of coordinate (i, j) is the integer j−i. Let
the set P0 consist of a single element, the unique partition of zero, which we denote
by 0. Let P =

⊔
n>0 Pn be the set of all partitions. We’ll abbreviate Zℓ = Z/ℓZ.

Let Pℓ be the set of ℓ-partitions, i.e., the set of all partition valued functions on Zℓ.
Let Pℓn be the subset of ℓ-tuples λ = (λ(p)) of partitions with |λ| =

∑
p |λ(p)| = n.
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Let Γ be the group of the ℓ-th roots of 1 in C×. We define the sets PΓ, PΓ
n of

partition valued functions on Γ in the same way.

3.2. The complex reflection group Γn. Fix non negative integers ℓ, n. Unless
specified otherwise we’ll always assume that ℓ, n 6= 0. Let Sn be the symmetric
group on n letters and Γn be the semi-direct product Sn ⋉ Γn, where Γn is the
Cartesian product of n copies of Γ. We write also S0 = Γ0 = Γ0 = {1}. For γ ∈ Γ
let γi ∈ Γn be the element with γ at the i-th place and with 1 at the other ones.
Write sγij = sijγiγ

−1
j for γ ∈ Γ, i 6= j. For p ∈ Zℓ let χp : Γ → C× be the character

γ 7→ γp. The assignment p 7→ χp identifies Zℓ with the group of characters of Γ.
The group Γn is a complex reflection group. For ℓ > 1 it acts on the vector space
h = Cn via the reflection representation. For ℓ = 1 the reflection representation is
given by the permutation of coordinates on the hyperplane

Cn0 = {x1 + · · ·+ xn = 0} ⊂ Cn.

We’ll be interested in the following subgroups of Γn.

• To a composition ν of n we associate the set

I = {1, 2, . . . , n− 1} \ {ν1, ν1 + ν2, . . . }.

Let Γν = Sν ⋉Γn, where Sν = SI is the subgroup of Sn generated by the
simple reflections si,i+1 with i ∈ I.

• For integers m,n > 0 and a composition ν we set Γn,ν = Γn × Sν . If
ν = (mj) for some integer j > 0 we abbreviate Γn,(mj) = Γn,ν . We write
also Γn,m = Γn ×Sm. Any parabolic subgroup of Γn is conjugate to Γl,ν
for some l, ν with l + |ν| 6 n.

3.3. Definition of the cyclotomic rational DAHA. Fix a basis (x, y) of C2.
Let xi, yi denote the elements x, y respectively in the i-th summand of (C2)⊕n.
The group Γn acts on (C2)⊕n such that for distinct i, j, k we have

γi(xi) = γ−1xi, γi(xj) = xj , γi(yi) = γyi, γi(yj) = yj ,

sij(xi) = xj , sij(yi) = yj , sij(xk) = xk, sij(yk) = yk.

Fix k ∈ C and cγ ∈ C for each γ ∈ Γ. The cyclotomic rational DAHA is the
quotient H(Γn) of the smash product of CΓn and the tensor algebra of (C2)⊕n by
the relations

[yi, xi] = −k
∑

j 6=i

∑

γ∈Γ

sγij −
∑

γ∈Γ

cγγi, c1 = −1,

[yi, xj ] = k
∑

γ∈Γ

γsγij if i 6= j,

[xi, xj ] = [yi, yj ] = 0.

Let Rx, Ry be the subalgebras generated by x1, x2, . . . , xn and y1, y2, . . . , yn respec-
tively. We’ll write h, h∗ for the maximal spectrum of Rx, Ry. The C-vector space h
is identified with Cn in the obvious way. We’ll use another presentation where the
parameters are h, hp with p ∈ Zℓ where k = −h and −cγ =

∑
p∈Zℓ

γ−php. Note

that 1 =
∑

p hp.
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3.4. The Lie algebras ŝlℓ and s̃lℓ. Given complex numbers hp, p ∈ Zℓ, with∑
p hp = 1, it is convenient to consider the following level 1 weight

Λ =
∑

p

hp ωp. (3.1)

Here the ωp’s are the fundamental weights of the affine Lie algebra

ŝlℓ = (slℓ ⊗ C[̟,̟−1])⊕ C1,

where 1 is a central element and the Lie bracket is given by

[x⊗̟r, y ⊗̟s] = [x, y]⊗̟r+s + r(x, y)δr,−s1, (x, y) = τ(xyt), (3.2)

where y 7→ yt is the transposition and τ is the trace. The affine Lie algebra ŝlℓ is
generated by the symbols ep, fp, p = 0, . . . , ℓ− 1, satisfying the Serre relations. For
p 6= 0 we have

ep = ep,p+1 ⊗ 1, e0 = eℓ,1 ⊗̟, fp = ep+1,p ⊗ 1, f0 = e1,m ⊗̟−1,

where ep,q is the usual elementary matrix in slℓ. We’ll also use the extended affine

Lie algebras s̃lℓ, obtained by adding to ŝlℓ the 1-dimensional vector space spanned
by the scaling element D such that [D, x ⊗̟r] = r x ⊗̟r and [D,1] = 0. Let δ
denote the dual of D, i.e., the smallest positive imaginary root. We equip the space

of linear forms on the Cartan subalgebra of s̃lℓ with the pairing such that

〈ωp, ωq〉 = min(p, q)− pq/ℓ, 〈ωp, δ〉 = 1, 〈δ, δ〉 = 0.

Let U(ŝlℓ) be the enveloping algebra of ŝlℓ, and let U−(ŝlℓ) be the subalgebra

generated by the elements fp with p = 0, . . . , ℓ− 1. For r > 0 we write U−(ŝlℓ)r for

the subspace of U−(ŝlℓ) spanned by the monomials whose weight has the height r.

3.5. Representations of Sn, Γn. The set of isomorphism classes of irreducible
Sn-modules is

Irr(CSn) = {L̄λ;λ ∈ Pn},

see [22, sec. I.9]. The set of isomorphism classes of irreducible Γn-modules is

Irr(CΓn) = {L̄λ;λ ∈ Pℓn}.

The Γn-module L̄λ is defined as follows. Write λ = (λ(p)). The tuple of positive
integers νλ = (|λ(p)|) is a composition in Λ(ℓ, n). Let

L̄λ(p)(χp−1)
⊗|λ(p)| ∈ Irr(CΓ|λ(p)|)

be the tensor product of the S|λ(p)|-module L̄λ(p) and the one-dimensional Γ|λ(p)|-

module (χp−1)
⊗|λ(p)|. The Γn-module L̄λ is given by

L̄λ = IndΓn

Γνλ

(
L̄λ(1)χ

⊗|λ(1)|
ℓ ⊗ L̄λ(2)χ

⊗|λ(2)|
1 ⊗ · · · ⊗ L̄λ(ℓ)χ

⊗|λ(ℓ)|
ℓ−1

)
. (3.3)

3.6. The category O(Γn). Consider the C-algebra H(Γn) with the parameter Λ
in (3.1). The category O of H(Γn) is the quasi-hereditary category O(Γn). The
standard modules are the induced modules

∆λ = Ind
H(Γn)
Γn⋉Ry

(L̄λ), λ ∈ Pℓn.

Here L̄λ is viewed as a Γn ⋉ Ry-module such that y1, . . . yn act trivially. Let Lλ,
Pλ denote the top and the projective cover of ∆λ. Recall the C-linear isomorphism

spe : [Rep(CΓn)] → [O(Γn)], [L̄λ] 7→ [∆λ]. (3.4)

To avoid cumbersome notation for induction/restriction functors in

O(Γ) =
⊕

n>0

O(Γn)
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we’ll abbreviate
OIndn = OIndΓn

Γn−1
, OResn = OResΓn

Γn−1
,

OIndn,(mr) =
OInd

Γn+mr

Γn,(mr)
, OResn,(mr) =

ORes
Γn+mr

Γn,(mr)
,

OIndn,mr =
OInd

Γn+mr

Γn,mr
, OResn,mr =

ORes
Γn+mr

Γn,mr
.

(3.5)

We write also
OInd(mr) =

OIndSmr

Sr
m

: O(Sr
m) → O(Smr),

ORes(mr) =
OResSmr

Sr
m

: O(Smr) → O(Sr
m).

3.7. The functor KZ. For ζ ∈ C× and v1, v2, . . . , vℓ ∈ C× let Hζ(n, ℓ) be the
cyclotomic Hecke algebra associated with Γn and the parameters ζ, v1, . . . , vℓ, see
Section A.2. We’ll abbreviate H(Γn) = Hζ(n, ℓ). Assume that

ζ = exp(2iπh), vp = v1 exp
(
−2iπ(h1 + h2 + · · ·+ hp−1)

)
.

Then the KZ-functor [11] is a quotient functor

KZ : O(Γn) → Rep(H(Γn)).

Since KZ is a quotient functor, it admits a right adjoint functor

S : Rep(H(Γn)) → O(Γn)

such that KZ ◦S = 1. By [11, thm. 5.3], for each projectif module Q ∈ O(Γn) the
canonical adjunction morphism 1 → S ◦KZ yields an isomorphism

Q→ S(KZ(Q)). (3.6)

3.8. The functor R. Let Hζ(m) be the Hecke C-algebra of GLm, see Section A.2.
Let Sζ(m) be the ζ-Schur C-algebra, see Appendix B. The module categories of
Sζ(m), Hζ(m) are related through the Schur functor

Φ∗ : Rep(Sζ(m)) → Rep(Hζ(m)).

Set

Λ(m)+ = Λ(m,m) ∩ Zm+ , Zm+ = {λ = (λ1, λ2, . . . , λm) ; λ1 > λ2 > · · · > λm}.

The category Rep(Sζ(m)) is quasi-hereditary with respect to the dominance order,
the standard objects being the modules ∆S

λ with λ ∈ Λ(m)+. The comultiplication
∆ yields a bifunctor (B.5)

⊗̇ : Rep(Sζ(m)) ⊗ Rep(Sζ(m
′)) → Rep(Sζ(m+m′)).

Now, assume that h is a negative rational number with denominator d and let
ζ ∈ C× be a primitive d-th root of 1. Recall that h is the parameter of the C-
algebra H(Sm). If h /∈ 1/2 + Z then Rouquier’s functor [25] is an equivalence of
quasi-hereditary categories

R : O(Sm) → Rep(Sζ(m)), ∆λ 7→ ∆S
λ ,

such that KZ = Φ∗ ◦ R. For m = m′ + m′′ we have a canonical equivalence of
categoriesO(Sm′)⊗O(Sm′′) = O(Sm′×Sm′′) and the induction yields a bifunctor

OIndm′,m′′ : O(Sm′)⊗O(Sm′′) → O(Sm). (3.7)

We’ll abbreviate

O(S) =
⊕

n>0

O(Sn), Rep(Sζ) =
⊕

n>0

Rep(Sζ(n)).

Proposition 3.1. For h /∈ 1/2 + Z the functor R is tensor equivalence O(S) →
Rep(Sζ).
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Proof. We must check that R identifies the tensor product ⊗̇ with the induction
(3.7). First, fix two projective objects X ∈ O(Sm′) and Y ∈ O(Sm′′ ). We have

Φ∗
(
R(X)⊗̇R(Y )

)
= H Indm′,m′′

(
Φ∗R(X)⊗ Φ∗R(Y )

)

= H Indm′,m′′

(
KZ(X)⊗KZ(Y )

)

= KZ
(
OIndm′,m′′(X ⊗ Y )

)

= Φ∗R
(
OIndm′,m′′(X ⊗ Y )

)
.

The first equality follows from Corollary B.4, the second one and the fourth one
come from KZ = Φ∗ ◦ R, and the third one is the commutation of KZ and the
induction functors, see [26]. Since the modules R(X)⊗̇R(Y ) and R

(
OIndm′,m′′(X⊗

Y )
)
are projective, and since Φ∗ is fully faithful on projectives we get that

R(X)⊗̇R(Y ) = R
(
OIndm′,m′′(X ⊗ Y )

)
.

Now, since the functors (B.5), (3.7) are exact and coincide on projective objects, and
since the category O(Sm) has enough projectives, the proposition is proved. �

3.9. The categorification of s̃lm. Recall that Z(O(Γn)) is the center of the cat-
egory O(Γn). Let Dn(z) be the polynomial in Z(O(Γn))[z] defined in [26, sec. 4.2].
For any a ∈ C(z) the projection to the generalized eigenspace of Dn(z) with the
eigenvalue a yields an exact endofunctor Qn,a of O(Γn). Next, consider the point

bn = (0, 0, . . . , 0, 1) ∈ h, h = Cn.

The induction and the restriction relatively to bn yield functors

OIndn : O(Γn−1) → O(Γn),
OResn : O(Γn) → O(Γn−1). (3.8)

Definition 3.2. [26, sec. 4.2] The q-restiction and the q-induction functors

eq : O(Γn) → O(Γn−1), fq : O(Γn−1) → O(Γn), q = 0, 1, . . . ,m− 1

are given by

eq =
⊕

a∈C(z)

Qn−1,a/(z−ζq) ◦
OResn ◦Qn,a,

fq =
⊕

a∈C(z)

Qn,a(z−ζq) ◦
OIndn ◦Qn−1,a.

We’ll abbreviate

E = e0 ⊕ e1 ⊕ · · · ⊕ em−1, F = f0 ⊕ f1 ⊕ · · · ⊕ fm−1.

Following [26, sec. 6.3], for L ∈ Irr(O(Γ)) we set

ẽq(L) = top(eq(L)), f̃q(L) = soc(fq(L)), ẽq(0) = f̃q(0) = 0.

Now, for each n we choose the parameters of H(Γn) in the following way

h = −1/m, hp = (sp+1 − sp)/m, sp ∈ Z, p 6= 0. (3.9)

The following hypothesis is important for the rest of the paper :
from now on we’ll always assume that m > 1.

The C-vector space [O(Γ)] is canonically isomorphic to the level ℓ Fock space F
(s)
m,ℓ

associated with the ℓ-charge s = (sp), see (5.5) below for details. The latter is

equipped with an integrable representation of s̃lm of level ℓ, see Section 4.6 below.

Proposition 3.3. (a) The functors eq, fq are exact and biadjoint.
(b) We have E = OResn and F = OIndn .
(c) For M ∈ O(Γn) we have E(M) = 0 (resp. F (M) = 0) iff E(L) = 0

(resp. F (L) = 0) for any constituent L of M .
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(d) The operators eq, fq equip [O(Γ)] with a representation of ŝlm which is iso-

morphic via the map (5.5) to F
(s)
m,ℓ.

(e) The tuple (Irr(O(Γ)), ẽq , f̃q) has a crystal structure. In particular, for L,L′ ∈

Irr(O(Γ)) we have ẽq(L), f̃q(L) ∈ Irr(O(Γ)) ⊔ {0}, and ẽq(L) = L′ if and only if

f̃q(L
′) = L.

Proof. Parts (a), (b) follows from [26, prop. 4.4], part (e) is contained in [26,
thm. 6.3], part (c) is obvious, and part (d) is [26, cor. 4.5]. �

3.10. The filtration of [O(Γn)] by the support. Fix a positive integer n. In this
section we consider the tautological action of Γn on Cn. For an integer l > 0 and
a composition ν such that l+ |ν| 6 n we abbreviate X◦

l,ν = X◦
W,h and Xl,ν = XW,h

where W = Γl,ν . If ν = (mj) for some integer j > 0 such that l+ jm 6 n we write

X◦
l,j = X◦

l,ν , Xl,j = Xl,ν .

Therefore Xl,j is the set of the points in Cn with l coordinates equal to zero and
j collections of m coordinates which differ from each other by ℓ-th roots of one.
To avoid confusions we may write Xl,j,Cn = Xl,j . Unless specified otherwise, for
l, j,m, n as above we’ll set

i = n− l − jm. (3.10)

Definition 3.4. For i, j > 0 we set

Irr(O(Γn))i,j = {L ∈ Irr(O(Γn)) ; Supp(L) = Xl,j}.

Definition 3.5. For i, j > 0 let Fi,j(Γn) be the C-vector subspace of [O(Γn)]
spanned by the classes of the modules whose support is contained in Xl,j, with l as
in (3.10). If i < 0 or j < 0 we write Fi,j(Γn) = 0.

Definition 3.6. We define a partial order on the set of pairs of nonnegative integers
(i, j) such that i+ jm 6 n given by (i′, j′) 6 (i, j) if and only if Xl′,j′ ⊂ Xl,j , where
l = n− i− jm and l′ = n− i′ − j′m.

Since the support of a module is the union of the supports of all its constituents,
the C-vector space Fi,j(Γn) is spanned by the classes of the modules in Irr(O(Γn))
whose support is contained in Xl,j, or, equivalently Fi,j(Γn) is spanned by the
classes of the modules in ⋃

(i′,j′)6(i,j)

Irr(O(Γn))i′,j′ .

Remark 3.7. We have
⋃
i,j Fi,j(Γn) = [O(Γn)]. Indeed, for L ∈ Irr(O(Γn)) we have

Supp(L) = Xl,ν for some l, ν, see Section 2.2. For b ∈ X◦
l,ν the H(Γl,ν)-module

Resb(L) is finite dimensional. Thus, since the parameter h of H(Γl,ν) is equal to
−1/m the parts of ν are all equal to m. Hence we have Supp(L) = Xl,j for some
l, j as above.

Therefore, the subspaces Fi,j(Γn) give a filtration of [O(Γn)]. Consider the associ-
ated graded C-vector space

gr(Γn) =
⊕

i,j

gri,j(Γn).

Note that the images by the canonical projection Fi,j(Γn) → gri,j(Γn) of the classes
of the modules in Irr(O(Γn))i,j form a basis of the C-vector space gri,j(Γn). So we
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may regard gri,j(Γn) as the subspace of [O(Γn)] spanned by Irr(O(Γn))i,j . We’ll
abbreviate

Fi,•(Γn) =
∑

j

Fi,j(Γn), F•,j(Γn) =
∑

i

Fi,j(Γn),

gri,•(Γn) =
⊕

j

gri,j(Γn), gr•,j(Γn) =
⊕

i

gri,j(Γn).

Now, let us study the filtration of [O(Γn)] in details. The subgroup Γl,(mj)

of Γn is contained into the subgroups Γl+1,(mj), Γl,(mj+1) and Γl+m,(mj−1) (up to
conjugation by an element of Γn) whenever such subgroups exist. Thus we have
the inclusions

Xl+1,j, Xl,j+1, Xl+m,j−1 ⊂ Xl,j ,

Fi−1,j(Γn), Fi−m,j+1(Γn), Fi,j−1(Γn) ⊂ Fi,j(Γn).

Proposition 3.8. (a) We have

Xl′,j′ ( Xl,j ⇐⇒ Xl′,j′ ⊂ Xl+1,j ∪Xl,j+1 ∪Xl+m,j−1.

(b) We have an isomorphism of C-vector spaces

gri,j(Γn) = Fi,j(Γn)/
(
Fi−1,j(Γn) + Fi−m,j+1(Γn) + Fi,j−1(Γn)

)
.

Proof. First we prove (a). Recall that Xl,j is the set of the points in Cn with l
coordinates equal to zero and j collections of m coordinates which differ from each
other by ℓ-th roots of one. Therefore we have

Xl′,j′ ⊂ Xl,j ⇐⇒ i− i′ > max
(
0, (j′ − j)m

)
. (3.11)

In particular this inclusion implies that l′ > l. We must prove that

Xl′,j′ ( Xl,j ⇒ Xl′,j′ ⊂ Xl+1,j ∪Xl,j+1 ∪Xl+m,j−1.

First, assume that l′ = l. Since Xl′,j′ ( Xl,j we have i > i′. Then (3.10) implies
that i−i′ = (j′−j)m, hence that j′ > j and i−i′ > m. So i−i′ > max(m, (j′−j)m),
and (3.11) implies that Xl′,j′ ⊂ Xl,j+1.

Next, assume that l +m > l′ > l. Since Xl′,j′ ⊂ Xl,j we have i > i′. Further
(3.10) implies that i− i′ > (j′ − j)m and i′ − i > (j− j′ − 1)m. Thus i > i′ implies
indeed that i > i′ and j′ > j. So i− 1− i′ > max(0, (j′ − j)m), and (3.11) implies
that Xl′,j′ ⊂ Xl+1,j .

Finally, assume that l′ > l + m. Since Xl′,j′ ⊂ Xl,j we have i > i′. Further
(3.10) implies that i − i′ > (j′ − j + 1)m. So i − i′ > max(0, (j′ − j + 1)m), and
(3.11) implies that Xl′,j′ ⊂ Xl+m,j−1.

Part (b) is a consequence of (a) and of the definition of the filtration on [O(Γn)].
�

Remark 3.9. The sets Xl+1,j , Xl,j+1, Xl+m,j−1 do not contain each other. Indeed,
the variety Xl,j has the dimension i + j. Thus the codimension of Xl+1,j , Xl,j+1,
Xl+m,j−1 in Xl,j are 1,m− 1, 1 respectively. However, since a point in X◦

l,j+1 has
only l coordinates equal to 0, we have Xl,j+1 6⊂ Xl+1,j and Xl,j+1 6⊂ Xl+m,j−1.

Remark 3.10. We have F•,0(Γn) = [O(Γn)], because (i, j) 6 (i+ jm, 0).

Remark 3.11. We have (i′, j′) 6 (0, j) if and only if i′ = 0 and j′ 6 j.
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Remark 3.12. Consider the set

Fi,j(Γn)
◦ = Fi,j(Γn) \

(
Fi−1,j(Γn) + Fi−m,j+1(Γn) + Fi,j−1(Γn)

)
.

For L ∈ Irr(O(Γn)), by Proposition 3.8 and Remark 3.7 we have

[L] ∈ Fi,j(Γn)
◦ ⇐⇒ Supp(L) = Xl,j

⇐⇒ L ∈ Irr(O(Γn))i,j .

Remark 3.13. A representation is finite dimensional if and only if its support is
zero. Thus Irr(O(Γn))0,0 is the set of isomorphism classes of finite dimensional
modules in O(Γn). Note that (0, 0) 6 (i, j) for all (i, j).

Remark 3.14. For λ ∈ Pr, r > 1, the support of the module Lmλ ∈ Irr(O(Smr)) is

Supp(Lmλ) = XSr
m,C

mr
0
.

Indeed, formula (5.2) below and Proposition 2.7 imply that

Supp(Lmλ) ⊂ Supp
(
OInd(mr)(L

⊗r
(m))

)
= XSr

m,C
mr
0
.

Next, by Remark 3.7 there is j = 0, 1, . . . , r such that

Supp(Lmλ) = X
S

j
m,Cmr

0
.

Finally the inclusion X
S

j
m,Cmr

0
⊂ XSr

m,C
mr
0

implies that j = r.

3.11. The action of E, F on the filtration. Let E, F denote the C-linear
operators on [O(Γ)] induced by the exact functors E, F .

Proposition 3.15. Let L ∈ Irr(O(Γn))i,j and l = n− i−mj.
(a) We have Supp(F (L)) = Xl,j,Cn+1 .
(b) We have E(L) = 0 iff i = 0. We have Supp(E(L)) = Xl,j,Cn−1 if i > 0.

Proof. Recall that

Supp(L) = Xl,j = Xl,j,Cn , E(L) = OResn(L), F (L) = OIndn(L).

Thus by Proposition 2.2 we have E(L) = 0 iff bn /∈ Xl,j . Since m > 1 the definition
of the stratum Xl,j in Section 3.10 shows that bn /∈ Xl,j iff i = 0. Now, assume
that i > 0. Then l +mj 6 n− 1, and Proposition 2.2 yields

Supp(E(L)) =
⋃

W

XW,Cn−1 ,

where W runs over the parabolic subgroups of Γn−1 which are Γn-conjugate to
Γl,(mj) (inside the group Γn). We claim that a subgroup W ⊂ Γn−1 as above is
Γn−1-conjugate to Γl,(mj) (inside the group Γn−1). Therefore, we have

Supp(E(L)) = Xl,j,Cn−1 .

Indeed, fix b′ ∈ Cn−1 such thatW = (Γn−1)b′ . For b = (b′, z) with z ∈ C generic we
have (Γn)b =W , whereW is regarded as a subgroup of Γn via the obvious inclusion
Γn−1 ⊂ Γn. Since W is Γn-conjugate to Γl,(mj), there is an element g ∈ Γn such
that the first l coordinates of g(b) are 0, the next mj ones consist of j collections
of m coordinates which differ from each other by ℓ-th roots of one, and the last i
coordinates of g(b) are in generic position. We’ll abbreviate

g(b) ∈ 0l(m)j ∗i .

Since z is generic it is taken by g to one of the coordinates of g(b) in the packet ∗i.
Composing g by an appropriate reflection in Sn we get an element g′ ∈ Γn−1 such
that

g′(b) = (g′(b′), z) ∈ 0l(m)j ∗i .
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Thus we have also

g′(b′) ∈ 0l(m)j ∗i−1 .

This implies the claim. Hence, we have

Supp(E(L)) = Xl,j,Cn−1 .

Finally, since Supp(L) = Xl,j,Cn , Proposition 2.7 implies that

Supp(F (L)) = Xl,j,Cn+1 .

�

Corollary 3.16. (a) We have E(Fi,j(Γn)) ⊂ Fi−1,j(Γn−1). If i 6= 0 we have also
E(Fi,j(Γn)

◦) ⊂ Fi−1,j(Γn−1)
◦.

(b) For M ∈ O(Γn) with [M ] ∈ Fi,j(Γn)
◦ we have E([M ]) = 0 iff i = 0.

(c) We have F (Fi,j(Γn)) ⊂ Fi+1,j(Γn+1) and F (Fi,j(Γn)
◦) ⊂ Fi+1,j(Γn+1)

◦.

Proof. First, let L ∈ Irr(O(Γn)) with [L] ∈ Fi,j(Γn). Thus L ∈ Irr(O(Γ))i′ ,j′ with
(i′, j′) 6 (i, j). Proposition 3.15 yields

Supp(F (L)) = Xl′,j′,Cn+1, Supp
(
E(L)

)
= Xl′,j′,Cn−1 if i′ 6= 0.

Hence we have F ([L]) ∈ Fi+1,j(Γn+1) and E([L]) ∈ Fi−1,j(Γn−1). Part (b) follows
from Proposition 3.15 and Remarks 3.11, 3.12. Part (c) follows from Proposition
3.15 and Remark 3.12. The second part of (a) follows from Proposition 3.15 and
Remark 3.12. �

Corollary 3.17. Let L ∈ Irr(O(Γn))i,j .
(a) If ẽq(L) 6= 0 then ẽq(L) ∈ Irr(O(Γn−1))i−1,j.

(b) If f̃q(L) 6= 0 then f̃q(L) ∈ Irr(O(Γn+1))i+1,j .

Proof. Set L′ = ẽq(L). Assume that L′ 6= 0. By Proposition 3.3 we have

L′ ∈ Irr(O(Γn−1)), f̃q(L
′) = L.

Next, since L ∈ Irr(O(Γ))i,j and since ẽq(L) is a constituent of E(L), we have
[L′] ∈ Fi−1,j(Γn−1) by Corollary 3.16. We must prove that [L′] ∈ Fi−1,j(Γn−1)

◦. If
this is false then we have [L′] ∈ Fi′,j′(Γn−1) with

(i′, j′) = (i− 2, j), (i−m− 1, j + 1), (i− 1, j − 1).

Thus, since f̃q(L
′) is a constituent of F (L′), by Corollary 3.16 we have

[L] ∈ gri,j(Γn) ∩ Fi′+1,j′(Γn). (3.12)

Therefore (3.11) yields i′ + 1 > i, so i′ = i − 1 and j′ = j − 1. So, applying (3.11)
once again we get a contradiction with (3.12). This proves (a). The proof of (b) is
similar. �

Corollary 3.18. (a) For x ∈ [O(Γ)] we have
(
eq(x) = 0, ∀q = 0, 1, . . . ,m− 1

)
⇐⇒ x ∈ F0,•(Γ).

(b) For M ∈ O(Γ) we have

E(M) = 0 ⇐⇒ E([M ]) = 0 ⇐⇒ [M ] ∈ F0,•(Γ).

(c) The space F0,•(Γ) is spanned by the set

{[L] ; L ∈ Irr(O(Γ))0,•} = {[L] ; L ∈ Irr(O(Γ)), E(L) = 0}

= {[L] ; L ∈ Irr(O(Γ)), ẽq(L) = 0, ∀q = 0, 1, . . . ,m− 1}.
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Proof. For x ∈ [O(Γ)] we write x =
∑
L xL[L] where L runs over the set Irr(O(Γ)).

By [26, lem. 6.1, prop. 6.2], for each q we have

eq(x) = 0 ⇐⇒ xL = 0 if eq([L]) 6= 0.

Thus the C-vector space
{
x ∈ [O(Γ)] ; eq(x) = 0, ∀q = 0, 1, . . . ,m− 1

}

is spanned by the classes of the simples modules L such that eq([L]) = 0 for all
q = 0, 1, . . . ,m− 1. Then, apply Corollary 3.16. This proves (a). Parts (b), (c) are
obvious. Note that by definition of the crystal operators we have

ẽq(L) = 0, ∀q ⇐⇒ eq(L) = 0, ∀q.

�

4. The Fock space

From now on we’ll abbreviate

R(S) =
⊕

n>0

[Rep(CSn)], R(Γ) =
⊕

n>0

[Rep(CΓn)].

4.1. The Hopf C-algebra Λ. This section and the following one are reminders
on symmetric functions and the Heisenberg algebra. First, recall that the C-vector
space R(S) is identified with the C-vector space of symmetric functions

Λ = C[x1, x2, . . . ]
S∞

via the characteristic map [22, chap. I]

ch : R(S) → Λ.

The map ch intertwines the induction/restriction in R(S) with the multiplica-
tion/comultiplication in Λ. It takes the class of the simple module L̄λ to the Schur
function Sλ for each λ ∈ P . The power sum polynomials are given by

Pλ = Pλ1Pλ2 . . . , Pr =
∑

i

xri , P0 = 1, λ ∈ P , r > 0.

We equip the C-vector space Λ with the level 1 action of ŝlm given by

eq(Sλ) =
∑

ν

Sν , fq(Sλ) =
∑

µ

Sµ, q = 0, . . . ,m− 1, (4.1)

where ν (resp. µ) runs through all partitions obtained from λ ∈ P by removing
(resp. adding) a node of content q mod m. The operators eq, fq are adjoint to
each other for the bilinear pairing on Λ such that the Schur functions form an
orthonormal basis.

4.2. The Heisenberg algebra. TheHeisenberg algebra is the Lie algebraH spanned
by the elements 1 and br, b

′
r, r > 0, satisfying the following relations

[b′r, b
′
s] = [br, bs] = 0, [b′r, bs] = r1δr,s, r, s > 0.

Let U(H) be the enveloping algebra of H, and let U−(H) ⊂ U(H) be the subalgebra
generated by the elements br with r > 0. Write U−(H)r for the subspace of U−(H)
spanned by the monomials br1br2 · · · with

∑
i ri = r. For λ ∈ P and f ∈ Λ we

consider the following elements in U(H)

bλ = bλ1bλ2 · · · , b′λ = b′λ1
b′λ2

· · · ,

bf =
∑

λ∈P

z−1
λ 〈Pλ, f〉 bλ, b′f =

∑

λ∈P

z−1
λ 〈Pλ, f〉 b

′
λ.
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For any integer ℓ we can equip Λ with the level ℓ action of H such that br acts by
multiplication by ℓPr and b′r acts by r∂/∂Pr

for r > 0. The operators br, b
′
r are

adjoint to each other and they commute with the ŝlm-action in (4.1). We write
V H
ℓ = Λ regarded as a level ℓ module of H. Consider the Casimir operator

∂ =
1

ℓ

∑

r>1

brb
′
r.

This formal sum defines a diagonalisable C-linear operator on V H
ℓ such that

[∂, br] = rbr , [∂, b′r] = −rb′r.

Below, we will always equip Λ with the H-action of level 1 unless mentioning ex-
plicitly the contrary.

4.3. The Lie algebras ĝlm and g̃lm. We define the Lie algebra ĝlm in the same

way as ŝlm, with glm instead of slm. We’ll also use the extended affine Lie algebra

g̃lm, obtained by adding to ĝlm the 1-dimensional vector space spanned by the
scaling element D such that [D, x⊗̟r] = r x⊗̟r and [D,1] = 0. The Lie algebra

(
ŝlm × H

)
/
(
m(1, 0)− (0,1)

)
. (4.2)

embeds into ĝlm in the obvious way. In particular the element b′r maps to
∑m
p=1 epp⊗

̟r while br maps to
∑m
p=1 epp ⊗̟−r for each r > 0. Unless specified otherwise,

by a ĝlm-module we’ll always mean a module over the Lie algebra (4.2), i.e., a ŝlm-

module with a compatible H-action. Similarly, a g̃lm-module we’ll always mean a

ĝlm-module with a scaling operator D such that

[D, x⊗̟r] = r x⊗̟r, [D, br] = −rbr, [D, b′r] = rb′r.

By a dominant integral weight of ĝlm, g̃lm we’ll always mean a dominant integral

weight of ŝlm, s̃lm. We denote the sets of such weights by P
ĝlm
+ , P

g̃lm
+ or by P ŝlm

+ ,

P s̃lm
+ . For λ ∈ P s̃lm

+ let V s̃lm
λ and V

g̃lm
λ be the irreducible integrable modules over

s̃lm, g̃lm with the highest weight λ. As a g̃lm-module we have

V g̃lm
ω0

= V s̃lm
ω0

⊗ V H
m .

Let Qslm , P slm be the root lattice and weight lattice of slm. The weights of the

module V s̃lm
ω0

are all the weights of the form

µ̃ = ω0 + β −
1

2
〈β, β〉δ − iδ, β ∈ Qslm , i > 0.

Among those, the extremal weights are the weights for which i = 0. The set of the
extremal weights coincide with the set of the maximal weights, i.e., with the set

of the weights µ̃ such that µ̃ + δ is not a weight of V s̃lm
ω0

. A weight µ̃ of V s̃lm
ω0

is
extremal if and only if

〈µ̃, µ̃〉 = 0.

Note also that we have 〈µ̃, µ̃〉 = −2i if and only if µ̃+ iδ is an extremal weight. See
e.g., [3, sec. 20.3, 20.5] for details. Now, let Tm be the standard maximal torus in

SLm, and let tm be its Lie algebra. Let Ŝm be the affine symmetric group. It is
the semidirect product Sm ⋉Qslm . Note that Qslm is the group of cocharacters of
Tm. We’ll regard it as a lattice in tm in the usual way, and we’ll identify tm with

t∗m via the standard invariant pairing on tm. The Ŝm-action on t∗m⊕Cω0⊕Cδ, see
e.g., [18, sec. 13.1], is such that the element β in Qslm acts via the operator

ξβ : ν 7→ ν + ν(1)β −
(
〈ν, β〉+

1

2
〈β, β〉ν(1)

)
δ. (4.3)
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In particular, we have

ξβ(ω0) = ω0 + β −
1

2
〈β, β〉δ.

We’ll use the same notation for the Ŝm-action on t∗m⊕Cω0 ⊕Cδ and on t∗m⊕Cω0,
hopping it will not create any confusion. Therefore, for λ ∈ t∗m ⊕ Cω0 the symbol
ξβ(λ) will denote both the weight (4.3) and the weight ν + ν(1)β. We can view
the cocharacter β ∈ Qslm as a group-scheme homomorphism Gm → Tm. Thus the
image β(̟) of the element ̟ ∈ K lies in Tm(K). Since the coadjoint action of
β(̟) on t∗m ⊕ Cω0 ⊕ Cδ is given by ξ−1

β , see e.g., [24], we have also

β(V [ν]) = V [ξ−1
β (ν)] (4.4)

for any integrable s̃lℓ-module V and any weight ν.

4.4. The Hopf C-algebra ΛΓ. Now, let us consider the Hopf C-algebras R(Γ).
Once again, the multiplication/comultiplication on R(Γ) is given by the induc-
tion/restriction. We equip R(Γ) with the symmetric C-bilinear form given by

〈f, g〉 = |Γn|
−1

∑

x∈Γn

f(x)g(x−1), f, g ∈ [Rep(CΓn)].

It is a Hopf pairing. Next, we consider the Hopf C-algebra ΛΓ = Λ⊗Γ. We’ll use
the following elements in ΛΓ

fγ = 1⊗ · · · ⊗ 1⊗ f ⊗ 1⊗ · · · ⊗ 1, f ∈ Λ, γ ∈ Γ,

with f at the γ-th place and 1 everywhere else. We abbreviate

Pµ,γ = (Pµ)γ , Pλ =
∏

γ∈Γ

Pλ(γ),γ , µ ∈ P , λ ∈ PΓ.

The comultiplication in ΛΓ is characterized by

∆(Pr,γ) = Pr,γ ⊗ 1 + 1⊗ Pr,γ , r > 0, γ ∈ Γ.

Following [22, chap. I, app. B, (7.1)] we write

Pr,p = ℓ−1
∑

γ∈Γ

γpPr,γ , r > 0, p ∈ Zℓ.

We equip ΛΓ with the Hopf pairing such that

〈Pr,p, Ps,q〉 = rδp,qδr,s, r, s > 0, p, q ∈ Zℓ.

We may regard Pr,p, r > 0, as the r-th power sum of a new sequence of variables
xi,p, i > 0. We define the following elements in ΛΓ

Sµ,p = Sµ(xi,p), Sλ =
∏

p∈Zℓ

Sλ(p),p, µ ∈ P , λ ∈ Pℓ. (4.5)

The Hopf C-algebras R(Γ) and ΛΓ are identified via the characteristic map [22,
chap. I, app. B, (6.2)]

ch : R(Γ) → ΛΓ.

This map intertwines the induction in R(Γ) with the multiplication in ΛΓ by [22,
chap. I, app. B, (6.3)]. By [22, chap. I, app. B, (9.4)] and (3.3) we have

ch(L̄λ) = Sτλ, λ ∈ Pℓ, (4.6)

where τ is the permutation of Pℓ such that (τλ)(p) = λ(p+1) for each p ∈ Zℓ. For
λ ∈ PΓ we write

zλ =
∏

γ∈Γ

zλ(γ)ℓ
l(λ(γ))
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and we define λ̄ ∈ PΓ by λ̄(γ) = λ(γ−1). Then we have

〈Sλ, Sµ〉 = δλ,µ, λ, µ ∈ Pℓ,

〈Pλ, Pµ̄〉 = δλ,µzλ, λ, µ ∈ PΓ.
(4.7)

The first equality is proved as in [22, chap. I, app. B, (7.4)], while the second one
is [22, chap. I, app. B, (5.3’)]. By (4.6), (4.7) the map ch is an isometry. Thus it
intertwines the restriction in R(Γ) with the comultiplication in ΛΓ.

Proposition 4.1. (a) The restriction Rep(CΓn) → Rep(CSn) yields the C-algebra

homomorphism ResΓS : ΛΓ → Λ such that Sλ 7→
∏
p Sλ(p), Pr,p 7→ Pr.

(b) The induction Rep(CSn) → Rep(CΓn) yields the C-algebra homomorphism

IndΓS : Λ → ΛΓ such that Pr 7→ Pr,1 =
∑
p∈Zℓ

Pr,p.

Proof. The first part of (a) is obvious and is left to the reader, see Section 3.5. For
the second one, observe that

ch(σr,p) = Pr,p, r > 0,

where σr,p is the class function on Γr wich takes the value r(γ1γ2 · · · γr)p on pairs
(w, (γ1, γ2, . . . , γr)) such that w is a r-cycle, and 0 elsewhere, see [9, lem. 5.1]. Now
we concentrate on (b). Note that

ResΓS(P0,γ) = 1, ResΓS(Pr,γ) = ℓδγ,1Pr, r > 0.

Therefore, for λ ∈ PΓ we have

ResΓS(Pλ) =
∏

γ∈Γ

ResΓS(Pλ(γ),γ) =

{
ℓ l(λ(1))Pλ(1) if λ(γ) = ∅ for γ 6= 1,

0 else.

If f, g ∈ [Rep(CΓn)] are the characters of finite dimensional Γn-modules V , W ,
then 〈f, g〉 is the dimension of the space of CΓn-linear maps V → W . Hence, by

Frobenius reciprocity the operator IndΓ
S is adjoint to the operator ResΓS. Thus,

〈IndΓS(Pr), Pλ〉 =

{
rℓ l(λ(1))δλ(1),(r) if λ(γ) = ∅ for γ 6= 1,

0 else.

This implies that IndΓS(Pr) = aPr,1 for some a. To determine a let λ be such that
λ(γ) = ∅ if γ 6= 1 and λ(1) = (r). Then we have

Pλ = Pr,1, 〈Pλ, Pλ〉 = rℓ.

This implies that a = 1. �

Remark 4.2. Let f 7→ f̄ be the C-antilinear involution of ΛΓ which fixes the Pλ’s
with λ ∈ PΓ, see [22, chap. I, app. B, (5.2)]. For λ ∈ Pℓ let λ̄ be the ℓ-partition
given by λ̄(p) = λ(−p). We have

P̄r,p = Pr,−p, S̄λ = Sλ̄, r > 0, p ∈ Zℓ, λ ∈ Pℓ.

Remark 4.3. Setting ℓ = 1 in ΛΓ we get the standard Hopf algebra structure and
the Hopf pairing of Λ.

Remark 4.4. We have [22, chap. I, app. B, (7.1’)]

Pr,γ =
∑

p∈Zℓ

γ−pPr,p, r > 0, P0,γ = 1, P0,p = δ0,p.
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4.5. The level 1 Fock space. The level 1 Fock space of ŝlm is the space Fm of
semi-infinite wedges of the C-vector space Vm = Cm ⊗ C[t, t−1]. We have

Fm =
⊕

d∈Z
F

(d)
m ,

where F
(d)
m is the subspace spanned by the semi-infinite wedges of charge d, i.e.,

the semi-infinite wedges of the form

ui1 ∧ ui2 ∧ · · · , i1 > i2 > . . . , ui−jm = ǫi ⊗ tj , (4.8)

where (ǫ1, . . . , ǫm) is a basis of Cm, and ik = d− k + 1 if k ≫ 0. We write

|λ, d〉 = ui1 ∧ ui2 ∧ · · · , λ ∈ P , ik = λk + d− k + 1, k > 0. (4.9)

The elements |λ, d〉 with λ ∈ P form a basis of F
(d)
m . We equip F

(d)
m with the C-

bilinear symmetric form such that this basis is orthonormal. The C-vector space

Vm is equipped with the level 0 action of ŝlm induced by the homomorphism

ŝlm → slm ⊗ C[t, t−1], 1 7→ 0, x⊗̟ 7→ x⊗ t (4.10)

and the obvious actions of slm and C[t, t−1] on Vm. Taking semi-infinite wedges

this action yields a level 1 action of ŝlm on F
(d)
m . The multiplication by tr, r > 0,

yields an endomorphism on Vm. Taking semi-infinite wedges it yields an operator

br on F
(d)
m . Let b′r be the adjoint operator. The operators b′r, br define a level m

action of H on F
(d)
m . The C-linear isomorphism

F
(d)
m → Λ, |λ, d〉 7→ Sλ, λ ∈ P (4.11)

takes the operators b′r, br, eq, fq on the left hand side to the operators b′mr, bmr,

eq−d, fq−d on the right hand side. The ŝlm-action and the H-action on F
(d)
m glue

together, yielding a level 1 representation of ĝlm on F
(d)
m . As a ĝlm-module we have

F (d)
m = V ĝlm

ωdmod m
.

4.6. The level ℓ Fock space. The level ℓ Fock space of ŝlm is the C-vector space

Fm,ℓ =
⊕

d∈Z
F

(d)
m,ℓ

of semi-infinite wedges of the C-vector space Vm,ℓ = Cm⊗Cℓ⊗C[z, z−1]. The latter
are defined as in (4.8) with

ui+(j−1)m−kmℓ = ǫi ⊗ ǫ̇j ⊗ zk. (4.12)

Here (ǫ1, . . . , ǫm) is a basis of Cm, (ǫ̇1, . . . , ǫ̇ℓ) is a basis of Cℓ, i = 1, . . . ,m, j =

1, . . . , ℓ, and k ∈ Z. We define basis elements |λ, d〉, with λ ∈ P , of F
(d)
m,ℓ as in (4.9),

using the semi-infinite wedges above. We equip F
(d)
m,ℓ with the C-bilinear symmetric

form such that this basis is orthonormal. This yields a C-linear isomorphism

F
(d)
m,ℓ → Λ, |λ, d〉 7→ Sλ, λ ∈ P . (4.13)

We equip the C-vector space F
(d)
m,ℓ with the following actions :

• The level mℓ action of H such that b′r, br is taken to the operator b′mℓr, bmℓr
on Λ under the isomorphism (4.13) for r > 0.

• The level ℓ action of ŝlm defined as follows : equip the C[z, z−1]-module Vm,ℓ
with the level 0 action of ŝlm given by the evaluation homomorphism (4.10)
and the obvious actions of slm and C[z, z−1] on Vm,ℓ. Taking semi-infinite

wedges we get a level ℓ action of ŝlm on F
(d)
m,ℓ.

• The level m action of ŝlℓ which is defined as above by exchanging the role
of m and ℓ.
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The actions of H, ŝlm and ŝlℓ commute with each other. We call ℓ-charge of weight
d an ℓ-tuple of integers s = (sp) such that d =

∑
p sp. Set

γ̂(s,m) = (m− s1 + sℓ)ω0 +

ℓ−1∑

p=1

(sp − sp+1)ωp. (4.14)

The Fock space associated with the ℓ-charge s is the subspace

F
(s)
m,ℓ = F

(d)
m,ℓ[γ̂(s,m)] (4.15)

consisting of the elements of weight γ̂(s,m) with respect to the ŝlℓ-action. It is an

ŝlm × H-submodule of F
(d)
m,ℓ. Consider the basis elements |λ, s〉, λ ∈ Pℓ, of F

(s)
m,ℓ

defined in [28, sec. 4.1]. The representation of ŝlm on F
(s)
m,ℓ can be characterized in

the following way, see e.g., [15], [28],

eq|λ, s〉 =
∑

ν

|ν, s〉, fq|λ, s〉 =
∑

µ

|µ, s〉, (4.16)

where ν (resp. µ) runs through all ℓ-partitions obtained by removing (resp. adding)
a node of coordinate (i, j) in the p-th partition of λ such that q = sp+ j− i modulo
m. Consider the C-vector space isomorphism

ΛΓ → F
(s)
m,ℓ, Sτλ 7→ |λ, s〉, λ ∈ Pℓ. (4.17)

The representation of H on F
(s)
m,ℓ can be characterized in the following way.

Proposition 4.5. The operators b′r, br, r > 0, on F
(s)
m,ℓ are adjoint to each other.

Further br acts as the multiplication by the element Pmr,1 =
∑

p Pmr,p of ΛΓ under

the isomorphism (4.17).

Proof. The first claim is [28, prop. 5.8]. To prove the second one, observe that the
formulas in [28, sec. 4.1, 4.3 and (25)] imply that the C-linear map

F
(s)
m,ℓ →

⊗

p∈Zℓ

F (sp)
m , |λ, s〉 7→

⊗

p∈Zℓ

|λ(p), sp〉,

intertwines the operator br on the left hand side and the operator

br ⊗ 1⊗ · · · ⊗ 1 + 1⊗ br ⊗ 1⊗ · · · ⊗ 1 + · · ·+ 1⊗ · · · ⊗ 1⊗ br

on the right hand side. Thus the proposition follows from the definition of the H-
action on Fm in Section 4.5 and from the definition of the H-action on Λ in Section
4.2. �

Remark 4.6. The ŝlm-action on F
(s)
m,ℓ can be extended to an s̃lm-action such that

the weight of |λ, s〉 is

−∆(s,m)δ +

ℓ∑

p=1

ωsp −
m−1∑

q=0

nq(λ)αq ,

see [28, sec. 4.2]. Here nq(λ) is the number of q-nodes in λ, i.e., it is the sum over
all p’s of the number of nodes of coordinate (i, j) in the p-th partition of λ such
that sp + j − i = qmodm. We have also used the notation

∆(s,m) =
1

2

ℓ∑

p=1

〈ωsp modm, ωsp modm〉+
1

2

ℓ∑

p=1

λp(sp/m− 1).

In particular, we have

D(|λ, s〉) = −(∆(s,m) + n0(λ)) |λ, s〉.
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5. The categorification of the Heisenberg algebra

We’ll abbreviate

[O(Γ)] =
⊕

n>0

[O(Γn)].

Assume that h, hp are rational numbers. Thus Λ is a rational weight of ŝlℓ of level
1. Let m be the denominator of h. We’ll assume that m > 2.

5.1. The functors Aλ,!, A
∗
λ, Aλ,∗ on Db(O(Γ)). To simplify the exposition, from

now on we’ll assume that ℓ > 1. All the statements below have an analoguous
version for ℓ = 1, by replacing everywhere Cn by Cn0 . Let n, r be non-negative
integers. Consider the point

bn,r = (0, . . . , 0, 1, . . . , 1) ∈ h = Cn+r,

with xi = 0 for 1 6 i 6 n, and xi = 1 for n < i 6 n+ r. The centralizer of bn,r in
Γn+r is the parabolic subgroup Γn,r. We have

h/hΓn,r = Cn × Cr0.

Here Cn is the reflection representation of Γn and Cr0 is the reflection representation
of Sr. Note that

O(Γn,r) = O(Γn,r,C
n × Cr0), O(Sr) = O(Sr,C

r
0).

In particular we have a canonical equivalence of categories

O(Γn,r) = O(Γn)⊗O(Sr).

Thus the induction and restriction relative to bn,r yield functors

OIndn,r : O(Γn)⊗O(Sr) → O(Γn+r),

OResn,r : O(Γn+r) → O(Γn)⊗O(Sr).
(5.1)

Now consider the functors OIndn,mr,
OResn,mr. The parameters of H(Γn+mr) and

H(Γn) are h, Λ. The parameter of H(Smr) is h. Fix a partition λ ∈ Pr. We define
the functors

O(Γn)⊗O(Smr) → O(Γn),

M 7→ HomO(Smr)(M,Lmλ)
∗, M 7→ HomO(Smr)(Lmλ,M),

as the tensor product of the identity of O(Γn) and of the functors

O(Smr) → Rep(C),

M 7→ HomO(Smr)(M,Lmλ)
∗, M 7→ HomO(Smr)(Lmλ,M).

Here the upperscript ∗ denotes the dual C-vector space. We denote the correspond-
ing derived functors in the following way

M 7→ RHomO(Smr)(M,Lmλ)
∗, M 7→ RHomO(Smr)(Lmλ,M).

Definition 5.1. For λ ∈ Pr with r > 0 we define the functors

Aλ,! : Db(O(Γn+mr)) → Db(O(Γn)), M 7→ RHomDb(O(Smr))(
OResn,mr(M), Lmλ)

∗,

A∗
λ : Db(O(Γn)) → Db(O(Γn+mr)), M 7→ OIndn,mr(M ⊗ Lmλ),

Aλ,∗ : Db(O(Γn+mr)) → Db(O(Γn)), M 7→ RHomDb(O(Smr))(Lmλ,
OResn,mr(M)).

Proposition 5.2. We have a triple of exact adjoint endofunctors (Aλ,!, A
∗
λ, Aλ,∗)

of the triangulated category Db(O(Γ)). For M,N ∈ Db(O(Γ)) we have

RHomDb(O(Γ))(A
∗
λ(M), N) = RHomDb(O(Γ))(M,Aλ,∗(N)),

RHomDb(O(Γ))(Aλ,!(M), N) = RHomDb(O(Γ))(M,A∗
λ(N)).
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Proof. Obvious because the functors Indn−mr,mr and Resn−mr,mr are exact and
biadjoint, see [1], [26]. �

We write A∗ = A∗
(1) and A♭ = A(1),♭ for ♭ =!, ∗.

Proposition 5.3. For r > 0 and ♭ =!, ∗ the group Sr acts on the functors (A∗)r,
(A♭)

r and we have the following Sr-equivariant isomorphisms

(A∗)r =
⊕

λ∈Pr

L̄λ ⊗A∗
λ, (A♭)

r =
⊕

λ∈Pr

L̄λ ⊗Aλ,♭.

Proof. We can assume that r > 0. Recall that

OInd(mr) =
OIndSmr

Sr
m

: O(Sr
m) → O(Smr).

We claim that the group Sr acts on the module OInd(mr)(L
⊗r
(m)) and that the

following identity holds in Rep(CSr)⊗O(Smr)

OInd(mr)(L
⊗r
(m)) =

⊕

λ∈Pr

L̄λ ⊗ Lmλ. (5.2)

To prove this, recall that Rouquier’s functor R yields an equivalence

O(Smr) → Rep(Sζ(mr)) (5.3)

which takes Lmλ to LSmλ and which identifies the induction on O(S) with the tensor
product in Rep(Sζ(mr)). Here ζ is a primitive m-th root of 1. Thus, to prove (5.2)
it is enough to check the following identity in Rep(CSr)⊗ Rep(Sζ(mr))

(LS(m))
⊗̇r =

⊕

λ∈Pr

L̄λ ⊗ LSmλ.

To do that, note that the quantum Frobenius homomorphism yields a tensor functor

Fr∗ : Rep(S1(r)) → Rep(Sζ(mr)), L̄Sλ 7→ LSmλ,

where L̄Sλ is the simple S1(r)-module with the highest weight λ. Therefore, to prove
(5.2) we are reduced to check the following identity in Rep(CSr)⊗ Rep(S1(r))

(L̄S(1))
⊗̇r =

⊕

λ∈Pr

L̄λ ⊗ L̄Sλ .

This is a trivial consequence of the Schur duality. Now, the transitivity of the
induction functor [26, cor. 2.5] yields a natural isomorphism

(A∗)r(M) = OIndn,mr
(
M ⊗ OInd(mr)(L

⊗r
(m))

)
.

Thus the claim yields a canonical action of the group Sr on the functor (A∗)r, and
the identity (5.2) yields the following decomposition

(A∗)r =
⊕

λ∈Pr

L̄λ ⊗A∗
λ. (5.4)

The remaining identities are obtained by taking the adjoint functors. �

Remark 5.4. We have used the hypothesis m > 2 in the proof of Proposition 5.3
when using Rouquier’s functor R. Probably this is not necessary.

Proposition 5.5. For λ ∈ Pr with r > 0 we have an isomorphism of functors

Aλ,![2r(1−m)] = Aλ,∗.
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Proof. We can assume that r > 0. Let Perv(Pm−1) be the Abelian category of
perverse sheaves on Pm−1 which are constructible with respect to the standard
stratification Pm−1 = C0 ∪ C1 ∪ · · · ∪ Cm−1. By [2, thm. 1.3] the category O(Sm)
decomposes as the direct sum of Perv(Pm−1) and semisimple blocks. Under this
equivalence the module L(m) is taken to the perverse sheaf CPm−1 [m−1]. Therefore,
by Verdier duality, we have [16, (3.1.8)]

RHomDb(O(Sm))(L(m),M) = RHomDb(O(Sm))(M,L(m))
∗[2(1−m)].

This yields an isomorphism of functors

A![2(1−m)] = A∗.

Therefore, we have also an isomorphism of functors

(A!)
r[2r(1−m)] = (A∗)

r.

Thus the claim follows from Proposition 5.3. �

Remark 5.6. The transitivity of the induction functor [26, cor. 2.5] yields an iso-
morphism of functors A∗

λA
∗
µ = A∗

µA
∗
λ for λ, µ ∈ P . Taking the adjoint functors we

get also the isomorphisms Aλ,!Aµ,! = Aµ,!Aλ,! and Aλ,∗Aµ,∗ = Aµ,∗ Aλ,∗.

Remark 5.7. The functors Aλ,!, A
∗
λ, Aλ,∗ yield linear endomorphisms of the C-vector

space [O(Γ)]. Let us denote them Aλ,!, A
∗
λ, Aλ,∗ again.

Remark 5.8. For any objectM of Db(O(Γ)) there should be a distinguished triangle

ℓ〈m〉M // A∗A
∗(M) // A∗A∗(M)

+1
// .

5.2. The functors a∗λ, aλ,∗ on O(Γ) and the H-action on the Fock space.
For i ∈ Z and ♭ =!, ∗ we consider the endofunctor Hi(Aλ,♭) of O(Γ) given by

Hi(Aλ,♭)(M) = Hi(Aλ,♭(M)), M ∈ O(Γ).

From now on we’ll write Raλ,♭ = Aλ,♭ and R
iaλ,♭ = Hi(Aλ,♭).

Definition 5.9. Let a∗λ be the restriction of A∗
λ to the Abelian category O(Γ).

Since a∗λ is an exact endofunctor of O(Γ), we may write a∗λ for A∗
λ if it does not

create any confusion. We abbreviate aλ,♭ = R0aλ,♭. The functor aλ,∗ is a left exact
endofunctor of O(Γ), while aλ,! is right exact.

Consider the chain of C-linear isomorphisms which is the composition of (3.4), of
the characteristic map ch, and of (4.17),

[O(Γ)] → R(Γ) → ΛΓ → F
(s)
m,ℓ,

∆λ 7→ L̄λ 7→ Sτλ 7→ |λ, s〉.
(5.5)

Proposition 5.10. (a) The map (5.5) identifies the symmetric C-bilinear form on

F
(s)
m,ℓ with the C-bilinear form

[O(Γ)]× [O(Γ)] → C, (M,N) 7→
∑

i

(−1)idimExtiO(Γ)(M,N).

(b) The map (5.5) identifies the operators bSλ
, b′Sλ

on F
(s)
m,ℓ with the operators

a∗λ, Raλ,∗ on [O(Γ)].
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Proof. Part (a) is obvious because we have

dimExtiO(Γn)(∆λ,∇µ) = δi,0δλ,µ, [∆µ] = [∇µ], ∀λ, µ ∈ Pℓn,

because O(Γn) is a quasi-hereditary category, see e.g., [6, prop. A.2.2]. Now we
concentrate on (b). By (a) and Proposition 5.2, the pairs (bSλ

, b′Sλ
) and (a∗λ, Raλ,∗)

consist of adjoint linear operators on F
(s)
m,ℓ. So it is enough to check that under

(5.5) we have the following equality

bSλ
= a∗λ. (5.6)

To do that, observe first that, by Proposition 4.1, for r > 0 the map ch : R(Γ) → ΛΓ

intertwines the operator

R(Γ) → R(Γ), M 7→ IndΓΓ×S

(
M ⊗ ch−1(Pmr)

)

and the multiplication by
∑

p∈Zℓ
Pmr,p. Here we have abbreviated

IndΓΓ×S =
⊕

n,r>0

Indn,mr .

Next, by Proposition 4.5, the map ΛΓ → F
(s)
m,ℓ above intertwines the multiplication

by
∑

p∈Zℓ
Pmr,p and the operator br. The plethysm with the power sum Pm is the

C-algebra endomorphism

ψm : Λ → Λ, f 7→
∑

λ∈P

z−1
λ 〈f, Pλ〉Pmλ.

The discussion above implies that the map R(Γ) → F
(s)
m,ℓ above identifies the action

of bSλ
on F

(s)
m,ℓ with the operator

R(Γ) → R(Γ), M 7→ IndΓΓ×S(M ⊗ ch−1 ψm(Sλ)).

Now, recall the maps

spe : [Rep(CΓn)] → [O(Γn)], spe : [Rep(CSmr)] → [O(Smr)].

By Lemma 2.4, they commute with the induction and restriction. We claim that

spe ◦ ch−1 ◦ψm(Sλ) = Lmλ.

Thus (5.6) follows from (5.5). To prove the claim, set ζ equal to a primitive m-th
root of 1. Then Rouquier’s functor yields an isomorphism, see (5.3),

[O(Smr)] = [Rep(Sζ(mr))].

Next, the quantum Frobenius homomorphism yields a commutative diagram

[Rep(S1(r))]
Fr

// [Rep(Sζ(mr))]

Λ

χ ψ

66mmmmmmmmmmmmmm ψm

// Λ

χ (5.7)

where χ is the formal character, see e.g., [14, sec. II.H.9]. Consider the chain of
maps

θ : [Rep(CSmr)]
(3.4)

[O(Smr)]
(5.3)

[Rep(Sζ(mr))] .

We have

ψ(Sλ) = LSmλ, θ ch−1(Sµ) = ∆S
µ , λ ∈ Pr, µ ∈ Pmr.

Thus we have

χ(θ ch−1(Sµ)) = χ(∆S
µ) = Sµ, µ ∈ Pmr.
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Therefore we have also

χ(θ ◦ ch−1 ◦ψm(Sλ)) = ψm(Sλ) = χ(ψ(Sλ)) = χ(LSmλ).

This implies that θ ◦ ch−1 ◦ψm(Sλ) = LSmλ, proving the claim and the proposition.
�

Proposition 5.11. Let λ ∈ Pr with r > 0.
(a) We have a triple of adjoint functors (aλ,!, a

∗
λ, aλ,∗).

(b) We have R2r(m−1)aλ,∗ = aλ,!.
(c) For ♭ = ∗, !, q = 0, 1, . . . ,m−1, and i > 0 there are isomorphisms of functors

eq R
iaλ,♭ = Riaλ,♭ eq, eq a

∗
λ = a∗λ eq, fq R

iaλ,♭ = Riaλ,♭ fq, fq a
∗
λ = a∗λ fq.

Proof. By definition of the functors Aλ,∗, Aλ,! we have

Aλ,∗(O(Γ)) ⊂ D>0(O(Γ)), Aλ,!(O(Γ)) ⊂ D60(O(Γ)).

Thus, by Proposition 5.2 we have the triple of adjoint endofunctors of O(Γ)

(aλ,!, a
∗
λ, aλ,∗) = (H0(Aλ,!), A

∗
λ, H

0(Aλ,∗)).

This proves (a). To prove (b) it is enough to observe that Proposition 5.5 yields

R2r(m−1)aλ,∗ = H2r(m−1)(Aλ,∗) = H0(Aλ,!) = aλ,!.

Next, let us prove part (c). It is enough to give isomorphisms of functors

eq a
∗
λ = a∗λ eq, fq a

∗
λ = a∗λ fq. (5.8)

First, observe that we have an isomorphism of functors

F a∗λ = a∗λ F. (5.9)

Indeed, for M ∈ O(Γn) the transitivity of the induction functor [26, cor. 2.5] yields

F a∗λ(M) = OIndn+mr
OIndn,mr(M ⊗ Lmλ)

= OInd
Γn+mr+1

Γn+mr

OInd
Γn+mr

Γn,mr
(M ⊗ Lmλ)

= OInd
Γn+mr+1

Γn,mr
(M ⊗ Lmλ),

a∗λF (M) = OIndn+1,mr(
OIndn(M)⊗ Lmλ)

= OInd
Γn+mr+1

Γn+1,mr

(
OInd

Γn+1

Γn
(M)⊗ Lmλ

)

= OInd
Γn+mr+1

Γn+1,mr

OInd
Γn+1,mr

Γn,mr
(M ⊗ Lmλ)

= OInd
Γn+mr+1

Γn,mr
(M ⊗ Lmλ).

By (5.9) for each M ∈ O(Γn) we have
⊕

q

fq a
∗
λ(M) =

⊕

q

a∗λ fq(M).

We must prove that we have also an isomorphism fq a
∗
λ(M) = a∗λ fq(M). To do that

we may assume that [M ] is a weight vector of the ŝlm-module [O(Γ)]. Let ν denote
this weight. Then [fq a

∗
λ(M)] and [a∗λ fq(M)] are both weight vectors of weight

ν + αq by Proposition 5.10. But by [19] two modules M1,M2 ∈ O(Γ) such that
[M1], [M2] are weight vector of [O(Γ)] of different weights belong to two different
blocks of the category O(Γ). Thus the first isomorphism in (5.8) is proved. Next,
let us prove that we have an isomorphism of functors

E a∗λ = a∗λE. (5.10)
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The second isomorphism in (5.8) follows from (5.10) by a similar argument to the
one above. For M ∈ O(Γn) we have

E a∗λ(M) = OResn+mr
OIndn,mr(M ⊗ Lmλ),

a∗λE(M) = OIndn−1,mr(
OResn(M)⊗ Lmλ),

By Proposition 5.3 it is enough to prove (5.10) for r = 1, i.e., we must check that
there is a natural isomorphism

OResn+m
OIndn,m(M ⊗ L(m)) =

OIndn−1,m
ORes

Γn,m

Γn−1,m
(M ⊗ L(m)). (5.11)

A set of representatives of the double cosets in

Γn+m−1 \ Γn+m/Γn,m

is {γn+m, sn,n+m ; γ ∈ Γ}, see Section A.3. Further, we have

xΓn,mx
−1 ∩ Γn+m−1 =

{
xΓn,m−1x

−1 if x = γn+m,

Γn−1,m if x = sn,n+m.

Finally, since L(m) is finite dimensional we have

ORes
Γn,m

Γn,m−1
(M ⊗ L(m)) = 0.

Thus the identity (5.11) is satisfied in [O(Γn+m)]. More precisely, Proposition A.2
yields the following decomposition of functors

HResn+m ◦HIndn,m =
(
HIndn−1,m ◦ (HResn⊗ 1)

)
⊕
(
HIndn,m−1 ◦ (1⊗

HResm)
)⊕ℓ

.

Therefore we have also the following decomposition of functors

KZ ◦OResn+m ◦OIndn,m =

=
(
KZ ◦OIndn−1,m ◦ (OResn⊗ 1)

)
⊕
(
KZ ◦OIndn,m−1 ◦ (1⊗ OResm)

)⊕ℓ
.

The induction and restriction functors on O(Γ) take projective modules to pro-
jective ones, because they are exact and biadjoint. Thus, by (3.6) we have an
isomorphism

OResn+m
OIndn,m(P ) =

= OIndn−1,m (OResn⊗ 1)(P )⊕
(
OIndn,m−1 (1⊗ OResm)(P )

)⊕ℓ

for any projective module P ∈ O(Γ). This proves the isomorphism (5.11). �

5.3. Primitive modules.

Definition 5.12. A module M ∈ O(Γ) is primitive if Ra∗(M) = 0 and E(M) = 0
(or, equivalently, if Ria∗(M) = eq(M) = 0 for all q, i). Let PI(O(Γ)) be the set of
isomorphism classes of primitive simple modules.

Proposition 5.13. For L ∈ Irr(O(Γn)) the following are equivalent
(a) L ∈ PI(O(Γn)),
(b) L ∈ Irr(O(Γn))0,0,
(c) dim(L) <∞.

Proof. Assume that L ∈ Irr(O(Γn)). The equivalence of (b) and (c) is Remark
3.13. Let us prove that (a) ⇒ (b). Fix l, j > 0 such that Supp(L) = Xl,j. Set
i = n− l−mj. We first prove that j = 0. Assume that j > 0. Then we have

Γl,(mj) = Γl,(mj−1) ×Sm, Γl,(mj−1) ⊂ Γn−m.
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There are modules Mµ ∈ O(Γn−m), µ ∈ Pm, such that in [O(Γn,m)] we have

[Resn,m(L)] =
∑

µ∈Pm

[Mµ ⊗ Lµ].

The transitivity of the restriction functor [26, cor. 2.5] yields the following formula

[Res1(L)] =
∑

µ

[Res2(Mµ)⊗ Lµ], Res1 = OResΓn

Γ
l,(mj )

, Res2 = ORes
Γn−m

Γ
l,(mj−1)

.

The H(Γl,(mj))-module Res1(L) is finite dimensional, because Supp(L) = Xl,j .
Thus we have Res2(Mµ) = 0 unless µ = (m), and

[Res1(L)] = [Res2(M(m))⊗ L(m)]. (5.12)

Next, since Ra∗([L]) = 0 we have

0 = [Res2Ra∗(L)]

=
∑

µ∈Pm

[Res2(Mµ)⊗ RHomO(Sm)(L(m), Lµ)],

= [Res2(M(m))⊗ REndO(Sm)(L(m))].

Thus, using [2, thm. 1.3] we get Res2(M(m)) = 0. This yields a contradiction with
(5.12) because Res1(L) 6= 0. So we have j = 0. Next, since E(L) = 0, by Corollary
3.18 and Remark 3.11 we have i = 0.

Finally, we prove that (c) ⇒ (a). We must prove that if L is finite dimensional
then it is primitive. This is obvious, because OResn,m(L) = OResn(L) = 0. �

Remark 5.14. By Proposition 5.13 the elements of PI(O(Γn)) form a basis of
F0,0(Γn).

5.4. Endomorphisms of induced modules. For r > 1 we consider the algebras

Br = Sr ⋉C[x1, x2, . . . , xr], Br,ℓ = Br/(x
ℓ
1, x

ℓ
2, . . . , x

ℓ
r).

The following proposition is the main result of this subsection.

Proposition 5.15. Let r > 1.
(a) The C-algebra homomorphism CSr → EndO(Γ)((a

∗)r) in Proposition 5.3
gives rise to a C-algebra homomorphism Br → EndO(Γ)((a

∗)r) such that x1, x2, . . . , xr
map to nilpotent operators in EndO(Γ)((a

∗)r(L)) for each L ∈ O(Γ).
(b) The C-algebra homomorphism Br → EndO(Γ)((a

∗)r) factors to an isomor-
phism Br,ℓ = EndO(Γ)((a

∗)r(L)) for L ∈ PI(O(Γ)).

Proof. The proof of this proposition is rather long and is done in several steps. Let
H(Γn,(mr)), H(Γn+mr) and the Xi’s be as in Appendix A. Consider the elements

ξi = Xn+m(i−1)+1Xn+m(i−1)+2 · · ·Xn+mi, i = 1, 2, . . . , r.

They belong to the centralizer of H(Γn,(mr)) in H(Γn+mr). Thus the right multipli-

cation by ξi, i = 1, 2, . . . , r, defines an automorphism Hξi of the functor
HIndn,(mr).

More precisely, for a H(Γn,(mr))-module M we set

Hξi(h⊗ v) = hξi ⊗ v, h ∈ H(Γn+mr), v ∈M.

The functor KZ yields a C-algebra isomorphism [26, lem. 2.4]

KZ : End
(
OIndn,(mr)

)
→ End

(
KZ ◦OIndn,(mr)

)
= End

(
HIndn,(mr) ◦KZ

)
. (5.13)

Thus there is a unique endomorphism Oξi of the functor OIndn,(mr) such that

KZ(Oξi(M)) = Hξi(KZ(M)), ∀M ∈ O(Γn,(mr)).
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The functor •⊗ (L(m))
⊗r : O(Γn) → O(Γn,(mr)) yields a C-algebra homomorphism

End
(
OIndn,(mr)

)
→ End((a∗)r). (5.14)

Let ξ̄i denote the image of Oξi by the map (5.14). Next, we define an element τ̄i of
End((a∗)r) for i = 1, 2, . . . , r− 1. First, let τi ∈ Sn+mr be the unique permutation
such that

• τi is minimal in the coset S(n,mr)τiS(n,mr),

• τi(vw1w2 . . . wr)τ
−1
i = vw1 . . . wi+1wi . . . wr for v ∈ Sn, w1, . . . , wr ∈ Sm.

Now, observe that there is an obvious isomorphism

H(Γn,(mr)) = H(Γn)⊗H(Sm)⊗r.

Let τi : H(Γn,(mr)) → H(Γn,(mr)) denote also the permutation

x⊗ y1 ⊗ · · · ⊗ yr → x⊗ y1 ⊗ · · · ⊗ yi+1 ⊗ yi ⊗ · · · ⊗ yr.

We have the following relation in H(Γn+mr)

Tτiz = τi(z)Tτi, z ∈ H(Γn,(mr)). (5.15)

Therefore, the element Tτi belongs to the normalizer of H(Γn,(mr)) in H(Γn+mr).
Further, the twist of a module by τi yields the functor

τi : Rep(H(Γn,(mr))) → Rep(H(Γn,(mr)))

given by

M ⊗N1 ⊗ · · · ⊗Nr →M ⊗N1 ⊗ · · · ⊗Ni+1 ⊗Ni ⊗ · · · ⊗Nr,

m⊗ n1 ⊗ · · · ⊗ nr 7→ m⊗ n1 ⊗ · · · ⊗ ni+1 ⊗ ni ⊗ · · · ⊗ nr.

For a H(Γn,(mr))-module M we define the natural morphism

Hτi(M) : HIndn,(mr)(M) → HIndn,(mr)(τiM),

Hτi(M)(h⊗ v) = hTτi ⊗ τi(v), h ∈ H(Γn+mr), v ∈M.

Finally, let τi denote also the permutation

τi : O(Γn,(mr)) → O(Γn,(mr)),

M ⊗N1 ⊗ · · · ⊗Nr →M ⊗N1 ⊗ · · · ⊗Ni+1 ⊗Ni ⊗ · · · ⊗Nr.

By (5.13) there is a unique morphism of functors

Oτi ∈ Hom
(
OIndn,(mr),

OIndn,(mr) ◦τi
)

such that
KZ(Oτi(M)) = Hτi(KZ(M)).

The functor • ⊗ (L(m))
⊗r yields a C-algebra homomorphism

Hom
(
OIndn,(mr),

OIndn,(mr) ◦τi
)
→ End((a∗)r). (5.16)

Let τ̄i denote the image of Oτi by the map (5.16).

Lemma 5.16. The following relations hold in End((a∗)r) for j 6= i, i+ 1

τ̄i ◦ ξ̄i ◦ τ̄i = ξ̄i+1, τ̄i ◦ ξ̄j ◦ τ̄i = ξ̄j .

Proof. It is enough to prove that
Hτi ◦

Hξi ◦
Hτi =

Hξi+1,
Hτi ◦

Hξj ◦
Hτi =

Hξj .

To do so, we are reduced to check the following relations in H(Γn+mr)

TτiξiTτi = ξi+1, TτiξjTτi = ξj .

Recall that ζ is a m-th root of 1. Let ai = n+ (i− 1)m+ 1, bi = n+ im, and

Kj = Tbi−jTbi−j+2 · · ·Tbi+j−2Tbi+j .
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A direct computation yields that

Tτi = K0K1 · · ·Km−2Km−1Km−2 · · ·K1K0.

Further, for 0 6 j 6 m− 1 we have

KjXaiXai+1 · · ·Xbi−j−2Xbi−j−1(Xbi−jXbi−j+2 · · ·Xbi+j)Kj =

= ζ2jXaiXai+1 · · ·Xbi−j−2(Xbi−j−1Xbi−j+1Xbi−j+3 · · ·Xbi+j+1),

and for 0 6 j 6 m− 2 we have

Kj(Xbi−jXbi−j+2 · · ·Xbi+j)Xbi+j+2Xbi+j+3 · · ·Xbi+mKj =

= ζ2j(Xbi−j+1Xbi−j+3 · · ·Xbi+j−1)Xbi+j+1Xbi+j+2Xbi+j+3 · · ·Xbi+m.

We deduce that

TτiξiTτi = TτiXaiXai+1 · · ·XbiTτi

= ζ2(1+2+···+m−1)K0 · · ·Km−2Xai+1Xai+3 · · ·Xbi+m−2Xbi+mKm−2 · · ·K0

= ζ2(1+2+···+m−1)ζ2(1+2+···+m−2)Xai+mXai+m+1 · · ·Xbi+m

= ζm(m−1)ξi+1

= ξi+1.

The relation TτiξjTτi = ξj for j 6= i, i+ 1 is obvious. �

Lemma 5.17. The following relations hold in EndO(Γ)((a
∗)r)

• τ̄2i = 1,
• τ̄iτ̄j = τ̄j τ̄i if j 6= i− 1, i+ 1,
• τ̄iτ̄i+1τ̄i = τ̄i+1τ̄iτ̄i+1.

Proof. Consider the morphism of functors

Hτ0i ∈ Hom(HInd(mr),
HInd(mr) ◦τi),

Hτ0i (M)(h⊗ v) = hTτi ⊗ τi(v), h ∈ H(Smr), v ∈M.
(5.17)

By (5.13) there is a unique morphism of functors

Oτ0i ∈ Hom
(
OInd(mr),

OInd(mr) ◦τi
)

such that KZ(Oτ0i (M)) = Hτ0i (KZ(M)). We set

τ̄0i = Oτ0i (L
⊗r
(m)) ∈ End

(
OInd(mr)(L

⊗r
(m))

)
. (5.18)

The transitivity of the induction functor yields

(a∗)r(M) = OIndn,mr
(
M ⊗ OInd(mr)(L

⊗r
(m))

)
, τ̄i(M) = OIndn,mr(1 ⊗ τ̄0i ).

Therefore, we are reduced to check the following relations in End
(
OInd(mr)(L

⊗r
(m))

)

• (τ̄0i )
2 = 1,

• τ̄0i τ̄
0
j = τ̄0j τ̄

0
i if j 6= i− 1, i+ 1,

• τ̄0i τ̄
0
i+1τ̄

0
i = τ̄0i+1τ̄

0
i τ̄

0
i+1.

By Proposition 3.1 the functor R yields a C-algebra isomorphism

EndO(Smr)

(
OInd(mr)(L

⊗r
(m))

)
= EndSζ(mr)

(
(LS(m))

⊗̇r
)
.

Therefore, we are reduced to check the following relations in EndSζ(mr)

(
(LS(m))

⊗̇r
)

• R(τ̄0i )
2 = 1,

• R(τ̄0i )R(τ̄
0
j ) = R(τ̄0j )R(τ̄

0
i ) if j 6= i− 1, i+ 1,

• R(τ̄0i )R(τ̄
0
i+1)R(τ̄

0
i ) = R(τ̄0i+1)R(τ̄

0
i )R(τ̄

0
i+1).
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We define the endomorphism of the functor (•)⊗̇r given by

Sτ0i = R(Oτ0i ).

Consider the diagram

EndO(Smr)

(
OInd(mr)(•)

⊗r
) KZ //

R

��

EndH(Smr)

(
HInd(mr)(KZ(•)⊗r)

)

EndSζ(mr)

(
R(•)⊗̇r

)
.

Φ∗

33ggggggggggggggggggg

The upper map is invertible by (5.13), the vertical one by Proposition 3.1, and the
lower one by Corollary B.4. Finally, the diagram is commutative because Φ∗ ◦R =
KZ, and the image of Oτ0i

(
(•)⊗r

)
is given by

Oτ0i
(
(•)⊗r

)
� //

_

��

Hτ0i
(
KZ(•)⊗r

)

Sτ0i
(
R(•)⊗r

)
.

.

66nnnnnnnnnnnn

Therefore, by (5.18) we have

R(τ̄0i ) =
Sτ0i

(
(LS(m))

⊗r
)
, i = 1, 2, . . . , r − 1. (5.19)

Now, by Corollary B.7 the functor Φ∗ yields

EndSζ(mr)

(
(•)⊗̇r

)
→ EndH(Smr)

(
HInd(mr)(Φ

∗(•)⊗r)
)
, R•,i 7→ SΦ∗(•),i.

Further, by (5.17) we have

SM,i =
Hτ0i (M

⊗r), M ∈ Rep(H(Sm)).

Therefore we have also

RM,i =
Sτ0i (M

⊗r), M ∈ Rep(Sζ(m)). (5.20)

Thus, by (5.19), (5.20) we must check that the operatorsRLS
(m)

,i with i = 1, 2, . . . , r−

1 satisfies the same relations as above. Since LS(m) = Fr∗(L̄S(1)), this follows from

Proposition B.8. �

For any element w ∈ Sr we fix a reduced decomposition w = si1si2 · · · sik and
we define the following element in τ̄w of End((a∗)r)

τ̄w = τ̄i1 τ̄i2 · · · τ̄ik .

Next, for a tuple p = (p1, p2, . . . , pr) ∈ Zr such that 0 6 pi < ℓ we set

ξp = ξp11 ξp22 · · · ξprr .

Lemma 5.18. For any L ∈ Irr(O(Γ)) the elements ξ̄p τ̄w(L) of EndO(Γ)((a
∗)r(L)),

with w ∈ Sr and p ∈ [0, ℓ)r, are linearly independants.

Proof. For w, i1, . . . , ik, p as above the expression τi1τi2 · · · τik is reduced. Let us
define the following elements in H(Γn+mr)

tw = Tτi1Tτi2 · · ·Tτik , ξp = ξp11 ξ
p2
2 · · · ξprr .

Recall that the elements

Xp1
1 Xp2

2 · · ·X
pn+mr

n+mr Tw, pi ∈ [0, ℓ), w ∈ Sn+mr,

form a C-basis of H(Γn+mr). Therefore H(Γn+mr) is a free H(Γn,(mr))-module
with a basis given by

{ξptw ; w ∈ Sr, p ∈ [0, ℓ)r},
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because ξp centralizes H(Γn,(mr)) and because the element τi1τi2 · · · τik above is
minimal in its left S(n,mr)-coset. There is an injective H(Γn,(mr))-module homo-
morphism

Hψ : H(Γn,(mr))
⊕ℓrr! → H(Γn+mr), (hp,w) 7→

∑

p,w

hp,w ξ
p tw, (5.21)

where w, p run overSr, [0, ℓ)
r respectively. Further, since ξp centralizesH(Γn,(mr)),

the relation (5.15) yields

zξptw = ξpztw = ξptww
−1(z), z ∈ H(Γn,(mr)),

where w−1(z) = τik · · · τi2τi1(z). Therefore Hψ is a (H(Γn,(mr)),H(Γn,(mr)))-

bimodule homomorphism, where the right H(Γn,(mr))-action on H(Γn,(mr))
⊕ℓrr! is

twisted in the obvious way. Since Hψ is injective, and both sides are freeH(Γn,(mr))-
modules, for each M ∈ O(Γn,(mr)) we have an injective homomorphism

Hψ(KZ(M)) :
⊕

p,w

wKZ(M) → HResn,(mr) ◦
HIndn,(mr) KZ(M) =

= KZ ◦OResn,(mr) ◦
OIndn,(mr)(M),

where

w = τi1τi2 . . . τik : Rep(H(Γn,(mr))) → Rep(H(Γn,(mr))).

Further, we have

wKZ(M) = KZ(wM),

where

w : O(Γn,(mr)) → O(Γn,(mr))

is the twist by the permutation

w : H(Γn,(mr)) = H(Γn)⊗H(Sm)⊗r → H(Γn)⊗H(Sm)⊗r = H(Γn,(mr)).

The canonical adjunction morphism

P → S(KZ(P ))

is an isomorphism for each projectif module P ∈ O(Γ). Here S : Rep(H(Γ)) →
O(Γ) is the functor from Section 3.7. Further, the functors OResn,(mr) and

OIndn,(mr)

preserve the projective objects, because they are bi-adjoint and exact. Therefore,
applying the left exact functor S to the map Hψ(KZ(P )), with P projective in
O(Γn,(mr)), we get an injection

Oψ(P ) :
⊕

p,w

wP → O Resn,(mr) ◦
O Indn,(mr)(P ).

Since the category O(Γn,(mr)) has enough projective objects and since the functor
O Resn,(mr) ◦

O Indn,(mr) is exact, the five lemma implies that there is a functorial
injective morphism

Oψ(M) :
⊕

p,w

wM → O Resn,(mr) ◦
O Indn,(mr)(M), M ∈ O(Γn,(mr)).

Now, set M = L⊗ L⊗r
(m) with L ∈ Irr(O(Γ)). Then we have wM = M for all w as

above. Therefore we get an injective linear map

Cℓ
rr! = HomO(Γ)(L⊗ L⊗r

(m), L⊗ L⊗r
(m))

⊕ℓrr! →

→ HomO(Γ)(L⊗ L⊗r
(m),

O Resn,(mr)
O Indn,(mr)(L⊗ L⊗r

(m))) = EndO(Γ)((a
∗)r(L)).

It maps the canonical basis elements to the elements ξ̄p τ̄w(L) with w ∈ Sr and
p ∈ [0, ℓ)r. �
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Lemma 5.19. For L ∈ PI(O(Γn)) the following identity holds in [O(Γn,(mr))]

[OResn,(mr)(a
∗)r(L)] = ℓrr! [L ⊗ L⊗r

(m)].

Proof. By Lemma 2.5 the left hand side is equal to
∑

x

OInd
Γn,(mr)

x−1Wxx
◦ x

(
ORes

Γn,(mr)

Wx
([L ⊗ L⊗r

(m)])
)
, (5.22)

where Wx = xΓn,(mr)x
−1 ∩ Γn,(mr) and x runs over a set of representatives of the

double cosets in Γn,(mr) \ Γn+mr/Γn,(mr). Since Wx is a parabolic subgroup of
Γn,(mr), it is generated by reflections. Hence we can decompose the group Wx in
the following way

Wx =W ′
x ×W ′′

x , W ′
x ⊂ Γn, W ′′

x ⊂ Sr
m. (5.23)

Here W ′
x, W

′′
x are parabolic subgroups. We have

ORes
Γn,(mr)

Wx
(L⊗ L⊗r

(m)) =
OResΓn

W ′
x
(L)⊗ ORes

Sr
m

W ′′
x
(L⊗r

(m)),

and a similar decomposition holds for the induction functor. Further, since L ∈
PI(O(Γn)) we have OResΓn

W ′
x
(L) = 0 if W ′

x is proper by Proposition 5.13. Thus we

can assume that W ′
x = Γn, i.e., we can assume that x belongs to the subgroup

{1} × Γmr ⊂ Γn+mr. We’ll abbreviate

Sr
m = {1} ×Sr

m, Γmr = {1} × Γmr.

Then we have W ′′
x = xSr

mx
−1 ∩Sr

m, and we are reduced to check that
∑

x

OInd
Sr

m

x−1Wxx
◦ x

(
ORes

Sr
m

Wx
([L⊗r

(m)])
)
= ℓrr! [L⊗r

(m)], (5.24)

where Wx = xSr
mx

−1 ∩Sr
m and x runs over a set of representatives of the double

cosets in Sr
m \ Γmr/Sr

m. Now, observe that

ORes
Sr

m

Wx
(L⊗r

(m)) = 0

unless xSr
mx

−1 = Sr
m, and that xSr

mx
−1 = Sr

m if and only if x belongs to
NΓmr

(Sr
m), the normalizer of Sr

m in Γmr. Further, we have a group isomorphism

NΓmr
(Sr

m)/Sr
m = Γr.

This proves the lemma. �

Lemma 5.20. For L ∈ PI(O(Γ)) the elements ξ̄p τ̄w(L) with w ∈ Sr and p ∈ [0, ℓ)r

form a basis of EndO(Γ)((a
∗)r(L)).

Proof. By Lemma 5.18 it is enough to check that

dim EndO(Γ)((a
∗)r(L)) 6 ℓrr!.

For L ∈ PI(O(Γn)) Lemma 5.19 yields

dim EndO(Γ)((a
∗)r(L)) = dimHomO(Γ)(L⊗ L⊗r

(m),
O Resn,(mr)(a

∗)r(L)) 6 ℓrr!.

�

Lemma 5.21. For i = 1, 2, . . . , r and L ∈ O(Γ) the operator ξ̄i(L)+ 1 on (a∗)r(L)
is nilpotent. Further, if L ∈ PI(O(Γ)) we have (ξ̄i(L) + 1)ℓ = 0.

Proof. The C-vector space [O(Γ)] is equipped with an s̃lm-action via the isomor-

phism (5.5), see also Remark 4.6. For a weight µ of s̃lm let O(Γ)µ ⊂ O(Γ) be the
Serre subcategory generated by the simple modules L whose class in [O(Γ)] has the
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weight µ. Set O(Γn)µ = O(Γ)µ ∩ O(Γn). Although we’ll not need this formula,
note that if ∆λ ∈ O(Γn)µ then we have

µ = µ0 −
m−1∑

q=0

nq(λ)αq

where µ0 is a weight which does not depend on n, λ, and nq(λ) is the number of
q-nodes in the ℓ-partition λ. The element

zn = X1X2 · · ·Xn

belongs to the center of H(Γn). Thus it yields an element Hzn in the center of
Rep(H(Γn)). Since KZ identifies the centers of O(Γn) and Rep(H(Γn)), it yields
also an element Ozn in the center of O(Γn). Let L ∈ Irr(O(Γn)µ). Then

Ozn acts on

L by multiplication by the scalar ζν(µ), where ν is a linear form such that ν(αi) = i
for i = 0, 1, . . . ,m− 1, see e.g., [26, sec. 4.1]. Now the operator a∗ maps O(Γn)µ to
O(Γn+m)µ+δ by Proposition 5.10. Thus Ozn+m acts on a∗(L) by multiplication by

the scalar ζν(µ+δ). Therefore ξ̄1 acts on a∗(L) by multiplication by the scalar

ζν(δ) = ζm(m−1)/2 = −1.

By Lemmas 5.16, 5.17 this implies that for any L ∈ O(Γ) we have (ξ̄i(L)+ 1)N = 0
in EndO(Γ)((a

∗)r(L)) for i = 1, 2, . . . , r and N large enough.
Now, assume that L ∈ PI(O(Γ)). Let Ni be the minimal integer such that

(ξ̄i(L) + 1)Ni = 0. By Lemmas 5.16, 5.17 we have N1 = N2 = · · · = Nr. Hence, by
Lemma 5.18 we have also ℓ = N1 = N2 = · · · = Nr. �

The previous lemmas imply that the assignment

xi 7→ ξ̄i + 1, sj 7→ τ̄j , i = 1, 2, . . . , r, j = 1, 2, . . . , r − 1, (5.25)

yields a C-algebra morphism Br → EndO(Γ)((a
∗)r) such that xi maps to a nilpotent

operator in EndO(Γ)((a
∗)r(L)) for each L ∈ O(Γ). By Proposition B.8, see also the

proof of Lemma 5.17, the action of sj on (a∗)r above is the same as in Proposition
5.3. This proves part (a). Next, part (b) follows from Lemmas 5.20, 5.21. �

For a module M in O(Γ) the adjunction yields a morphism

η(M) :M ⊗ L⊗r
(m) →

OResn,(mr)(a
∗)r(M).

Corollary 5.22. For r > 1 and L ∈ PI(O(Γn)) the C-algebra isomorphism (5.25)

Br,ℓ = EndO(Γ)((a
∗)r(L))

yields an isomorphism of Br,ℓ ×H(Γn+mr)-modules

Br,ℓ ⊗ (L⊗ L⊗r
(m)) →

OResn,(mr)(a
∗)r(L), w ⊗ v 7→ OResn,(mr)(w) · η(L)(v).

Proof. The corollary follows from Proposition 5.15 and Lemma 5.19, because

EndO(Γ)((a
∗)r(L)) = HomO(Γ)(L⊗ L⊗r

(m),
OResn,(mr)(a

∗)r(L))

is a free Br,ℓ-module of rank one and

[OResn,(mr)(a
∗)r(L)] = dim(Br,ℓ) [L⊗ L⊗r

(m)]

in [O(Γn,(mr))]. �

Definition 5.23. For λ ∈ Pr, r > 1, we can regard the Sr-module L̄λ as a Br,ℓ-
module such that x1, x2, . . . , xr act by zero. For L ∈ PI(O(Γn)) we define

ā∗λ(L) = L̄λ ⊗Br,ℓ
(a∗)r(L) ∈ O(Γn+mr).



34 P. SHAN, E. VASSEROT

Definition 5.24. For r > 1 we define a functor O(Γn+mr) → Rep(Sr)⊗O(Γn) by

Ψ(M) = HomO(Sr
m)(L

⊗r
(m),

OResn,(mr)(M))

= HomO(Smr)(
OInd(mr)(L

⊗r
(m)),

OResn,mr(M)).

The Sr-action on Ψ(M) is the Sr-action on OInd(mr)(L
⊗r
(m)) in the proof of Propo-

sition 5.3.

Corollary 5.25. For r > 1 and L ∈ PI(O(Γn)) we have an isomorphism

(L⊗ L⊗r
(m))

⊕dim(L̄λ) = OResn,(mr)(ā
∗
λ(L))

as H(Γn)-modules, and we have an isomorphism of Sr ×H(Γn)-modules

L̄λ ⊗ L = Ψ(ā∗λ(L)).

Proof. The first claim is obvious, because Corollary 5.22 yields an isomorphism

Br,ℓ ⊗ (L⊗ L⊗r
(m)) =

OResn,(mr)

(
(a∗)r(L)

)

which factors to an isomorphism

CSr ⊗ (L ⊗ L⊗r
(m)) =

OResn,(mr)

(
(a∗)r(L)

)
, (5.26)

with

(a∗)r(L) = (a∗)r(L)
/∑

i

xi (a
∗)r(L).

Indeed, taking the isotypic components the isomorphism (5.26) factors to an iso-
morphism

(L⊗ L⊗r
(m))

⊕dim(L̄λ) = OResn,(mr)

(
ā∗λ(L)

)
.

To prove the second claim, observe that Corollary 5.22 and (5.26) yield compatible
Sr ×Sr ×H(Γn)-module isomorphism

Br,ℓ ⊗ L = Ψ
(
(a∗)r(L)

)
, CSr ⊗ L = Ψ

(
(a∗)r(L)

)
. (5.27)

The first Sr-action on Ψ
(
(a∗)r(L)

)
is the Sr-action in the definition of Ψ, and the

first Sr-action on CSr ⊗L is the dual of the right Sr-action on CSr. The second

Sr-action on Ψ
(
(a∗)r(L)

)
is the Sr-action on (a∗)r(L) in Corollary 5.22, and the

second Sr-action on CSr⊗L is the left Sr-action on CSr. To identify the actions
as above, it is enough to note that the isomorphism

Br,ℓ = HomO(Γn)(L,Br,ℓ ⊗ L) = HomO(Γn)

(
L,Ψ(a∗)r(L)

)
=

= EndO(Γ)((a
∗)r(L))

(5.28)

given by (5.27) is equal to the isomorphism (5.25), and that the Sr-actions on
(a∗)r(L) are taken to the left and to the dual right Sr-action on Br,ℓ by the map
(5.28). Next, write

CSr =
⊕

λ

L̄λ ⊗ L̄λ

as an Sr ×Sr-module, and take the isotypic component. �
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5.5. Definition of the map ãλ.

Proposition 5.26. For λ ∈ Pr with r > 1 we have

a∗λ(Fi,j(Γn)) ⊂ Fi,j+r(Γn+mr), a∗λ(Fi,j(Γn)
◦) ⊂ Fi,j+r(Γn+mr)

◦.

Proof. By Remark 3.14 we have

Supp(Lmλ) = XSr
m,C

mr
0
.

Let L ∈ Irr(O(Γn)). First, assume that L ∈ Irr(O(Γn))i,j , i.e., that

Supp(L) = Xl,j,Cn

by Remark 3.12. Hence the module L⊗ Lmλ has the following support

Supp(L⊗ Lmλ) = Xl,j,Cn ×XSr
m,C

mr
0
.

So by Proposition 2.7 we have

Supp(a∗λ(L)) = Xl,j+r,Cn+mr .

Thus the class of a∗λ(L) belongs to Fi,j+r(Γn+mr)
◦ by Remark 3.12. Next, assume

that [L] ∈ Fi,j(Γn), i.e.,

Supp(L) = Xl′,j′,Cn , Xl′,j′,Cn ⊂ Xl,j,Cn .

Thus we have

Supp(a∗λ(L
′)) = Xl′,j′+r,Cn+mr .

So (3.11) yields

Xl′,j′+r,Cn+mr ⊂ Xl,j+r,Cn+mr ,

i.e., the class of a∗λ(L) lies in Fi,j+r(Γn+mr). �

Proposition 5.27. Let λ ∈ Pr with r > 1, and let L ∈ PI(O(Γn)). The module
top(ā∗λ(L)) has a unique constituent in Irr(O(Γn+mr))0,r.

Proof. Since the module L is primitive, it belongs to Irr(O(Γn))0,0 by Proposition
5.13. Thus [a∗λ(L)] ∈ F0,r(Γn+mr) by Proposition 5.26. Thus the constituents of
ā∗λ(L) belong to the set ⋃

j6r

Irr(O(Γn+mr))0,j

by Remark 3.11. Now, for L′ in Irr(O(Γn+mr))0,j we have OResn,(mr)(L
′) = 0 if

j < r, and dimOResn,(mr)(L
′) < ∞ if j = r. Further, the constituents of a finite

dimensional module in O(Sr
m) are all isomorphic to L⊗r

(m), and, using [2, thm. 1.3]

as in the proof of Proposition 5.5, we get

Ext1O(Sr
m)(L

⊗r
(m), L

⊗r
(m)) = 0.

Thus if L′ is a constituent of top(ā∗λ(L)) then we have a surjective map

Ψ(ā∗λ(L)) → Ψ(L′). (5.29)

We have also

Ψ(L′) =
⊕

µ∈Pr

L̄µ ⊗HomO(Smr)(Lmµ,
OResn,mr(L

′)).

Finally, Corollary 5.25 yields an isomorphism of Sr ⊗H(Γn)-modules

L̄λ ⊗ L = Ψ(ā∗λ(L)).

Thus the surjectivity of (5.29) implies that

HomO(Smr)(Lmµ,
OResn,mr(L

′)) = 0, ∀µ 6= λ. (5.30)
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Since the Sr ⊗H(Γn)-module L̄λ ⊗L is simple, the map (5.29) is invertible if it is
nonzero. Assume further that L′ ∈ Irr(O(Γn+mr))0,r. Then Proposition 2.2 yields

OResn,(mr)(L
′) 6= 0.

Since dimOResn,(mr)(L
′) < ∞ and the constituents of a finite dimensional mod-

ule in O(Sr
m) are all isomorphic to L⊗r

(m), we have also Ψ(L′) 6= 0. Therefore

(5.29) is indeed invertible. This implies that top(ā∗λ(L)) has a unique constituent
in Irr(O(Γn+mr))0,r. Indeed, otherwise we would have a surjective map

ā∗λ(L) → L′ ⊕ L′′, L′, L′′ ∈ Irr(O(Γn+mr))0,r,

yielding a surjective map

L̄λ ⊗ L = Ψ(ā∗λ(L)) → Ψ(L′)⊕Ψ(L′′) = (L̄λ ⊗ L)⊕2.

This is absurd. �

Definition 5.28. For λ ∈ Pr and L ∈ PI(O(Γ)) we define ãλ(L) to be the unique
constituent of top(ā∗λ(L)) in Irr(O(Γ))0,r .

Proposition 5.29. For L ∈ Irr(O(Γ))0,r there is L′ ∈ PI(O(Γ)), λ ∈ Pr such that
ãλ(L

′) ≃ L. In other words, there is a surjective map

PI(O(Γ)) × Pr → Irr(O(Γ))0,r , (L′, λ) 7→ ãλ(L
′). (5.31)

Proof. By Proposition 5.13 the module L is primitive if and only if r = 0. Thus
we can assume that r > 0, i.e., that a∗(L) 6= 0 by Corollary 3.18, else the claim
is obvious. Now, we first claim that there is a module L1 ∈ Irr(O(Γ))0,r−1 with
a surjective morphism ā∗(L1) → L. Indeed, since a∗(L) 6= 0, the adjunction map
ǫ : a∗(a∗(L)) → L is non-zero, hence it is surjective. Hence, there is a constituent
L1 of a∗(L) such that ǫ yields a surjective morphism a∗(L1) → L.

Lemma 5.30. If L ∈ Irr(O(Γ))0,r and L1 is a constituent of a∗(L) such that a∗(L1)
maps onto L then L1 ∈ Irr(O(Γ))0,r−1.

Fix the integer n such that L1 ∈ Irr(O(Γn)). Then x1 acts on a
∗(L1) as the operator

Ozn+m(a∗(L1)) ◦ a
∗(Ozn(L1))

−1.

The second factor is a scalar because L1 is a simple module. Hence x1 acts on
a∗(L1) as an element of the center of O(Γn+m). Therefore, since L is simple and
since the operator x1 on a∗(L1) is nilpotent by Proposition 5.15, the operator x1
factors through 0 on L. Thus the map a∗(L1) → L factors to a surjective morphism

ǫ1 : ā∗(L1) → L.

This proves the claim.
Now, assume that for 0 < k < r there is a module Lk ∈ Irr(O(Γ))0,r−k with a

surjective homomorphism

ǫk : (a∗)k(Lk) → L, (a∗)k(Lk) = (a∗)k(Lk)
/∑

i

xi(a
∗)k(Lk).

By the claim above, there is a module Lk+1 ∈ Irr(O(Γ))0,r−k−1 with a surjective
homomorphism

ā∗(Lk+1) → Lk.

Applying the functor (a∗)k, which is exact, we get a surjective map

(a∗)kā∗(Lk+1) → (a∗)k(Lk).
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Taking the quotient by the action of x2, . . . , xk, xk+1 it yields a surjective map

(a∗)kā∗(Lk+1)
/k+1∑

i=2

xi(a
∗)kā∗(Lk+1) → (a∗)k(Lk).

Now, since a∗ is exact, we have

(a∗)kā∗(Lk+1) = (a∗)k+1(Lk+1)
/
x1(a

∗)k+1(Lk+1).

Therefore we get a surjective map

(a∗)k+1(Lk+1) = (a∗)k+1(Lk+1)
/k+1∑

i=1

xi(a
∗)kā∗(Lk+1) → (a∗)k(Lk).

Composing it with ǫk we get a surjective homomorpism

ǫk+1 : (a∗)k+1(Lk+1) → L.

By induction, this yields a module Lr ∈ Irr(O(Γ))0,0 with a surjective homomor-
phism

ǫr : (a∗)r(Lr) → L.

Then we have Lr ∈ PI(O(Γ)) by Proposition 5.13, and there is λ ∈ Pr such that
ā∗λ(Lr) maps onto L. The proposition follows from Proposition 5.27. �

Proof of Lemma 5.30. Fix i, j > 0 such that L1 ∈ Irr(O(Γ))i,j . By Proposition
5.11, since E(L) = 0 we have E a∗(L) = 0. Hence E(L1) = 0 by Proposition 3.3.
Thus i = 0 by Corollary 3.18. So, by Proposition 5.26 we have a∗(L1) ∈ F0,j+1(Γ).
Since a∗(L1) maps onto L, we have also [L] ∈ F0,j+1(Γ). Since L ∈ Irr(O(Γ))0,r
this implies that r 6 j + 1 by Remark 3.11.

Now, we prove that j + 1 6 r. Fix n > 1 such that L ∈ O(Γn). Recall that

a∗(L) = HomO(Sm)

(
L(m),

OResn−m,m(L)
)
.

Thus there is an obvious inclusion

a∗(L)⊗ L(m) ⊂
OResn−m,m(L).

Hence, since L1 is a constituent of a∗(L), the module L1 ⊗L(m) is a constituent of
OResn−m,m(L). Let us abbreviate

W ′ = Γl,(mj), l = n− (j + 1)m,

regarded as a subgroup of Γn−m. Then W ′ × Sm ⊂ Γn−m × Sm in the obvious
way. Since L1 ∈ Irr(O(Γn−m))0,j , we have

Supp(L1 ⊗ L(m)) = XW ′×Sm,Cn−m×Cm
0
.

By Proposition 2.2 applied to the module M = L, we have also

Supp(L1 ⊗ L(m)) = XW1,Cn−m×Cm
0
,

where W1 is a parabolic subgroup of Γn−m,m containing a subgroup Γn-conjugate
to Γn−mr,(mr). Hence we have F0,j+1(Γn) ⊂ F0,r(Γn). Therefore we have j +1 6 r
by Remark 3.11.

�
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6. The filtration of the Fock space and Etingof’s conjecture

Recall that [O(Γ)] is identified with the Fock space F
(s)
m,ℓ via the map (5.5). The

aim of this section is to identify the filtration on [O(Γ)] defined in Section 3.10 in
terms of supports of irreducible modules, with a filtration on the Fock space given
by representation theoretic tools. We’ll use the following notation : n,m, j, i are
integers with n > 0, m > 2, i, j > 0 and i = n− l − jm.

6.1. The action of Raλ,∗ on the filtration. The operators b′r, r > 1, on F
(s)
m,ℓ

given in Section 4.6 act on [O(Γ)] via the map (5.5). The set Irr(O(Γ))0,0 is a basis
of the C-vector space F0,0(Γ). This does not imply that the C-vector space

{x ∈ [O(Γ)] ; eq(x) = b′r(x) = 0, ∀q, r}

is spanned by classes of irreducible objects of O(Γ). This follows indeed from
Proposition 6.2 below. Before to prove it we need the following lemma.

Lemma 6.1. For L ∈ Irr(O(Γ)) we have L ∈ PI(O(Γ)) if and only if E([L]) =
b′r([L]) = 0 in [O(Γ)] for all r > 1

Proof. It is enough to prove that for L ∈ PI(O(Γ)) we have b′r(L) = 0 for all r > 1.
A direct summand of the zero object is zero in any additive category. Further, for
L ∈ PI(O(Γ)) we have (Ra∗)

r(L) = 0 for r > 1. Thus we have also Raλ,∗(L) = 0
for all λ ∈ P by Proposition 5.3. By Proposition 5.10 the map (5.5) identifes the

C-linear operator Raλ,∗ on [O(Γ)] with the action of b′Sλ
on F

(s)
m,ℓ given in Section

4.6. This proves the lemma. �

Proposition 6.2. We have

{x ∈ [O(Γ)] ; eq(x) = b′r(x) = 0, ∀q, r} = F0,0(Γ).

Proof. Consider the set

F0,0(Γ)
′ = {x ∈ F0,•(Γ) ; b

′
r(x) = 0, ∀r > 1}.

By Corollary 3.18 it is enough to prove that

F0,0(Γ) = F0,0(Γ)
′.

We have

F0,0(Γ)
′ =

⊕

n>0

F0,0(Γn)
′, F0,0(Γn)

′ = F0,0(Γ)
′ ∩ F0,•(Γn).

The actions of ŝlm and H on F
(s)
m,ℓ commute to each other. Thus, by Corollary 3.18

the C-vector space F0,•(Γ) is identified with a H-submodule of F
(s)
m,ℓ via the map

(5.5), and we have
∑

n>0

dim(F0,•(Γn)) · t
n =

∑

n>0

♯ Irr(O(Γn))0,• · t
n. (6.1)

The representation theory of H yields the following formula in Z[[t]]
(∑

k>0

dim(F0,0(Γk)
′) · tk

)(∑

r>0

♯Pr · t
mr

)
=

∑

n>0

dim(F0,•(Γn)) · t
n. (6.2)

Finally, Proposition 5.29 yields a surjective map

PI(O(Γk))× Pr → Irr(O(Γn))0,r, (L, λ) 7→ ãλ(L) (6.3)

for k, r > 0 such that n = k +mr. From (6.1) and (6.3) we get
(∑

k>0

♯PI(O(Γk)) · t
k
)(∑

r>0

♯Pr · t
mr

)
−

∑

n>0

dim(F0,•(Γn)) · t
n ∈ N[[t]]. (6.4)
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By Corollary 3.18 and Lemma 6.1 we have PI(O(Γk)) ⊂ F0,0(Γk)
′, hence we have

♯PI(O(Γk)) 6 dim(F0,0(Γk)
′).

Therefore, comparing (6.2) and (6.4) we get the equality

♯PI(O(Γk)) = dim(F0,0(Γk)
′). (6.5)

In other words PI(O(Γk)) is a basis of F0,0(Γk)
′. Since PI(O(Γk)) is a basis of

F0,0(Γk) by Proposition 5.13, we have also

F0,0(Γk) = F0,0(Γk)
′.

�

Remark 6.3. The proof of Proposition 6.2 and Corollary 3.18 imply that the map
(6.3) yields a bijection

PI(O(Γk))× Pr → Irr(O(Γn))0,r, (L, λ) 7→ ãλ(L)

for k, r > 0 such that n = k +mr. Note that Proposition 5.13 yields

PI(O(Γk)) = Irr(O(Γk))0,0.

6.2. The representation theoretic grading on [O(Γ)]. Using the actions of the

Lie algebras H and ŝlm we can now define a grading

[O(Γ)] =
⊕

i,j>0

[O(Γ)]i,j .

Then, we’ll compare it with the filtration by the support introduced in Section 3.10,
i.e., we’ll compare it with the grading

[O(Γ)] =
⊕

i,j>0

gri,j(Γ).

To do so, let us consider the Casimir operator

∂ =
1

mℓ

∑

r>1

brb
′
r. (6.6)

Under the map (5.5) this formal sum defines a diagonalisable C-linear operator on
[O(Γ)]. For any integer j let [O(Γ)]•,j be the eigenspace of ∂ with the eigenvalue j.
Note that [O(Γ)]•,j = 0 if j < 0. Next, given an integer i > 0 we define [O(Γ)]i,•
to be the image of

⊕

µ,α

V ŝlm
µ [µ− α]⊗Hom

ŝlm
(V ŝlm
µ , [O(Γ)])

be the canonical maps

V ŝlm
µ ⊗Hom

ŝlm
(V ŝlm
µ , [O(Γ)]) → [O(Γ)].

Here the sum runs over all sums α of i affine simple roots of ŝlm, and over all

dominant affine weight µ of ŝlm. If i < 0 we set [O(Γ)]i,• = 0.

Definition 6.4. We define a grading on [O(Γ)] by the following formula

[O(Γ)]i,j = [O(Γ)]i,• ∩ [O(Γ)]•,j , [O(Γn)]i,j = [O(Γ)]i,j ∩ [O(Γn)]

Proposition 6.5. We have dim[O(Γn)]i,j = dim gri,j(Γn) for all n, i, j > 0.
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Proof. The vector space [O(Γ)]0,• is a H-submodule of [O(Γ)]. Thus it is preserved
by the linear operator ∂ and [O(Γ)]0,j is the eigenspace with the eigenvalue j. Since
the H-action on [O(Γ)]0,• has the level mℓ we have [∂, bj ] = jbj for all j > 0. Next,
we have

[O(Γ)]0,• = F0,•(Γ), [O(Γ)]0,0 = F0,0(Γ)

by Corollary 3.18 and Proposition 6.2. Further, the H-action yields an isomorphism

U−(H)j ⊗ [O(Γ)]0,0 = [O(Γ)]0,j . (6.7)

By Remark 6.3, for n = k +mj we have a bijection

Irr(O(Γk))0,0 × Pj → Irr(O(Γn))0,j , (L, λ) 7→ ãλ(L). (6.8)

Thus the isomorphism (6.7) yields the following equality

dim [O(Γn)]0,j = ♯ Irr(O(Γn))0,j . (6.9)

Since the integrable ŝlm-module [O(Γ)] is not simple, the choice of a canonical basis
of this module depends on a choice of a basis of [O(Γ)]0,•. The general theory of
canonical bases yields a bijection G between the canonical basis of [O(Γ)] and its
crystal basis, the latter being identified with Irr(O(Γ)) by Proposition 3.3. The
bijection G is such that a basis of [O(Γ)]0,• is given by

{G(L) ; ẽq(L) = 0, ∀q}.

By Corollary 3.18 we have

{L ∈ Irr(O(Γ)) ; ẽq(L) = 0, ∀q} = Irr(O(Γ))0,•

= {ãλ(L) ; ∀λ ∈ P , ∀L ∈ Irr(O(Γ))0,0}.

We’ll choose the canonical basis of [O(Γ)] such that

G(ãλ(L)) = a∗λ(L), ∀λ ∈ P , ∀L ∈ Irr(O(Γ))0,0.

Then the set {G(L) ; L ∈ Irr(O(Γ))0,j} is a basis of [O(Γ)]0,j by (6.7) and (6.8).

The ŝlm-action on [O(Γ)] commutes with the operator ∂. Thus [O(Γ)]•,j is an

ŝlm-module and the ŝlm-action yields a surjective C-linear map

U−(ŝlm)i ⊗ [O(Γ)]0,j → [O(Γ)]i,j . (6.10)

For weight reasons, the crystal of [O(Γ)] decomposes in the following way

Irr(O(Γ)) =
⊔

i,j>0

Irr(O(Γ))′i,j , Irr(O(Γ))′i,j = {L ∈ Irr(O(Γ)) ; G(L) ∈ [O(Γ)]i,j}.

Since {G(L) ; L ∈ Irr(O(Γ))0,j} is a basis of [O(Γ)]0,j , we have

Irr(O(Γ))′0,j = Irr(O(Γ))0,j .

Next Irr(O(Γ))′•,j is the union of connected components of Irr(O(Γ)) whose high-
est weight vector is in Irr(O(Γ))′0,j , and by Corollary 3.17, the set Irr(O(Γ))•,j is

the union of connected components of Irr(O(Γ)) whose highest weight vector is in
Irr(O(Γ))0,j . Thus, for all n we have

Irr(O(Γn))
′
•,j = Irr(O(Γn))•,j .

By Corollary 3.17 and (6.10), for all i we have also the inclusion

Irr(O(Γn))
′
i,j ⊂ Irr(O(Γn))i,j . (6.11)

Thus (6.11) is indeed an equality. By definition, we have

dimgri,j(Γn) = ♯ Irr(O(Γn))i,j , dim [O(Γn)]i,j = ♯ Irr(O(Γn))
′
i,j .

Thus the corollary is proved. �
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Remark 6.6. Recall that gri,j(Γ) is identified with the subspace of [O(Γ)] spanned
by Irr(O(Γ))i,j , see Section 3.10. Proposition 6.5 does not imply that [O(Γ)]i,j is
also spanned by Irr(O(Γ))i,j . However, since

[O(Γ)]0,0 = {x ∈ [O(Γ)] ; eq(x) = b′r(x) = 0, ∀q, r},

the subspace [O(Γ)]0,0 is indeed spanned by Irr(O(Γ))0,0 by Proposition 6.2.

6.3. Etingof’s conjecture. Let αp,q be the root of the elementary matrix ep,q.
Recall that ω0, ω1, . . . , ωℓ−1 are the affine fundamental weights. Fix a level 1 weight

Λ =
∑

p

hp ωp.

Definition 6.7. Let ãΛ be the Lie subalgebra of g̃lℓ spanned by 1, D and the
elements ep,q ⊗̟r with p, q = 1, 2, . . . , ℓ and r ∈ Z such that 〈Λ, αp,q〉 − hr ∈ Z.

We abbreviate ã = ãΛ and â = ã ∩ ĝlℓ.

We define the set of positive real roots of ã to be the set ∆â
+ consisting of the real

roots of ĝlℓ of the form α+ (r − 〈Λ, α〉/h)δ where α is a root of glℓ and α+ rδ is a

positive real root of ĝlℓ. Let P
ã
+ be the set of dominant integral weights for ã, i.e.,

the set of integral weights of g̃lℓ which are > 0 on ∆â
+. For µ ∈ P ã

+ let V ã
µ be the

corresponding irreducible integrable ã-module. We’ll say that a non zero vector of
an ã-module is primitive for ã or ã-primitive if it is a weight vector whose weight
belongs to P ã

+, and if it is killed by the action of the weight vectors of ã whose
weights are positive roots of ã. Now, let h, hp be the parameters of the C-algebra
H(Γn) for each n > 0. Assume that h is a rational number with the denominator

m > 1. The elements of H can be regarded as elements of g̃lℓ as in (4.2). We have
bmr, b

′
mr ∈ ã for each r > 0. Thus the formal sum

∂m =
1

mℓ

∑

r>1

bmrb
′
mr (6.12)

acts on every ã-module V ã
µ . We’ll call this operator the m-th Casimir operator of

g̃lℓ. For any weight λ and any integer j we denote by V ã
µ [λ, j] the subspace of

weight λ and eigenvalue j of ∂m. We are interested in the following conjecture [8,
conj. 6.7].

Conjecture 6.8. There exists an isomorphism of C-vector spaces

gri,j(Γn) =
⊕

µ

V ã
µ [ω0 − nδ, j]⊗Homã(V

ã
µ , V

g̃lℓ
ω0

), (6.13)

where the sum is over all weights µ ∈ P ã
+ such that 〈µ, µ〉 = −2i.

Remark 6.9. If Λ = ω0 then we have

ãω0 =
(
glℓ ⊗ C[̟m, ̟−m]

)
⊕ C1⊕ CD,

and the map (6.19) below yields a Lie algebra isomorphism ãω0 = g̃lℓ.

Remark 6.10. Assume that the hp’s are rational numbers. Let K̄ be the algebraic
closure of the field K = C((̟)). Set

γ = −
ℓ−1∑

p=1

hp
h

(ωp − ω0) ∈ P slℓ ⊗Z Q.
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We have α(γ) = −〈Λ, α〉/h for each root α of slℓ. We may view γ as the element
γ(̟) in Tℓ(K̄). We have ã = ad(γ)−1(ãω0). Now, assume that h, hp are as in (3.9).
Then we have γ ∈ P slℓ , because

γ =

ℓ−1∑

p=1

(sp+1 − sp) (ωp − ω0).

A short computation using the standard identification of ωp − ω0 with the ℓ-tuple

(1p0ℓ−p)− (p/ℓ) (1ℓ) (6.14)

shows that γ belongs to Qslℓ if and only if the ℓ-charge s has weight 0. In this case
γ ∈ Tℓ(K), more precisely, γ is a cocharacter of Tℓ. Thus the element ξγ of the
affine symmetric group is well-defined. For a future use note that

γ̂(s,m) = ξ−1
γ (ω0)

′, (6.15)

and that ξγ(µ) ∈ P â
+ if and only if µ′ ∈ P

ĝlℓ
+ . Here µ′ is as in (6.29) below.

6.4. Comparison of the g̃lℓ-modules F
(0)
m,ℓ and V

g̃lℓ
ω0 . The Fock space Fm,ℓ can

be equipped with a level 1 representation of g̃lℓ in the following way. The assignment

z 7→ tm, ǫi 7→ t1−i, i = 1, 2, . . . ,m,

yields a C-linear isomorphism

Vm,ℓ = Cm ⊗ Cℓ ⊗ C[z, z−1] → Cℓ ⊗ C[t, t−1] = Vℓ,

ui+(j−1)m−kmℓ 7→ uj+(i−1)ℓ−kmℓ,
(6.16)

see (4.8), (4.12). Taking semi-infinite wedges, it yields a C-linear isomorphism

Fm,ℓ → Fℓ. (6.17)

Pulling back the representation of g̃lℓ on Fℓ in Section 4.5 and Remark 4.6 by (6.17)

we get a level 1 action of g̃lℓ on Fm,ℓ such that :

• For d ∈ Z the level 1 representation of g̃lℓ on Fm,ℓ yields an isomorphism

F
(d)
m,ℓ = V g̃lℓ

ωdmod ℓ
. (6.18)

• The level m-action of ĝlℓ in Fm,ℓ given in Section 4.6 can be recovered from
the level 1 action by composing it with the Lie algebra homomorphism

ĝlℓ → ĝlℓ, x⊗̟r 7→ x⊗̟mr, 1 7→ m1. (6.19)

• Pulling back the level ℓ representation of H on Fℓ in Section 4.5 by (6.17)
we get a level ℓ action of H on Fm,ℓ. The level mℓ-action of H in Fm,ℓ given
in Section 4.6 can be recovered from the latter by composing it with the
Lie algebra homomorphism

br 7→ bmr, b′r 7→ b′mr, 1 7→ m1. (6.20)

Hence, the action of the Casimir operator (6.6) associated with the levelmℓ
representation of H on Fm,ℓ is the same as the action of the m-th Casimir
operator (6.12) associated with the level ℓ representation of H on Fm,ℓ.

• To a partition λ we associate an ℓ-quotient λ∗, an ℓ-core λc and a content
polynomial cλ(X) as in [22, chap. I]. In [20, sec. 2.1] a bijection τ is given
from the set of ℓ-cores to the set of ℓ-charges of weight 0. By [28, rem. 4.2(i)]
the inverse of the map (6.17) is given by

|λ, 0〉 7→ |λ∗, τ(λc)〉.
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Now, the same argument as in [22, ex. I.11] shows that

cλ(X) = cλc(X)

ℓ−1∏

p=0

(X + p)|λ
∗| mod ℓ. (6.21)

Further, by Remark 4.6 the scaling element D of the level 1 representation

of g̃lℓ on F
(0)
m,ℓ is given by

D(|λ, 0〉) = −n0(λ) |λ, 0〉, (6.22)

where n0(λ) is the number of 0-nodes in λ. Thus we have the following
relation

[D, fp] = −fp, ∀fp ∈ ŝlm. (6.23)

Further we have

D(|λ, 0〉) = −
(
n0(λ

c) + |λ∗|
)
|λ, 0〉. (6.24)

6.5. Reminder on the level-rank duality. In (4.14) we have defined a weight
γ̂(λ,m) for each tuple λ ∈ Zℓ. Set also

γ̃(λ,m) = γ̂(λ,m) −∆(λ,m)δ,

where ∆(λ,m) is as in Remark 4.6. Note that γ̂(λ,m) ∈ P ŝlℓ
+ if and only if

λ ∈ A(ℓ,m) = {(λ1, λ2, . . . , λℓ) ∈ Zℓ+ ; λ1 − λℓ 6 m}.

For each integer d we write

A(ℓ,m)d = {λ ∈ A(ℓ,m) ;
∑

p

λp = d}.

The level-rank duality yields a bijection A(ℓ,m)d → A(m, ℓ)d, λ 7→ λ† such that

• we have the equality of weights

γ̂(λ,m) =
m∑

p=1

ωλ†
p mod ℓ,

• we have an s̃lm × H× s̃lℓ-module isomorphism

F
(d)
m,ℓ =

⊕

λ∈A(ℓ,m)d

V s̃lm
γ̃(λ†,ℓ)

⊗ V H
mℓ ⊗ V s̃lℓ

γ̃(λ,m) (6.25)

and highest weight vectors vγ̃(λ†,ℓ), vmℓ, vγ̃(λ,m) of V s̃lm
γ̃(λ†,ℓ)

, V H
mℓ, V

s̃lℓ
γ̃(λ,m)

such that |0, λ〉 = vγ̃(λ†,ℓ) ⊗ vmℓ ⊗ vγ̃(λ,m) for λ ∈ A(ℓ,m)d.

See e.g., [23, (3.17)], [28, sec. 4.2, 4.3]. Let s = (sp) be an ℓ-charge of weight d.
Setting d = 0, the formula (4.15) yields

F
(s)
m,ℓ =

⊕

λ∈A(ℓ,m)0

V ŝlm
γ̂(λ†,ℓ)

⊗ V H
mℓ ⊗

(
V ŝlℓ
γ̂(λ,m)[γ̂(s,m)]

)
. (6.26)

Here the bracket indicates the weight for the ŝlℓ-action of level m.

Remark 6.11. The tautological C-linear isomorphism

Vm,ℓ → Vmℓ

yields a C-linear isomorphism
Fm,ℓ → Fmℓ.

The right hand side is equipped with a level 1 action of ŝlmℓ, and the left hand side

with a level (ℓ,m)-action of ŝlm × ŝlℓ. The well-known Lie algebra inclusion

(ŝlm × ŝlℓ)/(m(1, 0)− ℓ(0,1)) ⊂ ŝlmℓ, (1, 0) 7→ ℓ1, (0,1) 7→ m1,
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intertwines the ŝlm × ŝlℓ-action on Fm,ℓ and the ŝlmℓ-action on Fmℓ.

Remark 6.12. The isomorphism (6.16) can be viewed as a C-linear isomorphism

Vℓ → Vmℓ. (6.27)

Thus it yields also a C-linear isomorphism

Fℓ → Fmℓ. (6.28)

The right hand side is equipped with a level 1 action of ŝlmℓ, and the left hand side

with a level 1 action of ŝlℓ. Consider the following elements in slm ⊗ C[̟,̟−1]

x(i + km) =

m−i∑

j=1

ej,i+j ⊗̟k +

m∑

j=m−i+1

ej,i+j−m ⊗̟k+1,

1 6 i 6 m, k ∈ Z.

For x ∈ slm ⊗ C[̟,̟−1] and p, q = 1, 2, . . . , ℓ we define the element x(p,q) ∈
slmℓ ⊗ C[̟,̟−1] by

x(p,q) =
m∑

i,j=1

ei+(p−1)m, j+(q−1)m ⊗ ai,j for x =
m∑

i,j=1

ei,j ⊗ ai,j .

The following proposition explains the relationship between the ŝlmℓ-action on Fm,ℓ
above and the level one ŝlℓ-action on Fm,ℓ in Section 6.4. The proof is a direct
computation left to the reader. We’ll not use it.

Proposition 6.13. (a) There is a Lie algebra inclusion ŝlℓ ⊂ ŝlmℓ given by

1 7→ 1, ep,q ⊗̟r 7→ x(r)(p,q) , p, q = 1, 2, . . . , ℓ, r ∈ Z.

(b) The map (6.28) intertwines the ŝlℓ-action on Fℓ and the ŝlmℓ-action on Fmℓ.

6.6. Proof of Etingof’s conjecture for an integral ℓ-charge. In this subsec-
tion we prove Etingof’s conjecture in the particular case where the parameters h,
hp are as in (3.9). Note that our terminology differs from [8] because this case cor-
responds indeed to rational (possibly non integral) values of the parameters. From
now on, unless specified otherwise we’ll assume that the parameters h, hp are as in
(3.9), and we’ll also assume that the ℓ-charge s has weight zero. To any level one

weight µ of ĝlℓ we associate the level m weight µ′ given by

µ′ = mω0 +
ℓ−1∑

p=1

µp(ωp − ω0) where µ = ω0 +
ℓ−1∑

p=1

µp(ωp − ω0). (6.29)

Note that γ ∈ Qsl
ℓ and that γ̂(s,m) = ξ−1

γ (ω0)
′ by (6.15). Using this and (6.26) we

get a ŝlm × H-module isomorphism

F
(s)
m,ℓ =

⊕

λ∈A(ℓ,m)0

V ŝlm
γ̂(λ†,ℓ)

⊗ V H
mℓ ⊗

(
V ŝlℓ
γ̂(λ,m)[ξ

−1
γ (ω0)

′]
)
.

Thus, by (4.15), (6.18) and (6.19) we have

F
(s)
m,ℓ = V ĝlℓ

ω0
[ξ−1
γ (ω0)],

where the bracket indicates the weight subspace for the ĝlℓ-action of level 1. Since

the map (5.5) yields an isomorphism [O(Γ)] = F
(s)
m,ℓ, we get also an isomorphism

[O(Γ)] = V ĝlℓ
ω0

[ξ−1
γ (ω0)]. (6.30)
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Under this isomorphism we have

[O(Γn)] = V g̃lℓ
ω0

[ξ−1
γ (ω0)− nδ]

by (6.24) and the following lemma.

Lemma 6.14. (a) If λc is an ℓ-core such that τ(λc) = s then n0(λ
c) = 1

2 〈γ, γ〉.

(b) The element |0, s〉 is an extremal weight vector of the module F
(0)
m,ℓ = V

g̃lℓ
ω0

with the weight ξ−1
γ (ω0).

The formula (6.13) we want to prove is

dimgri,j(Γn) =
∑

µ

dim
(
V ã
µ [ω0 − nδ, j]⊗Homã(V

ã
µ , V

g̃lℓ
ω0

)
)
,

where the sum is over all weights µ ∈ P ã
+ such that 〈µ, µ〉 = −2i. The proof consists

of three steps.

Case 1: First, let us consider the sum over all i’s. We must prove that

dim gr•,j(Γn) = dim
(
V g̃lℓ
ω0

[ω0 − nδ, j]
)
.

Note that

dim
(
V g̃lℓ
ω0

[ω0 − nδ, j]
)
= dim

(
V g̃lℓ
ω0

[ξ−1
γ (ω0)− nδ, j]

)
,

because the Casimir operator ∂m commutes with the γ-action on V
g̃lℓ
ω0 by (6.20).

Therefore, by Proposition 6.5 we are thus reduced to prove that under (6.30) we
have

[O(Γn)]•,j = V g̃lℓ
ω0

[ξ−1
γ (ω0)− nδ, j].

This follows from the equality of the Casimir operators (6.6) and (6.12), see (6.20).

Case 2 : Next, consider the case i = 0. Let Θn,0 be the image of
⊕

µ̃

V ã
µ̃ [ω0 − nδ, j]⊗Homã(V

ã
µ̃ , V

g̃lℓ
ω0

) (6.31)

by the canonical maps V ã
µ̃ ⊗ Homã(V

ã
µ̃ , V

g̃lℓ
ω0 ) → V

g̃lℓ
ω0 . Here µ̃ runs over the set of

all weights in P ã
+ with 〈µ̃, µ̃〉 = 0. By Proposition 6.5 and the discussion above we

must prove that the image of [O(Γn)]0,j by (6.30) is isomorphic to Θn,0 as a vector
space. To do that, observe first that by definition of [O(Γn)]0,j the map (6.30) takes
[O(Γn)]0,j onto the subspace

V g̃lℓ
ω0

[ξ−1
γ (ω0)− nδ] ∩

⊕

λ∈A(ℓ,m)0

vγ̂(λ†,ℓ) ⊗ V H
mℓ[j]⊗ V ŝlℓ

γ̂(λ,m). (6.32)

Note that vγ̂(λ†,ℓ) ⊗ V H
mℓ[j]⊗V ŝlℓ

γ̂(λ,m) is the submodule of F
(0)
m,ℓ = V

ĝlℓ
ω0 generated by

the vector |0, λ〉 for the level m action of ĝlℓ. Note also that ãω0 ≃ g̃lℓ by Remark

6.9. Finally, the set of weights of V
ĝlℓ
ω0 is

Wt(V ĝlℓ
ω0

) = {ω0 + β ; β ∈ Qslℓ},

see Section 4.3, and we have the following lemma.

Lemma 6.15. (a) We have ν ∈ P
âω0
+ if and only if ν′ ∈ P

ĝlℓ
+ .

(b) We have {ν′ ; ν ∈ P
âω0
+ ∩Wt(V

ĝlℓ
ω0 )} = {γ̂(λ,m) ; λ ∈ A(ℓ,m)0}.

Thus, by Lemmas 6.14, 6.15 the space (6.32) is indeed equal to
⊕

ν̃

V
ãω0

ν̃ [ξ−1
γ (ω0)− nδ, j], (6.33)
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where the sum is over all extremal weights ν̃ in P
ãω0
+ ∩ Wt(V

g̃lℓ
ω0 ) and V

ãω0

ν̃ is

identified with the ãω0-submodule of V
g̃lℓ
ω0 generated by a non zero extremal weight

vector of weight ν̃. Now, let us consider the space Θn,0. Recall that 〈µ̃, µ̃〉 = 0

if and only if µ̃ is an extremal weight of V
g̃lℓ
ω0 . Further an extremal weight have a

one-dimensional weight subspace, see Section 4.3. Thus Θn,0 is equal to the sum
⊕

µ̃

V ã
µ̃ [ω0 − nδ, j], (6.34)

where µ̃ runs over the set of all extremal weights such that V
g̃lℓ
ω0 contains an ã-

primitive vector of weight µ̃, say vµ̃, and V
ã
µ̃ is identified with the ã-submodule of

V
g̃lℓ
ω0 generated by vµ̃. Now, Remark 6.10 yields

ã = ad(γ)−1(ãω0), ξγ(µ̃) ∈ P ã
+ ⇐⇒ µ̃ ∈ P

ãω0
+ .

Thus the γ-action yields a linear automorphism of V
g̃lℓ
ω0 such that

γ−1(V
ãω0

µ̃ [ξ−1
γ (ω0)− nδ, j]) = V ã

ξγ (µ̃)
[ω0 − nδ, j], ∀µ̃ ∈ P

ãω0
+ .

Thus (6.33) is equal to Θn,0 by the following lemma.

Lemma 6.16. For all weight µ in P
âω0
+ ∩ Wt(V

ĝlℓ
ω0 ) the module V

g̃lℓ
ω0 contains a

ãω0-primitive vector of weight µ̃.

Case 3 : Finally, consider the general case. Fix the integers n, j. Let Θn,i be
the image of ⊕

ν̃

V ã
ν̃ [ω0 − nδ, j]⊗Homã(V

ã
ν̃ , V

g̃lℓ
ω0

),

by the canonical maps V ã
ν̃ ⊗ Homã(V

ã
ν̃ , V

g̃lℓ
ω0 ) → V

g̃lℓ
ω0 . Here the sum is over all

weights ν̃ ∈ P ã
+ such that 〈ν̃, ν̃〉 = −2i. The same argument as for Case 2 implies

that Θn,i = γ−1(Θ′
n,i) where Θ′

n,i is the image of
⊕

µ̃

V
ãω0

µ̃ [ξ−1
γ (ω0)− nδ, j]⊗ Homãω0

(V
ãω0

µ̃ , V g̃lℓ
ω0

),

by the canonical maps V
ãω0

µ̃ ⊗Homãω0
(V

ãω0

µ̃ , V
g̃lℓ
ω0 ) → V

g̃lℓ
ω0 , because the composition

by the automorphism γ−1 of V
g̃lℓ
ω0 yields a linear isomorphism

Homã(V
ã
ξγ (µ̃)

, V g̃lℓ
ω0

) = Homãω0
(V

ãω0

µ̃ , V g̃lℓ
ω0

).

Here the sum is over all weights µ̃ ∈ P
ãω0
+ such that 〈µ̃, µ̃〉 = −2i. Let us prove that

(6.30) maps [O(Γn)]i,j onto Θ′
n,i. The proof of Case 2 implies that (6.30) maps

[O(Γn)]0,j onto Θ′
n,0. By (6.10) we have

U−(ŝlm)i
(
[O(Γn)]0,j

)
= [O(Γn)]i,j .

By (6.23) we have also

U−(ŝlm)i (Θ
′
n,0) ⊂ Θ′

n,i,

because the actions of ŝlm and âω0 commute with each other. Therefore, we have

[O(Γn)]i,j ⊂ Θ′
n,i.

On the other hand, the proof of the first case implies that

[O(Γn)]•,j =
⊕

i>0

Θ′
n,i.

Thus we have the equality [O(Γn)]i,j = Θ′
n,i.
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Proof of Lemma 6.14. A direct computation shows that

1

2
〈γ, γ〉 =

1

2

ℓ∑

p=1

s2p.

Now, consider the partition λc = (λ1, . . . , λkℓ). We choose k to be large enough
such that λkℓ = 0. Write

λi − i+ 1 = (ai − 1)ℓ+ bi, 1 6 bi 6 ℓ,

i− 1 = a′iℓ+ b′i, 0 6 b′i 6 ℓ− 1.

The number of 0-nodes in the i-th row of the Young diagram associated with λc is
equal to ai + a′i. So

n0(λ
c) =

kℓ∑

i=1

(ai + a′i).

We have
kℓ∑

i=1

a′i =
−k(−k + 1)ℓ

2
.

By the definition of the bijection τ ,

kℓ∑

i=1

ai =

ℓ∑

p=1

(
(−k + 1) + (−k + 2) + · · ·+ sp

)

=
1

2

ℓ∑

p=1

s2p −
−k(−k + 1)ℓ

2
.

This proves part (a). For part (b), note that (a) and (6.22) yield

D(|0, s〉) = −
1

2
〈γ, γ〉|0, s〉

Further |0, s〉 is a weight vector for the level one representation of ĝlℓ with the weight
ω0 − γ, see [28, (28)]. Thus |0, s〉 is a weight vector for the level one representation

of g̃lℓ with the weight

ξ−1
γ (ω0) = ω0 − γ −

1

2
〈γ, γ〉δ.

The latter is an extremal weight, see Section 4.3. �

Proof of Lemma 6.15. The set of all dominant integral weights of ŝlℓ is

{
γ̂(λ,m) ; λ ∈ A(ℓ,m)

}
=

{
(m− λ1 + λℓ)ω0 +

ℓ−1∑

p=1

(λp − λp+1)ωp ; λ ∈ A(ℓ,m)
}

=
{
mω0 +

ℓ−1∑

p=1

(λp − λp+1) (ωp − ω0) ; λ ∈ A(ℓ,m)
}
.

Set β =
∑ℓ−1

p=1(λp − λp+1) (ωp − ω0) with λ ∈ A(ℓ,m). Identifying ωp − ω0 with

the ℓ-tuple (6.14), a short computation shows that β ∈ Qslℓ if and only if λ ∈
A(ℓ,m)0. �

Proof of Lemma 6.16. Fix a weight µ in P
âω0
+ ∩Wt(V

ĝlℓ
ω0 ). Fix a non zero element

v ∈ V
g̃lℓ
ω0 of weight µ̃ = µ − 1

2 〈µ, µ〉δ. We must prove that v is ãω0-primitive. The



48 P. SHAN, E. VASSEROT

argument is taken from [8, sec. 6.2]. By Remark 6.9 it is enough to prove that µ̃+ν

is not a weight of V
g̃lℓ
ω0 for any element ν in the set

{αp,p+1, µ̃− α1,ℓ +mδ ; p = 1, 2, . . . , ℓ− 1}.

In fact, since µ̃ ∈ P ã
+, for such a ν we have

〈µ̃+ ν, µ̃+ ν〉 = 〈ν, ν〉+ 2〈µ̃, ν〉 = 2 + 2〈µ̃, ν〉 > 0.

Therefore µ̃+ ν is not a weight of V
g̃lℓ
ω0 by Section 4.3. �

Remark 6.17. Assume that the parameters h, hp are as in (3.9). Since γ belongs

to Tℓ(K), it acts on any integrable ŝlℓ-module. Let 0ℓ denote the trivial ℓ-charge.

The γ-action on the representation of ŝlℓ on Fm,ℓ of level 1 takes F
(0ℓ)
m,ℓ onto F

(s)
m,ℓ.

Indeed, since γ is a cocharacter of Tℓ the formula (4.4) yields the following equality

γ(F
(0ℓ)
m,ℓ ) = γ(F

(0)
m,ℓ[mω0])

= γ(V ĝlℓ
ω0

[ω0])

= V ĝlℓ
ω0

[ξ−1
γ (ω0)]

= F
(0)
m,ℓ[ξ

−1
γ (ω0)

′].

Here the upper script ′ is as in (6.29). Therefore, by Section 4.6 we are reduced to
check the following identity

ξ−1
γ (ω0) = ω0 +

1

h

ℓ−1∑

p=1

hp (ωp − ω0).

Recall that γ = − 1
h

∑ℓ−1
p=1 hp (ωp − ω0). Thus the proposition follows from the

formula (4.3) for the Ŝℓ-action on t∗ℓ ⊕ Cω0 ⊕ Cδ.

Appendix A. Reminder on Hecke algebras

A.1. Affine Hecke algebras. The affine Hecke algebra of type GLn with param-

eter ζ ∈ C× is the C-algebra Ĥζ(n) generated by the symbols X1, X2, . . . , Xn,
T1, T2, . . . , Tn−1 modulo the defining relations

XiXj = XjXi, 1 6 i, j 6 n,

TiXj = XjTi, j 6= i, i+ 1,

TiXiTi = ζ2Xi+1, 1 6 i 6 n− 1,

(Ti + 1)(Ti − ζ) = 0, 1 6 i 6 n− 1,

TiTj = TjTi, |i− j| > 2,

TiTi+1Ti = Ti+1TiTi+1, 1 6 i 6 n− 2.

For I ⊂ {1, 2, . . . , n−1} let Ĥζ(I) ⊂ Ĥζ(n) be the corresponding parabolic subalge-
bra. It is generated by the elements Ti, Xj with i ∈ I, j = 1, 2, . . . , n. For a reduced
expression w = si1si2 · · · sik of an element w ∈ Sn we write Tw = Ti1Ti2 · · ·Tik . We
abbreviate Tij = Tsij . Let DI be the set of minimal length representatives of the

left cosets in Sn/SI . We’ll abbreviate DI,J = D−1
I ∩DJ . For x ∈ DI,J the map

SI∩xJ → Sx−1I∩J , w 7→ x−1wx
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defines a length preserving homomorphism. Hence there is a C-algebra isomorphism

Ĥζ(I ∩ xJ) → Ĥζ(x
−1I ∩ J), Tw 7→ Tx−1wx, Xj 7→ Xx−1(j).

Let

Rep(Ĥζ(x
−1I ∩ J)) → Rep(Ĥζ(I ∩ xJ)), M 7→ xM

be the corresponding twist functor. The following is well-known.

Lemma A.1 (Affine Mackey theorem). Let M ∈ Rep(Ĥζ(J)). The module

Res
Ĥζ(n)

Ĥζ(I)
Ind

Ĥζ(n)

Ĥζ(J)
(M)

admits a filtration with subquotients isomorphic to

Ind
Ĥζ(I)

Ĥζ(I∩xJ)

xRes
Ĥζ(J)

Ĥζ(x−1I∩J)
(M),

one for each x ∈ DI,J . The subquotients are taken in any order refining the Bruhat
order on DI,J . In particular we have the inclusion

Ind
Ĥζ(I)

Ĥζ(I∩J)
Res

Ĥζ(J)

Ĥζ(I∩J)
(M) ⊂ Res

Ĥζ(n)

Ĥζ(I)
Ind

Ĥζ(n)

Ĥζ(J)
(M).

A.2. Cyclotomic Hecke algebras. The cyclotomic Hecke algebra Hζ(n, ℓ) asso-

ciated with Γn and the parameters ζ, v1, v2, . . . , vℓ ∈ C× is the quotient of Ĥζ(n)
by the two-sided ideal generated by the element

(X1 − v1)(X1 − v2) . . . (X1 − vℓ).

We’ll denote the image of the generator X1 in Hζ(n, ℓ) by the symbol T0. For a
subset I ⊂ {0, 1, . . . , n− 1} we define ΓI ⊂ Γn as the subgroup SI if 0 6∈ I, or as
the subgroup generated by SI\{0} and {γ1; γ ∈ Γ} else. This yields all parabolic
subgroup of Γn. We consider also the parabolic subalgebra Hζ(I, ℓ) ⊂ Hζ(n, ℓ)
which is the subalgebra generated by the elements Ti with i ∈ I. To unburden the
notation, we abbreviate

H(Γn) = Hζ(n, ℓ), H(Sm) = Hζ(m), H(ΓI) = Hζ(I, ℓ).

For r > 0 and I = {0, 1, . . . , n+mr − 1} \ {n} we write also

H(Γn,mr) = H(ΓI).

A.3. Induction/restriction for cyclotomic Hecke algebras. We’ll abbreviate

HIndn = Ind
H(Γn)
H(Γn−1)

, HResn = Res
H(Γn)
H(Γn−1)

,

HIndn,(mr) = Ind
H(Γn+mr)
H(Γn,(mr))

, HResn,(mr) = Res
H(Γn+mr)
H(Γn,(mr))

,

HIndn,mr = Ind
H(Γn+mr)
H(Γn,mr)

, HResn,mr = Res
H(Γn+mr)
H(Γn,mr)

.

(A.1)

We write also
HInd(mr) =

HIndSmr

Sr
m

: Rep(H(Sr
m)) → Rep(H(Smr)),

HRes(mr) =
HResSmr

Sr
m

: Rep(H(Smr)) → Rep(H(Sr
m)).

Now, we consider the Mackey decomposition of the functor

HResn+m ◦HIndn,m : Rep(H(Γn,m)) → Rep(H(Γn+m−1)).

A short computation shows that a set of representatives of the double cosets in

Γn+m−1 \ Γn+m/Γn,m

is {γn+m, sn,n+m ; γ ∈ Γ}. For

I = {0, . . . , n+m− 1} \ {n− 1, n}, J = {0, . . . , n+m− 2} \ {n− 1}
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we have

H(ΓI) ⊂ H(Γn,m), H(ΓJ) = H(Γn−1,m) ⊂ H(Γn+m−1).

Further, there is an algebra isomorphism

ϕ : H(ΓJ ) → H(ΓI), Tw 7→ Tsws−1 , Xi 7→ Xsi,

where s = snsn+1 · · · sn+m−1. For each i, p we write Xp
i = (Xi)

p. We have the
following decomposition. It is well known in the casem = 1, see e.g., [17, lem. 5.6.1]
in the degenerate case.

Proposition A.2. (a) We have an isomorphism of H(Γn+m−1)-modules

H(Γn+m) =
⊕

06p<ℓ

⊕

16j6n+m

H(Γn+m−1)Tj,n+mX
p
j .

(b) We have an isomorphism of
(
H(Γn+m−1),H(Γn,m)

)
-bimodules

H(Γn+m) = H(Γn+m−1)Tn,n+mH(Γn,m)⊕
⊕

06p<ℓ

H(Γn+m−1)X
p
n+mH(Γn,m).

(c) There are isomorphisms of
(
H(Γn+m−1),H(Γn,m)

)
-bimodules

H(Γn+m−1)Tn,n+mH(Γn,m) = H(Γn+m−1)⊗H(Γn−1,m) H(Γn,m),

H(Γn+m−1)X
p
n+mH(Γn,m) = H(Γn+m−1)⊗H(Γn,m−1) H(Γn,m),

where the algebra homomorphism H(Γn−1,m) → H(Γn,m) is given by ϕ.

Proof. Part (a) is standard, see e.g., [17, lem. 5.6.1] in the degenerate case. Let us
concentrate on (b). Write tj,i = TjTj−1 · · ·Ti for 1 6 i 6 j, and tj,i = 1 for i > j.
By (a) we are reduced to prove the following identities

⊕

06p<ℓ

⊕

16j6n

H(Γn+m−1) tn+m−1,jX
p
j = H(Γn+m−1) tn+m−1,nH(Γn,m), (A.2)

⊕

06p<ℓ

⊕

n<j6n+m

H(Γn+m−1) tn+m−1,jX
p
j =

⊕

06p<ℓ

H(Γn+m−1)X
p
n+mH(Γn,m).

(A.3)
We have

u tn+m−1,n = tn+m−1,n ϕ(u), u ∈ H(Γn−1,m), (A.4)

because for i = 1, 2, . . . , n− 1 and j ∈ J \ {0} we have

Tj tn+m−1,n = tn+m−1,nTs(j) = tn+m−1,nϕ(Tj),

Xi tn+m−1,n = tn+m−1,nXi = tn+m−1,nϕ(Xi).

Hence, by (a) the right hand side of (A.2) is

=
⊕

06p<ℓ

⊕

16j6n

H(Γn+m−1) tn+m−1,nH(ΓI) tn−1,j X
p
j ,

=
⊕

06p<ℓ

⊕

16j6n

H(Γn+m−1)H(Γn−1,m) tn+m−1,n tn−1,jX
p
j ,

=
⊕

06p<ℓ

⊕

16j6n

H(Γn+m−1) tn+m−1,j X
p
j .

This proves the first identity. Next, a short calculation involving the relation

Xp
j+1Tj − TjX

p
j ∈ C[Xj , Xj+1]

proves that the left hand side of (A.3) is equal to
∑

06p<ℓ

∑

n<j6n+m

H(Γn+m−1) tn+m−1,jX
p
j .
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Thus the identity (A.3) follows from the following equalities

H(Γn+m−1)X
p
n+mH(Γn,m) =

∑

n<j6n+m

H(Γn+m−1)X
p
n+m Tj,n+m

=
∑

n<j6n+m

H(Γn+m−1)X
p
n+m tn+m−1,j

=
∑

n<j6n+m

H(Γn+m−1) tn+m−1,jX
p
j .

Finally, let us prove (c). The second claim is obvious because

H(Γn+m−1)X
p
n+mH(Γn,m) = Xp

n+mH(Γn+m−1)H(Γn,m) = H(Γn+m−1)H(Γn,m)

as
(
H(Γn+m−1),H(Γn,m)

)
-bimodules. For the first one we define a map

H(Γn+m−1)×H(Γn,m) → H(Γn+m−1)Tn,n+mH(Γn,m),

(u, v) 7→ u tn+m−1,nv.

By (A.4) it factors to a surjective homomorphism

ψ : H(Γn+m−1)⊗H(Γn−1,m) H(Γn,m) → H(Γn+m−1)Tn,n+mH(Γn,m).

By (a) the left hand side is a free H(Γn+m−1)-module on basis

1⊗ tn−1,jX
p
j , 1 6 j 6 n, 0 6 p < ℓ.

But ψ maps these elements to

tn+m−1,jX
p
j , 1 6 j 6 n, 0 6 p < ℓ.

Further, the latter form a H(Γn+m−1)-basis of the right hand side by (a) again.
We are done. �

Appendix B. Reminder on ζ-Schur algebras

B.1. The quantized modified algebra. Let v be a formal variable and A =
Z[v, v−1]. The quantized modified algebra U̇(n) of gln is the associativeQ(v)-algebra
with generators Ei, Fi where i = 1, . . . , n− 1, 1λ where λ ∈ Zn, and relations [21,
sec. 23]

• 1λ1µ = δλ,µ1λ,
• EiFj − FjEi = δij

∑
λ[λi − λi+1]1λ,

• Ei1λ = 1λ+αi
Ei,

• 1λFi = Fi1λ+αi
,

• EiEj = EjEi if i 6= j ± 1, E2
i Ej − (v + v−1)EiEjEi + EjE

2
i = 0 else,

• FiFj = FjFi if i 6= j ± 1, F 2
i Fj − (v + v−1)FiFjFi + FjF

2
i = 0 else.

The comultiplication of U̇(n) is a Q(v)-linear map

∆ : U̇(n) →
∏

λ,λ′

(
U̇(n)1λ ⊗ U̇(n)1λ′

)

such that

• ∆(1λ) =
∏
λ=λ′+λ′′ 1λ′ ⊗ 1λ′′ ,

• ∆(Ei1λ) =
∏
λ=λ′+λ′′(Ei1λ′ ⊗ 1λ′′ + v(αi,λ

′)1λ′ ⊗ Ei1λ′′),

• ∆(Fi1λ) =
∏
λ=λ′+λ′′(Fi1λ′ ⊗ v−(αi,λ

′′)1λ′′ + 1λ′ ⊗ Fi1λ′′).

The integral quantized modified algebra is the A-subalgebra U̇A(n) ⊂ U̇(n) gener-

ated by the 1λ’s and all quantum divided powers E
(d)
i , F

(d)
i . The comultiplication

yieds an A-linear map U̇A → U̇A ⊗A U̇A. For ǫ ∈ C× we consider the C-algebra

U̇ǫ(n) = U̇A(n)⊗A C[v, v−1]/(v − ǫ).
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For a pair of representations V, V ′ in Rep(U̇ǫ(n)) let sV,V ′ : V ⊗ V ′ → V ′ ⊗ V be
the permutation v ⊗ v′ 7→ v′ ⊗ v. The R-matrix yields a C-linear endomorphism
RV,V ′ of V ⊗ V ′ such that the composed map

RV,V ′ = sV,V ′ ◦RV,V ′

is an isomorphism of U̇ǫ(n)-modules V ⊗V ′ → V ′⊗V . The map RV,V ′ decomposes
in the following form

RV,V ′(v ⊗ v′) = R(v ⊗ v′), R = Π̄Θ̄,

Π̄ =
∏

λ,λ′

v−(λ,λ′) 1λ ⊗ 1λ′ , Θ̄ ∈
∏

λ,λ′

(
U̇ǫ(n)1λ ⊗ U̇ǫ(n)1λ′

)
.

The notation is chosen to agree with [21, sec. 32]. We’ll write RV,V ′ again for the

braiding of right U̇ǫ(n)-modules V , V ′. If ǫ is a primitive 2d-th root of 1 then

ǫd
2

= (−1)d, hence the quantum Frobenius homomorphism [21, sec. 35.1] is the
unique C-algebra homomorphism

Fr : U̇ǫ(n) → U̇(−1)d(n)

such that

• Fr(E
(m)
i 1λ) = E

(m/d)
i 1λ/d if m ∈ dZ and λ ∈ dZn, and 0 otherwise,

• Fr(F
(m)
i 1λ) = F

(m/d)
i 1λ/d if m ∈ dZ and λ ∈ dZn, and 0 otherwise.

The formulas in [21, sec. 3.1.5] show that Fr commutes with the comultiplication,
i.e., we have ∆ ◦ Fr = Fr ◦∆.

Proposition B.1. We have (Fr⊗Fr)(R) =
∏
λ,λ′(1λ ⊗ 1λ′).

Proof. To avoid confusions we’ll write Θ̄ǫ, Π̄ǫ for Θ̄, Π̄. If n = 2 the proposition
follows from the formula [21, sec. 4.1.4]. More precisely, since

Θ̄ǫ =
∏

λ,λ′

∑

k>0

(−1)kǫ−k(k−1)/2{k}ǫF
(k)1λ ⊗ E(k)1λ′ , {k}ǫ =

k∏

i=1

(ǫi − ǫ−i),

we have the following formula

(Fr⊗Fr)(Θ̄ǫ) =
∏

λ,λ′

(1λ ⊗ 1λ′). (B.1)

Further, in U̇(−1)d(n) we have also

(Fr⊗Fr)(Π̄ǫ) =
∏

λ,λ′

(−1)d(λ,λ
′)(1λ ⊗ 1λ′),

and

Θ̄(−1)d =
∏

λ,λ′

(1λ ⊗ 1λ′), Π̄(−1)d =
∏

λ,λ′

(−1)d(λ,λ
′)(1λ ⊗ 1λ′). (B.2)

Now, let n be any integer > 2. The braid group of Sn acts on U̇ǫ(n) via the
operators T ′′

1,1, T
′′
2,1, . . . , T

′′
n−1,1 in [21, sec. 41]. For i = 1, 2, . . . , n − 1 we set Si =

T ′′
i,1⊗T

′′
i,1. Fix a reduced decomposition si1si2 · · · sir of the longuest element in Sn.

For i = 1, 2, . . . , n− 1 write

θ̄i,ǫ =
∑

k>0

(−1)kǫ−k(k−1)/2{k}ǫF
(k)
i ⊗ E

(k)
i .

Then the universal R-matrix is given by the following formula, see [13, thm. 3]

Θ̄ǫ =
∏

λ,λ′

θ̄ǫ(1λ ⊗ 1λ′), θ̄ǫ = S−1
ir

· · ·S−1
i3
S−1
i2

(θ̄i1,ǫ) · · ·S
−1
ir

(θ̄ir−1,ǫ)θ̄ir ,ǫ.
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Thus (B.2) yields

Θ̄(−1)d =
∏

λ,λ′

(1λ ⊗ 1λ′),

Since the braid group action is compatible with the quantum Frobenius homomor-
phism, see [21, sec. 41.1.9], by (B.1) we have also

(Fr⊗Fr)(Θ̄ǫ) =
∏

λ,λ′

(1λ ⊗ 1λ′).

Finally, a direct computation yields

(Fr⊗Fr)(Π̄ǫ) =
∏

λ,λ′

(−1)d(λ,λ
′)(1λ ⊗ 1λ′), Π̄(−1)d =

∏

λ,λ′

(−1)d(λ,λ
′)(1λ ⊗ 1λ′).

This proves the proposition. �

Remark B.2. It is proved in [21, prop. 33.2.3] that the C-algebras U̇−1(n), U̇1(n)

are isomorphic. Thus we can regard Fr as a map U̇ǫ(n) → U̇1(n).

B.2. The ζ-Schur algebra. Over Q(v), the v-Schur algebra S(n,m) is isomorphic
to the associative algebra with 1 with generators Ei, Fi where i = 1, . . . , n− 1, 1λ
where λ ∈ Λ(n,m), and relations [7, thm. 2.4]

• 1λ1µ = δλ,µ1λ,
∑
λ 1λ = 1,

• EiFj − FjEi = δij
∑
λ[λi − λi+1]1λ,

• Ei1λ = 1λ+αi
Ei if λ+ αi ∈ Λ(n,m), 0 else,

• 1λEi = Ei1λ−αi
if λ− αi ∈ Λ(n,m), 0 else,

• Fi1λ = 1λ−αi
Fi if λ− αi ∈ Λ(n,m), 0 else,

• 1λFi = Fi1λ+αi
if λ+ αi ∈ Λ(n,m), 0 else,

• EiEj = EjEi if i 6= j ± 1, E2
i Ej − (v + v−1)EiEjEi + EjE

2
i = 0 else,

• FiFj = FjFi if i 6= j ± 1, F 2
i Fj − (v + v−1)FiFjFi + FjF

2
i = 0 else.

The integral v-Schur algebra is the A-subalgebra SA(n,m) ⊂ S(n,m) generated

by the 1λ’s and all quantum divided powers E
(d)
i , F

(d)
i . In other words, we have a

canonical isomorphism

SA(n,m) = 1mU̇A(n)1m, 1m =
∑

λ∈Λ(n,m)

1λ.

The comultiplication of U̇A(n) factors through a A-algebra homomorphism

∆ : SA(n,m) →
⊕

m=m′+m′′

SA(n,m
′)⊗ SA(n,m

′′). (B.3)

For ζ, ǫ ∈ C× with ζ = ǫ2 we consider the C-algebra

Sζ(n,m) = SA(n,m)⊗A C[v, v−1]/(v − ǫ)

= 1mU̇ǫ(n)1m.

Indeed Sζ(n,m) depends only on ζ and not on the choice of ǫ. If ζ is a primitive d-th
root of 1, we choose ǫ to be a primitive 2d-th root of 1. Then the quantum Frobenius
homomorphism Fr : U̇ǫ(n) → U̇1(n) factors through a C-algebra homomorphism

Fr : Sζ(n, dm) → S1(n,m). (B.4)
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B.3. The module category of Sζ(n,m). For λ ∈ Zn+ let ∆U
λ , L

U
λ ∈ Rep(U̇ǫ(n))

denote the Weyl module and the simple module with highest weight λ. Set

Λ(n,m)+ = Λ(n,m) ∩ Zn+.

The category Rep(Sζ(n,m)) is equivalent to the full subcategory of Rep(U̇ǫ(n))
consisting of the modules such that all constituents have a highest weight in the set
Λ(n,m)+. It is quasi-hereditary with respect to the dominance order, the standard
objects being the modules ∆S

λ with λ ∈ Λ(n,m)+. Here, for λ ∈ Λ(n,m)+, we
write

∆S
λ = ∆U

λ , LSλ = LUλ ,

regarded as objects in Rep(Sζ(n,m)).

B.4. The Schur functor. Assume that n > m. There is a C-algebra isomorphism
[7, sec. 11]

Hζ(m) = f Sζ(n,m) f, f = 1(1m0n−m).

Thus the vector space Tζ(n,m) = Sζ(n,m)f is a (Sζ(n,m),Hζ(m))-bimodule, and
Vζ(n,m) = fSζ(n,m) is a (Hζ(n,m),Sζ(n,m))-bimodule. Consider the triple of
adjoint functors (Φ!,Φ

∗,Φ∗)

Φ∗ : Rep(Sζ(n,m)) → Rep(Hζ(m)), M 7→ fM,

Φ∗ : Rep(Hζ(m)) → Rep(Sζ(n,m)), N 7→ HomHζ(m)(Vζ(n,m), N),

Φ! : Rep(Hζ(m)) → Rep(Sζ(n,m)), M 7→ Tζ(n,m)⊗Hζ(m) M.

We call Φ∗ the Schur functor. It is a quotient functor, i.e., it is exact and the counit
Φ∗ Φ∗ → 1 is invertible. The double centralizer property holds, i.e., we have

Sζ(n,m) = EndHζ(m)(Vζ(n,m)).

Equivalently, the functor Φ∗ is fully faithful on projectives, or, equivalently again,
the unit P → Φ∗ Φ

∗(P ) is invertible whenever P is projective. See [25, prop. 4.33]
for details. Since Φ∗ is a quotient functor, the functor Φ! takes projectives to
projectives and the unit 1 → Φ∗Φ! is an isomorphism of functors. For m = m′+m′′

the comultiplication (B.3) yields a functor

⊗̇ : Rep(Sζ(n,m
′))⊗ Rep(Sζ(n,m

′′)) → Rep(Sζ(n,m)). (B.5)

We’ll abbreviate H Indm′,m′′ = Ind
Hζ(m)

Hζ(m′)⊗Hζ(m′′).

Proposition B.3. (a) We have an isomorphism can : Tζ(n,m
′)⊗̇Tζ(n,m

′′) →
Tζ(n,m) which yields an isomorphism forM ′ ∈ Rep(Hζ(m

′)),M ′′ ∈ Rep(Hζ(m
′′))

can : Φ!

(
H Indm′,m′′(M ′ ⊗M ′′)

)
→ Φ!(M

′)⊗̇Φ!(M
′′).

(b) We have an isomorphism can : Vζ(n,m
′)⊗̇Vζ(n,m

′′) → Vζ(n,m) which
yields an isomorphism for M ′ ∈ Rep(Hζ(m

′)), M ′′ ∈ Rep(Hζ(m
′′))

can : Φ∗

(
H Indm′,m′′(M ′ ⊗M ′′)

)
→ Φ∗(M

′)⊗̇Φ∗(M
′′).

Corollary B.4. We have an isomorphism

can : H Indm′,m′′(Φ∗M ′ ⊗ Φ∗M ′′) → Φ∗(M ′⊗̇M ′′)

for M ′ ∈ Rep(Sζ(n,m
′)) and M ′′ ∈ Rep(Sζ(n,m

′′)).

Proof. ForM ′ ∈ Rep(Sζ(n,m
′)) andM ′′ ∈ Rep(Sζ(n,m

′′)), Proposition B.3 yields
an isomorphism

Φ∗
H Indm′,m′′(Φ∗M ′ ⊗ Φ∗M ′′) = Φ∗Φ

∗M ′⊗̇Φ∗Φ
∗M ′′.

Composing it with Φ∗ we get an isomorphism
H Indm′,m′′(Φ∗M ′ ⊗ Φ∗M ′′) = Φ∗

(
Φ∗Φ

∗M ′⊗̇Φ∗Φ
∗M ′′

)
.
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Composing it with the unit 1 → Φ∗Φ
∗ we get a functorial map

Φ∗(M ′⊗̇M ′′) → H Indm′,m′′(Φ∗M ′ ⊗ Φ∗M ′′)

which is invertible whenever M ′, M ′′ are projectives, because the unit is invertible
on projective modules. Thus it is always invertible, because Φ∗ and H Indm′,m′′ are
exact and because there are enough projectives in Rep(Sζ(n,m)). �

B.5. The braiding and the Schur functor. For M ′ ∈ Rep(Hζ(m
′)) and M ′′ ∈

Rep(Hζ(m
′′)) the R-matrix yields an isomorphism of Sζ(n,m)-modules

RΦ∗M ′,Φ∗M ′′ : Φ∗M
′⊗̇Φ∗M

′′ → Φ∗M
′′⊗̇Φ∗M

′.

Let τ ∈ Sm be the unique element such that

• τ is minimal in the coset (Sm′ ×Sm′′)τ(Sm′′ ×Sm′),
• we have τ−1(Sm′ ×Sm′′)τ = Sm′′ ×Sm′ .

We have the following formula in Hζ(m)

Tτ (h
′′ ⊗ h′) = (h′ ⊗ h′′)Tτ , h′ ∈ Hζ(m

′), h′′ ∈ Hζ(m
′′). (B.6)

Thus there is a unique functorial Hζ(m)-module isomorphism

SM ′,M ′′ : H Indm′,m′′(M ′ ⊗M ′′) → H Indm′′,m′(M ′′ ⊗M ′)

given by

SM ′,M ′′(h⊗ (v′ ⊗ v′′)) = hTτ ⊗ (v′′ ⊗ v′), h ∈ Hζ(m), v′ ∈M ′, v′′ ∈M ′′.

Proposition B.5. For M ′ ∈ Rep(Hζ(m
′)), M ′′ ∈ Rep(Hζ(m

′′)) the following
square is commutative

Φ∗
H Indm′,m′′(M ′ ⊗M ′′)

can

��

Φ∗(SM′,M′′ )
// Φ∗

H Indm′′,m′(M ′′ ⊗M ′)

can

��

Φ∗M
′⊗̇Φ∗M

′′
RΦ∗M′,Φ∗M′′

// Φ∗M
′′⊗̇Φ∗M

′.

Proof. We abbreviate H = Hζ(m), H′ = Hζ(m
′), H′′ = Hζ(m

′′), V = Vζ(n,m),
V′ = Vζ(n,m

′) and V′′ = Vζ(n,m
′′). The proof is standard. Let us sketched it

for the comfort of the reader. First, we have a commutative square

V′′⊗̇V′

can

��

R
V′′,V′

// V′⊗̇V′′

can

��
V

Tτ
// V

(B.7)

where the lower map is the left multiplication with Tτ . In particular, we have

RV′′,V′(h′′v′′⊗h′v′) = (h′′⊗h′)RV′′,V′(v′⊗v′′), v′ ∈ V′, v′′ ∈ V′′, h′ ∈ H′, h′′ ∈ H′′.

Therefore, the composition by RV′′,V′ yields a linear map

HomH′⊗H′′(V,M ′ ⊗M ′′) = Φ∗
H Indm′,m′′(M ′ ⊗M ′′) →

→ HomH′′⊗H′(V,M ′′ ⊗M ′) = Φ∗
H Indm′′,m′(M ′′ ⊗M ′).

The commutativity of the square (B.7) implies that this map is equal to Φ∗(SM ′,M ′′).
It is easy to see that this map coincides also with RΦ∗M ′,Φ∗M ′′ . �
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Corollary B.6. For M ′ ∈ Rep(Sζ(n,m
′)), M ′′ ∈ Rep(Sζ(n,m

′′)) the following
square is commutative

H Indm′,m′′(Φ∗M ′ ⊗ Φ∗M ′′)

can

��

SΦ∗M′,Φ∗M′′
// H Indm′′,m′(Φ∗M ′′ ⊗ Φ∗M ′)

can

��

Φ∗(M ′⊗̇M ′′)
Φ∗(RM′,M′′ )

// Φ∗(M ′′⊗̇M ′)

Proof. Use the same argument as in the proof of Corollary B.4. �

Let r > 1 and i = 1, 2, . . . , r−1. ForM ∈ Rep(Hζ(m)) we define an automorphism
of the Hζ(mr)-module H Ind(mr)(M

⊗r) by

SM,i =
H Ind

Hζ(mr)
H

(1⊗i−1 ⊗ SM,M ⊗ 1⊗r−i−1),

H = Hζ(m)⊗i−1 ⊗Hζ(2m)⊗Hζ(m)⊗r−i−1.

Similarly, for M ∈ Rep(Sζ(n,m)) we define an automorphism of the Sζ(n,mr)-

module M ⊗̇r by

RM,i = 1⊗̇i−1⊗̇RM,M ⊗̇1⊗̇r−i−1.

Corollary B.7. For M ∈ Rep(Sζ(n,m)), r > 1 and i = 1, 2, . . . , r − 1 we have a
commutative square with invertible vertical maps

H Ind(mr) Φ
∗(M)⊗r

��

SΦ∗(M),i
// H Ind(mr) Φ

∗(M)⊗r

��

Φ∗(M ⊗̇r)
Φ∗(RM,i)

// Φ∗(M ⊗̇r)

B.6. The braiding and the quantum Frobenius homomorphism. Recall
that if ζ is a primitive d-th root of 1 then the quantum Frobenius homomorphism
yields a functor

Fr∗ : Rep(S1(n, dm)) → Rep(Sζ(n,m)).

For M ∈ Rep(S1(n, dm)), M ′ ∈ Rep(S1(n, dm
′)) the braiding

RM,M ′ :M⊗̇M ′ → M ′⊗̇M

is given by the permutation sM,M ′ . The functor Fr∗ is a braided tensor functor.
More precisely, we have the following.

Proposition B.8. For m,m′ > 0 and forM ∈ Rep(S1(n, dm)), M ′ ∈ Rep(S1(n, dm
′)),

we have Fr∗(M⊗̇M ′) = Fr∗(M)⊗̇Fr∗(M ′) and

RFr∗(M),Fr∗(M ′) = sFr∗(M),Fr∗(M ′) : Fr
∗(M)⊗̇Fr∗(M ′) → Fr∗(M ′)⊗̇Fr∗(M).

Proof. Obvious by Proposition B.1. �

B.7. The algebra Sζ(m). We’ll abbreviate Sζ(m) = Sζ(m,m). If n > m the
algebra Sζ(n,m) is Morita equivalent to Sζ(m), see e.g., [5, lem. 1.3]. Thus ⊗̇ can
be viewed as a functor (choosing n > m = m′ +m′′)

⊗̇ : Rep(Sζ(m
′))⊗ Rep(Sζ(m

′′)) → Rep(Sζ(m)).

If ζ is a primitive d-th root of 1 then the quantum Frobenius homomorphism can
be viewed as a functor (choosing n > dm)

Fr∗ : Rep(S1(dm)) → Rep(Sζ(m)).
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Math., 87, Birkhäuser Boston, Boston, MA, 1990.
[5] Dipper, R., James, G., q-Tensor Space and q-Weyl Modules, Trans. Amer. Math. Soc. 327

(1991), 251-282.
[6] Donkin, S., The q-Schur Algebra, London Mathematical Society Lecture Note Series, 253,

Cambridge University Press, Cambridge, 1998.
[7] Doty, S., Giaquinto, A. Presenting Schur algebras, Int. Math. Res. Not. 36 (2002), 1907-

1944.
[8] Etingof, P., Symplectic reflection algebras and affine Lie algebras, arXiv:1011.4584.
[9] Frenkel, I, Jing, N., Wang, W., Vertex representations via finite groups and the McKay

correspondence, Internat. Math. Res. Notices 4 (2000), 195-222.
[10] Ginzburg, V., On primitive ideals, Selecta Math. (N.S.) 9 (2003), 379-407.
[11] Ginzburg, V., Guay, N., Opdam, E., Rouquier, R., On the category O for rational Cherednik

algebras, Invent. Math. 154 (2003), 617-651.
[12] Gordon, I., Quiver varieties, category O for rational Cherednik algebras and Hecke algebras,

Int. Math. Res. Pap. 3 (2008).
[13] Kirillov, A.N., Reshetikhin, N. q-Weyl group and a multiplicative formula for universal

R-matrices, Comm. Math. Phys. 134 (1990), 421-431.
[14] Jantzen, J.C., Representations of Algebraic Groups, 2-nd edition, Mathematical Surveys

and Monographs, 107, American Mathematical Society, Providence, 2003.
[15] Jimbo, M., Misra, K.C., Miwa, T., Okado, M., Combinatorics of representations of Uq

(sl(n)) at q = 0, Comm. Math. Phys. 136 (1991), 543-566.
[16] Kashiwara, M., Schapira, P., Sheaves on manifolds, Springer, 2006.
[17] Kleshchev, A., Linear and projective representations of symmetric groups, Cambridge Tracts

in Mathematics, Cambridge University Press, 2005.
[18] Kumar, S. Kac-Moody groups, their flag varieties and representation theory, Birkhauser,

2002.
[19] Lyle, S., Mathas, A., Blocks of cyclotomic Hecke algebras, Adv. Math. 216 (2007), 854-878.
[20] Leclerc, B., Miyachi, H., Some closed formulas for canonical bases of Fock spaces, Repre-

sentation Theory 6 (2002), 290-312.
[21] Lusztig, G., Introduction to quantum groups, Progress in Mathematics, 110, Birkhäuser
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