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Introduction

The geometric barycenter of a set of points is the point which minimizes the sum of the squared distances to these points. It is the most traditional estimator is statistics that is however sensitive to outliers [START_REF] Hampel | Robust Statistics The Approach Based on Influence Function[END_REF]. Thus it is natural to replace the average distance squaring (power 2) by taking the power of p for some p ∈ [START_REF] Afsari | Riemannian L p center of mass : existence, uniqueness, and convexity[END_REF][START_REF] Amary | Methods of Information Geometry Translations of Mathematical Monographs[END_REF]. This leads to the definition of p-means. When p = 1, the minimizer is the median of the set of points, very often used in robust statistics [START_REF] Hampel | Robust Statistics The Approach Based on Influence Function[END_REF]. In many applications, pmeans with some p ∈ (1, 2) give the best compromise. For existence and uniqueness in Riemannian manifolds under convexity conditions on the support of the measure, see Afsari [START_REF] Afsari | Riemannian L p center of mass : existence, uniqueness, and convexity[END_REF].

The Fermat-Weber problem concerns finding the median e 1 of a set of points in an Euclidean space. Numerous authors worked out algorithms for computing e 1 . The first algorithm was proposed by Weiszfeld in [START_REF] Weiszfeld | Sur le point pour lequel la somme des distances de n points donnés est minimum[END_REF] (see also [START_REF] Vardi | The multivariate L 1 -median and associated data dept[END_REF]). It has been extended to sufficiently small domains in Riemannian manifolds with nonnegative curvature by Fletcher and al. in [START_REF] Fletcher | The geometric median on Riemannian manifolds with application to robust atlas estimation[END_REF]. A complete generalization to manifolds with positive or negative curvature (under some convexity conditions in positive curvature), has been recently given by Yang in [START_REF] Yang | Riemannian median and its estimation[END_REF].

The Riemannian barycenter or Karcher mean of a set of points in a manifold or more generally of a probability measure has been extensively studied, see e.g. [START_REF] Karcher | Riemannian center of mass and mollifier smoothing[END_REF], [START_REF] Kendall | Probability, convexity and harmonic maps with small image I: uniqueness and fine existence[END_REF], [START_REF] Kendall | Convexity and the hemisphere[END_REF], [START_REF] Emery | Sur le barycentre d'une probabilité dans une variété[END_REF], [START_REF] Picard | Barycentres et martingales dans les variétés[END_REF], [START_REF] Arnaudon | Barycenters of measures transported by stochastic flows[END_REF], [START_REF] Corcuera | Riemannian barycentres and geodesic convexity Math[END_REF], where questions of existence, uniqueness, stability, relation with martingales in manifolds, behavior when measures are pushed by stochastic flows have been considered. The Riemannian barycenter corresponds to p = 2 in the above description. Computation of Riemannian barycenters by gradient descent has been performed by Le in [START_REF] Le | Estimation of Riemannian barycentres[END_REF].

The aim of this paper is to extend to the context of Finsler manifolds the results on existence and uniqueness of p-means of probability measures, as well as algorithms for computing them. Some convexity is needed, and as we shall see the fact that comparison results for triangles as Alexandroff and Toponogov theorems do not exist impose more restrictions on the support of the probability measure. As a consequence, the sharp results on existence and uniqueness established by Afsari [START_REF] Afsari | Riemannian L p center of mass : existence, uniqueness, and convexity[END_REF] and the algorithm for computing means of Yang in [START_REF] Yang | Riemannian median and its estimation[END_REF] do not extend to Finsler manifolds.

The motivation for this work primarily comes from signal filtering and denoising in the context of Diffusion Tensor Imaging (DTI), High Angular Resolution Imaging (HARDI, see [START_REF] Shen | Riemann-Finsler geometry, with applications to information geometry[END_REF], [START_REF] Pchaud | Brain connectivity using geodesics in hardi[END_REF], [START_REF] Astola | Finsler geometry on higher oredre tensor fields and applications to high angular resolution diffusion imaging[END_REF]), Orientation Distribution Function (ODF), active contours [START_REF] Melonakos | Finsler active contours[END_REF]. Applications with experimental results of an implementation will be reported in forthcoming papers.

Information geometry at its heart considers the differential geometry nature of probability distributions induced by a divergence function. In probability theory, invariance by monotonic re-parameterization and sufficient statistics yields the class of f -divergences [START_REF] Amary | Methods of Information Geometry Translations of Mathematical Monographs[END_REF] 

I f (p, q) = p(x)f ( q(x) p(x)
)dx that includes the Kullback-Leibler (KL) information-theoretic divergence KL(p, q) = p(x) log p(x) q(x) dx as its prominent member (for f (t) = -log t). It is well-known that the KL divergence (better known as the relative entropy) yields a dually flat structure [START_REF] Amary | Methods of Information Geometry Translations of Mathematical Monographs[END_REF] generalizing the (self-dual) Euclidean space.

Because divergences are usually asymmetric and violate the triangle inequality they have not been extensively considered from an algorithmic point of view. Indeed, the triangle inequality property is often used in computational geometry to design efficient algorithms by allowing various "pruning" techniques [START_REF] Elkan | Using the Triangle Inequality to Accelerate k-Means[END_REF][START_REF] Fuhry | Efficient skyline computation in metric space[END_REF]. Computational geometry has thus mostly considered metric spaces for keeping the triangle inequality properties.

One can metrize divergences. The KL divergence can be symmetrized either into the Jeffreys divergence J(p, q) = KL(p, q) + KL(q, p) or the Jensen-Shannon (JS) divergence:

JS(p, q) = KL(p, p + q 2 ) + KL(q, p + q 2 ) = (p(x) log 2p(x) p(x) + q(x) + q(x) log 2q(x) p(x) + q(x) )dx.
The latter is preferred in practice because it is bounded, and its square root yields a metric that can be embedded into a Hilbert space [START_REF] Fuglede | Jensen-Shannon divergence and Hilbert space embedding[END_REF]. Finsler distances, arising from the underlying the Finsler metrics, are attractive as they preserve the triangle inequality [START_REF] Shen | Riemann-Finsler geometry, with applications to information geometry[END_REF] for efficient algorithmics but potentially model asymmetric distances.

In information geometry, the regular divergence D associated to a Finslerian metric distance d can be defined as D(p, q) = d 2 (p, q). Observe that the Finslerianbased divergence looses then the triangle inequality property [START_REF] Shen | Riemann-Finsler geometry, with applications to information geometry[END_REF]. (eg., the squared Euclidean distance does not satisfy the triangle inequality).

Preliminaries

Let M be a smooth manifold. On M we consider a Finsler structure F :

T M → R + . For any x ∈ M , V, X, Y, Z ∈ T x M such that V = 0, let (2.1) g V (X, Y ) := 1 2 ∂ 2 ∂s∂t (s,t)=(0,0) F 2 (V + sX + tY ).
(we shall also use the notation <X, Y > V = g V (X, Y )) and

(2.2) <X, Y, Z> V := 1 4

∂ 3 ∂r∂s∂t (r,s,t)=(0,0,0) F 2 (V + rX + sY + tZ).
We have

(2.3) <X, Y, Z> V = 1 2 ∂ ∂r r=0 g V +rX (Y, Z)
and in particular since

F 2 is 2-homogeneous and V → g V (X, Y ) is 0-homogeneous, (2.4) <V, Y, Z> V = 0.
Let V be a non-vanishing vector field on M . The Chern connection ∇ V is torsionfree and almost metric, and can be characterized by

(2.5) X<Y, Z> V = <∇ V X Y, Z> V + <Y, ∇ V X Z> V + 2<∇ V X V, Y, Z> V .
More precisely, parameterizing locally T M by coordinates (x 1 , . . . , x m , y 1 = dx 1 , . . . , y m = dx m ), defining the geodesic coefficients as

(2.6) G i (y) = 1 4 g ik (y) 2 ∂g jk ∂x l - ∂g jl ∂x k y j y l , y ∈ T M \{0}, letting (2.7) N i j = ∂G i ∂y j , δ δx i = ∂ ∂x i -N k i (y)
∂ ∂y k ∈ T y (T M \{0}) , then the Christoffel symbols of the Chern connection are given by

(2.8) Γ k ij = 1 2 g kl δg lj δx i + δg il δx j - δg ij δx l
(see [START_REF] Chern | Riemann-Finsler geometry[END_REF]). Note that defining (2.9) δy i = dy i + N i j (y)dx j we have for a smooth function f : T M \{0} → R (2.10) df = δf δx i dx i + ∂f ∂y i δy i . The Chern curvature tensor is defined by the equation

(2.11) R V (X, Y )Z := ∇ V X ∇ V Y Z -∇ V Y ∇ V X Z -∇ V [X,Y ] Z, and the flag curvature is (2.12) K (V, W ) := <R V (V, W )W, V > <V, V > V <W, W > V -<V, W > 2 V , for two non collinear V, W ∈ T x M .
We say that M has nonpositive flag curvature if for all V, W , K (V, W ) ≤ 0.

The tangent curvature of two vectors V, W ∈ T x M is defined as

(2.13) T V (W ) = <∇ W W W -∇ V W W , V > V
where W is a vector field satisfying Wx = W . For a nonnegative constant δ ≥ 0 we say that T ≥ -δ or T ≤ δ if respectively

(2.14) T V (W ) ≥ -δF (V )F (W ) 2 or T V (W ) ≤ δF (V )F (W ) 2 .
For x ∈ M we define

(2.15) C (x) = sup v,w∈TxM\{0} <v, v> v <v, v> w , D(x) = sup v,w∈TxM\{0}
<v, v> w <v, v> v .

Remark 2.1. For applications in active contours, a "Wulff shape" is given which does not depend on x and defines the Finsler structure. From this shape C and D can easily be calculated. See e.g [START_REF] Melonakos | Finsler active contours[END_REF] and [START_REF] Zach | Globally Optimal Finsler Active Contours[END_REF].

A geodesic in M is a curve t → c(t) satisfying for all t, ∇ ċ(t) ċ(t) ċ = 0. It is well known that a geodesic has constant speed, and that it locally minimizes the distance ( [START_REF] Chern | Riemann-Finsler geometry[END_REF]). If so, letting ρ(x, y) the forward distance from x to y, then (2.16)

ρ 2 (x, y) = < ċ(0), ċ(0)> ċ(0)
where t → c(t) is the minimal geodesic satisfying c(0) = x and c(1) = y. By definition, the backward distance from x to y is ρ(y, x).

For x ∈ M and v ∈ T x M , we let whenever it exists exp x (v) := c(1) where t → c(t) is the geodesic satisfying ċ(0) = v.
If M is complete, analytic, simply connected and has nonpositive flag curvature (we say that M is an analytic Cartan-Hadamard manifold), then exp x : T x M → M is an homeomorphism ([6] theorem 4.7). Under these assumption, letting for x, y ∈ M , -→ xy = exp -1 x (y), we have (2.17)

ρ 2 (x, y) = < -→ xy, -→ xy>-→ xy .
For x 0 ∈ M and R > 0,, let us denote by B(x 0 , R) (resp. B(x 0 , R)) the (forward) open (resp. closed) ball with center x 0 and radius R:

(2.18) B(x 0 , R) = {y ∈ M, ρ(x 0 , y) < R} (resp. B(x 0 , R) = {y ∈ M, ρ(x 0 , y) ≤ R}) Now let (t, s) → c(t, s) a family of minimizing geodesics t → c(t, s), t ∈ [0, 1], parametrized by s ∈ I, I an interval in R. Define (2.19) E(s) = 1 2 ρ 2 (c(0, s), c(1, s)).
The computation of E ′ (s) and E ′′ (s) is well-known, see e.g. [START_REF] Bao | An introduction to Riemann-Finsler geometry[END_REF]. We have

(2.20) E ′ (s) = <∂ s c(1, s), ∂ t c(1, s)> ∂tc(1,s) -<∂ s c(0, s), ∂ t c(0, s)> ∂tc(0,s) .
As for the second derivative, letting c = c(•, 0), and for X, Y vector fields along c

(2.21) I(X, Y ) = 1 0 <∇ T T X, ∇ T T Y > T -<R T (X, T )T, Y > T dt
the index of X and Y , we have

E ′′ (0) = <∇ ∂tc(1,0) ∂sc(1,0) ∂ s c(1, •), ∂ t c(1, 0)> ∂tc(1,0) -<∇ ∂tc(0,0) ∂sc(0,0) ∂ s c(0, •), ∂ t c(0, 0)> ∂tc(0,0) + I(∂ s c(•, 0), ∂ s c(•, 0)). (2.22)
Assuming s → c(0, s) and s → c(1, s) are geodesics, we obtain

E ′′ (0) = T ∂tc(0,0) (∂ s c(0, 0)) -T ∂tc(1,0) (∂ s c(1, 0)) + I(∂ s c(•, 0), ∂ s c(•, 0)). (2.23)
We are interested in the situation where c(1, s) ≡ z a constant. In this case we have

E ′′ (0) = T ∂tc(0,0) (∂ s c(0, 0)) + I(∂ s c(•, 0), ∂ s c(•, 0)). (2.24) For p ≥ 1, define (2.25) D p (s) = ρ p (c(0, s), z) Proposition 2.2. Assume K ≤ k, T ≥ -δ, C ≤ C for some k, δ ≥ 0, C ≥ 1. Let p > 1.
Then writing r = ρ(x, z),

(2.26) D ′′ p (0) ≥ pr p-2 min p -1, √ kr cos( √ kr) sin( √ kr) C -2 -δr . If z and x = c(0, 0) satisfy ρ(x, z) < R(p, k, δ, C) with (2.27) R(p, k, δ, C) = min p -1 C 2 δ , 1 √ k arctan √ k C 2 δ
and the injectivity radius at x is strictly larger than R(p, k, δ, C), then

D ′′ p (0) > 0. Remark 2.3. Note if p ≥ 2 then R(p, k, δ, C) = R(2, k, δ, C) = 1 √ k arctan √ k C 2 δ . Proof. Define T (t) = ∂ t c(t, 0), J(t) = ∂ s c(t, 0), J T (t) = 1 F (T (t)) 2 <J(t), T (t)> T (t) T (t), J N (t) = J(t) -J T (t).
Using successively [START_REF] Bao | An introduction to Riemann-Finsler geometry[END_REF] Lemma 9.5.1 which compares the index I(J, J) with the one of its "transplant" into a manifold with constant curvature k 2 and the index lemma [START_REF] Bao | An introduction to Riemann-Finsler geometry[END_REF] Lemma 7.3.2 which compares the index of the transplant to the one of the Jacobi field with same boundary values, we get, letting r = ρ(x, z) = D 1 (0), (2.28)

I(J, J) ≥ √ kr cos( √ kr) sin( √ kr) <J N (0), J N (0)> T (0) + <J T (0), J T (0)> T (0) .
Using the expression (2.24) for E ′′ (0) we obtain

(2.29) E ′′ (0) ≥ -δr + √ kr cos( √ kr) sin( √ kr) <J N (0), J N (0)> T (0) + <J T (0), J T (0)> T (0) .
We have from (2.20)

(2.30) E ′ (0) 2 = r 2 <J T (0), J T (0)> T (0) . Now from D 1 (s) = 2E(s) we get (2.31) D ′ 1 (s) = E ′ (s) D 1 (s) , D ′′ 1 (s) = E ′′ (s) D 1 (s) - E ′ (s) 2 D 3 1 (s)
, and this yields

D ′′ p (0) = pD 1 (0) p-2 (p -1)D ′ 1 (0) 2 + D 1 (0)D ′′ 1 (0) = pr p-2 (p -2)<J T (0), J T (0)> T (0) + E ′′ (0) ≥ pr p-2 (p -1)<J T (0), J T (0)> T (0) -δr + √ kr cos( √ kr) sin( √ kr) <J N (0), J N (0)> T (0) ≥ pr p-2 min p -1, √ kr cos( √ kr) sin( √ kr) <J(0), J(0)> T (0) -δr ≥ pr p-2 min p -1, √ kr cos( √ kr) sin( √ kr) C -2 -δr .
¿From this bound the rest of the proof follows easily.

Similarly, we can obtain an upper bound for D ′′ p (0): Proposition 2.4. Assume the sectional curvatures K have a lower bound -β 2 for some β > 0, and T ≤ δ ′ for some δ ′ > 0, D ≤ D for some D ≥ 1. Again let r = ρ(x, z), assume that the injectivity radius at x is larger than r. Then

(2.32) D ′′ p (0) ≤ pr p-2 D 2 max (p -1, βr coth(βr)) + δ ′ r . Proof.
We have by (2.24) and (2.31) together with the fact that (2.33)

I(J, J) = <J T (0), J T (0)> + I(J N , J N ), D ′′ p (0) = pr p-2 p -1)<J T (0), J T (0)> T (0) + I(J N , J N ) + T T (J)
. Let t → X(t) the parallel vector field along t → c(t, 0) with initial condition J N (0), and for t ∈ [0, 1], let

G(t) = cosh(rβt) -coth (rβ) sinh(rβt).
This is the solution of G ′′ = rβG with conditions G(0) = 1 and G(1) = 0. The vector field t → Y (t) along t → c(t, 0) defined by (2.34)

Y (t) = G(t)X(t)
has same boundary values as t → J N (t), so by the index lemma [START_REF] Bao | An introduction to Riemann-Finsler geometry[END_REF] 

I(J N , J N ) ≤ I(Y, Y ).
On the other hand

I(Y, Y ) = 1 0 G ′ (t) 2 <J N (0), J N (0)> T (0) -G(t) 2 <R T (X(t), T (t))T (t), X(t)> T (t) dt ≤ <J N (0), J N (0)> T (0) 1 0 G ′ (t) 2 + r 2 β 2 G(t) 2 dt = <J N (0), J N (0)> T (0) [G ′ (t)G(t)] 1 0 + 1 0 G(t) -G ′′ (t) 2 + r 2 β 2 G(t) dt = <J N (0), J N (0)> T (0) rβ coth (rβ) . So D ′′ p (0) ≤ pr p-2 (p -1)<J T (0), J T (0)> T (0) + rβ coth(rβ)<J N (0), J N (0)> T (0) + δ ′ r ≤ pr p-2 max ((p -1), rβ coth(rβ)) <J(0), J(0)> T (0) + δ ′ r ≤ pr p-2 D 2 max ((p -1), rβ coth(rβ)) + δ ′ r (2.36) since F (J(0)) = 1.
For x ∈ M , let ℓ x : T x M → T * x M be the Legendre transformation, defined as (2.37)

ℓ x (V ) = g V (V, •) if V = 0, ℓ x (0) = 0.
It is well-known that ℓ x is a bijection. The global Legendre transformation on T M is defined as

(2.38) L (V ) = ℓ π(V ) (V )
where π : T M → M is the canonical projection. If we define the dual Minkowski norm

F * on T * x M as (2.39) F * (ξ) = max{ξ(y), y ∈ T x M, F (y) = 1}, then (2.40) F = F * • L and for non zero V ∈ T M and α ∈ T * M , (2.41) L (V ), V = F (V ) 2 , α, L -1 (α) = F * (α) 2
(see e.g. [START_REF] Alvarez Paiva | Some problems on Finsler geometry[END_REF]).

For f a C 1 function on M we may define the gradient of f

(2.42) grad f = L -1 (df ).

Forward p-means

Let µ be a compactly supported probability measure in M . For p > 1 and x ∈ M we define

(3.1) E µ,p (x) = M ρ p (x, z) µ(dz).
The (forward) p-mean of µ is the point e p of M where E µ,p reaches its minimum whenever it exists and is unique.

In this paper we will consider forward p-means and we will call them p-means. Similarly we could define the backward p-mean ←e p as the point which minimizes

x → ← - E µ,p (x) := M ρ p (z, x) µ(dz).
Depending on the context, forward or backward mean is more appropriate. One should note that defining the reverse (or adjoint) Finsler structure ← -

F (v) = F (-v), v ∈ T M ,
it is easy to check that the associated distance ←ρ satisfies ←ρ (z, x) = ρ(x, z), and forward p-mean for ← -F is backward p-mean for F . So without loss of generality we can consider only the forward p-means.

One should also note that in High Angular Resolution Imaging the Finsler structure is symmetric, so both notions coincide. It is not the case for the application concerning active contours where it is natural to consider non symmetric F .

Even if it is in a non-Finslerian context, one can give the example of rightsided and left-sided Kullback-Leibler divergences for families of Gaussian probability densities (see [START_REF] Nielsen | Sided and symmetrized Bregman centroids[END_REF]). The left sided centroid focuses on the highest mode (it is zero-forcing), and the right-sided centroid tries to cover the support of both normals (it is zero-avoiding as depicted in Fig. 2 of [START_REF] Nielsen | Sided and symmetrized Bregman centroids[END_REF]). Proposition 3.1. Assume there exists C > 0 such that C (x) ≤ C for all x ∈ M , where C (x) is defined in (2.15). Assume furthermore that supp(µ) ⊂ B(x 0 , R) for some x 0 ∈ M and R > 0. Then x → E µ,p (x) has at least one global minimum in B(x 0 , C(1 + C)R).

Proof. We begin with establishing that for all y 1 , y 2 ∈ M ,

(3.2) 1 C ρ(y 2 , y 1 ) ≤ ρ(y 1 , y 2 ) ≤ Cρ(y 2 , y 1 ).
It is sufficient to establish the second inequality and then to exchange y 1 and y 2 . If t → ϕ(t) is a path from y 1 = ϕ(0) and y 2 = ϕ(1) then its length L(ϕ) satisfies

L(ϕ) = 1 0 < φ(t), φ(t)> φ(t) dt = 1 0 < -φ(t), -φ(t)> φ(t) < -φ(t), -φ(t)> -φ(t) < -φ(t), -φ(t)> -φ(t) dt ≤ 1 0 C (ϕ(t)) < -φ(t), -φ(t)> -φ(t) dt ≤ C 1 0 < -φ(t), -φ(t)> -φ(t) dt = CL( φ)
where φ is the path from y 2 to y 1 defined by φ(t) = ϕ(1t). Minimizing over all paths φ from y 2 to y 1 we get

(3.3) ρ(y 1 , y 2 ) ≤ Cρ(y 2 , y 1 ). Now if supp(µ) ⊂ B(x 0 , R) then E µ,p (x 0 ) ≤ R p . On the other hand, if x ∈ B(x 0 , C(1 + C)R) then for all y ∈ B(x 0 , R) ρ(x, y) ≥ ρ(x, x 0 ) -ρ(y, x 0 ) ≥ 1 C ρ(x 0 , x) -Cρ(x 0 , y) ≥ (1 + C)R -CR = R
and this clearly implies that E µ,p (x) ≥ R p . From this we get the conclusion.

Concerning the uniqueness of the global minimum of E µ,p , we also have the following easy result. Proposition 3.2. Assume that µ is supported by a compact ball B(x 0 , R), and that for all z ∈ B(x 0 , R), the function x → ρ p (x, z) is strictly convex in B(x 0 , C(1 + C)R). Then µ has a unique p-mean in B(x 0 , C(1 + C)R).

Proof. If x → ρ p (x, z) is strictly convex for all z in the support of µ then E µ,p is strictly convex, and this implies that it has a unique minimum, which is attained at a unique point e p .

Corollary 3.3. Assume K ≤ k, T ≥ -δ, C ≤ C for some k, δ ≥ 0, C ≥ 1. Let p > 1. Again let R(p, k, δ, C) = min p -1 C 2 δ , 1 √ k arctan √ k C 2 δ
If µ is supported by a geodesic ball B(x 0 , R) with

(3.4) R ≤ 1 C(C + 1) 2 R(p, k, δ, C)
and the injectivity radius at any x ∈ B(x 0 , C(1 + C)R) is strictly larger than R(p, k, δ, C) then µ has a unique p-mean e p satisfying

(3.5) e p ∈ B x 0 , 1 C + 1 R(p, k, δ, C) . Proof. If x, z ∈ B(x 0 , C(1 + C)R) then ρ(x, z) ≤ ρ(x, x 0 ) + ρ(x 0 , z) ≤ (1 + C) 2 CR ≤ R(p, k, δ, C).
Using proposition 2.2, we obtain that E µ,p is strictly convex on B(x 0 , C(1 + C)R).

So by proposition 3.2 µ has a unique p-mean in B(x 0 , C(1 + C)R).

Remark 3.4. Letting x 0 ∈ M , D be a relatively compact neighborhood of x 0 , then K and C are bounded above on D by, say k D and C D , and T is bounded below on D by -δ D . Using these bounds instead of k, C and δ, we can find R sufficiently small so that the conditions of corollary 3.3 are fulfilled. So we can say any measure µ with sufficiently small support has a unique p-mean.

Remark 3.5. If M is a Cartan-Hadamard manifold, we recover the fact that we can take R(p, k, δ, C) as large as we want. More generally, in the Riemannian case, Afsari [START_REF] Afsari | Riemannian L p center of mass : existence, uniqueness, and convexity[END_REF] proved existence and uniqueness of p-means, p ≥ 1 on geodesic balls with radius r <

1 2 min inj(M ), π 2 √ k if p ∈ [1, 2), and r < 1 2 min inj(M ), π √ k if p ≥ 2.
Even taking δ = 0 and C = 1 in Corollary 3.3 the support of µ has half the size of the one in [START_REF] Afsari | Riemannian L p center of mass : existence, uniqueness, and convexity[END_REF] for p ∈ (1, 2) due to the fact that we have an additional condition (3.4) coming from the non optimality of Proposition 3.2 in the Riemannian context. As for p ≥ 2 another factor two is gained in [START_REF] Afsari | Riemannian L p center of mass : existence, uniqueness, and convexity[END_REF] with repeated use of Toponogov and Alexandroff theorems which are not available in our context.

Remark 3.6. The condition on injectivity radius is the same as in the Riemannian case. The cut locus of any point of x ∈ B(x 0 , C(1+C)R) has to be at distance larger than R(p, k, δ, C). As for Riemannian manifold there is no general condition which insures this property for cut points, but for conjugate points the same condition holds, due to Rauch comparison theorem, see Theorem 9.6.1 in [START_REF] Bao | An introduction to Riemann-Finsler geometry[END_REF]. In the particular case when M is a Cartan-Hadamard Finsler manifold, i.e. it has nonpositive flag curvature and it is simply connected, then the injectivity radius in everywhere infinite (see Theorem 9.4.1 in [START_REF] Bao | An introduction to Riemann-Finsler geometry[END_REF]).

Proposition 3.7. Let a → x(a) solve the equation

(3.6) x(0) = x 0 and for a ≥ 0 x ′ (a) = grad x(a) (-E µ,p ).
Under the conditions of Corollary 3.3, the path a → x(a) converges as a → ∞ to the p-mean of µ.

Proof. If f (a) = (-E µ )(x(a)) we have as soon as grad x(a) (-E µ,p ) = 0,

f ′ (a) = d x(a) (-E µ,p ), x ′ (a) = d x(a) (-E µ,p ), grad x(a) (-E µ,p ) = d x(a) (-E µ,p ), L -1 (d x(a) (-E µ,p )) = F * d x(a) (-E µ,p )
2 by (2.40) and (2.41).

On the other hand, we have f (0) ≥ -R p and f is nondecreasing. This implies that for all a ≥ 0, x(a) ∈ B(x 0 , C(1 + C)R), since for all x ∈ B(x 0 , C(1 + C)R), E µ,p (x) ≥ R p . As a consequence x(a) has limit points as a goes to infinity, and since f (a) converges, any limit point is a critical point of x → E µ,p (x). But by Proposition 3.2 E µ,p has a unique critical point in B(x 0 , C(1 + C)R) which is the mean e p of µ. So we can conclude that x(a) converges to e p .

Forward median

Let µ be a compactly supported probability measure in M . For x ∈ M we define (4.1)

F µ (x) = M ρ(x, z) µ(dz).
The median of µ is the point in M where F µ reaches its minimum whenever it exists and is unique. Again we have the following result.

Proposition 4.1. Assume there exists C > 0 such that C (x) ≤ C for all x ∈ M . Assume furthermore that supp(µ) ⊂ B(x 0 , R) for some x 0 ∈ M and R > 0. Then x → F µ (x) has at least one global minimum in B(x 0 , C(1 + C)R).

Proposition 4.2. Assume that µ is supported by a compact ball B(x 0 , R), that the support of µ is not contained in a single geodesic and that for all z ∈ B(x 0 , R), the forward distance to z is convex, and strictly convex in any geodesic of B(x 0 , C(1 + C)R) which does not contain z. Then µ has a unique median m ∈ B(x 0 , C(1+C)R).

Proof. Clearly under these assumptions F µ is strictly convex, so it has a unique local minimum, this minimum is global and is attained at a unique point m ∈ B(x 0 , C(1 + C)R).

Remark 4.3. Contrarily to the case of p-means for p > 1, we cannot say at this stage that any probability measure µ with sufficiently small support has a unique median, since we don't know whether F µ is strictly convex or not. In the next proposition we give a sufficient condition for strict convexity of F µ .

Proposition 4.4. Assume K ≤ k and T ≥ -δ for some k, δ > 0. Assume that the injectivity radius at any point of B(x 0 , C(1

+ C)R) is larger than (C 2 + C + 1)R. Define η = min M √ k cot √ kρ(π(v), z) <v N , v N >---→ π(v)z µ(dz), v ∈ T M satisfying π(v) ∈ B(x 0 , C(1 + C)R), F (v) = 1 (4.2)
where v N is the normal part of v with respect to the vector ---→ π(v)z and the scalar product

<•, •>---→ π(v)z . If η -δ > 0 then F µ is strictly convex on B(x 0 , C(1 + C)R).
More precisely, for all x ∈ B(x 0 , C(1 + C)R) and for all unit speed geodesic γ starting at x,

(4.3) (F µ • γ) ′′ (0) ≥ η -δ.
Proof. With the notations of section 2, from (2.31) we have (4.4)

D ′′ 1 (0) = r -1 E ′′ (0) -<J T (0), J T (0)> T (0)
. Let γ(s) = c(0, s), the unit speed geodesic with initial condition v = J(0), and f (s) = F µ (γ(s)). Equation (4.4) together with (2.29) gives (4.5)

f ′′ (0) ≥ -δ + M √ k cot √ kρ(π(v), z) <v N , v N >---→ π(v)z µ(dz) ≥ η -δ.
From this we get the condition for the strict convexity of F µ .

For x ∈ M define the measure µ x = µµ({x})δ x . Then the map y → F µx (y) is differentiable at y = x. Since and for v ∈ T x M , F µ is differentiable in the direction v with derivative (4.7)

dF µ , v = dF µx , v + µ({x})F (-v),
we see that x is a local minimum of F µ if and only if for all nonzero v ∈ T x M

(4.8) µ({x})F (-v) ≥ dF µx , -v which is equivalent to (4.9) µ({x}) ≥ (F * (dF µx )) 2 F (L -1 (dF µx )) (take -v = L -1 (dF µx ) F (L -1 (dF µx ))
). But since Alternatively, (4.12)

F * = F • L -1 ,
H(x) = L -1 M\{x} L - 1 ρ(x, z) -→ xz µ(dz) .
Let a → x(a) be the path in M defined by x(0) = x 0 and

(4.13) ẋ(a) = -H(x(a)) if for all a ′ ≤ a, µ({x(a ′ )}) < F * dF µ x(a ′ ) ; ẋ(a) = 0 if for some a ′ ≤ a, µ({x(a ′ )}) ≥ F * dF µ x(a ′ ) . Define (4.14) f (a) = F µ (x(a)).
We have for the right derivative of f when x(a) is not a minimal point of F µ :

f ′ + (a) = d x(a) (F µ x(a) ), ẋ(a) + µ({x(a)})F (-ẋ(a)) = -d x(a) (F µ x(a) ), L -1 (d x(a) (F µ x(a) )) + µ({x(a)})F L -1 (d x(a) (F µ x(a) )) = -F * d x(a) (F µ x(a) ) 2 + µ({x(a)})F L -1 (d x(a) (F µ x(a) )) .
We get

(4.15) f ′ + (a) = -F * d x(a) (F µ x(a) ) F * d x(a) (F µ x(a)
)µ({x(a)}) which is negative as soon as x(a) is not a minimal point of F µ . From this we get the following Proposition 4.6. Assume that µ is supported by a compact ball B(x 0 , R), that the support of µ is not contained in a single geodesic and that for all z ∈ B(x 0 , R), the forward distance to z is convex, and strictly convex in any geodesic of B(x 0 , C(1 + C)R) which does not contain z. Then the path a → x(a) converges to the median m of µ.

Proof. Similar to the proof of proposition 3.7

5. An algorithm for computing p-means

Lemma 5.1. Assume K ≥ -β 2 , T ≤ δ ′ , D ≤ D with β > 0, δ ′ ≥ 0 D ≥ 1. For p > 1, r > 0, define (5.1) H(r) = H p,β,D,δ ′ (r) := pr p-2 D 2 max ((p -1), rβ coth(rβ)) + δ ′ r .
If µ is a probability measure on M with bounded support and x ∈ M , define

(5.2) H µ (x) = H µ,p,β,D,δ ′ (x) := M H p,β,D,δ ′ (ρ(x, y)) dµ.
If t → γ(t) is a unit speed geodesic then for all t

(5.3) (E µ,p • γ) ′′ (t) ≤ H µ (γ(t)).
Proof. For x, y ∈ M , r = ρ(x, y), s → γ(s) = c(0, s) a unit speed geodesic started at x = c(0, 0), t → c(t, s) the geodesic satisfying c(1, s) = y, we have The main result is the following (see [START_REF] Le | Estimation of Riemannian barycentres[END_REF] for a similar result in a Riemannian manifold).

D ′′ p (0) ≤ pr p-2 D 2 max ((p - 
Proposition 5.3. Assume -β 2 ≤ K ≤ k, -δ ≤ T ≤ δ ′ , C ≤ C and D ≤ D for some β, k, δ, δ ′ > 0 and C, D ≥ 1. Let p > 1.
Assume the support of µ is contained in B(x 0 , R) and E µ,p is strictly convex on B(x 0 , C(C + 1)R). Assume furthermore that the function H µ = H µ,p,β,D,δ ′ is bounded on B(x 0 , C(C + 1)R) by a constant C H > 0, and that the injectivity radius at any point of B(x 0 , C(C + 1)R) is larger than C 2 + C + 1. Define the gradient algorithm as follows:

Step 1 Start from a point x 1 ∈ B(x 0 , C(C + 1)R) such that E µ,p (x 1 ) ≤ R p (take for instance x 1 = x 0 ) and let k = 1.

Step 2 Let

(5.4) v k = grad(-E µ,p (x k ))) F (grad(-E µ,p (x k )))

, t k = F (grad(-E µ,p (x k ))) C H .

and let γ k be the geodesic satisfying γ k (0) = x k , γk (0) = v k . Define

(5.5)

x k+1 = γ k (t k )
then do again step 2 with k = k + 1.

Then the sequence (x k ) k≥1 converges to e p .

Proof. We first prove that the sequence (E µ,p (x k )) k∈N is nonincreasing. For this we write (5.6)

This proves that the sequence is nonincreasing. As a consequence, for all k ≥ 1, x k ∈ B(x 0 , C(C + 1)R), since E µ,p (x k ) ≤ R p and for all x ∈ B(x 0 , C(C + 1)R), E µ,p (x) > R p . Next we prove that E µ,p (x k ) converges to E µ,p (e p ). We know that E µ,p (x k ) converges to a ≥ E µ,p (e p ). Extracting a subsequence x k ℓ converging to some x ∞ ∈ B(x 0 , C(C + 1)R), this implies that t k ℓ converges to 0. But this is possible only if x ∞ = e p , which implies that a = E µ,p (e p ). As a consequence, any converging subsequence has e p a limit, and this implies that x k converges to e p . Remark 5.4. For this result we need the Hessian of E µ,p to be bounded, and the subgradient algorithm in Riemannian manifolds as developed in [START_REF] Yang | Riemannian median and its estimation[END_REF] does not work. The reason is that for this algorithm, we would need to take v k = grad---→ x k ep (-E µ,p (x k ))) F grad---→

x k ep (-E µ,p (x k ))

where grad---→ x k ep denotes the gradient with respect to the metric <•, •>---→ x k ep . So we would need to know e p ! 

(4. 6 )

 6 F µ (y) = F µx (y) + µ({x})ρ(y, x)

Remark 5 . 2 .

 52 [START_REF] Afsari | Riemannian L p center of mass : existence, uniqueness, and convexity[END_REF], rβ coth(rβ)) + δ ′ r . Integrating with respect to y this equation gives the result. If p ≥ 2 or µ has a smooth density then the function H µ is bounded on all compact sets.

E 2 k 2 ≤H 2 F 2 = 2 F 2 .

 222222 µ,p (γ k (t k )) ≤ E µ,p (γ k (0)) + dE µ,p , v k t k + C H t E µ,p (γ k (0)) -F (grad(-E µ,p (x k ))) 1 C H F (grad(-E µ,p (x k ))) + C (grad(-E µ,p (x k ))) C H E µ,p (γ k (0)) -C H (grad(-E µ,p (x k ))) C H

Corollary 5 . 5 . 1 C 2

 5512 Let p = 2. If R ≤ or M has nonpositive flag curvature, then the algorithm of Proposition 5.3 can be applied with the appropriate constants Proof. With this assumption, by Proposition 2.2 the function E µ,2 is strictly convex on B(x 0 , C(C + 1)R).

  we get Proposition 4.5. A point x in M is a local minimum of F µ if and only if (dF µx ) .
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