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HEISENBERG ALGEBRAS AND RATIONAL DOUBLE AFFINE
HECKE ALGEBRAS

P. SHAN, E. VASSEROT

ABSTRACT. In this paper we categorify the Heisenberg action on the Fock
space via the category O of cyclotomic rational double affine Hecke algebras.
This permits us to relate the filtration by the support on the Grothendieck
group of O to a representation theoretic grading defined using the Heisenberg
action. This implies a recent conjecture of Etingof.

CONTENTS

Introduction and notation

Reminder on rational DAHA’s

The cyclotomic rational DAHA

The Fock space

The categorification of the Heisenberg algebra

The filtration of the Fock space and Etingof’s conjecture
Appendlx A. Reminder on Hecke algebras

Appendix B. Reminder on {-Schur algebras

References

S O N

1. INTRODUCTION AND NOTATION

1.1. Introduction. In this paper we study a relationship between the represen-
tation theory of certain rational double affine Hecke algebras (=RDAHA) and the
representation theory of affine Kac-Moody algebras. Such connection is not new
and appears already at several places in the literature. A first occurrence is Suzuki’s
functor [P7] which maps the Kazhdan-Lusztig category of modules over the affine
Kac-Moody algebra s?[n at a negative level to the representation category of the
RDAHA of sl,,. A second one is a cyclotomic version of Suzuki’s functor 9] which
maps a more general version of the parabolic category O of s?[n at a negative level
to the representation category of the cyclotomic RDAHA. A third one comes from
the relationship between the cyclotomic RDAHA and quiver varieties, see e.g., [@],
and from the relationship between quiver varieties and affine Kac-Moody algebras.
Finally, a fourth one, which is closer to our study, comes from the relationship in
[@] between the Grothendieck ring of cyclotomic RDAHA and the level ¢ Fock
space Fp, ¢ of 5[ In this paper we focus on a recent conjecture of Etingof [E
which relates the support of the objects of the category O of H(T',,), the RDAHA
associated with the complex reflection group I';, = &,, X (Z¢)™, to a representation
theoretic grading of the Fock space Fy = F;,1. These conjectures yield in particular
an explicit formula for the number of finite dimensional H (I",,)-modules. This was
not known so far. The appearance of the Fock space F; is not a hazard. It is due
to the following two facts, already noticed in [E] First, by level-rank duality, the
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2 P. SHAN, E. VASSEROT

;[m—module Fm,e carries a level m action on gA[e. It carries also a level 1 action
on gAle, under which it is identified with F,. Next, the category O of the algebras
H(T,,) with n > 1 categorifies Fy, ¢ by [@] Our proof consists precisely to inter-
pret the support of the H(I',)-modules in terms of the ;[m-action on Fp, ¢, and
then to traduce this in terms of the ;[4 action on Fy. An important ingredient is
a categorification (in a weak sense) of the action of the Heisenberg algebra on F
and Fy, ¢. The categorification of the Heisenberg algebra has recently been studied
by several authors. We’ll come back to this in another publication.

1.2. Organisation. The organisation of the paper is the following.

Section 2 is a reminder on rational DAHA. We recall some basic facts concerning
parabolic induction/restriction functors. In particular we describe their behavior
on the support of the modules.

Section 3 contains basic notations for complex reflection groups, for the cyclo-
tomic rational DAHA H(T',,) and for affine Lie algebras. In particular we introduce
the category O(T',,) of H(T'),)-modules, the functor KZ, Rouquier’s equivalence from
O(6,,) to the module category of the (-Schur algebra. Next we recall the categorifi-
cation of the Fock space representation of ;[m in [@], and we describe the filtration
by the support on O(T',).

Section 4 is more combinatorial. We recall several constructions related to the
Fock space and symmetric polynomial. In particular we give a relation between
symmetric polynomial and the representation ring of the group I',,, we describe
several representations on the level ¢ Fock space (of Heisenberg algebras and of
affine Kac-Moody algebras),

Section 5 is devoted to the categorification of the Heisenberg action on the Fock
space, using O(T';,). Then we introduce a particular class of simple objects in O(T,,),
called the primitive modules, and we compute the endomorphism algebra of some
modules induced from primitive modules. Finally we introduce the operators ay
which are analogues for the Heisenberg algebra of the Kashiwara’s operators €, fq
associated with Kac-Moody algebras.

Section 6 contains the main results of the paper. Using our previous construc-
tions we compare the filtration by the support on O(T',) with a representation-
theoretic grading on the Fock space. This confirms a conjecture of Etingof, yield-
ding in particular the number of finite dimensional simple objects in O(T',) for
integral ¢-charge (this corresponds to some rational values of the parameters of
H(T,)).

Finally there are two appendices containing basic facts on Hecke algebras, Schur
algebras, quantum groups, quantum Frobenius homomorphism and on the universal
R-matrix.

1.3. Notation. Now we introduce some general notation. Let A be a C-category,
i.e., a C-linear additive category. We’ll write Z(.A) for the center of A, a C-algebra.
Let Irr(A) be the set of isomorphism classes of simple objects of A. If A = Rep(A),
the category of all finite-dimensional representations of a C-algebra A, we abbre-
viate

Irr(A) = Irr(Rep(A)).

For an Abelian or triangulated category let K(A) denote its Grothendieck group.
We abbreviate K(A) = K (Rep(A)). We set

(4] = K(A) ®C.

For an object M of A we write [M] for the class of M in [A]. For an Abelian
category A let D°(A) denote its bounded derived category. We abbreviate D?(A) =
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DP(Rep(A)). The symbol H*(P™~!) will denote both the complex
(m) = @B C[-2i] € D*(C)

and the integer m in K(C) = Z. Given two Abelian C-categories A, B which are
Artinian (i.e., objects are of finite length and Hom’s are finite dimensional) we
define the tensor product (over C)

R:AXxB—-ARB

as in [, sec. 5.1, prop. 5.13]. Recall that for A = Rep(A) and B = Rep(B) we have
A® B =Rep(A®B).

2. REMINDER ON RATIONAL DAHA’S

2.1. The category O(W). Let W be any complex reflection group. Let h be the
reflection representation of W. Let S be the set of pseudo-reflections in W. Let
c¢: S — C be a map that is constant on the W-conjugacy classes. The rational
DAHA attached to W with parameter c is the quotient H(W) of the smash product
of CIW and the tensor algebra of h @ h* by the relations

[xax/] =0, [yay/] =0, [yaw] = (x,y) —ch<as,y><x,ds)s,
ses
for all z,2' € b*, y,y’ € h. Here (o, @) is the canonical pairing between h* and b,
the element « is a generator of Im(s|p« — 1) and ¢, is the generator of Im(s|, — 1)
such that (as,ds) = 2. Let R,, R, be the subalgebras generated by h* and h
respectively. We may abbreviate

Clb] = R., C[p']=R,.

The category O of H(W) is the full subcategory O(W) of the category of H(W)-
modules consisting of objects that are finitely generated as C[h]-modules and b-
locally nilpotent. We recall from [[L], sec. 3] the following properties of O(W). It is
a quasi-hereditary category. The standard modules are labeled by the set Irr(CW)
of isomorphism classes of irreducible W-modules. Let A, be the standard module
associated with the module x € Irr(CW). It is the induced module

Ay = Indgv(yzgy (x)-

Here x is regarded as a W x R,-module such that h* C R, acts by zero. Let L,,
P, denote the top and the projective cover of A,.

Remark 2.1. The definitions above still make sense if h is any faithful finite dimen-
sional CW-module. To avoid any confusion we may write

O(W,h) = O(W),  H(W.h) = H(W).

2.2. The stratification of ). Let W be a complex reflection group. Let h be the
reflection representation of W. For a parabolic subgroup W’ C W let Xy, be the
set of points of h whose stabilizer in W is conjugate (in W) to W’. By a theorem
of Steinberg, the sets Xy, ., when W' runs over a set of representatives of the W-
conjugacy classes of parabolic subgroups of W, form a stratification of fh by smooth
locally closed subsets, see also [@, sec. 6] and the references there. Let Xy be
the closure of Xy, in h. To avoid any confusion we may write Xy, , = Xy, and
Xwp = Xwr. The set Xy consists of points of ) whose stabilizer is W-conjugate
to W’. We have

Xwrp = |_|X§V,,7h,
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where the union is over a set of representatives of the W-conjugacy classes of the
parabolic subgroups W of W which contain W’. Further, the quotient Xy y/W
is an irreducible closed subset of h/W.

2.3. Induction and restriction functors on O(W). Fix an element b € h. Let
Wi, C W be the stabilizer of b, and

™ b —h/p"

be the obvious projection onto the reflection representation of W;. The parabolic
induction/restriction functor relatively to the point b is a functor [m]

Indy : O(W5,5/6"") — O(W,b), Res; : O(W,h) = O(Wa, b/5™").

Since the functors Indy, Res, do not depend on b up to isomorphism, see [El, sec. 3.7,
we may write

OInd%) = Ind,, ORes%b = Resy,
if it does not create any confusion. The support of a module M in O(W, ) is the
support of M regarded as a C[h]-module. It is a closed subset Supp(M) C h. For any
simple module L in O(W, h) we have Supp(L) = Xy p for some parabolic subgroup
W’ C W. Forb € Xy, , the module Res; (L) is a nonzero finite dimensional module.
See [EI, sec. 3.8]. The support of a module is the union of the supports of all its
constituents. So the support of any module in O(W, h) is a union of Xy y’s. Let
us consider the behavior of the support under restriction.

Proposition 2.2. Let W C W be a parabolic subgroup. Let b’ be the reflection
representation of W'. Let X C b be the support of a module M in O(W,h). Let
X' C b be the support of the module M’ = Resiy., (M).

(a) We have M’ # 0 if and only if Xw/p C X.

(b) Assume that X = Xy with W’ C W a parabolic subgroup. If M' # 0
then W' is W -conjugate to a subgroup of W' and we have

X' = UXWhh’ = |_|XI?V1,E)’;
Wi Wi

where W1 runs over a set of representatives of the W' -conjugacy classes of parabolic
subgroups of W' containing a subgroup W -conjugated to W".

Proof. Part (a) is immediate from the definition of the restriction, because for b € b
it implies that Resy(M) # 0 if and only if b € X. Now we prove (b). For a parabolic
subgroup W; C W’ we have

X,y C X' <= OResll. (M') #0
< “Resyy, (M) #0
— Xw,p C Xwry.
Here the first and third equivalence follow from (a), while the second one follows

from the transitivity of the restriction functor [R6, cor. 2.5]. Therefore X Wy C X'

if and only if Xw, 5 C X’ if and only if W3 contains a subgroup W-conjugate to
w”.

O
Remark 2.3. For any closed point b of a scheme X we denote by X' the completion
of X at b (a formal scheme). Assume that M’ = ©Resyy, (M) is non zero. Let

be the canonical projection h — §' = h/bw/. For b € Xy, the definition of the
restriction functor yields the following formula

0en N X'), X{)=b+a LX),
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Next, we consider the behavior of the support under induction. Before this we
need the following two lemmas. The C-vector space [O(W)] is spanned by the set
{[Ay]; x € Irr(CW)}. Thus there is a unique C-linear isomorphism

spe : [Rep(CW)] = [O(W)], - [x] = [Ay]- (2.1)
The parabolic induction/restriction functor is exact. We’ll need the following

lemma [[If].

Lemma 2.4. Let W C W be a parabolic subgroup. Let i’ be the reflection repre-
sentations of W'. Under the isomorphism ) the maps

OIndyy, : [O(W,§)] = [O(W, )], ©Resiy : [O(W,h)] = [O(W', 1))
coincide with the induction and restriction
Indjy, : [Rep(CW’)] = [Rep(CW)], Res}y : [Rep(CW)] — [Rep(CW')].
We'll also need the following version of the Mackey induction/restriction theorem.

First, observe that for any parabolic subgroup W/ € W and any x € W there is a
canonical C-algebra isomorphism

0r: HW') = Hx " 'W'z), w— 2wz, fra ' fo, f ot fa,
forwe W', f € R;, [/ € Ry. It yields an exact functor
OW’") = O(x'W'z), M “M,
where *M is the H(z~'W’z)-module obtained by twisting the H (W')-action on M
by ¢

Lemma 2.5. Let W/, W" C W be parabolic subgroups. Let b, §” be the reflection
representations of W', W". For M € O(W’,§") we have the following formula in
[O(W//, h//)]

OR@S%N o OIndW/ ([M]) = Z OInd%::ﬂz—lw/m o® (ORCSE/V[,/HI—IOW/ ([M])), (2.2)

where x runs over a set of representatives of the cosets in W'\ W/W".

Proof. Use Lemma @ and the usual Mackey induction/restriction theorem asso-
ciated with the triplet of groups W, W/, W". O

Remark 2.6. For a future use, note that the left hand side of (P.3) is zero if and
only if each term in the sum of the right hand side is zero, because each of these
terms is the class of a module in O(W", p").

Now, we can prove the following proposition.

Proposition 2.7. Let W’ Cc W' C W be a parabolic subgroups. Let §’ be the
reflection representation of W'. For a simple module L € O(W' b’) with Supp(L) =
XW”,h’; we have

Supp(®Indyy (L)) = Xy .
Proof. We abbreviate M = OInd%, (L). First we prove that
Xwry C Supp(M).
By Proposition E we have
Xwoy C Supp(M) <= Xy y C Supp(M)
<« YResiy, (M) #0.
By Remark @ the right hand side holds if and only if

ORCSL/VV;///Z—IQI/V/ (L) ?é 0
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for some x € W. This identity is indeed true for = 1 because W" Cc W' and
Xy = Supp(L) = “Resll (L) # 0.
Next we prove the inclusion
Supp(M) C Xwr .
Any point b of h\ Xy~ p is contained in the set X W p for some parabolic subgroup

W' C W such that W is not conjugate to a subgroup of W : it suffices to set
W' = W,. We must check that for such a subgroup W c W we have

Xy p ¢ Supp(M).
By Proposition E it is enough to check that
OResyym (M) = 0.
Now, by Lemma P.§ we have the following formula in [O(W"", )]

ORQSE‘///// ([M]) = Z OInd%///ﬁ$71W/Z o” (OReS‘/IB/I/W/NI—lmW/ ([L])) .

Here x runs over a set of representatives of the cosets in W'\ W/W"'. Since W" is
not conjugate to a subgroup of W' it is a fortiori not conjugate to a subgroup of
aW" =N W', ie., we have
X;)W”’mflﬁw’,b’ ﬁ XW//J]/ - @
Therefore Proposition @ yields
ORGSK/V{////I71QW/ (L) == 0,

because Supp(L) = X~ p-. This implies that

OR@S%/// ([M]) == 0
Hence we have also

ORCS%/U (M) = 0
We are done. O

3. THE CYCLOTOMIC RATIONAL DAHA

3.1. Combinatorics. For a sequence A = (A1, Aa,...) of integers > 0 we set |A| =
>\1+A2+ Let

A(ﬂ,n) = {V = (V1)V23"'V€) € Né? |V| :n}

It is the set of compositions of n with £ parts. Let P, be the set of partitions of
n, i.e., the set of non-increasing sequences A of integers > 0 with sum |A| = n. We
write X' for the transposed partition and I()) for its length, i.e., for the number of
parts in A\. We write also z) = Hi>1 1™ m;! where m; is the number of parts of A
equal to ¢. Given a positive integer m and a partition A we write also

mA = (mA1,mAzg,...).

To any partition we associate a Young diagram, which is a collection of rows of
square boxes with \; boxes in the i-th row, ¢ = 1,...,l(\). A box in a Young
diagram is called a node. The coordinate of the j-th box in the i-th row is the pair
of integers (i, 7). The content of the node of coordinate (i, j) is the integer j—i. Let
the set Py consist of a single element, the unique partition of zero, which we denote
by 0. Let P = |, Pn be the set of all partitions. We'll abbreviate Z; = Z//Z.
Let P¢ be the set of £-partitions, i.e., the set of all partition valued functions on Z,.
Let P! be the subset of /-tuples A\ = (A(p)) of partitions with || = >, AP) =n.
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Let T’ be the group of the ¢-th roots of 1 in C*. We define the sets PT, PL of
partition valued functions on I' in the same way.

3.2. The complex reflection group I',,. Fix non negative integers ¢, n. Unless
specified otherwise we’ll always assume that £,n # 0. Let &,, be the symmetric
group on n letters and I';, be the semi-direct product &,, x I'", where I'"" is the
Cartesian product of n copies of I'. We write also &g =T% =Ty = {1}. For y € I’
let 7; € I'™ be the element with ~ at the ¢-th place and with 1 at the other ones.
Write S;Yj = sijfyi'yj_l fory eI, i# j. For p € Zy let xp, : I' = C* be the character
v +— P. The assignment p — X, identifies Z, with the group of characters of I'.
The group I'), is a complex reflection group. For ¢ > 1 it acts on the vector space
h = C™ via the reflection representation. For ¢ = 1 the reflection representation is
given by the permutation of coordinates on the hyperplane

Co={z1+ - +z,=0} CC".

We'll be interested in the following subgroups of I',,.

e To a composition v of n we associate the set
I={1,2,....,n—1}\{v1,1n + 1a,... }.

Let ', = 6, x ', where &,, = & is the subgroup of &,, generated by the
simple reflections s; ;41 with ¢ € I.

e For integers m,n > 0 and a composition v we set I',,, =I',, x &,. If
v = (m?) for some integer j > 0 we abbreviate I',, ;i) = [n,,. We write
also I'y, ,, = I'yy X &,,,. Any parabolic subgroup of I'y, is conjugate to I'; .,
for some [, v with [ + |v| < n.

3.3. Definition of the cyclotomic rational DAHA. Fix a basis (z,y) of C?.
Let x;, y; denote the elements x,y respectively in the i-th summand of (C?)®".
The group I',, acts on (C?)®" such that for distinct i, j, k we have

Vilws) =7 e, yilag) =25, w(y) = vy v(y) =5,
Sij(xi) = Ty, Sij(yi) = Yj, Sij(zk) = Tk, Sij(yk) = Yk-

Fix k € C and ¢, € C for each v € I The cyclotomic rational DAHA is the
quotient H(T,,) of the smash product of CT',, and the tensor algebra of (C?)®" by

the relations
ol = kY - e @=L

j#i yer veT

i) =k Y sy ifi#j,
yel’

(i, 23] = [yi,y5] = 0.

Let R,, R, be the subalgebras generated by x1, 22, ..., 2, and y1,y2, ..., yn respec-
tively. We’ll write b, h* for the maximal spectrum of R;, R,. The C-vector space b
is identified with C™ in the obvious way. We’ll use another presentation where the
parameters are h, h, with p € Z; where k = —h and —cy = > v~ Ph,. Note
that 1 =3 hy.

PEZLy
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3.4. The Lie algebras ;[g and ;[g. Given complex numbers hy,, p € Z;, with
Zp h, =1, it is convenient to consider the following level 1 weight

A=Y hyw,. (3.1)

Here the w),’s are the fundamental weights of the affine Lie algebra
sly = (sl ® Clw, @ 1)) ® C1,
where 1 is a central element and the Lie bracket is given by
@@,y o] =[r,y] @@ +r(2,9)6-s1, (z,9) = T(z9"), (3.2)

where y + y! is the transposition and 7 is the trace. The affine Lie algebra ;[4 is
generated by the symbols e, fp, p =0,...,f—1, satisfying the Serre relations. For
p # 0 we have

—1
€p = €Ep,p+1 ® 1’ €0 = €y,1 ® w, fp = €p+1,p ® 1’ fO = €1,m Rw 7,

where e, 4 is the usual elementary matrix in sl,. We’ll also use the extended affine

Lie algebras ;[e, obtained by adding to ;[e the 1-dimensional vector space spanned
by the scaling element D such that [D,z ® @w"] = rz ® w” and [D,1] = 0. Let &
denote the dual of D, i.e., the smallest positive imaginary root. We equip the space
of linear forms on the Cartan subalgebra of sl, with the pairing such that

(wp,wq) = min(p, q) — pg/t, (wp,0) =1, (6,6) =0.
Let U (5A[¢) be the enveloping algebra of sly, and let U _(5A[g) be the subalgebra

generated by the elements f, with p=0,...,¢—1. For r > 0 we write U~ (sl;), for
the subspace of U~ (sly) spanned by the monomials whose weight has the height r.

3.5. Representations of &, I',,. The set of isomorphism classes of irreducible
S,,-modules is B

Irr(CS,) = {Lx; A € P},
see [@, sec. 1.9]. The set of isomorphism classes of irreducible I';,-modules is

Irr(CT,,) = {Lx; A € PLY.
The I',,-module Ly is defined as follows. Write A = (A(p)). The tuple of positive
integers vy = (|A(p)]) is a composition in A(¢,n). Let

L (xp-1) "7 € e (CT 5 )

be the tensor product of the &y(,)-module E,\(p) and the one-dimensional TIAP)l-
module (xp,1)®|)‘(p)‘. The I',,-module Ly is given by

T T A T A T AL
L)\ = Indll::k (L/\(l)X?‘ @l ® L)\(2)X<1®| @ R L)\(Z)X?_‘1( )l) (33)

3.6. The category O(T';,). Consider the C-algebra H(T',) with the parameter A
in (B.1)). The category @ of H(T,) is the quasi-hereditary category O(T,,). The
standard modules are the induced modules

Ay =Indf T3 (Ly), AePL.
Here L) is viewed as a I',, x Ry-module such that y1,...y, act trivially. Let Ly,
P, denote the top and the projective cover of Ay. Recall the C-linear isomorphism
spe : [Rep(CT'y)] = [O(Tn)],  [La] = [Ax]. (3.4)
To avoid cumbersome notation for induction/restriction functors in

or) =om,)

n=0
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we’ll abbreviate

OInd OIndF ORes OResF

—1?

%Ind,, (mr)folndp"tm:), ORes,, (mr) = ResF:t::) (3.5)

OIndnymT = OInd- :*ﬂ’:, OResn — OReSF::’f )

We write also
OInd(mr) =%IndSyr : O(67) — O(6,,,),

ORes(mr) = OResg;’” :0(6Gpy) = O(6]).
3.7. The functor KZ. For ( € C* and v1,vs,...,u¢ € C* let H¢(n, ) be the

cyclotomic Hecke algebra associated with I';, and the parameters (,v1, ..., v, see
Section [A.d. We'll abbreviate H(T',,) = He¢(n, £). Assume that

¢ =exp(2imh), v, =u0 exp(72i7r(h1 +hg+--+ hp,l)).
Then the KZ-functor [L] is a quotient functor
KZ:O(T',) = Rep(H(T,,)).
Since KZ is a quotient functor, it admits a right adjoint functor
S: Rep(H(T,,)) — OT,)

such that KZo S = 1. By [@, thm. 5.3], for each projectif module Q € O(T,,) the
canonical adjunction morphism 1 — S o KZ yields an isomorphism

Q — S(KZ(Q)). (3.6)

3.8. The functor R. Let H¢(m) be the Hecke C-algebra of GL,,, see Section [A.J.
Let S¢(m) be the ¢-Schur C-algebra, see Appendix E The module categories of
S¢(m), He(m) are related through the Schur functor

®* : Rep(Sc¢(m)) — Rep(He(m)).
Set
A(m)+ :A(m,m) HZT, ZT = {)\: ()\1;)\27---7>\m); )\1 2 )\2 2 2 )\m}
The category Rep(S¢(m)) is quasi-hereditary with respect to the dominance order,
the standard objects being the modules A§ with A € A(m);. The comultiplication
A yields a bifunctor ([B.5)
@ : Rep(S¢(m)) ® Rep(S¢(m’)) — Rep(S¢(m +m’)).

Now, assume that h is a negative rational number with denominator d and let
¢ € C* be a primitive d-th root of 1. Recall that h is the parameter of the C-
algebra H(S,,). If h ¢ 1/2 + Z then Rouquier’s functor [R5 is an equivalence of
quasi-hereditary categories

R:0O(6,,) = Rep(S¢c(m)), Ay AF,

such that KZ = ®* o R. For m = m’ + m” we have a canonical equivalence of
categories O(6,, )@0(G,) = O(Gm/ X &,,) and the induction yields a bifunctor

OTnd,ns = O(G ) @ O(S ) = O(S,,). (3.7)

=@ 0(,), Rep(Sc) = @) Rep(Sc(n

n>0 n>0

Proposition 3.1. For h ¢ 1/2+ Z the functor R is tensor equivalence O(&) —
Rep(Sg).

We’ll abbreviate
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Proof. We must check that R identifies the tensor product ® with the induction
(B7). First, fix two projective objects X € O(&,,/) and Y € O(&,,»). We have

" (R(X)®R(Y)) = FIndyy mr (P*R(X) ® ®*R(Y))
=" Indy e (KZ(X) @ KZ(Y))
= KZ(°Indn i (X @ Y))
= ®*R(°Indy mr (X @ Y)).
The first equality follows from Corollary @, the second one and the fourth one

come from KZ = ®* o R, and the third one is the commutation of KZ and the
induction functors, see [Rg]. Since the modules R(X)®R(Y) and R(“Indy m» (X ®

Y)) are projective, and since ®* is fully faithful on projectives we get that
R(X)@R(Y) = R( Indm/ﬁm// (X (24 Y))
Now, since the functors (@), (E) are exact and coincide on projective objects, and

since the category O(&,,,) has enough projectives, the proposition is proved. (I

3.9. The categorification of sl,,. Recall that Z(O(T,)) is the center of the cat-
egory O(T',,). Let D,,(2) be the polynomial in Z(O(T,,))[z] defined in [, sec. 4.2].
For any a € C(z) the projection to the generalized eigenspace of D, (z) with the
eigenvalue a yields an exact endofunctor @, of O(T',,). Next, consider the point

b, =(0,0,...,0,1)eh, hHh=C".
The induction and the restriction relatively to b,, yield functors
%Ind, : O(Tn_1) = O(T'n), “Res, : OI,) = OT,_1). (3.8)

Definition 3.2. [@, sec. 4.2] The g-restiction and the g-induction functors
eq: OT,) = Oh-1), fq:0Tn-1) = 0Ty), ¢=0,1,....m—1

are given by
€q = @ C’27171,a/(27(‘1) o OReSn o Qn,a;
a€C(z)
fq = @ Qn,a(zfcq) © Olndn o Qn—l,a-
a€C(z)
We’ll abbreviate
E=co®e1® - Depm_1, F=fDfiD D fn1.
Following |6, sec. 6.3], for L € Irr(O(T')) we set

&q(L) = top(eq(L)),  fo(L) = soc(fy(L)), &(0) = f4(0) = 0.
Now, for each n we choose the parameters of H(I',) in the following way
h=—1/m, hy=(spt1—sp)/m, sp€Z, pF0. (3.9)

The following hypothesis is important for the rest of the paper :

from now on we’ll always assume that m > 1.
The C-vector space [O(T')] is canonically isomorphic to the level ¢ Fock space .77(;,)@
associated with the (-charge s = (s;), see (b.5) below for details. The latter is

equipped with an integrable representation of sl,, of level £, see Section @ below.

Proposition 3.3. (a) The functors eq, f, are exact and biadjoint.

(b) We have E = “Res,, and F = ©Ind,, .

(¢) For M € Oy,) we have E(M) = 0 (resp. F(M) = 0) iff E(L) = 0
(resp. F(L) =0) for any constituent L of M.
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(d) The operators eq, fq equip [O(T')] with a representation of sl,,, which is iso-
morphic via the map @) to ‘7:7(;,)@'

(e) The tuple (Irr(O(T)), &g, fq) has a crystal structure. In particular, for L, L’ €
Irr(OT")) we have é4(L), fo(L) € Irr(O(I')) U {0}, and é,(L) = L' if and only if
f (L) =L.

Proof. Parts (a), (b) follows from [Rd, prop. 4.4], part (e) is contained in [Rd
thm. 6.3], part (c) is obvious, and part (d) is [Rf, cor. 4.5]. O

3.10. The filtration of [O(T',,)] by the support. Fix a positive integer n. In this
section we consider the tautological action of I';, on C™. For an integer [ > 0 and
a composition v such that [ + [v| < n we abbreviate X7, = X7, and X, = Xwy
where W =T, ,. If v = (m/) for some integer j > 0 such that [ + jm < n we write

o o
Xl,j = Xl,m X5 =X

Therefore X ; is the set of the points in C" with [ coordinates equal to zero and
j collections of m coordinates which differ from each other by ¢-th roots of one.
To avoid confusions we may write X; jc» = X; ;. Unless specified otherwise, for
l,7,m,n as above we’ll set

i=n—1—jm. (3.10)

Definition 3.4. For i,5 > 0 we set
Irr(O(T'n))i; = {L € Irr(O(I'n)) ; Supp(L) = X1}

Definition 3.5. For i,j > 0 let F; ;(T'y) be the C-vector subspace of [O(T,)]
spanned by the classes of the modules whose support is contained in X ;, with [ as
in (B.10]). If : < 0 or j < 0 we write F; ;(I',,) = 0.

Definition 3.6. We define a partial order on the set of pairs of nonnegative integers
(i,7) such that i+ jm < n given by (¢/,5') < (4, 7) if and only if X; j» C X; ;, where
l=n—i—jmandl' =n—1— j'm.

Since the support of a module is the union of the supports of all its constituents,
the C-vector space F; ;(I',) is spanned by the classes of the modules in Irr(O(T',,))
whose support is contained in X ;, or, equivalently F; ;(I',,) is spanned by the
classes of the modules in

U II‘I’(O(Fn))i/,j/.
CRNY)!
Remark 3.7. We have |J, ; Fi ;(I'n) = [O(I's)]. Indeed, for L € Irr(O(I's)) we have
Supp(L) = X, for some I,v, see Section B4 Forb e X7, the H(T,)-module
Resp(L) is finite dimensional. Thus, since the parameter h of H(I';,) is equal to

—1/m the parts of v are all equal to m. Hence we have Supp(L) = X; ; for some
1,7 as above.

Therefore, the subspaces F; ;(I';,) give a filtration of [O(T',,)]. Consider the associ-
ated graded C-vector space

gr(ln) = @ gr; j (T'n).-

Note that the images by the canonical projection F; ;(I'y) — gr; ;(I's) of the classes
of the modules in Irr(O(T',,)); ; form a basis of the C-vector space gr; ;(I'n). So we
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may regard gr; ;(I',) as the subspace of [O(T',)] spanned by Irr(O(T,)); ;. We'll
abbreviate

Fyo(ly) = Zﬂ,j(m, Fo;(Tn) = ZFi,j(Fn),
gri,o(rn> = @gri,j(rn>a gr.,j@n) = @gri,j (T'n).

Now, let us study the filtration of [O(T';)] in details. The subgroup T (,s)
of I', is contained into the subgroups I'j i1 (mi), I (mi+1) and Ty (mi-1) (up to
conjugation by an element of T',,) whenever such subgroups exist. Thus we have
the inclusions

Xivrgs Xijrrs Xigm,j—1 C X,
Fio1i(Tn); Ficmjr1(Tn), Fij-1(Tn) C Fij(Tn).
Proposition 3.8. (a) We have
Xllﬁj/ - Xlﬁj = Xl/ﬁj/ C XlJrLj U Xl7j+1 U Xl+m,j71-
(b) We have an isomorphism of C-vector spaces

gri;j(Cn) = Fij(Tn)/ (Fiz1,5(Tn) + Fimm j+1(Tn) + Fi j—1(Tn)).

Proof. First we prove (a). Recall that X ; is the set of the points in C" with [
coordinates equal to zero and j collections of m coordinates which differ from each
other by /-th roots of one. Therefore we have

Xy C Xy <= i—1i >2max(0,(j' — j)m). (3.11)
In particular this inclusion implies that I’ > [. We must prove that
Xpg @ Xy = Xy CXip1,; UXp 01U Xppm j—1-

First, assume that I’ = I. Since Xy j; C X;,; we have i > i’. Then (.10) implies
that i—i" = (j'—j)m, hence that j' > j and i—¢’ = m. Soi—i' > max(m, (j'—j)m),
and (B.11)) implies that Xy C Xyt

Next, assume that [ +m > I’ > I. Since Xy j C X;; we have ¢ > ¢/. Further
(B.1d) implies that i —i’ > (j' — j)m and i —i > (j — j' — 1)m. Thus i > i’ implies
indeed that i > i’ and j/ > j. So i — 1 — 4 > max(0, (j/ — j)m), and (B.11)) implies
that Xl/J/ - Xl+17j.
Finally, assume that I’ > | + m. Since Xy j C X;; we have ¢ > ¢/. Further
(B.1() implies that i —i" > (' —j 4+ 1)m. So i — ¢ > max(0, (' — j + 1)m), and
(B.11)) implies that Xy j» C Xiqm j—1.

Part (b) is a consequence of (a) and of the definition of the filtration on [O(T,)].

(I

Remark 3.9. The sets X;41,5, Xi j+1, Xi4m,j—1 do not contain each other. Indeed,
the variety X;; has the dimension ¢ + j. Thus the codimension of X;11 ;, X j+1,
Xitm,j—1 in X ; are 1,m — 1,1 respectively. However, since a point in X[}H has
only ! coordinates equal to 0, we have X; j41 & Xi41,; and Xj 11 & Xigm,j—1-

Remark 3.10. We have F, o(T',) = [O(T',,)], because (4, j) < (i + jm,0).

Remark 3.11. We have (i/,5) < (0,7) if and only if ¢/ = 0 and j' < j.
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Remark 3.12. Consider the set
F; j(T0)° = Fij(Tp) \ (Fie1,5(Cn) + Fimmjr1(Cn) + F j-1(Tn)).
For L € Trr(O(T',,)), by Proposition B.§ and Remark B.7] we have
[L] € F;;(I'y)° <= Supp(L) = Xy ;
<— Le¢ II‘I‘(O(FH))ZJ

Remark 3.13. A representation is finite dimensional if and only if its support is
zero. Thus Irr(O(T'),))o,0 is the set of isomorphism classes of finite dimensional
modules in O(T',). Note that (0,0) < (4,4) for all (i, 7).

Remark 3.14. For A € P,., r > 1, the support of the module L,,) € Irr(O(S,,,-)) is
Supp(Lmy) = Xer, cpr-
Indeed, formula (E) below and Proposition @ imply that

Supp(Lma) C Supp(olnd(mr)(L?":))) = Xer, cmr

Next, by Remark @ there is y = 0,1,...,r such that
Supp(Limx) = Xej, cmr-
Finally the inclusion Xg; cmr C Xer cpr implies that j = 7.
myLq m?~0

3.11. The action of F, F on the filtration. Let E, F' denote the C-linear
operators on [O(T')] induced by the exact functors E, F.

Proposition 3.15. Let L € Irr(O(T',));,; and l =n —i—mj.
(a) We have Supp(F(L)) = X j cnt1.
(b) We have E(L) =0 iff i = 0. We have Supp(E(L)) = X; jcn-1 if i > 0.

Proof. Recall that
Supp(L) = X;; = Xijcn,  E(L) = %Res, (L), F(L)=%Ind,(L).

Thus by Proposition R.2 we have E(L) = 0 iff b, ¢ X; ;. Since m > 1 the definition
of the stratum X ; in Section shows that b, ¢ X, ; iff ¢ = 0. Now, assume
that ¢ > 0. Then | + mj < n — 1, and Proposition yields

Supp(E(L)) = | Xw.cr1,
w

where W runs over the parabolic subgroups of I';,_; which are I',,-conjugate to
', (ms) (inside the group I',). We claim that a subgroup W C I',,_; as above is
I',—1-conjugate to I'; (,s) (inside the group I',_1). Therefore, we have

Supp(E(L)) = X; jcn1.

Indeed, fix &’ € C"~! such that W = (I',_1)pr. For b= (b, 2) with z € C generic we
have (T'y,), = W, where W is regarded as a subgroup of I';, via the obvious inclusion
I'n—1 € T'y,. Since W is I'j,-conjugate to Iy, (mi), there is an element g € T, such
that the first I coordinates of g(b) are 0, the next mj ones consist of j collections
of m coordinates which differ from each other by ¢-th roots of one, and the last i
coordinates of g(b) are in generic position. We’ll abbreviate

g(b) € 0 (m)T *".
Since z is generic it is taken by g to one of the coordinates of g(b) in the packet *.

Composing g by an appropriate reflection in &,, we get an element ¢’ € I',,_;1 such
that

g'(b) = (g'(t)), 2) € 0" (m)? +".



14 P. SHAN, E. VASSEROT

Thus we have also
J) € 0'(m)y #

This implies the claim. Hence, we have

Supp(E(L)) = Xi jcn1.
Finally, since Supp(L) = X jc», Proposition E implies that

Supp(F(L)) = Xy jcnta.

([l

Corollary 3.16. (a) We have E(F; ;(T'y,)) C Fi_1;(Tp—1). Ifi # 0 we have also
E(F;j(Tn)°) C Fio1,;(T'n-1)°.

(b) For M € O(T,) with [M] € F; ;(T')° we have E([M]) =0 iffi=0.
(¢) We have F(F;;(I'n)) C Fig1,j(Tnt1) and F(F;j(I'n)°) C Fig1,;(Tns1)°.

Proof. First, let L € Irr(O(I'n)) with [L] € F; ;(T'y). Thus L € Irr(O(T))y ;5 with
(7', 5") < (i, 7). Proposition yields

Supp(F(L)) = Xl/ i/ ,Cn+1, Supp(E(L)) = Xl/ j/,Cn—1 lf ’L'I 7é 0.

Hence we have F([L]) € Fi41,;(Tnt1) and E([L]) € E 1,j(Tr=1). Part (b) follows
from Proposition B.19 and Remarks B.11], B.1d. Part (c) follows from Proposition
and Remark B.12. The second part of (a) follows from Proposition and

Remark . O

Corollary 3.17. Let L € Irr(O(T',)); ;-
(a) If €q(L) # 0 then éq(L) € Irr(O(T'n—1))i-1,;-
() If Fo(L) # 0 then fy(L) € Tr(O(Tn 1))t 15

Proof. Set L' = é,(L). Assume that L’ # 0. By Proposition B.d we have
L' € r(O(Tn-1)),  fo(L') =

Next, since L € Irr(O(T"));,; and since é,(L) is a constituent of E(L), we have
[L'] € F;_1;(T's_1) by Corollary B.1§. We must prove that [L/] € F;_; ;(T'n_1)°. If
this is false then we have [L'] € F; j(T'y—1) with

(i/vj/) = (7’ - 27j)7 (Z —m—= 15] =+ 1)7 (Z - 15] - 1)
Thus, since fq(L’ ) is a constituent of F'(L'), by Corollary we have
(L] € gr,,;(T) (1 Firsr 3o (T). (3.12)

Therefore () yields i’ +1 > 4,804 =4i—1and j' = j — 1. So, applying ()
once again we get a contradiction with (B.13). This proves (a). The proof of (b) is
similar. (]

Corollary 3.18. (a) For x € [O(T")] we have
(eq(z) =0, Vg=0,1,...,m— 1) <« z € Fyl.().
(b) For M € O(T') we have
E(M)=0 < E(M])=0 < [M] € Fy.().
(¢) The space Fy o(T') is spanned by the set
{11); L € Tm(O(T))o.} = {[L]); L € Tx(O(T)), B(L) = 0}
={[L]; L € Irr(O(I")), é¢(L) =0, Yg=0,1,...,m—1}.
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Proof. For x € [O(I")] we write = Y, x1[L] where L runs over the set Irr(O(I")).
By [6, lem. 6.1, prop. 6.2], for each ¢ we have
eq(z) =0 <= 1 =0if e4([L]) #0.
Thus the C-vector space
{z € [OM)]; eq(x) =0, Vg=0,1,...,m —1}
is spanned by the classes of the simples modules L such that eq([L]) = 0 for all

¢=0,1,...,m—1. Then, apply Corollary B.1q. This proves (a). Parts (b), (c) are
obvious. Note that by definition of the crystal operators we have

éq(L) =0, Vg <= eq4(L) =0, Vq.

4. THE FOCK SPACE

From now on we’ll abbreviate

R(8) = PRep(CS,)],  R(I) = @[Rep(CT)].

n=0 n=>0

4.1. The Hopf C-algebra A. This section and the following one are reminders
on symmetric functions and the Heisenberg algebra. First, recall that the C-vector
space R(G) is identified with the C-vector space of symmetric functions

A= (C[.’L'l,.’L'Q, .. .]G“
via the characteristic map [@, chap. I]
ch: R(G) = A.

The map ch intertwines the induction/restriction in R(&) with the multiplica-
tion/comultiplication in A. Tt takes the class of the simple module Ly to the Schur
function Sy for each A € P. The power sum polynomials are given by

Px=P\P,..., P.=)Y a}, Py=1, Xe€P, r>0.

We equip the C-vector space A with the level 1 action of 5A[m given by
eg(S2) = _Su. fo(S) =D _Su q=0,....m—1, (4.1)
v I

where v (resp. u) runs through all partitions obtained from A € P by removing
(resp. adding) a node of content ¢ mod m. The operators e4, f, are adjoint to
each other for the bilinear pairing on A such that the Schur functions form an
orthonormal basis.

4.2. The Heisenberg algebra. The Heisenberg algebra is the Lie algebra $ spanned
by the elements 1 and b,, b, r > 0, satisfying the following relations

9y

(bl 0.] = [br,bs] =0, [bl,bs] =716, 1,58>0.

778

Let U($) be the enveloping algebra of §), and let U~ ($)) C U($)) be the subalgebra
generated by the elements b, with r > 0. Write U~ (), for the subspace of U~ (9)
spanned by the monomials b, b, --- with Y .r; = r. For A € P and f € A we
consider the following elements in U($))

— /1l /
by = b, by, -, Dy =0 by, -,

by = ZZ;1<PA,f> by, b= ZZ;1<P/\7JC> b}

AEP AEP
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For any integer ¢ we can equip A with the level ¢ action of § such that b, acts by
multiplication by P, and b, acts by rd/0p,. for r > 0. The operators b,., b.. are

adjoint to each other and they commute with the s,-action in B.1). We write
Vf = A regarded as a level £ module of $). Consider the Casimir operator

1 /
0=7 > b
r>1
This formal sum defines a diagonalisable C-linear operator on Vf’ such that
[0,b:] =rb., [0,b.] = —rbl.

Below, we will always equip A with the $)-action of level 1 unless mentioning ex-
plicitly the contrary.

4.3. The Lie algebras gA[m and gNIm. We define the Lie algebra alm in the same
way as ;[m, with gl,, instead of sl,,,. We’ll also use the extended affine Lie algebra
gNIm, obtained by adding to alm the 1-dimensional vector space spanned by the
scaling element D such that [D,z®@"] = rz®w"” and [D, 1] = 0. The Lie algebra

(st x H)/(m(1,0) = (0,1)). (42)

m
p=1 Epp®

epp ® w " for each r > 0. Unless specified otherwise,

embeds into gT[m in the obvious way. In particular the element b/ maps to >
by a gl,,-module we’ll always mean a module over the Lie algebra ([.9), i.c., a ,,-

w” while b, maps to >

module with a compatible $-action. Similarly, a gl,,-module we’ll always mean a
gl,,-module with a scaling operator D such that

[Diz@w"|=ree@w", [D,b]=-rb., [D,b]=rb.
By a dominant integral weight of gT[m, E[m we’ll always mean a dominant integral
weight of f?[m, ;[m. We denote the sets of such weights by Pf‘m, Pf‘m or by Pj‘;‘m,

P_fj[’". For X\ € Pf:"" let V):; bm and V)? 'm he the irreducible integrable modules over

;[m, g~[m with the highest weight A. As a g[m—module we have
al,, _ 1/5lm 9
Vim =Vim@V,).

Let Q%'m, ~P5[m be the root lattice and weight lattice of sl,,,. The weights of the
module Vjo‘m are all the weights of the form

f=wo+f-S(B0)6 i, B, >0

Among those, the extremal weights are the weights for which ¢ = 0. The set of the
extremal weights coincide with the set of the mazimal weights, i.e., with the set
of the weights i such that i + ¢ is not a weight of Vjo‘m. A weight fi of Vjo[m is
extremal if and only if
(i, 1) = 0.

Note also that we have (fi, i) = —2i if and only if fi + 40 is an extremal weight. See
e.g., [E, sec. 20.3, 20.5] for details. Now, let T}, be the standard maximal torus in
SL,,, and let t,, be its Lie algebra. Let @m be the affine symmetric group. It is
the semidirect product &,, x Q%'. Note that Q*' is the group of cocharacters of
T,,. We'll regard it as a lattice in t,,, in the usual way, and we’ll identify t,,, with
7, via the standard invariant pairing on t,,. The & -action on 6, ® Cwo @ C0, see
e.g., [@, sec. 13.1], is such that the element 3 in Q®' acts via the operator

&g v v+v(1)p— ((l/, B8) + %(ﬂ, ﬂ}u(l))é. (4.3)
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In particular, we have
1
§p(wo) = wo + B — 5(5,@5-

We'll use the same notation for the &,,-action on £, ®Cwo ®Co and on t}, ® Cwy,
hopping it will not create any confusion. Therefore, for A € t}, & Cwy the symbol
€5(\) will denote both the weight ([.J) and the weight v + v(1)3. We can view
the cocharacter f € Q*' as a group-scheme homomorphism G,,, — T},. Thus the
image B(w) of the element w € K lies in T,,(K). Since the coadjoint action of
B(w) on t, & Cwy & C4 is given by 551, see e.g., [24], we have also

BVIV) = VIEs (v)] (4.4)
for any integrable g[g—module V and any weight v.

4.4. The Hopf C-algebra Ar. Now, let us consider the Hopf C-algebras R(T).
Once again, the multiplication/comultiplication on R(T) is given by the induc-
tion/restriction. We equip R(I") with the symmetric C-bilinear form given by

(f,9)=ITul™" > f(@)g(z™"), f.g € [Rep(CT,)].

It is a Hopf pairing. Next, we consider the Hopf C-algebra Ar = A®T. We'll use
the following elements in Ap

f=19---®19fR1®---®1, feA, yeT,
with f at the v-th place and 1 everywhere else. We abbreviate

Pur=(Pu)y, Pa=]][Pxp. neP, rePl

~yer
The comultiplication in Ar is characterized by
APy)=Py®1+1®P.,, r>0, ~vel.
Following [P2, chap. I, app. B, (7.1)] we write
Pop=L0"'"Y"4"P,, 120, pel
yer
We equip Ar with the Hopf pairing such that
(Prp, Psg) =10p.g0rs, 1,8>0, p,q€Zy.

We may regard P, ,, r > 0, as the r-th power sum of a new sequence of variables
Zip, 1 > 0. We define the following elements in Ar

Sup = Su(@ip), Sx= H Sxpypy BEP, AePh (4.5)
PEZLy
The Hopf C-algebras R(I') and Ap are identified via the characteristic map [,
chap. I, app. B, (6.2)]
ch: R(F) — AF.
This map intertwines the induction in R(T') with the multiplication in Ar by [@,
chap. I, app. B, (6.3)]. By [22, chap. I, app. B, (9.4)] and (B.J) we have
ch(Ly) = S;a, Ae P, (4.6)
where 7 is the permutation of P* such that (7A)(p) = A(p + 1) for each p € Z;. For

A € P we write
2\ = H Z/\(V)gl(A(v))

verl
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and we define A € P by A\(y) = A(y~1). Then we have
(S 8u) = Oxp A mEPY,
<P)\,Pﬂ> :5,\”“2’,\, )\,,LLGPF.

The first equality is proved as in [R2, chap. I, app. B, (7.4)], while the second one
is 24, chap. I, app. B, (5.3")]. By ([.6), (.7) the map ch is an isometry. Thus it
intertwines the restriction in R(T") with the comultiplication in Ar.

(4.7)

Proposition 4.1. (a) The restriction Rep(CI',,) — Rep(C&,,) yields the C-algebra
homomorphism Resg : Ar — A such that Sy — Hp S,\(p), P, — P

(b) The induction Rep(CS,,) — Rep(CT,,) yields the C-algebra homomorphism
Indg : A — Ar such that Po— P,y =3 _, P,

pEZLy - THP*

Proof. The first part of (a) is obvious and is left to the reader, see Section @ For
the second one, observe that

ch(oyp) = Prp, >0,

where 0., is the class function on I'; wich takes the value r(y173 - -7y, )P on pairs
(w, (71,72, - - -, ¥r)) such that w is a r-cycle, and 0 elsewhere, see [E, lem. 5.1]. Now
we concentrate on (b). Note that

Resg(Py,) =1, Resg(P ) =£5,1P., 1 >0.

Therefore, for A € PT we have

Resg (Py) = H Resg (Prx(y),y) =
yel

If f,g € [Rep(CT,,)] are the characters of finite dimensional I',-modules V, W,
then (f,g) is the dimension of the space of CI'y,-linear maps V' — W. Hence, by

gl(A(l))P/\(l) if A(y) =0 for v #1,
0 else.

Frobenius reciprocity the operator Indg is adjoint to the operator Resg. Thus,

re' WISy 4y oy 1 A(y) =0 for v # 1,

(Indg (P,), Px) =
0 else.

This implies that Indg (P.) = aPy,; for some a. To determine a let A be such that
A(y) =0 if vy # 1 and A\(1) = (r). Then we have

P)\:PTJ, <P,\,P,\> :Tf.
This implies that a = 1. O

Remark 4.2. Let f — f be the C-antilinear involution of Ar which fixes the Py\’s
with A e:PF, see @, chap. I, app. B, (5.2)]. For A € P’ let A be the (-partition
given by A(p) = A(—p). We have

Pop=P._p, Sx=Sx, r>0, peZy; IeP
Remark 4.3. Setting £ = 1 in Ar we get the standard Hopf algebra structure and
the Hopf pairing of A.
Remark 4.4. We have @, chap. I, app. B, (7.1")]

Pr,'y = Z ’7_pPr,p; r 20, PO,’y =1, PO,p = 60,1)-
PEZLg
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4.5. The level 1 Fock space. The level 1 Fock space of 5A[m is the space F,, of
semi-infinite wedges of the C-vector space V,, = C™ ® C[t,t~1]. We have

Fm = @dez ]:7(7?)’
where }Z(g ) is the subspace spanned by the semi-infinite wedges of charge d, i.e.,
the semi-infinite wedges of the form
Ugy NUgy Nv-v ) 11 >d9 > ..., ui_jm:ei®tj, (4.8)
where (e1,...,€y) is a basis of C™, and iy, =d — k4 1 if k > 0. We write
A d) =uy, ANugg Ao--y, NEP, dx=X+d—k+1, k>0. (4.9)
The elements |\, d) with A € P form a basis of FD . We equip F with the C-

bilinear symmetric form such that this basis is orthonormal. The C-vector space
Vi is equipped with the level 0 action of sl,, induced by the homomorphism

sl = 8L, @C[t,t7Y, 150, z@w—a®t (4.10)

and the obvious actions of sl,,, and C[t,t~!] on V,,. Taking semi-infinite wedges
this action yields a level 1 action of sl,,, on ]-)Sfl ). The multiplication by t", r > 0,
yields an endomorphism on V;,. Taking semi-infinite wedges it yields an operator
b, on ]-'T(,fl ). Let b!. be the adjoint operator. The operators b.., b, define a level m
action of $ on ]-",(Tfl ). The C-linear isomorphism

FP S A Nd) Sy, AeP (4.11)
takes the operators ), b, eq, fq on the left hand side to the operators b, bmr,
€q—d, fq—a on the right hand side. The ;[m-action and the $-action on .7-'7(7?) glue

together, yielding a level 1 representation of 5 [, on }“T(,fl ). Asa gA[m—module we have

‘7:7'(7;1) — Valm

Wdmodm "

4.6. The level ¢ Fock space. The level { Fock space of 5A[m is the C-vector space
d
}—ml = @dez ‘7:1(71)2

of semi-infinite Weilﬁfs of the C-vector space V, o = C" @C*®@C|z, z71]. The latter

are defined as in ({.§) with
ui+(j71)mfkm€ = €; ® 6] ® Zk. (412)
Here (e1,...,€y) is a basis of C™, (é1,...,¢;) is a basis of C!, i = 1,...,m, j =

1,....¢ and k € Z. We define basis elements |, d), with A € P, of F?, as in (EJ),

using the semi-infinite wedges above. We equip ]:7(5 )e with the C-bilinear symmetric
form such that this basis is orthonormal. This yields a C-linear isomorphism

FD A ANd) Sy, AEP. (4.13)

m,

We equip the C-vector space .77(7? )Z with the following actions :

e The level m¢ action of $) such that b/, b, is taken to the operator b/ ,.., bmer

on A under the isomorphism ([t.13) for > 0.

e The level £ action of sl,,, defined as follows : equip the C|z, 2~ !]-module V,, ;
with the level 0 action of 5A[m given by the evaluation homomorphism (4.10)
and the obvious actions of sl,, and C[z,27!] on V,, ;. Taking semi-infinite
wedges we get a level £ action of ;[m on ]-'T(i)é.

e The level m action of sA[g which is defined as above by exchanging the role
of m and /.
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The actions of 9, 5A[m and ;[e commute with each other. We call ¢-charge of weight
d an {-tuple of integers s = (sp) such that d =} s,. Set

-1
(s, m) = (m — s1 + s¢) wo + Z(sp — Spt1)Wp- (4.14)
p=1
The Fock space associated with the ¢-charge s is the subspace
s d) ra
Fo = Fi s, m)] (4.15)

consisting of the elements of weight §(s, m) with respect to the sly-action. It is an
sl,, x $-submodule of .7:7(;1)@. Consider the basis elements |\, s), A € P¢, of .7:7(;)@

defined in [@, sec. 4.1]. The representation of sl,, on ]:7(5,)2 can be characterized in
the following way, see e.g., [@], [@],

€q|)‘53> =Z|Z/,S>, fq|)‘as> :Z|Ma3>a (4'16)

where v (resp. p) runs through all ¢-partitions obtained by removing (resp. adding)
a node of coordinate (4, j) in the p-th partition of A such that ¢ = s, + j — i modulo
m. Consider the C-vector space isomorphism

Ar > F, Saamr As), APt (4.17)
The representation of § on f,(j?e can be characterized in the following way.

Proposition 4.5. The operators bl., b,., r > 0, on ]-'7(;)@ are adjoint to each other.
Further b, acts as the multiplication by the element Py, 1 = Zp Porp of Ar under

the isomorphism .

Proof. The first claim is [@, prop. 5.8]. To prove the second one, observe that the
formulas in @, sec. 4.1, 4.3 and (25)] imply that the C-linear map

Fae= @ F5. As) = @ 1Mm).s).
PEZLy PEZLy
intertwines the operator b, on the left hand side and the operator
bRl @1+10b6 310 @1+ +18 011,

on the right hand side. Thus the proposition follows from the definition of the $-
action on F,, in Section @ and from the definition of the $-action on A in Section

E3. O

Remark 4.6. The f?[m—action on ]:7(;)@ can be extended to an f?[m—action such that
the weight of |A, s) is

4 m—1
—A(s,m)d + Zwsp — Z nq(X)ay,
p=1 q=0

see [2, sec. 4.2]. Here ny(\) is the number of g-nodes in A, i.e., it is the sum over
all p’s of the number of nodes of coordinate (i,5) in the p-th partition of A such
that s, +j — 7 = gmod m. We have also used the notation

A(s,m) =

| =

y4 Y4
1
5 <wsp modm>, Ws, modm> + 5 E Ap(sp/WL - 1)
p=1 p=1

In particular, we have

D(|A, 8)) = =(A(s,m) +10(A)) A, 5)-
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5. THE CATEGORIFICATION OF THE HEISENBERG ALGEBRA

We’ll abbreviate
(o)) = Plor,)].

n=0
Assume that h, h, are rational numbers. Thus A is a rational weight of ;[g of level
1. Let m be the denominator of h. We’ll assume that m > 2.

5.1. The functors Ay, A}, Ay . on D*(O(I')). To simplify the exposition, from
now on we’ll assume that ¢ > 1. All the statements below have an analoguous
version for ¢ = 1, by replacing everywhere C* by Cj. Let n,r be non-negative
integers. Consider the point

bmz(o 0,1, 1) e =CF,

with z; =0 for 1 <7 < n, and z; =1 for n < ¢ < n +r. The centralizer of b, , in
Ty is the parabohc subgroup Iy, -. We have

/Bl = C" x .

Here C™ is the reflection representation of I';, and Cj is the reflection representation
of &,.. Note that

O(Tnr) = Oy, C" x Cp), O(&,) = O0(&,,Cy).
In particular we have a canonical equivalence of categories
OTnr) = OI') @ O(6,).
Thus the induction and restriction relative to b,, , yield functors
Tnd,, , : O(T,) @ O(&,) = O(Ty1r),
OResnr : O(Tpir) = OI,) @ O(&,). (5-1)

Now consider the functors OIndn,mT, OResmmT. The parameters of H (T 1m,) and
H(T',) are h, A. The parameter of H(G,,,) is h. Fix a partition A € P,.. We define
the functors

OT,) ® O(Gmr) = O(I'),
M +— Homes,,,) (M, Lmx)*, M + Homops,,,)(Lma, M),
as the tensor product of the identity of O(T',) and of the functors
O(Smr) — Rep(C),
M — Homes,,,)(M, Limx)*, M +— Homos,,,)(Lmx, M).

Here the upperscript * denotes the dual C-vector space. We denote the correspond-
ing derived functors in the following way

M — RHOmo(G (M, Lm)\)*, M — RHOmo(gmr)(Lm,\, M)

mr)

Definition 5.1. For \ € P, with » > 0 we define the functors

Axt : DYO(Timy)) = DY(O(Ty)), M+ RHompsos,,, ) (CResnmr (M), Linx)*,
A5 :DYO(T,)) = DY(OThsmr)), M CInd,y pr(M @ L),

Axs D" (O pimr)) = D*(O(T)), M — RHompso(s,.,)) (Lma, “Resp mr (M)).

Proposition 5.2. We have a triple of exact adjoint endofunctors (Ax, A%, Ax )
of the triangulated category D*(O(T')). For M, N € D*(O(I")) we have
RHome(O(F))(AA( ) N) RHOme(O(F))(M, A)\ﬁ*(N»,
RHom pe o (1)) (Ax,1 (M), N) = RHompsory) (M, AX(N)).
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Proof. Obvious because the functors Ind,,—yr.mr and Res,—_mr ms» are exact and
biadjoint, see [}, [R€]. O

We write A* = Af}) and A, = A, for b =!, x

Proposition 5.3. For r > 0 and b =!, % the group &, acts on the functors (A*)",
(A,)" and we have the following &, equwamant tsomorphisms

Ay =P Loy, (4) =P Lo Ay,
AEP: AEP,
Proof. We can assume that » > 0. Recall that
OInd(,ry = CIndgy : O(67,) — O(Gynr).

We claim that the group &, acts on the module OInd(mT)(L((@":)) and that the
following identity holds in Rep((CGT) ® O(Gmr)

Ind oy (LED) = @D La ® L. (5.2)
AEP:-

To prove this, recall that Rouquier’s functor R yields an equivalence
O(S.mr) = Rep(S¢(mr)) (5.3)

which takes L, to LY , and which identifies the induction on O(&) with the tensor
product in Rep(S¢(mr)). Here ¢ is a primitive m-th root of 1. Thus, to prove (5.9)
it is enough to check the followmg identity in Rep(C&,) ® Rep(S¢ (mr))

®r @ L)\ ® Lm/\
AEP,
To do that, note that the quantum Frobenius homomorphism yields a tensor functor
Fr* : Rep(S1(r)) — Rep(Sc(mr)), L5~ L3,

where I_/f is the simple S ()-module with the highest weight A. Therefore, to prove
(.9) we are reduced to check the following identity in Rep(C&,) @ Rep(S1(r))

(L3)* = D Lo LS.
AEP,

This is a trivial consequence of the Schur duality. Now, the transitivity of the
induction functor [P, cor. 2.5] yields a natural isomorphism

(A")"(M) = “Indymr (M © CInd ey (Lior) ) ) -

Thus the claim yields a canonical action of the group &, on the functor (A*)", and
the identity (@) yields the following decomposition

= P L@ 4. (5.4)

AEP,

The remaining identities are obtained by taking the adjoint functors. O

Remark 5.4. We have used the hypothesis m > 2 in the proof of Proposition @
when using Rouquier’s functor R. Probably this is not necessary.

Proposition 5.5. For A € P, with r > 0 we have an isomorphism of functors

A)\ﬁg[QT(l — m)] = A)\ﬁ*.
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Proof. We can assume that r > 0. Let Perv(P™~!) be the Abelian category of
perverse sheaves on P™~! which are constructible with respect to the standard
stratification P! = COUC! U--- UC™ ', By [}, thm. 1.3] the category O(&,,)
decomposes as the direct sum of Perv(P™~1) and semisimple blocks. Under this
equivalence the module L, is taken to the perverse sheaf Cpm-1[m—1]. Therefore,
by Verdier duality, we have [E, (3.1.8)]

RHompu(o(s,,)) (L(m): M) = RHompe o (s,,.)) (M, L(m))*[2(1 — m)].
This yields an isomorphism of functors
Ail2(1 —m)] = A,.
Therefore, we have also an isomorphism of functors
(A [2r(1 = m)] = (A,)".
Thus the claim follows from Proposition .3 O

Remark 5.6. The transitivity of the induction functor [@, cor. 2.5] yields an iso-
morphism of functors A3 A7, = Ay A3 for A, u € P. Taking the adjoint functors we
get also the isomorphisms Ax1 A, = A 1 Axy and Ay Ay = Aps Axs

Remark 5.7. The functors Ay 1, A3, Ay« yield linear endomorphisms of the C-vector
space [O(I")]. Let us denote them Ay, A, Ay« again.

Remark 5.8. For any object M of D®(O(T')) there should be a distinguished triangle

Um)M —= A, A (M) —= A* A, (M) ——.

5.2. The functors a3, ay . on O(T") and the $H-action on the Fock space.

For i € Z and b =!, % we consider the endofunctor H*(A, ;) of O(I') given by
H'(Axp)(M) = H'(Ay,(M)), M € O(T).

From now on we’ll write Ray, = Ay, and Rlay, = H'(Ay).

Definition 5.9. Let a} be the restriction of A} to the Abelian category O(T").

Since a} is an exact endofunctor of O(T"), we may write af for A} if it does not

create any confusion. We abbreviate ay , = Roa)\ﬁb. The functor ay . is a left exact
endofunctor of O(T'), while ay, is right exact.

Consider the chain of C-linear isomorphisms which is the composition of (@), of
the characteristic map ch, and of (),

OT)] - RT) - Ar — F, (55)
A)\ — L,\ — S.,-)\ — |)\,S>

Proposition 5.10. (a) The map @) identifies the symmetric C-bilinear form on
]:7(;)[ with the C-bilinear form

[O)] x [O(T)] = C, (M,N) Z(_wdim Extgpy (M, N).

(b) The map (5.3) identifies the operators bg, 5, on fr(j?e with the operators
a}, Ray . on [OT)].
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Proof. Part (a) is obvious because we have
dim Extg ) (Ax, Vi) = 8i00au,  [Au] =[Vp], VA ue P,

because O(T,,) is a quasi-hereditary category, see e.g., [E, prop. A.2.2]. Now we
concentrate on (b). By (a) and Proposition .9, the pairs (bsy, b, ) and (a3, Rax )

consist of adjoint linear operators on ]:7(;)2' So it is enough to check that under
(.3) we have the following equality

To do that, observe first that, by Proposition , for r > 0 the map ch : R(T") — Ar
intertwines the operator

R(I') —» R(T), M+ Indf,e(M ®ch ! (Py,))
and the multiplication by ZpEZ[ Py, p.- Here we have abbreviated
Indp, e = €D Indpm-
n,r >0

Next, by Proposition @, the map Apr — ]-"7(;)@ above intertwines the multiplication
by ZPGZ[ P,,rp and the operator b,. The plethysm with the power sum P, is the
C-algebra endomorphism

e A= A, f e Y 20N P P
AEP

The discussion above implies that the map R(T') — fr(j?e above identifies the action
of bg, on ]-"7(;7)@ with the operator
R() = R(T), M + Indp, (M @ ch™'™(Sy)).
Now, recall the maps
spe : [Rep(Cl'y)] — [O(I'n)],  spe : [Rep(CEpmy)] = [O(Epy)]-
By Lemma @, they commute with the induction and restriction. We claim that
speoch™! otp™(S)) = L.

Thus (f.4) follows from (.5). To prove the claim, set ¢ equal to a primitive m-th
root of 1. Then Rouquier’s functor yields an isomorphism, see (@),

[O(&mr)] = [Rep(S¢(mr))].
Next, the quantum Frobenius homomorphism yields a commutative diagram
Fr
[Rep(S1(r))] — [Rep(S¢(mr))]
¥ X (5.7)
A a A
where y is the formal character, see e.g., [@, sec. ILH.9]. Consider the chain of

maps
€4 ()

0 : [Rep(C&,, )] == [O(&r)] == [Rep(S¢c(mr))] .

X

We have
P(Sa) =Ly, 0ch ™ (S) =A%, XEP,, pE P

Thus we have
X(0 ch™'(Su)) = X(A2) = Su, 1 € Pony
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Therefore we have also

X(@och™ oy™(Sy)) = W"(SA) = x(¥(Sx)) = X(Ly»)-

This implies that 6 o ch™* o)™ (Sy) = m y» proving the claim and the proposition.

(I
Proposition 5.11. Let A\ € P, with r > 0.
a) We have a triple of adjoint functors (ax1, a}, ax «)-
Ay Ay A,
(b) We have R*(m~Va, , =ay,.
(¢) Forb=x,1,q=0,1,...,m—1, and i > 0 there are isomorphisms of functors

eqRlay, = Rlayyeq, egay =aseq, foR'an, =Rlayy fyy foas=a} fy
Proof. By definition of the functors Ay ., Ay we have
Ar.(O()) € DZ(OT)),  Axi(O(T)) € DSY(O(T)).
Thus, by Proposition @ we have the triple of adjoint endofunctors of O(T")
(axss @i, axs) = (H(Ax)), A%, HO(Ax0))-
This proves (a). To prove (b) it is enough to observe that Proposition @ yields
R¥(m=Vg, = H*(M=D(A, ) = H(Ay)) = ax,.
Next, let us prove part (¢). It is enough to give isomorphisms of functors
eqay =ayeq, fqaX=a} fq (5.8)
First, observe that we have an isomorphism of functors
Fa)=a}F. (5.9)
Indeed, for M € O(I',,) the transitivity of the induction functor [26, cor. 2.5] yields
Fai(M) = °Indpymr ©Indpy (M @ L)
= OIndp 77 OIndp " (M @ L)

n+7n

= OIndp"* "+ (M @ Liny),

ai F(M) = °Ind,, 1 mr (CInd, (M) @ Lyy)
OInd ntmr41 (OI d Trta (M) ®Lm/\)

Tnt1,mr

OI d Copmrt1 OI d Tont1,mr (M@Lm)\)

F+1

= OIndF:tZT“ (M ® Lmk).
By (b.9) for each M € O(T',,) we have

@fqai(M) = @ai{ fo(M

We must prove that we have also an isomorphism f, a} (M) = a3 f,(M). To do that
we may assume that [M] is a weight vector of the sl,,-module [O(T")]. Let v denote
this weight. Then [f;a}(M)] and [a} fq(M)] are both weight vectors of weight
v + aq by Proposition p.10. But by [[9] two modules M, M> € O(I') such that
[Mi], [M2] are weight vector of [O(T')] of different weights belong to two different

blocks of the category O(T"). Thus the first isomorphism in (p.§) is proved. Next,
let us prove that we have an isomorphism of functors

Ea) =a} E. (5.10)
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The second isomorphism in (5.§) follows from (F.10) by a similar argument to the
one above. For M € O(T,,) we have

E a3 (M) = °Respimr CIndyy e (M @ Liny),

ay E(M) = “Indy—1 mr(“Resyn (M) @ L),

By Proposition p.3 it is enough to prove (5.10) for = 1, i.e., we must check that
there is a natural isomorphism

) =
)=

OResntm OIndym(M @ L) = Indy—1,m OResp™™ (M @ Liyy).  (5.11)

n—1,m

A set of representatives of the double cosets in

Fn—i—m—l \ Fn—i—m/rn,m
is {Yn+m: Sn,ntm; 7 € I'}, see Section E Further, we have

1 .
ifz= Tn+m;

Thncim if £ = 55,n4m-

'y 1™
1 n,m
Z'Fn,mx N 1—‘nerfl = {

Finally, since L) is finite dimensional we have
ORes™" (M ® L)) = 0.

Thus the identity (5.1]) is satisfied in [O(I'p4.m)]. More precisely, Proposition [A.9
yields the following decomposition of functors

HResy gm0 MIndy = (FTndy, 1m0 (FRes, ®1)) @ (MInd, -1 0 (107 Res,,)) .
Therefore we have also the following decomposition of functors
KZo%Res, 1m0 ©Ind,, =
— (KZo°Ind,_1,m 0 (PRes, ©1)) @ (KZ o Ind, -1 0 (1 ® ORes,n)) ™",

The induction and restriction functors on O(T") take projective modules to pro-
jective ones, because they are exact and biadjoint. Thus, by (@) we have an
isomorphism

OResnim CInd,, m(P) =
= %Ind,_1m (PRes, @ 1)(P) & (CInd,, 1 (1@ “Res,,)(P)) ™
for any projective module P € O(T"). This proves the isomorphism () O

5.3. Primitive modules.

Definition 5.12. A module M € O(T') is primitive if Ra,(M) =0 and E(M) =0
(or, equivalently, if R'a.(M) = eq(M) = 0 for all g,4). Let PI(O(T)) be the set of
isomorphism classes of primitive simple modules.

Proposition 5.13. For L € Irr(O(T),)) the following are equivalent
(a) L € PI(O(T,),
(b) Le II’I‘(O(Fn))0,0,
(c) dim(L) < oo.

Proof. Assume that L € Irr(O(T',,)). The equivalence of (b) and (c¢) is Remark
B.I3. Let us prove that (a) = (b). Fix [,j > 0 such that Supp(L) = X, ;. Set
i =n—1—myj. We first prove that j = 0. Assume that j > 0. Then we have

Limiy = Ligmi-1) X Gy Tpmi-1) C Lo
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There are modules M,, € O(T'n—m), pt € Pm, such that in [O(T';, ;)] we have

[Resn,m (L)] = Z [Mu @ Lu]-
HEPm

The transitivity of the restriction functor [@, cor. 2.5] yields the following formula
| Tn_m
[Resi(L)] = Z[RGSQ(MM) ® L,], Res; = OResrl’(mj), Resy = “Resp.

L(mi—1)
“w

The H (T (mi))-module Res;(L) is finite dimensional, because Supp(L) = X ;.
Thus we have Resa(M,,) = 0 unless u = (m), and

[Resl(L)] = [RGSQ(M(m)) ® L(m)] (5.12)
Next, since Rax([L]) = 0 we have
0 = [Resz Ra.(L)]

= Z [ReSQ(M#) ® RHOmo(gm)(L(m), LH)]?
HEPm

= [Res2(M(m)) ® REndo(s,,) (Lim))]-

Thus, using [@, thm. 1.3] we get Resa(M(y,)) = 0. This yields a contradiction with
5.19) because Res; (L) # 0. So we have j = 0. Next, since E(L) = 0, by Corollary
3.1 and Remark @ we have i = 0.
Finally, we prove that (¢) = (a). We must prove that if L is finite dimensional
then it is primitive. This is obvious, because “Res,, ,,(L) = “Res,, (L) = 0. O

Remark 5.14. By Proposition the elements of PI(O(T,,)) form a basis of
Fo,0(Ty).

5.4. Endomorphisms of induced modules. For r > 1 we consider the algebras

B, =6, x C[z1,22,...,%r], Bre= BT/(xli,xg,... :I:é).

»r

The following proposition is the main result of this subsection.

Proposition 5.15. Letr > 1.

(a) The C-algebra homomorphism C&, — Endory((a*)") in Proposition b.4
gives rise to a C-algebra homomorphism B, — Endory((a*)") such that x1, w2, ..., 7,
map to nilpotent operators in Endor)((a*)"(L)) for each L € O(T).

(b) The C-algebra homomorphism B, — Endeory((a*)") factors to an isomor-
phism By, = Endory((a*)" (L)) for L € PI(O(T)).

Proof. The proof of this proposition is rather long and is done in several steps. Let
H(Ty, (o)), H(I'ypmr) and the X;’s be as in Appendix E Consider the elements

§i = Xngmi-D+1Xntm(i—1)+2 " Xntmi, =1,2,...,1.
They belong to the centralizer of H(I',, (,)) in H(I';i4 ). Thus the right multipli-
cation by &,4=1,2,...,r, defines an automorphism H¢; of the functor HIndn,(mT).

More precisely, for a H(I',, (,))-module M we set
He(hov)=h&@v, he HTuimr), vE€ M.
The functor KZ yields a C-algebra isomorphism [@, lem. 2.4]
KZ : End(°Ind,, () = End(KZo®Ind, (4,r)) = End(®Ind,, () 0 KZ). (5.13)
Thus there is a unique endomorphism ©&; of the functor OIndm(mr) such that

KZ(P&(M)) = "¢ (KZ(M)), VM € O(Ty (mr)-
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The functor @ @ (L(;,))®" : O(T'y) = O(L', (1)) yields a C-algebra homomorphism

End(®Ind, () — End((a*)").

(5.14)

Let & denote the image of ©¢; by the map () Next, we define an element 7; of
End((a*)") for i = 1,2,...,7 — 1. First, let 7; € &, 4, be the unique permutation

such that
e 7; is minimal in the coset &y, ) TiS (1, mr),

o T(vwiws ... wp)T, T = VW ... Wi W; . .. Wy for v € &y, wy,

Now, observe that there is an obvious isomorphism
H(Ty, (ry) = H(T,) ® H(G,,)%".
Let 7; : H(T',, (;nr)) — H(I', () denote also the permutation

e Wy € Gy

TRYUIQ QY 2T RYN Q- QUYit1 QY -+ Q Yy

We have the following relation in H(T';,4)
Trz=1(2)Ty, z€HT, mr)
Therefore, the element T, belongs to the normalizer of H(I',, ()
Further, the twist of a module by 7; yields the functor
7; : Rep(H(T'y,, (mr))) = Rep(H(Ty,, (mmr)))
given by
MIN @ - QN, 2 MOIN; ®-- QN1 ON; ®--- ®

(5.15)
in H(Fn+mr)

Ny,

MmN QNpt=>MAONT Q- Q@Nijp1 Ny Q-+ - Q Ny

For a H(I',, (y,r))-module M we define the natural morphism
Hr (M) : BInd,, (;ry (M) — HInd,, () (1 M),

Hro(M)(h®@wv) = hTy, @ 7;(v), h€HTpimr), vE M.

Finally, let 7; denote also the permutation
7t Oy (mry) — O(Fn7(mr)),
M®N,® - QN, 5 MOIN;®@ - ®N;j1 ®N; ® -+ ®
By () there is a unique morphism of functors
Or e Hom(olndnﬁ(mg, OIndnﬁ(mT) OTi)

such that
KZ(®7(M)) = Bry(KZ(M)).
The functor e ® (L(m))®T yields a C-algebra homomorphism
Hom(olndny(mr), OIndnﬁ(mT) OTi) — End((a™)").
Let 7; denote the image of ©7; by the map (p.14).

N,.

(5.16)

Lemma 5.16. The following relations hold in End((a*)") for j #i,i+ 1

Tio&ioTi =&y, TiokjoT=§
Proof. Tt is enough to prove that

H H H H H H H H
T, 0 &0 =01, Tio g0ty =g

To do so, we are reduced to check the following relations in H(T',4my)

TﬂgiTn = §i+15 T‘I’-ngTTl = 5‘7
Recall that ¢ is a m-th root of 1. Let a; =n+ (i —1)m+1,b; =n

Kj =Ty, —jTo,—jt2 - To,+j—2Tb+j-

+ im, and
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A direct computation yields that
T, = KoKy KoK 1Km_s - K1 Ko.
Further, for 0 < j < m — 1 we have
KiXa, Xav1- Xo—j—oXo—j—1(Xo—j Xp,—jro - X)) K =
=YX, Xasi1 Xpmjoo(Xpi—jm1 X j 1 Xp— 3 - Xbitjt1)s
and for 0 < j < m — 2 we have
Kj(Xb,—j Xbi—jr2 Koo ) XoirjroXo4jas - Xopm K =
= (¥ (Xp,—jr1 Xo—j4s - Xorjo1) Xogr 1 Xoorjr2 Xoiajrs - X

We deduce that
TTiEl'TTi = TnXaiXai—i-l T XbiT‘ri

= C2(1+2+...+m71)K0 o Ko Xa 01X, 43 X, am—2Xp, omKm—2+ - Ko
= (20F2tmo1) (21424 4m=2) x
= ¢mm=g
= &it1-

The relation T7,&;T,, = &; for j # i,i + 1 is obvious. 0

ai-i—mXai-l-m-i-l e Xbi—i-m

Lemma 5.17. The following relations hold in Endpry((a*)")
° 7‘3 =1,
o T =TT AfjAFL—1,1+1,
® TiTit1Ti = Tit1TiTi41-

Proof. Consider the morphism of functors

H0 ¢ Hom(HInd(mr), HInd(mr) oT;),

H_o (5.17)
S (M)(h®@v) =hT, ®7;(v), heH(G,,), vel.
By (b.13) there is a unique morphism of functors
OTZ-O € Hom(OInd(mr), OInd(mr) OTZ')
such that KZ(972(M)) = Hr9(KZ(M)). We set
7 = (LE) € End(CIndgnrn (L())- (5.18)

The transitivity of the induction functor yields

a")" (M) = OIndn mr M®Olnd mr er (M) = Olndn mr(1 ®7_—ZQ .
; (m™) A (m) '

Therefore, we are reduced to check the following relations in End(olnd(mr) (L?n:)))
o (7)Y =1,
. ‘Q‘Q 7;0%0 ifj #Fi—1,0+1,
® TlOTz-i-lTO = Tl-‘rl O i0+1'
By Proposition @ the functor R yields a C-algebra isomorphism
(@] T o7
Endo(s,.,) (CInd(mn) (L)) = Ends (mr) (L{0)®")-
Therefore, we are reduced to check the following relations in Endg, () ((L(Sm))®T)
° R(?‘ ) 1,
o R(7? VR(7; ) (?)R( Yyifj#i—1,i+1,
* R(7)R(7 z+1) (fo) = R(7Y1)R(T)R(T )
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We define the endomorphism of the functor (e)®" given by
o0 = R%).

Consider the diagram

Endos,,.,) (CInd ) (0)€7) 2> Endgys,,,) (FTnd e (KZ(e)7))
Rl /
Enng(mr) (R(O>®T) .

The upper map is invertible by (5.13), the vertical one by Proposition @, and the
lower one by Corollary @ Finally, the diagram is commutative because ®* o R =
KZ, and the image of 97 ((e)®") is given by

Or0(()®7) ——H710(KZ(e)®")

ST (R(e)®7).
Therefore, by (5.18) we have
R(7)) =S ((LG,))®7), i=1,2,...,r— 1 (5.19)
Now, by Corollary @ the functor ®* yields
Ends (mr) (()°7) = Endps,,..) (FInd(r) (27(0)%7)), R = Sae(o).i-
Further, by (b.17) we have
Sni =) (M®T), M € Rep(H(S,,)).

Therefore we have also

Rari =57 (M®"), M € Rep(S¢(m)). (5.20)
Thus, by (), () we must check that the operators RL(s i withi=1,2,...,r—
1 satisfies the same relations as above. Since Lfm) =" (l_/(sl)), this follows from
Proposition @ (]

For any element w € &, we fix a reduced decomposition w = s;,8;, - - - 5;, and
we define the following element in 7, of End((a*)")
T = Ti Tig * + Tig»
Next, for a tuple p = (p1,p2,...,pr) € Z" such that 0 < p; < £ we set
=46
Lemma 5.18. For any L € Irr(O(")) the elements P 7,(L) of Endory((a*)" (L)),
with w € &, and p € [0,£)", are linearly independants.

Proof. For w,41,...,1,p as above the expression 7;, 7, - - - 7;, is reduced. Let us
define the following elements in H(T' 4 1mr)
tw = T_I_i1 T_I_i2 . Tﬂ'k’ EP — 5{)15;)2 .. €71?r

Recall that the elements
XleSQ e Xpn+mrTwa pi € [076)7 w € Gpimr,

n—+mr

form a C-basis of H(I';ym,). Therefore H(I',14y) is a free H(I',, (,r))-module
with a basis given by
{gptw ;we Gy, pE [O,E)T},
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because P centralizes H(I'y, (,,,-y) and because the element 7;,7;, - - - 7;, above is
minimal in its left &, ;,r)-coset. There is an injective H(T';, (y,r))-module homo-
morphism

Byt H(T, () ¥ = HCpgmr), (hpaw) Y o € (5.21)
pyw
where w, p run over &,., [0, £)" respectively. Further, since &P centralizes H(I',, (),
the relation (f.15) yields
2EPty, = EP2ty = EPtyw H(2), z € H(y, (mr)),
where w™(z) = 7, -+ 7,7, (2).  Therefore By is a (H(Ty, (o)), H(Ts, (mr)))-
bimodule homomorphism, where the right H(I,, (,,~))-action on H(Fny(mr))@”” is

twisted in the obvious way. Since H4) is injective, and both sides are free H(T,, (o )-
modules, for each M € O(Fn,(mT)) we have an injective homomorphism

Hy(KZ(M)) : @ wKZ(M) — "Res, (1) 0 FInd,, () KZ(M) =
p,w

= KZo%Res,, (snry © “Ind,, (r) (M),
where
W= Ty Tiy - .. Tip, : Rep(H(Ly, (;mr))) — Rep(H(Ty, (7))
Further, we have
wKZ(M) = KZ(wM),
where
w O(Fn,(mr)) — O(Fnﬁ(mT))
is the twist by the permutation
w: HTy, (mry) = HTR) @ H(6,)%" — H(Ty) © H(6m)%" = H(Tp (mr))-
The canonical adjunction morphism
P — S(KZ(P))

is an isomorphism for each projectif module P € O(T'). Here S : Rep(H(I")) —
O(T) is the functor from Section 3.4. Further, the functors ORes,, (mr) and ©Ind,, (mr)
preserve the projective objects, because they are bi-adjoint and exact. Therefore,
applying the left exact functor S to the map Hwy)(KZ(P)), with P projective in
O(I'y, (mr)), we get an injection

OY(P) : @ wP — © Resy, () 0 C Indyy (e (P).
p,w
Since the category O(I',, (n,r)) has enough projective objects and since the functor

© Resp,(mr) © o Ind,, () is exact, the five lemma implies that there is a functorial
injective morphism

QP(M) : G wM — © Resy, (ry 0 C Indyy () (M), M € O(T, (rry)-

p,w

Now, set M = L ® L((%;) with L € Irr(O(T")). Then we have wM = M for all w as

above. Therefore we get an injective linear map

C"" = Homory(L @ Ly, L LET ) —

— Homo (L @ Ly, @ Resy ey © Indy, ey (L © LE)) = Endory ()" (L))

It maps the canonical basis elements to the elements £ 7,,(L) with w € &, and
p € [0,0). O
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Lemma 5.19. For L € PI(O(I'y,)) the following identity holds in [O(I'y, (nry)]

[OResy, (mry(a*)"(L)] = €771 [L @ LE) .

Proof. By Lemma E the left hand side is equal to

> CInd, 7, 0 (OResy " (L @ LEX))), (5.22)

where W, = an,(mT):c’l NI, (mr) and @ Tuns over a set of representatives of the
double cosets in 'y (ry \ Tntmnr /T (mr).  Since W, is a parabolic subgroup of
[y (mry, it is generated by reflections. Hence we can decompose the group W, in
the following way

W, =W.xW" W.,cT, W/ CG&. (5.23)
Here W/, W/ are parabolic subgroups. We have

Lo (mr r n &, r
OResy " (L ® Lf@m)) = OResa,g2 (L) ® ORes;VI,, (Lf@m)),

and a similar decomposition holds for the induction functor. Further, since L €
PI(O(T'),)) we have OResII:IZ,E (L) = 0 if W/ is proper by Proposition .13, Thus we
can assume that W/ = T',, i.e., we can assume that = belongs to the subgroup
{1} x T'srr C Tpppnr. We'll abbreviate

S, ={1} x6&;,, Tpr={1} xTpy.
Then we have W = 28" 71 N &" , and we are reduced to check that

3OSy, o (OResy (L) = € [LE7], (5.24)

(m

where W, = 267, 27! N &’ and x runs over a set of representatives of the double
cosets in &7 \I',,,/S7 . Now, observe that

OResyy (LET) =0

(m)
unless &7, z~! = &7, and that 267,271 = &7, if and only if x belongs to

Nr,,.(67)), the normalizer of &7, in I',,,. Further, we have a group isomorphism
Nr,,,(67,)/65, = .
This proves the lemma. O

Lemma 5.20. For L € PI(O(T")) the elements &P 7,,(L) withw € &, andp € [0,£)"
form a basis of Endpr)((a*)"(L)).

Proof. By Lemma it is enough to check that
dim Endepry((a®)"(L)) < €77
For L € PI(O(T',,)) Lemma yields
dim Endpr)((a*)"(L)) = dim Homery (L @ L((@":), © Resy,, (mry (a™)" (L)) < L7
O

Lemma 5.21. Fori=1,2,...,r and L € O(T') the operator &(L)+1 on (a*)"(L)
is nilpotent. Further, if L € PI(O(T)) we have (& (L) +1)* = 0.

Proof. The C-vector space [O(T')] is equipped with an sl,,-action via the isomor-

phism (F.F), see also Remark [.§. For a weight y of sl let o), C O(T) be the
Serre subcategory generated by the simple modules L whose class in [O(T")] has the
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weight p. Set O(T'y), = O(T), N O(Ty,). Although we’ll not need this formula,
note that if Ay € O(I'y,), then we have

m—1
W= to — Z nq(A)ag
q=0
where po is a weight which does not depend on n, A, and ngy(\) is the number of
g-nodes in the f-partition A. The element
Zn :XlXQXn

belongs to the center of H(I',,). Thus it yields an element ¥z, in the center of
Rep(H(T',,)). Since KZ identifies the centers of O(T',) and Rep(H(T',)), it yields
also an element ©z, in the center of O(I',,). Let L € Irr(O(T',),.). Then ©z, acts on
L by multiplication by the scalar ¢¥(*), where v is a linear form such that v(a;) = i
for:=0,1,...,m—1, see e.gﬁ, sec. 4.1]. Now the operator a* maps O(I';,),, to
O(Tp4m)pu+ts by Proposition . Thus © 2,4, acts on a*(L) by multiplication by
the scalar ¢¥(#+9). Therefore & acts on a*(L) by multiplication by the scalar

Cv(zi) _ Cm(mfl)/Q —

By Lemmas p.16, [p.17 this nnphes that for any L € (9( ) we have (§(L)+1)N =0
in Endor)((a ) ( )) fori=1,2,...,7 and N large enough.

_Now assume that L € PI( (9 Let N; be the minimal mteger such that
(&(L) +1)Ni = 0. By Lemmas - we have N; = Ny = = N,.. Hence, by
Lemma we have also ¢/ = N; = = = N,. O

The previous lemmas imply that the assignment
=&+l s T, i=12,000r j=1,2...,r—1, (5.25)

yields a C-algebra morphism B, — Endpr((a*)") such that x; maps to a nilpotent
operator in Endepy((a*)"(L)) for each L € O(T'). By Proposition [B.§, see also the
proof of Lemma , the action of s; on (a*)" above is the same as in Proposition
B.3. This proves part (a). Next, part (b) follows from Lemmas 5.2, p.21. O

For a module M in O(T") the adjunction yields a morphism
(M) : M @ LE — “Resy, () (a*)" (M).
Corollary 5.22. Forr > 1 and L € PI(O(T',,)) the C-algebra isomorphism
By¢ = Endo(r)((a®)"(L))
yields an isomorphism of By e X H(T'y4mr)-modules
B ®(L® L((%;)) — 9Res,, (mr)(@*)" (L), w® v “Res, (mr)(w) - n(L)(v).
Proof. The corollary follows from Proposition and Lemma , because
Endor)((a*)" (L)) = Homor) (L ® Lim), “Resy (mr)(a*)" (L))
is a free B, ¢-module of rank one and
[°Resp, (mr) (a*)"(L)] = dim(By,) [L @ L]
it [O(T (). 0

Definition 5.23. For A € P., r > 1, we can regard the &,-module Ly as a B, -
module such that x1,xs,...,x, act by zero. For L € PI(O(T,,)) we define

ay(L) = Lx ®s,, (a")" (L) € O(Tptmy)-
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Definition 5.24. For r > 1 we define a functor O(I'y4mr) — Rep(&,) @ O(T',,) by

\II(M) = HOIIlo(@:n) (L((@»,;)a OReSn,(mT) (M))

= Homoys,,,) (PId(mr) (LE,), “Respmr (M)).

(m
The &,-action on ¥(M) is the &,-action on OInd(mr)(L?mT ) in the proof of Propo-
sition @

Corollary 5.25. Forr > 1 and L € PI(O(T'),)) we have an isomorphism

(L Lin) &) = ORes,, () (@5(L))

(m
as H(T'y,)-modules, and we have an isomorphism of &, x H(T',)-modules
Ly® L =Y(as(L)).
Proof. The first claim is obvious, because Corollary yields an isomorphism

Bre® (L@ L&) = Resp (mr)((a*) (L))

(m

which factors to an isomorphism
C6, ®(L® L%:l)) = OResm(mr) ((a*)T(L)), (5.26)

with

(a)(L) = (a*)’”(L)/Zwi (a)"(L).

Indeed, taking the isotypic components the isomorphism () factors to an iso-
morphism

(L@ Lo )P4 = ORes,, () (a3(L)).

To prove the second claim, observe that Corollary and () yield compatible
S, x 6, x H(T',)-module isomorphism

Bri®L=0((a") (L), C& &L=U(@)(L). (5.27)
The first G,-action on \P(W(L)) is the &,-action in the definition of ¥, and the
first &,-action on CS,. ® L is the dual of the right &,-action on C&,.. The second
G, -action on \Il((aT)T(L)) is the &,-action on (a*)"(L) in Corollary .29, and the
second &,-action on CS,. ® L is the left &,-action on CS,.. To identify the actions
as above, it is enough to note that the isomorphism

B, =Homor,)(L, By ® L) = Home(r,,) (L, ¥(a*)" (L)) =
= Endor)((a®)"(L))

given by (6.27) is equal to the isomorphism (5.29), and that the &,-actions on
(a*)"(L) are taken to the left and to the dual right &,-action on B, , by the map

(6.29). Next, write

(5.28)

C&, =@ Lr® Ly
A

as an G, x G,-module, and take the isotypic component. (I



HEISENBERG AND CHEREDNIK 35

5.5. Definition of the map a,.
Proposition 5.26. For A\ € P, with r > 1 we have
ax(Fij(Tn)) C Fijir Tngme),  aX(Fij(T0)°) C Fijir (Dngmr)
Proof. By Remark we have
Supp(Lmy) = Xer, cpr-
Let L € Irr(O(T'y,)). First, assume that L € Irr(O(T'),)), 4, i.e., that
Supp(L) = Xy j,cn
by Remark . Hence the module L ® L, has the following support
Supp(L ® Ly,») = Xy jcn X Xanv(CBM'

So by Proposition ﬁ we have

Supp(ax (L)) = Xi jrcotme.
Thus the class of a} (L) belongs to F; j4r(I'nimr)® by Remark . Next, assume
that [L] € Fi,j(Fn)y i.e.,

Supp(L) = Xp jrcny, X jren C Xpjen-

Thus we have

Supp(a) (L)) = Xy jrgrcrtmr.
So (B.11)) yields

Xl/,j/+T7(cn+mr C Xl,j+T,Cn+m7"
i.e., the class of a} (L) lies in F; j4r (Trprmr)- O

Proposition 5.27. Let A € P, with r > 1, and let L € PI(O(T',,)). The module
top(ai (L)) has a unique constituent in Irr(O(Tptmr))o,r-

Proof. Since the module L is primitive, it belongs to Irr(O(T',))o,0 by Proposition
b.13. Thus [a%(L)] € Fo,(Tnimr) by Proposition p.2d. Thus the constituents of
a4 (L) belong to the set

U Irr(O(Tngmr))o,5

J<r
by Remark B.11l Now, for L' in Irr(O(Tp+mr))o,; we have “Res, (n,r) (L) = 0 if
7 <r, and dimOResm(mr)(L’) < oo if j = r. Further, the constituents of a finite
dimensional module in O(&7,) are all isomorphic to L‘(g":), and, using [B, thm. 1.3]
as in the proof of Proposition @, we get

1 r r \ —

EXtO(G;L)(L(mV L(m)) =0.

Thus if L is a constituent of top(a3(L)) then we have a surjective map

U(as(L)) — (L. (5.29)
We have also

U(L) = P L, ® Homos,,,) (Lmps Resp mr(L)).
HEP,

Finally, Corollary yields an isomorphism of &, ® H(T',,)-modules
Ly® L =Y(as(L)).
Thus the surjectivity of () implies that
Homos,,,) (Limus “Respmr (L) =0, Y # . (5.30)
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Since the &, ® H(I',,)-module Ly ® L is simple, the map (j.29) is invertible if it is
nonzero. Assume further that L' € Irt(O(T's4ms))o,r- Then Proposition E yields

ORes,, (mr) (L") # 0.

Since dim®Res,, (,,r)(L') < oo and the constituents of a finite dimensional mod-
ule in O(S&],) are all isomorphic to L%:;), we have also W(L') # 0. Therefore

(p-29) is indeed invertible. This implies that top(a}(L)) has a unique constituent
in Irr(O(Tp4-mr) )0, Indeed, otherwise we would have a surjective map

ax(L)y—=L e L", L' L"e€rr(Ontmr))ors
yielding a surjective map
Ly®L=9@(L) = ¥(L)oU(L") = (Ly® L)%
This is absurd. O

Definition 5.28. For A € P, and L € PI(O(T")) we define ax(L) to be the unique
constituent of top(a} (L)) in Irr(O(T))o,».

Proposition 5.29. For L € Irt(O(1))o, there is L' € PI(O(T)), A € P, such that
ax(L') ~ L. In other words, there is a surjective map

PI(OT)) x Py — Trr(OM))or, (L', N) 5 ax(L). (5.31)

Proof. By Proposition the module L is primitive if and only if » = 0. Thus
we can assume that r > 0, i.e., that a.(L) # 0 by Corollary , else the claim
is obvious. Now, we first claim that there is a module Ly € Irr(O(T"))o,r—1 with
a surjective morphism a*(L;) — L. Indeed, since a,(L) # 0, the adjunction map
€ : a*(ax(L)) — L is non-zero, hence it is surjective. Hence, there is a constituent
Ly of a,(L) such that e yields a surjective morphism a*(L;) — L.

Lemma 5.30. If L € Irr(O(T))o.» and Ly is a constituent of a.(L) such that a*(L1)
maps onto L then Ly € Irr(O(T"))o,r—1.

Fix the integer n such that L; € Irr(O(T',,)). Then x; acts on a*(L;) as the operator
Oznm(a*(L1)) 0 a*(%zn(L1)) ™"

The second factor is a scalar because L; is a simple module. Hence x; acts on
a*(Ly) as an element of the center of O(T'y4m ). Therefore, since L is simple and
since the operator x; on a*(Lq) is nilpotent by Proposition , the operator x;
factors through 0 on L. Thus the map a*(L1) — L factors to a surjective morphism

€1 : (_I*(Ll) — L.

This proves the claim.
Now, assume that for 0 < k < r there is a module Ly € Irr(O(T"))o,r—x with a
surjective homomorphism

er: (@ )F(Ly) = L, (a*)F(Lg) = (a*)k(Lk)/Z i(a*)*(Lg).

By the claim above, there is a module Ly11 € Irr(O(T))o,r—k—1 with a surjective
homomorphism
ZL* (Lk_;’_l) — Lk.

Applying the functor (a*)¥, which is exact, we get a surjective map

(a*)*a" (Lit1) = (a*)*(La).
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Taking the quotient by the action of x, ..., zk, xx41 it yields a surjective map

k+1 _
(a*)k@*(LkH)/Z zi(a*)*a" (Lit1) = (a*)*(Ly).

Now, since a* is exact, we have
(@) @ (Li41) = (@) (Lyg1) /21 (@) (i)
Therefore we get a surjective map

k+1
(@) (Lrta) = (a*)k“(LkH)/Z wi(a*)*a" (Lis1) = (@*)F(Ly).

Composing it with €; we get a surjective homomorpism
€kt - (a*)k“ (Lk-i-l) — L.

By induction, this yields a module L, € Irr(O(T"))o,0 with a surjective homomor-
phism
& : (a*)"(Lyr) = L.

Then we have L, € PI(O(T')) by Proposition p.13, and there is A € P, such that
a3 (L,) maps onto L. The proposition follows from Proposition f.27. O

Proof of Lemma . Fix 4,5 > 0 such that L; € Irr(O(T")); ;. By Proposition
B.11), since E(L) = 0 we have Ea.(L) = 0. Hence E(L;) = 0 by Proposition p.d.
Thus i = 0 by Corollary B.1§. So, by Proposition we have a*(L1) € Fy j11(T).
Since a*(L1) maps onto L, we have also [L] € Fp j41(I'). Since L € Irr(O(T))o.»
this implies that » < j + 1 by Remark .
Now, we prove that j+ 1 < 7. Fix n > 1 such that L € O(T,,). Recall that
a.(L) = Homo(s,,) (Lim), “Resp—mm(L)).
Thus there is an obvious inclusion

ax(L) ® Ly C OResn_m.m(L).

Hence, since L is a constituent of a. (L), the module L; ® Ly, is a constituent of
OResn_m.m(L). Let us abbreviate

W/ = Fl,(nﬂ)a l=n-— (] + 1)m5

regarded as a subgroup of I',,_,,,. Then W’ x &,, C T',,_,, x &,, in the obvious
way. Since Ly € Irr(O(T'n—m))o,j, we have

Supp(L1 ® L(m)) = Xw'xs,,,cn-mxcip-
By Proposition E applied to the module M = L, we have also
Supp(L1 ® L(m)) = Xw,, cn-mxcps

where W, is a parabolic subgroup of I'y,_,, ,, containing a subgroup I',,-conjugate
to 'y, (mry. Hence we have Fy j11(I'n) C Fo,r(I'n). Therefore we have j+1 <r
by Remark B.11]

O
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6. THE FILTRATION OF THE FOCK SPACE AND ETINGOF’S CONJECTURE

Recall that [O(T")] is identified with the Fock space ]:7(5,)2 via the map (5.§). The
aim of this section is to identify the filtration on [O(T")] defined in Section in
terms of supports of irreducible modules, with a filtration on the Fock space given
by representation theoretic tools. We’ll use the following notation : n,m,j,i are
integers withn >0, m > 2,7, >0and it =n—1[0— jm.

6.1. The action of Ray . on the filtration. The operators b}, r > 1, on ]:7(5,)2
given in Section [L.6 act on [O(T")] via the map (5.5). The set Irr(O(T"))o,0 is a basis
of the C-vector space Fy o(I'). This does not imply that the C-vector space

{z € [OM)]; eq(z) = by.(x) =0, Vg, 7}

is spanned by classes of irreducible objects of O(T'). This follows indeed from
Proposition @ below. Before to prove it we need the following lemma.

Lemma 6.1. For L € Irr(O(T")) we have L € PI(OI)) if and only if E([L]) =
b.([L]) =0 in [OT)] for allr > 1

Proof. It is enough to prove that for L € PI(O(T")) we have b/.(L) = 0 for all » > 1.
A direct summand of the zero object is zero in any additive category. Further, for
L € PI(O(T")) we have (Ra.)"(L) = 0 for r > 1. Thus we have also Ray (L) =0
for all A € P by Proposition . By Proposition the map (@) identifes the

C-linear operator Ray . on [O(I')] with the action of b, on ]:r(;,)e given in Section
[.4. This proves the lemma. O

Proposition 6.2. We have
{z € [O(I)]; eq(x) = bj(x) =0, Vg, 7} = Foo(T).
Proof. Consider the set
Fool) = {z € Foe(D); by(x) =0, Vr > 1}.
By Corollary it is enough to prove that
Fo,0(T) = Foo(T).
We have
Foo(T) = @Fo,o(Fn)/, Fo,o(Ty) = Foo(T)' N Foe(Tn).

n=0
The actions of ;[m and $ on ‘7'—7(:)@ commute to each other. Thus, by Corollary

the C-vector space Fyo(I') is identified with a $)-submodule of fr(j?e via the map
(.5), and we have

> dim(Fpe(T0)) " = > $Ir(O(Tn))o,e - " (6.1)
n=>0 n>0
The representation theory of £ yields the following formula in Z[[¢]]
O dim(FooTe)) - t*) O _tP - ™) = dim(Fp,e(Tn)) - £ (6.2)
k>0 720 n>0
Finally, Proposition yields a surjective map
PIOT)) x Pr = Irr(O(T0))ors (L, A) = ax(L) (6.3)
for k,7 > 0 such that n = k 4+ mr. From (f.1)) and (p.3) we get
(D_tPUOTL)) - *) (D 4P -#™7) = Y dim(Foe(T)) - " € N[[H]].  (6.4)

k>0 r>0 n>0
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By Corollary and Lemma f.1] we have PI(O(')) C Fo.0(T'x)’, hence we have
#PL(O(Tk)) < dim(Fo,0(Tx)")-

Therefore, comparing ((.2) and (.4) we get the equality
{PIO(T)) = dim(Foo(T)). (6.5)

In other words PI(O(T'y)) is a basis of Fyo(I'x)’. Since PI(O(T')) is a basis of
Fo,0(T') by Proposition p.13, we have also

Foo(Tw) = Foo(Tx)".
O

Remark 6.3. The proof of Proposition @ and Corollary imply that the map
(6-3) yields a bijection

PI(O(Tk)) x Pr — Irr(O(T0))o,r, (L, A) — ax(L)
for k,r > 0 such that n = k + mr. Note that Proposition yields
PI(O(T'k)) = Irr(O(T'k))o,0-

6.2. The representation theoretic grading on [O(T')]. Using the actions of the
Lie algebras $ and sl,,, we can now define a grading

[Om)] = o).
4,j20
Then, we’ll compare it with the filtration by the support introduced in Section ,
i.e., we’ll compare it with the grading
[OT)] = D er; ;(T).
0,j>0
To do so, let us consider the Casimir operator
1
0=— bb... 6.6
— ; \ (6.6)

Under the map (f.3) this formal sum defines a diagonalisable C-linear operator on
[O(T)]. For any integer j let [O(T)]s,; be the eigenspace of O with the eigenvalue j.
Note that [O(T')]s,; = 0 if j < 0. Next, given an integer ¢ > 0 we define [O(T)];,o
to be the image of

@ Vj‘m [0—a]® HOIn;[m (Vflm, [OD)])

JIRe

be the canonical maps

Vet @ Homy, (Ve [O(T)]) — [O(I)].

J-] .

Here the sum runs over all sums « of i affine simple roots of s?[m, and over all
dominant affine weight p of sl,,. If ¢ < 0 we set [O(I')];,e = 0.

Definition 6.4. We define a grading on [O(T')] by the following formula
[OM)]i; = [O@)]ie N[OM)]s 5, [OT)iy = [O)]i; N[OT0)]
Proposition 6.5. We have dim[O(T',,)]; ; = dimgr; ;(I'y) for all n,i,j > 0.
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Proof. The vector space [O(I')]o,e is a $-submodule of [O(T")]. Thus it is preserved
by the linear operator 9 and [O(I')]o,; is the eigenspace with the eigenvalue j. Since
the $-action on [O(I')]o,e has the level mf we have [0, b;] = jb; for all j > 0. Next,
we have

[O(D)]o,e = Fo,e(I'), [O(T)]o,0 = Fo,0(I')
by Corollary and Proposition @ Further, the $-action yields an isomorphism

U™ (9); @ [O)]o,0 = [O()]o,;- (6.7)
By Remark @, for n = k + mj we have a bijection
Irr(O(Tk))o,0 X Pj = Irr(O(Tn))o,;, (L, A) — ax(L). (6.8)
Thus the isomorphism (@) yields the following equality
dim [O(T'n)]o,; = #Irr(O(T'n))o,5- (6.9)

Since the integrable sl,,-module [O(I')] is not simple, the choice of a canonical basis
of this module depends on a choice of a basis of [O(I")]p,e. The general theory of
canonical bases yields a bijection G between the canonical basis of [O(T')] and its
crystal basis, the latter being identified with Irr(O(T")) by Proposition B.d The
bijection G is such that a basis of [O(T")]o,e is given by

{G(L); (L) = 0, Yg}.

By Corollary we have

{L €Irr(O(I")); €4(L) = 0, Vgq} = Irr(O(T))o,e

={ax(L); VA e P, VL € Irr(O(T))o0 }-
We'll choose the canonical basis of [O(T")] such that
G(ax(L)) =aX(L), VAeP, VLeIrr(O))oo-
Then the set {G(L); L € Trr(O(T))o,;} is a basis of [O(T")]o; by (b-1) and (p.9).
The sl,,-action on [O(I')] commutes with the operator 9. Thus [O(T')]e,; is an
sl,,-module and the sl,,-action yields a surjective C-linear map
U~ (sbm); © [O(T)]o,j = O] (6.10)
For weight reasons, the crystal of [O(T")] decomposes in the following way
w(O(T) = || Wr(OM),,, Wr(OT)), = {L € ir(OT); G(L) € [O(T)]i}.
6,520
Since {G(L); L € Irr(O(T'))o,;} is a basis of [O(I')]o,j, we have
Irr(O(F))/O’j =Irr(O(I"))o,;-

Next Irr(O(T')), ; is the union of connected components of Irr(O(T")) whose high-
est weight vector is in Irr(O(T')); ;, and by Corollary B.17, the set Irr(O(T))s; is
the union of connected components of Irr(O(T")) whose highest weight vector is in

Irr(O(T"))o,;. Thus, for all n we have
Irr(O(Tn))y ; = Irr(O(Th)) e,

.j
By Corollary and (), for all ¢ we have also the inclusion
Irr(O(T)); ; € Irr(O(T))i - (6.11)

Thus ) is indeed an equality. By definition, we have
dim gr, ; () =4Irr(O(Th))iyj,  dim [O(Ty)]i,; = fIrr(O(T,));

VN
Thus the corollary is proved. (I
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Remark 6.6. Recall that gr; is identified with the subspace of [O(T")] spanned
by Irr(O(T"));,;, see Section m Proposition .5 does not imply that [OM)];,; is
also spanned by Irr(O(T")); ;. However, since

[O@)]o.0 = {z € [OT)]; eq(x) = b.(x) =0, Vg, 7},
the subspace [O(T")]o.0 is indeed spanned by Trr(O(T'))o o by Proposition .3

6.3. Etingof’s conjecture. Let oy, be the root of the elementary matrix e, 4.
Recall that wg, w1, . ..,wy—1 are the affine fundamental weights. Fix a level 1 weight

A= "hyw,.
p

Definition 6.7. Let a, be the Lie subalgebra of g~[¢ spanned by 1, D and the
elements e, , ® w" with p,¢ = 1,2,...,¢ and r € Z such that (A, a, ) — hr € Z.

We abbreviate a = a, and a = an gl,.

We define the set of positive real roots of a to be the set AA consisting of the real
roots of gl, of the form a + (r — (A, a)/h)5 where a is a root of gly and a + 7§ is a
positive real root of g[e Let P‘1 be the set of dominant integral weights for a, i.e.,
the set of integral weights of g[e which are > 0 on A“ For p € ij let Vlf be the
corresponding irreducible integrable a-module. We'll say that a non zero vector of
an a-module is primitive for a or a-primitive if it is a weight vector whose weight
belongs to P“, and if it is killed by the action of the weight vectors of a whose
weights are positive roots of a. Now, let h, h, be the parameters of the C-algebra
H(T,,) for each n > 0. Assume that h is a rational number with the denominator
m > 1. The elements of §) can be regarded as elements of 5[5 as in (@) We have
by, bl € @ for each r > 0. Thus the formal sum

1
Om = —% byl 6.12
ot 2t (6.12)

acts on every a-module V‘~1 We'll call this operator the m-th Casimir operator of

g~[4. For any weight A and any integer j we denote by V“[)\ j| the subspace of
weight A and eigenvalue j of 0,,. We are interested in the followmg conjecture [ﬂ
conj. 6.7].

Conjecture 6.8. There exists an isomorphism of C-vector spaces

(Tn) = P Vi wo — né, j] © Homg (V! Vel (6.13)

M T wWo
where the sum is over all weights i € P$ such that (u, p) = —2i.

Remark 6.9. If A = wy then we have
Gw, = (gl @ Clw™, @ ")) ® C1 & CD,

and the map (B.19) below yields a Lie algebra isomorphism d,,, = gl,.

Remark 6.10. Assume that the h,’s are rational numbers. Let K be the algebraic
closure of the field K = C((w)). Set

l— 1
Ep —wo GP“"@Z(@

p=1
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We have a(y) = —(A, a)/h for each root a of sl;. We may view v as the element
y(w) in Tp(K). We have d@ = ad(y) " (dw, ). Now, assume that h, h,, are as in (B.9).
Then we have v € P, because

T

1

Y= (8p+1 = 8p) (wp — wo).
p=1

A short computation using the standard identification of w, — wg with the ¢-tuple

(170°7) — (p/£) (1) (6.14)
shows that 7 belongs to Q®" if and only if the /-charge s has weight 0. In this case

v € Ty(K), more precisely, v is a cocharacter of T;. Thus the element &, of the
affine symmetric group is well-defined. For a future use note that

A(s,m) = & (wo)', (6.15)

and that &, () € P2 if and only if i/ € Pf“. Here 1/ is as in (6.29) below.

6.4. Comparison of the g~[¢-modules ‘7'—7(7?,)@ and Vfo["'. The Fock space Fp, ¢ can

be equipped with a level 1 representation of gNIe in the following way. The assignment
2 t™, gt

, 1=1,2,...,m,

yields a C-linear isomorphism
Ve =C"QC'@Clz, 27 = C' QC[t, t™1] =V,
Wit (j—1)ym—kmt =7 Uj4(i—1)0—kme>
see (.9), (.19). Taking semi-infinite wedges, it yields a C-linear isomorphism
Fme — Fo. (6.17)

Pulling back the representation of gl, on Fy in Section [:§ and Remark [L.6 by (6.17)
we get a level 1 action of gl, on Fp, ¢ such that :

(6.16)

e For d € 7Z the level 1 representation of gNIZ on Fp, ¢ yields an isomorphism

4 ~

For = Viltrsar (6.18)

e The level m-action of gA[g in ., ¢ given in Section @ can be recovered from
the level 1 action by composing it with the Lie algebra homomorphism

gy, 29 s reE™, 1o ml. (6.19)

e Pulling back the level ¢ representation of §) on Fy in Section @ by ()
we get a level £ action of §) on F,, . The level mf-action of $ in F,,, ¢ given
in Section @ can be recovered from the latter by composing it with the
Lie algebra homomorphism

by > by, DL U] 1+— ml. (6.20)

mr’

Hence, the action of the Casimir operator @) associated with the level m/¢
representation of ) on F,, ¢ is the same as the action of the m-th Casimir
operator (f.19) associated with the level £ representation of $ on F, ..

e To a partition A we associate an £-quotient A\*, an £-core \° and a content
polynomial cx(X) as in [P3, chap. I]. In [0, sec. 2.1] a bijection 7 is given
from the set of £-cores to the set of {-charges of weight 0. By [2§, rem. 4.2(i)]
the inverse of the map (p.17) is given by

[A, 0) — |A", T(A9)).
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Now, the same argument as in [2J, ex. 1.11] shows that
-1
ex(X) = exe(X) JT(X + p)*! mod ¢. (6.21)
p=0
Further, by Remark @ the scaling element D of the level 1 representation
of gl, on ]-"7(7?)@ is given by

D(|)‘a0>) = —no()\) |)"O>a (6'22)
where ng(A) is the number of 0-nodes in A\. Thus we have the following
relation N

D, fp) = —fps Yfp €slp. (6.23)
Further we have

D(|,0)) = —(no(A%) + [X*]) [, 0). (6.24)

6.5. Reminder on the level-rank duality. In (i.14)) we have defined a weight
4(X\, m) for each tuple A € Z*. Set also

YA m) = 4(A,m) — A(A, m)é,
where A(X, m) is as in Remark [L.g. Note that §(\,m) € Pff if and only if
e A(l,m) = {( A, A2y  Xe) €Z5 5 M — Ao <.
For each integer d we write

A(t,m)a = {X € A(t,m); Y\, =d}.

The level-rank duality yields a bijection A(¢,m)y — A(m,€)q, X — AT such that
e we have the equality of weights

m
’7()‘5 m) = Z w/\l, mod £’
p=1

e we have an sl,, X $ X slp-module isomorphism

(d ~K7n ~K
Fon= D VG ® Ve ®Viim

AEA(L,m)q

(6.25)

. . T 53 51
and highest weight vectors v5(xt ¢, Vme, V5(a,m) Of V%E(/\T,f)’ Vo, V;(f\m)
such that [0, \) = vyt ) ® Ve @ Vy(a,m) for A € AL, m)q.
See e.g., B, (3.17)], ], sec. 4.2, 4.3]. Let s = (s,) be an f-charge of weight d.
Setting d = 0, the formula ([L.15) yields
s . sl N
}—r(n)e = @ Vas(kf,e) ® Vn?l ® (Vas(i,m) [W(S,m)]) (6.26)
AEA(L,m)o

Here the bracket indicates the weight for the sly-action of level m.

Remark 6.11. The tautological C-linear isomorphism
Vm,é — Vmé

yields a C-linear isomorphism
]:m,g — fmg.

The right hand side is equipped with a level 1 action of ;[mg, and the left hand side
with a level (¢, m)-action of sl,, x sl;. The well-known Lie algebra inclusion

(8L x 8lp)/(m(1,0) — £(0,1)) C 8lne,  (1,0) €1, (0,1) — md,
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intertwines the 5A[m X ;[g—action on F, ¢ and the f?[mg—action on Foe.
Remark 6.12. The isomorphism (p.1() can be viewed as a C-linear isomorphism
Ve = Vine. (6.27)
Thus it yields also a C-linear isomorphism
Fo — Frne. (6.28)

The right hand side is equipped with a level 1 action of ;[mg, and the left hand side
with a level 1 action of sl,. Consider the following elements in sl,, ® Clw, ]

m—i m
e(i+hm) = i @@ + Y ejirjom @@,
j=1 j=m—i+1

1<i<m, keZ.

For z € sl,, ® Clow,w '] and p,q = 1,2,...,¢ we define the element z(9 €
5l @ Clo, w1 by

m m
P = Z it (p—1)m, j+(g—1)m @ a;; for x = Z €i; Qag ;.
ij=1 ij=1
The following proposition explains the relationship between the ;[mg—action on Fp, ¢

above and the level one sly-action on Fime in Section p.4. The proof is a direct
computation left to the reader. We’'ll not use it.

Proposition 6.13. (a) There is a Lie algebra inclusion f;\[e C ;[ml given by
1—1, e Q0w — x(r)(p’q), p,gq=1,2,....4, reZ.
(b) The map ) intertwines the g[g—action on Fy and the sﬁmg-action on Foe-

6.6. Proof of Etingof’s conjecture for an integral /-charge. In this subsec-
tion we prove Etingof’s conjecture in the particular case where the parameters h,
hy, are as in (B.9). Note that our terminology differs from [f] because this case cor-
responds indeed to rational (possibly non integral) values of the parameters. From
now on, unless specified otherwise we’ll assume that the parameters h, h, are as in
(@), and we’ll also assume that the ¢-charge s has weight zero. To any level one
weight p of 3[4 we associate the level m weight u/ given by

-1 -1
w=muwy+ Z pp(wp —wo)  where p = wy+ Z tp(wp — wo). (6.29)
p=1 p=1

Note that v € Q3" and that 4(s,m) = &£ " (wo)’ by (b.13). Using this and (5.26) we
get a 5A[m x $)-module isomorphism

]:S?e - P Vet g © Vi ® (Vatsm 65 (@0)).
AEA(L,m)o

Thus, by (f15), (F.1§) and (p-19) we have
Forle = V& 1E (o))

wo Y
where the bracket indicates the weight subspace for the ale—action of level 1. Since
the map (5.4) yields an isomorphism [O(T)] = F'*)

m, )

[O(T)] = V(& (wo)]. (6.30)

we get also an isomorphism
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Under this isomorphism we have

[O(T)] = Vi[85 (wo) — nd)]
by (6.24) and the following lemma.
Lemma 6.14. (a) If \¢ is an £-core such that T(A\°) = s then ng(\°) = %('y,'y}.~
(b) The element |0,s) is an extremal weight vector of the module .7-“7(7(3,)@ = Vo
with the weight £ (wo)-
The formula (6.13) we want to prove is

dimgr; ;(T') = Y dim(V;f[wo — n6. 5] @ Homa(V;i, VEY)).

7 T Wwo

where the sum is over all weights € P® such that (u, ) = —2i. The proof consists
of three steps.

Case 1: First, let us consider the sum over all i’s. We must prove that
dimgr, ;(I'y) = dim(VUf::’f [wo — nd, j]).
Note that N N
dim (V) [wo — nd, j]) = dim (V7 [65" (wo) — nd, 1),

because the Casimir operator d,, commutes with the y-action on Vf;e by (p.20).
Therefore, by Proposition @ we are thus reduced to prove that under (§.3(0) we
have

[OTn)]e,; = VEF[ES (wo) — nd, ).
This follows from the equality of the Casimir operators (f.6) and (6.19), see (f.20).
Case 2 : Next, consider the case i = 0. Let ©,, o be the image of

M wWo

@ V;[wo —nd, j] ® Homz (VE Vg‘f) (6.31)
i

by the canonical maps Vcl ® Homu(V“ Vof’o[" ) — Vw gl . Here i runs over the set of
all weights in P with <,u i) = 0. By Proposition @ and the discussion above we
must prove that the image of [O(T',)]o; by (6.30) is isomorphic to ©,,¢ as a vector
space. To do that, observe first that by definition of [O(T,))]o,; the map (5.30) takes
[O(T'»)]o,; onto the subspace

Ve (wo) —ndln D i @ Vil @ V;(lﬁ ) (6.32)
NEA(L,m)o

Note that vs(xt ¢) ® Vol ® Vﬁ(lﬁ\ m) 18 the submodule of ]-"7(731)2 = VU?(,[E generated by

the vector |0, A) for the level m action of gAle. Note also that d., ~ gl, by Remark
@. Finally, the set of weights of Vfo["' is

WH(VEY) = {wo + 85 B € Q°},
see Section .3, and we have the following lemma.

Lemma 6.15. (a) We have v € P, B if and only if V' € Pglf
(b) We have {v'; v € P n Wt(vfjf )} = {3(\,m); A € A(l,m)o}.
Thus, by Lemmas p.14] 6.1 the space () is indeed equal to
@V%" S Ywo) — nd, ], (6.33)
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where the sum is over all extremal weights © in Pi“" N Wt(VfU["') and V,“" is

identified with the a,,-submodule of V“?UIE generated by a non zero extremal weight
vector of weight ©. Now, let us consider the space 0, . Recall that (i, i) = 0

if and only if f is an extremal weight of Voﬁfe. Further an extremal weight have a
one-dimensional weight subspace, see Section @ Thus ©,, is equal to the sum

B Vi wo — nd, 41, (6.34)

where /i runs over the set of all extremal weights such that Vf;e contains an a-
primitive vector of weight /i, say vz, and V' is identified with the a-submodule of

Vi{"' generated by v;. Now, Remark yields
i=ad(y) " (Bu), & (0) € P > fie P,
Thus the y-action yields a linear automorphism of Vfo" such that
7Vl o) = nd ) = VE gy o — nd ], Vi e PR
Thus (6.39) is equal to ©,, by the following lemma.

Lemma 6.16. For all weight p in P_i“’” N Wt(Vf(fE) the module V3 contains a
Ay, -primitive vector of weight fi.

Case 3 : Finally, consider the general case. Fix the integers n,j. Let ©,; be
the image of

P Vi#[wo — né, j] ® Homg (VF, vk,
by the canonical maps V,;El ® Homa(VDa, Vfé" ) — V(fo["'. Here the sum is over all
weights 7 € P{ such that (7,7) = —2i. The same argument as for Case 2 implies
that ©,,; = _1(@’ ;) where ©7, ; is the image of

@V%“ & Hwo) — né, jl® Homg,, (V~““ Vg‘f),

) Y wo

by the canonical maps V; “?@Homg,, (Vl;l “o Vof’(,“’ ) — Vfo["', because the composition

by the automorphism v~ of Vof’(,“’ yields a linear isomorphism

Homg (V2 (M),v ) = Homawo(V~”° 14500

wo ? T wo
Here the sum is over all weights i € Pf“ such that (fi, i) = —2i. Let us prove that
(-30) maps [O(I',)];; onto O], ;. The proof of Case 2 implies that (6-30) maps
[O(T')]o,; onto ©7, . By (b.10) we have
U™ (sln)i ([OTn)]o5) = [O(Tn)]i;-

By (p-23) we have also

U™ (slm)i (©7,0) C Oy
because the actions of 5A[m and a,, commute with each other. Therefore, we have

[OT)]i; C O
On the other hand, the proof of the first case implies that
] J o= @ (_){n,z
i>0

Thus we have the equality [O(T',)];; = 65, ;
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Proof of Lemma [6.1]. A direct computation shows that

1 £
=58

p=

N)I»—l
—

Now, consider the partition A\ = (A1,...,A\ge). We choose k to be large enough
such that Axy = 0. Write

ANi—i+1l=(a; = 1)l+b, 1<b; <Y,

i—1=al+0b, 0<V,<l—1.
The number of 0-nodes in the i-th row of the Young diagram associated with A¢ is

equal to a; + a}. So
ke

no(X°) = > (a; +aj).
=1
We have
,_ —k(=k+1)¢

74 4
Yoai = D ((k+D)+(-k+2) 4 +sy)

¢
1 5  —k(=k+1)¢
T2 2%~ 2
This proves part (a). For part (b), note that (a) and (f.29) yield
D(|0,5)) =

Further |0, s) is a weight vector for the level one representation of QT[Z with the weight
wo — 7, see 2§, (28)]. Thus |0, s) is a weight vector for the level one representation
of gl, with the weight

—5n000,5)

1

& (wo) =wo—7 — 5(%7>5-

The latter is an extremal weight, see Section @ ([

Proof of Lemma . The set of all dominant integral weights of sly is

—1
(A m); A€ A(t,m)} = {(m — M + \o) w0+z —Aps1)wpi A€ A(L,m)}
f{mwoJrZ Ap+1) —wo); A€ A(l,m)}.

Set 8 = Zf;;ll(/\p — Ap+1) (Wp — wp) with A € A(¢,m). Identifying w, — wy with
the (-tuple (.14), a short computation shows that 8 € Q®" if and only if A €
A(f, m)o. O
Proof of Lemma . Fix a weight p in Pi“" N Wt(Voﬁff). Fix a non zero element
v € Vfo["' of weight i = 1 — 3{(u, u)6. We must prove that v is a.,-primitive. The
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argument is taken from [§, sec. 6.2]. By Remark .9 it is enough to prove that ji+ v

is not a weight of Vfo["' for any element v in the set
{appt1, f—a1p+mé;p=1,2,...,6—1}.
In fact, since g € P_E;, for such a v we have
(p+v,i+v)=(v,v)+2(@,v) =2+ 2(@,v) > 0.

Therefore ji + v is not a weight of Vf:e by Section @ O

Remark 6.17. Assume that the parameters h, h, are as in (@) Since v belongs
to Ty(K), it acts on any integrable sl;-module. Let 0° denote the trivial /-charge.

~ ¢ ,
The v-action on the representation of sl, on Fy, , of level 1 takes }“7(7? e) onto ]-'7(;)4.
Indeed, since 7 is a cocharacter of Ty the formula (@) yields the following equality

Y(FO)) = 3(FO, o))
= (V2" [wo])
= V(&7 (wo)]
= fg,)e[fy_l(wo)/]-

Here the upper script ’ is as in () Therefore, by Section @ we are reduced to
check the following identity

-1
_ 1
é»’y 1((4_}0) = Wo —+ E Z hp (wp — CLJO).
p=1
Recall that v = —+ ;;;11 hp (wp — wp). Thus the proposition follows from the

formula () for the (A‘Sg-action on t; @ Cwy @ Co.

APPENDIX A. REMINDER ON HECKE ALGEBRAS

A.1. Affine Hecke algebras. T he affine Hecke algebra of type GL,, with param-
eter ( € C* is the C-algebra H¢(n) generated by the symbols X1, Xs,..., Xy,
T1,Ts,...,T,—1 modulo the defining relations

XiX; =X;X,, 1<i,j<n,

X, =X;T;, j#4,i+1,

T;XT; = Xiy1, 1<i<n—1,
(Ti+1)(T: —¢) =0, 1<i<n-—1,
T;T; =1;T;, |i—j| > 2,
TLaT, =TT, 1<i<n—2.

For I ¢ {1,2,...,n—1} let H¢(I) C H¢(n) be the corresponding parabolic subalge-
bra. It is generated by the elements T;, X; withi € I, j =1,2,...,n. For a reduced
expression w = $;, S, - - - 8;,, of an element w € &,, we write Ty, = 13,15, - - - 1;,. We
abbreviate T;; = T,,. Let Dy be the set of minimal length representatives of the
left cosets in &,,/&;. We'll abbreviate Dy j = DI_1 N Dy;. For x € Dy ;j the map

SCrrzg — Gp-17q7, W x wz
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defines a length preserving homomorphism. Hence there is a C-algebra isomorphism
He(INzJ) = He(z  NT), To Tprge,  Xj > Xoo105)-
Let
Rep(H¢(z7*INJ)) — Rep(He(INwJ)), M "M

be the corresponding twist functor. The following is well-known.

Lemma A.1 (Affine Mackey theorem). Let M € Rep(H¢(J)). The module
He(n) 1, qHe(n)
ResﬂC(I) Indﬁg(J) (M)

admits a filtration with subquotients isomorphic to

Ho(D)  apaHe)

Indﬂg(mm) Sﬂg(rlmJ)(M)’

one for each x € Dy j. The subquotients are taken in any order refining the Bruhat
order on Dy j. In particular we have the inclusion

IndIfIg’(I) ReSI:IC(J)

ﬂ((") I:Ig(n)
H¢(INJ) ﬁc([mJ)(M)CReSA Ind.: (M)

He (D) H¢(J)
A.2. Cyclotomic Hecke algebras. The cyclotomic Hecke algebra H¢(n, ) asso-
ciated with I',, and the parameters (,v1,ve,...,v, € C* is the quotient of I:IC(n)
by the two-sided ideal generated by the element

(Xl — ’Ul)(Xl — ’02) N (Xl — ’Ug).

We'll denote the image of the generator X7 in H¢(n, f) by the symbol Ty. For a
subset I C {0,1,...,n— 1} we define I'; C T, as the subgroup &; if 0 € I, or as
the subgroup generated by &\ oy and {y1;7y € T'} else. This yields all parabolic
subgroup of I',,. We consider also the parabolic subalgebra H¢(I,¢) C H¢(n, ()
which is the subalgebra generated by the elements T; with ¢ € I. To unburden the
notation, we abbreviate

H(l'y) = H¢(n,6), H(S,) =Hc(m), H(Ir)=Hc(I,4).
For r >0 and I ={0,1,...,n+mr — 1} \ {n} we write also
H(T,, ) = HTY).

A.3. Induction/restriction for cyclotomic Hecke algebras. We’ll abbreviate

H _ H(T,) H _ H(T,)

Ind,, = IndH(Fnil)7 Res,, = ResH(Fnil),
H _ H(T7 4 mr) H _ H(T7 4 mr)

Indn,(mr) = IndH(Fn:mT))’ Resm(mr) = ReSH(Fn:mT))’ (Al)
Mndy mp = Indgg(7 7, MRes my = Resgp 7).

We write also
HInd(y,r) = TIndgr" : Rep(H(S},)) = Rep(H(Sm,)),
HRes(yry = HResggr : Rep(H(S,,r-)) — Rep(H(S),)).
Now, we consider the Mackey decomposition of the functor
HResypm 0 HIndmm :Rep(H(T,, 1)) = Rep(H(Tpptm—1))-
A short computation shows that a set of representatives of the double cosets in
Logm—1\Tngm/Tnm
is {VYn+m, Snn+m; v € T'}. For
I={0,....n+m—-1}\{n—-1,n}, J={0,....n+m—-2}\{n—-1}
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we have
HT;) cHThm), HTy;)=HT,-1m) CHTtm-1)-
Further, there is an algebra isomorphism
g1 H(Ty) = H(Y), To o Tosor, Xi > X
where s = $,8,41 - Spym—1. For each i, p we write X7 = (X;)?. We have the

following decomposmon It is well known in the case m = 1 see e.g., . lem. 5.6.1]
in the degenerate case.

Proposition A.2. (a) We have an isomorphism of H(I'p4m—1)-modules
n+m @ @ H(Fn-i-m—l) Tj,n-i-m Xf-
0<p<t1<j<ntm
(b) We have an isomorphism of (H(Fn+m 1), H(T,m)) -bimodules
H(nym) = H(Cnym-1) Typn+mH ) & @ H(Tnym-1) £+mH(Fn,m)-
o<p<e

(¢) There are isomorphisms of (H(Tn4m—1), H(I'y m))-bimodules
H(Fn-i-m—l) Ty n+mH(Fn,m) = H(Fn-i-m—l) OH(T_1.m) H(me),
H(Fn-i-m—l) X£+mH(Fn,m) = H(Fn-i-m—l) OH(T, 1) H(Fn,m)a

where the algebra homomorphism H(T'y_1,m) — H(Tp,m) is given by .

Proof. Part (a) is standard, see e.g., [@, lem. 5.6.1] in the degenerate case. Let us

concentrate on (b). Write t;; = T;T,_1---T; for 1 <i < j, and t;; =1 for i > j.
By (a) we are reduced to prove the following identities

@ @ n+m 1 tn—i—m 1]X —H(Fn—i-m—l)tn—i-m—l,n H(Fn,m)a (A2)

0<p<1<5<n

@ @ n+m 1 thrm 1] @ H n+m— 1 H(Fn,m)

op<e n<]<n+m o<p<t

We have
Utntm—1,n = tntm—1,nP(u), € H(Tn—1,m), (A.4)
because for i =1,2,...,n— 1 and j € J \ {0} we have
Tj tn—i—m—l,n = tn-l—m—l,nTs(j) = tn—i—m—l,n@(Tj)a
Xi tn-l—m—l,n - tn-l—m—l,nXi - tn—i—m—l,n(P(Xi)-
Hence, by (a) the right hand side of (A.9) is
= @ @ H(Fnerfl) thrmfl,n H(FI) tnfl,j va

0<p<l 1<j<n

@ @ H(Fnerfl)H(anl,m) thrmfl,n tnfl,j X;Da

0<p<l 1j<n

@ @ H(Fnerfl)thrmfl,j X;D

0<p<l 1j<n

This proves the first identity. Next, a short calculation involving the relation

XP Ty — TjXP € C[X;, X1

proves that the left hand side of () is equal to

Z Z H(Fn-l-m—l)tn-i-m—l,jX;‘D-

o<p<ln<g<n+m
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Thus the identity (A.3)) follows from the following equalities
H(Ly4m-1) Xﬁer H(Lym) = Z H(yqm-1) Xﬁer Tjntm

n<j<n+m

= Z H(Fn+m_1) Xﬁ+m tn-i—’m—l,j

n<j<n+m

= Z H(Fn—i-m—l)tn—i-m—l,ij-

n<j<n+m
Finally, let us prove (¢). The second claim is obvious because
H (T 1) XD BT ) = X2 BT H (T ) = HT ) H(T )
as (H(Tn4m—1), H(I'; ;) )-bimodules. For the first one we define a map
H(pym—1) X H(n m) = H(Tntm—1) Tontm H(n,m),
(U, v) = Utpim—1,n.
By (A4) it factors to a surjective homomorphism
Y HTwpm—1) @1, 1) HTnm) = B rm—1) Tnngm H(T 0 m).

By (a) the left hand side is a free H(T';,4,—1)-module on basis

1@ t,_1;X0, 1<j<n, 0<p<Cl
But ¥ maps these elements to

tntm-1,X5, 1<j<n, 0<p<t
Further, the latter form a H(T,4,,—1)-basis of the right hand side by (a) again.
We are done. O

APPENDIX B. REMINDER ON (-SCHUR ALGEBRAS

B.1. The quantized modified algebra. Let v be a formal variable and A =
Zlv,v~1]. The quantized modified algebra U(n) of gl,, is the associative Q(v)-algebra
with generators F;, F; where ¢ = 1,...,n — 1, 1, where A\ € Z™, and relations [@,
sec. 23]

1a1, = 6x .1y,

EiFj — FiE; = 055 3 05 [Mi = i1,

Eilx = 1xta, B,

INE = Filxta,,

EE; = B;E; if i # j+ 1, E?E; — (v+ v ) E,E; E; + E;E? = 0 else,
FiF; = FiF,ifi #j £1, F2F; — (v + v ) FFF, + F;F? = 0 else.
The comultiplication of U(n) isa @(v)-linear map

) — H n)1y ® U(n)ly)

AN

such that

o A(Ly) = [Toysnr Iy @ 1y,

o AE;L) =Ly (Bily @ Ly + 0@ 1, @ Eily),

o A(Fi1y) = [Thoypan (Fily @ v~ @A) 130 4+ 130 @ Filan).
The integral quantized modified algebra is the A-subalgebra U 4(n) C U(n) gener-
ated by the 1)’s and all quantum divided powers E(d)
yieds an A-linear map U4 — U4 @4 U4. For € € C* we consider the C-algebra

Uc(n) = Ung(n) @4 Clv,v /(v —e).

F; @ The comultiplication
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For a pair of representations V, V’ in Rep(U.(n)) let sy,1 : V@V’ = V' @V be
the permutation v ® v’ — v’ ® v. The R-matrix yields a C-linear endomorphism
Ry v, of V.®@ V' such that the composed map
Rv,v: =sy,yr o Ry
is an isomorphism of U (n)-modules V@V’ — V' ®V. The map Ry, decomposes
in the following form
Ryv(v@d)=Rv®d), R=IIO,
1= H’U_()"/\/) 1, ® 1y, Oc H(Ue(n)l)\@)ﬁe(n)l)\/).
AN AN

The notation is chosen to agree with [@, sec. 32]. We'll write Ry, y+ again for the

braiding of right U.(n)-modules V, V’. If € is a primitive 2d-th root of 1 then

e’ = (=1)4, hence the quantum Frobenius homomorphism [@, sec. 35.1] is the

unique C-algebra homomorphism
Fr:U.(n) — U(,l)d(n)
such that
° Fr(Ei(m)b\) = Ei(m/d)lA/d if m € dZ and X € dZ"™, and 0 otherwise,
o Fr(Fi(m)lk) = Fi(m/d)lA/d if m € dZ and \ € dZ"™, and 0 otherwise.

The formulas in [@, sec. 3.1.5] show that Fr commutes with the comultiplication,
i.e., we have A o Fr = FroA.

Proposition B.1. We have (Fr®Fr)(R) =[], /(1x ® 1yv).

Proof. To avoid confusions we’ll write O, II, for ©, II. If n = 2 the proposition
follows from the formula [@, sec. 4.1.4]. More precisely, since

k
Oc=[[D_(~1)re *ED2 FP 1 0 E® 1y, {k}e=]](¢ - €,
AN k20 i=1
we have the following formula
(FroFr)(©.) = [Jare1y). (B.1)
AN
Further, in U(_l)d(n) we have also
(Fr @ Fr)(ILe) = [[ (- (13 @ 1y),
AN
and
@(,1)01 = H(l)\ ® 1/\/), H(fl)d = H(—l)d(/\’)‘ )(1,\ (29 1)\/). (BQ)
AN AN

Now, let n be any integer > 2. The braid group of &, acts on Ue(n) via the
operators 17y, T5'y, ..., T, 1 in BT, sec. 41]. For i =1,2,...,n — 1 we set S; =
T}, @T}",. Fix a reduced decomposition s;, s;, - - - s;, of the longuest element in &,,.
Fori=1,2,...,n— 1 write
0;,c = Z(fl)kefk(kfl)/Q{k}EF-(k) 2 E®.
k>0
Then the universal R-matrix is given by the following formula, see [[[J, thm. 3]
O, = H Oe(x@1x), Oc=S' S S 0i0) St (0i,_,,0)0s, .
AN
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Thus (B.9) yields
é(_l)d = H(l)\ (9 1)\/),

AN

Since the braid group action is compatible with the quantum Frobenius homomor-
phism, see [@, sec. 41.1.9], by (@) we have also

(FroFr)(0) = [[(1a @ 1x).
PV

Finally, a direct computation yields

(FroFr)(l) = [[(-)" e 1), Tip=[J(=D) @ 10).
AN A

This proves the proposition. (I

Remark B.2. Tt is proved in [R1], prop. 33.2.3] that the C-algebras U_;(n), U;(n)
are isomorphic. Thus we can regard Fr as a map U.(n) — U;(n).

B.2. The (-Schur algebra. Over Q(v), the v-Schur algebra S(n,m) is isomorphic
to the associative algebra with 1 with generators F;, F; where¢=1,...,n —1, 1)
where A € A(n,m), and relations [f, thm. 2.4]

1ad, = 0xuly, Yy 1a =1,

EiFj — FjE; = 055 3 5 [Ai — A1y,

Eily =1xi0,Ei if X+ a; € A(n,m), 0 else,

IzE; = Eily_q, if A\ —a; € A(n,m), 0 else,

Fily=1x_o, F; if A\—a; € A(n,m), 0 else,

1IZF; = Filxtq, if A+ a; € A(n,m), 0 else,

E,E; = E;E; if i # j+ 1, B2E; — (v+ v~ ) E,E;E; + E;E? = 0 else,

EFj = F]E if 7 75 _j + 1, Fi2Fj — (’U + U_I)EFjE + FjFi2 = 0 else.

The integral v-Schur algebra is the A-subalgebra S 4(n,m) C S(n,m) generated

by the 1,’s and all quantum divided powers EZ-(d), Fi(d). In other words, we have a
canonical isomorphism

Sa(m,m) =1, Ua()lym, 1= Y  1x
AEA(n,m)

The comultiplication of U 4(n) factors through a A-algebra homomorphism

A:Sa(n,m) — @ Sa(n,m’) ®Sa(n,m"). (B.3)
m=m/'+m'’
For ¢,e € C* with ¢ = €2 we consider the C-algebra
SC(?’L, m) = S.A(nv m) XA C[’U, vil]/(v - 6)
=1, Uc(n)1,,.

Indeed S¢(n, m) depends only on ¢ and not on the choice of e. If ¢ is a primitive d-th
root of 1, we choose € to be a primitive 2d-th root of 1. Then the quantum Frobenius
homomorphism Fr : Uc(n) — Uj(n) factors through a C-algebra homomorphism

Fr: S¢(n,dm) — Sqi(n,m). (B.4)
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B.3. The module category of S¢(n,m). For A € Z" let AV, LY € Rep(U,(n))
denote the Weyl module and the simple module with highest weight A. Set

A(n,m)y = A(n,m)NZ.

The category Rep(S¢(n,m)) is equivalent to the full subcategory of Rep(Uc(n))
consisting of the modules such that all constituents have a highest weight in the set
A(n,m)4. It is quasi-hereditary with respect to the dominance order, the standard
objects being the modules Ay with A\ € A(n,m);. Here, for A € A(n,m);, we
write
A =AY, LY =LY,
regarded as objects in Rep(S¢(n, m)).
B.4. The Schur functor. Assume that n > m. There is a C-algebra isomorphism
[, sec. 11]
H((m) = f Sg(n,m) f, f = 1(1m0n—m).

Thus the vector space T¢(n,m) = Sc(n,m)f is a (S¢(n, m), He(m))-bimodule, and
Ve(n,m) = fS¢(n,m) is a (H¢(n, m), S¢(n, m))-bimodule. Consider the triple of
adjoint functors (®y, &*, D)

®* : Rep(S¢(n,m)) — Rep(H¢(m)), M w— fM,

@, : Rep(H¢(m)) — Rep(S¢(n,m)), N = Homp, (m)(V¢(n,m), N),

®, : Rep(H¢(m)) = Rep(S¢(n,m)), M — T¢(n,m) ®H, (m) M.
We call @* the Schur functor. It is a quotient functor, i.e., it is exact and the counit
®* d, — 1 is invertible. The double centralizer property holds, i.e., we have

S¢(n,m) = Endg, (m)(V¢(n,m)).

Equivalently, the functor ®* is fully faithful on projectives, or, equivalently again,
the unit P — &, ®*(P) is invertible whenever P is projective. See [@, prop. 4.33]
for details. Since ®* is a quotient functor, the functor ®, takes projectives to
projectives and the unit 1 — ®*®, is an isomorphism of functors. For m = m/ +m”
the comultiplication (B-3) yields a functor

@ : Rep(S¢(n,m’)) ® Rep(S¢(n,m”)) — Rep(S¢(n, m)). (B.5)

) : H — H¢ (m)
We'll abbreviate * Ind,,s = Inng(m’)@Hg(M”)'

Proposition B.3. (a) We have an isomorphism can : T¢(n,m")@T¢(n,m"”) —
T (n, m) which yields an isomorphism for M’ € Rep(H¢(m')), M" € Rep(H¢(m"))

can : @ (M Indy (M @ M")) — (M), (M").

(b) We have an isomorphism can : V¢(n,m')@V¢(n,m") — Ve(n,m) which
yields an isomorphism for M’ € Rep(H¢(m')), M" € Rep(H¢(m"))

can : @, (M Ind,y i (M’ @ M")) = @, (M@, (M").
Corollary B.4. We have an isomorphism
can : FInd,yy i ("M’ @ ®*M") — &*(M'©M")
for M" € Rep(S¢(n,m)) and M" € Rep(S¢(n,m”)).

Proof. For M’ € Rep(S¢(n,m’)) and M" € Rep(S¢(n,m”)), Proposition B.3 yields
an isomorphism

&, M Ind, g (M @ ®*M") = 0,0 M @, d* M.
Composing it with ®* we get an isomorphism

HInd, (M @ *M") = &* (2, 0" M'©®,d*M").
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Composing it with the unit 1 — ®,®* we get a functorial map
O*(M'&M") — Hnd, g (O M’ @ * M)

which is invertible whenever M’, M" are projectives, because the unit is invertible
on projective modules. Thus it is always invertible, because ®* and ¥ Ind,,/ ,, are
exact and because there are enough projectives in Rep(S¢(n,m)). O

B.5. The braiding and the Schur functor. For M’ € Rep(H¢(m’)) and M" €
Rep(H¢(m”)) the R-matrix yields an isomorphism of S¢(n, m)-modules

Ro.m o 2 M @P M — .M @D, M.

Let 7 € G,, be the unique element such that

e 7 is minimal in the coset (S, X & )T (S X Sy ),
e we have 771G, X &, )T = G X Gy

We have the following formula in H¢(m)
T, (" ®h")y= (R @h")T., h' e€Hc(m'),h" € He(m"). (B.6)
Thus there is a unique functorial H¢(m)-module isomorphism
S = B Indyys o (M @ M) — B ndpr e (M" @ M)
given by
Svr v (h@ (v @0")) =hTr @ (V" @), heHe(m), v e M',v" € M".

Proposition B.5. For M’ € Rep(H¢(m')), M" € Rep(H¢(m")) the following
square is commutative

<I>*(S ’ //)
&, Ind,ps g (M @ M) ——— 5 & B Ind,pn pn (M" @ M)

canl canl
R, M/ oy M

O M P, M" O M" 2P, M.

Proof. We abbreviate H = H¢(m), H' = H¢(m'), H” = He(m”), V = V¢(n,m),
V' = V¢(n,m') and V"’ = V¢(n,m”). The proof is standard. Let us sketched it
for the comfort of the reader. First, we have a commutative square

RV”,V’

V/I®v/ VI®VH
l l (B.7)
T,
\% \%

where the lower map is the left multiplication with T’.. In particular, we have
Ry v ("0 @h'v") = (W' @h YRyn v (V'@0"), o e V' " e V' K eH 6 neH"
Therefore, the composition by Rv v yields a linear map

Hompp gr (V, M’ @ M") = &2 Ind, (M’ @ M) —

— Homprgu (V,M" @ M) = ®, % Ind,r (M @ M).

The commutativity of the square (@) implies that this map is equal to @, (S ar7).
It is easy to see that this map coincides also with Re, v+ o, m- O
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Corollary B.6. For M’ € Rep(S¢(n,m’)), M" € Rep(S¢(n,m")) the following
square is commutative

S@*M/,@*M”

H Indm/m// ((I)*M/ X @*M”) H Indm//m/ (@*M” X @*M/)

l . S (Rasr i) l .
(I)*(MI(X)M”) M7,M (I)*(M”(X)MI)
Proof. Use the same argument as in the proof of Corollary @ O

Letr >1landi=1,2,...,r—1. For M € Rep(H¢(m)) we define an automorphism
of the H¢(mr)-module ¥ Ind,,~ (M®") by
Suvi=1 Indg“m’(l@i*l @ Sy ® 19777
H = H(m)* " © He(2m) © Ho(m)® "

Similarly, for M € Rep(S¢(n,m)) we define an automorphism of the S¢(n,mr)-
module M®" by

R, = 1®i71®73M,1V[®1®T7i71.

Corollary B.7. For M € Rep(S¢(n,m)), r > 1 andi=1,2,...,r — 1 we have a
commutative square with invertible vertical maps

Sax (M),

H Ind(mr) P* (M)®T H Ind(mr) P* (M)®T

| |

i B*(R,i) .
o (MET) - o+ (ME7)

B.6. The braiding and the quantum Frobenius homomorphism. Recall
that if ¢ is a primitive d-th root of 1 then the quantum Frobenius homomorphism
yields a functor

Fr* : Rep(S1(n,dm)) — Rep(S¢(n,m)).
For M € Rep(S1(n,dm)), M’ € Rep(S1(n,dm')) the braiding

RM,M’ : M®M’ — MI®M
is given by the permutation sps ;. The functor Fr* is a braided tensor functor.
More precisely, we have the following.
Proposition B.8. Form,m’ > 0 and for M € Rep(S1(n,dm)), M' € Rep(S1(n,dm’)),
we have Fr*(M@M') = Fr*(M)® Fr*(M') and
RFr*(]\/I),Fr*(]M’) = SFr*(M),Fr*(M') * Fr* (M)® Fr* (M/) - Fr*(M’)® Fr* (M).

Proof. Obvious by Proposition . O

B.7. The algebra S¢(m). We'll abbreviate S¢(m) = S¢(m,m). If n > m the
algebra S¢(n,m) is Morita equivalent to S¢(m), see e.g., [, lem. 1.3]. Thus ® can
be viewed as a functor (choosing n > m =m' +m’)

@ : Rep(S¢(m')) @ Rep(S¢(m”)) — Rep(S¢(m)).

If ¢ is a primitive d-th root of 1 then the quantum Frobenius homomorphism can
be viewed as a functor (choosing n > dm)

Fr* : Rep(S1(dm)) — Rep(Sc¢(m)).
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