CL Marc Arnaudon 
  
Ément Dombry 
  
AND Anthony Phan 
  
L E Yang 
  
STOCHASTIC ALGORITHMS FOR COMPUTING MEANS OF PROBABILITY MEASURES

Consider a probability measure µ supported by a regular geodesic ball in a manifold. For any p ≥ 1 we define a stochastic algorithm which converges almost surely to the p-mean ep of µ. Assuming furthermore that the functional to minimize is regular around ep, we prove that a natural renormalization of the inhomogeneous Markov chain converges in law into an inhomogeneous diffusion process. We give an explicit expression of this process, as well as its local characteristic.

Introduction

The geometric barycenter of a set of points is the point which minimizes the sum of the distances at the power 2 to these points. It is the most common estimator is statistics, however it is sensitive to outliers, and it is natural to replace power 2 by p for some p ∈ [START_REF] Afsari | Riemannian L p center of mass : existence, uniqueness, and convexity[END_REF][START_REF] Arnaudon | Barycenters of measures transported by stochastic flows[END_REF], which leads to the definition of p-mean. When p = 1, the minimizer is the median of the set of points, very often used in robust statistics. In many applications, p-means with some p ∈ (1, 2) give the best compromise.

The Fermat-Weber problem concerns finding the median e 1 of a set of points in an Euclidean space. Numerous authors worked out algorithms for computing e 1 . The first algorithm was proposed by Weiszfeld in [START_REF] Weiszfeld | Sur le point pour lequel la somme des distances de n points donnés est minimum[END_REF]. It has been extended to sufficiently small domains in Riemannian manifolds with nonnegative curvature by Fletcher and al in [START_REF] Fletcher | The geometric median on Riemannian manifolds with application to robust atlas estimation[END_REF]. A complete generalization to manifolds with positive or negative curvature, including existence and uniqueness results (under some convexity conditions in positive curvature), has been given by one of the authors in [START_REF] Yang | Riemannian median and its estimation[END_REF].

The Riemannian barycenter or Karcher mean of a set of points in a manifold or more generally of a probability measure has been extensively studied, see e.g. [START_REF] Karcher | Riemannian center of mass and mollifier smoothing[END_REF], [START_REF] Kendall | Probability, convexity and harmonic maps with small image I: uniqueness and fine existence[END_REF], [START_REF] Kendall | Convexity and the hemisphere[END_REF], [START_REF] Emery | Sur le barycentre d'une probabilité dans une variété[END_REF], [START_REF] Picard | Barycentres et martingales dans les variétés[END_REF], [START_REF] Arnaudon | Barycenters of measures transported by stochastic flows[END_REF], where questions of existence, uniqueness, stability, relation with martingales in manifolds, behaviour when measures are pushed by stochastic flows have been considered. The Riemannian barycenter corresponds to p = 2 in the above description. Computation of Riemannian barycenters by gradient descent has been performed by Le in [START_REF] Le | Estimation of Riemannian barycentres[END_REF].

In [START_REF] Afsari | Riemannian L p center of mass : existence, uniqueness, and convexity[END_REF] Afsari proved existence and uniqueness of p-means, p ≥ 1 on geodesic balls with radius r < 1 2 min inj(M ), π 2α if p ∈ [1, 2), and r < 1 2 min inj(M ), π α if p ≥ 2. Here inj(M ) is the injectivity radius of M and α > 0 is such that the sectional curvatures in M are bounded above by α 2 . The point is that in the case p ≥ 2, the functional to minimize is not convex any more, which makes the situation much more difficult to handle.

In this paper, under the assumptions of [START_REF] Afsari | Riemannian L p center of mass : existence, uniqueness, and convexity[END_REF] we provide in Theorem 2.3 stochastic algorithms which converge almost surely to p-means in manifolds, which are easier to implement than gradient descent algorithm since computing the gradient of the function to minimize is not needed. The idea is at each step to go in the direction of a point of the support of µ. The point is chosen at random according to µ and the size of the step is a well chosen function of the distance to the point, p and the number of the step. For general convergence results on recursive stochastic algorithms, see [START_REF] Ljung | Analysis of recursive stochastic algorithms[END_REF] Theorem 1. However they do not cover the manifold case and nonlinearity of geodesics. Here we give a proof using martingale convergence theorem, and the main point consists in determining and estimating all the geometric quantities, checking that under our curvature conditions all the convergence assumptions are fulfilled, since our processes live in manifolds. See also [START_REF] Benveniste | Analysis of stochastic approximation schemes with discontinuous and dependent forcing terms with applications to data communication algorithm[END_REF] for convergence in probability of recursive algorithms.

The speed of convergence is studied, and in theorem 2.6 we prove that the renormalized inhomogeneous Markov chain of Theorem 2.3 converges in law to an inhomogeneous diffusion process. This is an invariance principle type result, see e.g. [START_REF] Khas | On stochastic processes defined by differential equations with a small parameter[END_REF], [START_REF] Mcleish | Dependent central limit theorems and invariance principles[END_REF], [START_REF] Berger | An almost sure invariance principle for stochastic approximation procedures in linear filtering theory[END_REF], [START_REF] Gouëzel | Almost sure invariance principle for dynamical systems by spectral methods The annals of Probability[END_REF] for related works. Here again the main point is to obtain the characteristics of the limiting process from the curvature conditions, the conditions on the support of the mesure and estimates on Jacobi fields. Moreover we consider convergence in law for the Skorohod topology, and the limit depends in a crucial way on the decreasing steps of the algorithms.

Results

p-means in regular geodesic balls.

Let M be a Riemannian manifold with pinched sectional curvatures. Let α, β > 0 such that α 2 is a positive upper bound for sectional curvatures on M , and -β 2 is a negative lower bound for sectional curvatures on M . Denote by ρ the Riemannian distance on M .

In M consider a geodesic ball B(a, r) with a ∈ M . Let µ be a probability measure with support included in a compact convex subset K µ of B(a, r). Fix p ∈ [1, ∞). We will always make the following assumptions on (r, p, µ):

Assumption 2.1. The support of µ is not reduced to one point. Either p > 1 or the support of µ is not contained in a line, and the radius r satisfies

(2.1) r < r α,p with r α,p = 1 2 min inj(M ), π 2α if p ∈ [1, 2) r α,p = 1 2 min inj(M ), π α if p ∈ [2, ∞) Note that B(a, r) is convex if r < 1 2 min inj(M ), π α .
Under assumption 2.1, it has been proved in [START_REF] Afsari | Riemannian L p center of mass : existence, uniqueness, and convexity[END_REF] (Theorem 2.1) that the function

H p : M → R + x → M ρ p (x, y)µ(dy) (2.2)
has a unique minimizer e p in M , the p-mean of µ, and moreover e p ∈ B(a, r). If p = 1, e 1 is the median of µ.

It is easily checked that if p ∈ [1, 2), then H p is strictly convex on B(a, r). On the other hand, if p ≥ 2 then H p is of class C 2 on B(a, r). Proposition 2.2. Let K be a convex subset of B(a, r) containing the support of µ. Then there exists C p,µ,K > 0 such that for all x ∈ K,

(2.3) H p (x) -H p (e p ) ≥ C p,µ,K 2 ρ(x, e p ) 2 .
Moreover if p ≥ 2 then we can choose C p,µ,K so that for all x ∈ K,

(2.4) grad x H p 2 ≥ C p,µ,K (H p (x) -H p (e p )) .
In the sequel, we fix

(2.5) K = B(a, r -ε) with ε = ρ(K µ , B(a, r) c ) 2 .
We now state our main result: we define a stochastic gradient algorithm (X k ) k≥0 to approximate the p-mean e p and prove its convergence.

Theorem 2.3. Let (P k ) k≥1 be a sequence of independent B(a, r)-valued random variables, with law µ. Let (t k ) k≥1 be a sequence of positive numbers satisfying

(2.6) ∀k ≥ 1, t k ≤ min 1 C p,µ,K , ρ(K µ , B(a, r) c ) 2p(2r) p-1 , (2.7) 
∞ k=1 t k = +∞ and ∞ k=1 t 2 k < ∞.
Letting x 0 ∈ K, define inductively the random walk (X k ) k≥0 by (2.8)

X 0 = x 0 and for k ≥ 0 X k+1 = exp X k -t k+1 grad X k F p (•, P k+1 )
where F p (x, y) = ρ p (x, y), with the convention grad x F p (•, x) = 0. The random walk (X k ) k≥1 converges in L 2 and almost surely to e p .

In the following example, we focus on the case M = R d and p = 2 where drastic simplifications occur.

Example 2.4. In the case when M = R d and µ is a compactly supported probability measure on R d , the stochastic gradient algorithm (2.8) simplifies into

X 0 = x 0 and for k ≥ 0 X k+1 = X k -t k+1 grad X k F p (•, P k+1 ).
If furthermore p = 2, clearly e 2 = E[P 1 ] and grad x F p (•, y) = 2(x -y), so that the linear relation X k+1 = (1 -2t k+1 )X k + 2t k+1 P k+1 , k ≥ 0 holds true and an easy induction proves that (2.9)

X k = x 0 k-1 j=0 (1 -2t k-j ) + 2 k-1 j=0 P k-j t k-j j-1 ℓ=0 (1 -2t k-ℓ ), k ≥ 1. Now, taking t k = 1 2k , we have k-1 j=0 (1 -2t k-j ) = 0 and j-1 ℓ=0 (1 -2t k-ℓ ) = k -j k so that X k = k-1 j=0 P k-j 1 k = 1 k k j=1 P j .
The stochastic gradient algorithm estimating the mean e 2 of µ is given by the empirical mean of a growing sample of independent random variables with distribution µ. In this simple case, the result of Theorem 2.3 is nothing but the strong law of large numbers. Moreover, fluctuations around the mean are given by the central limit theorem and Donsker's theorem.

2.2.

Fluctuations of the stochastic gradient algorithm. The notations are the same as in the beginning of section 2.1. We still make assumption 2.1. Let us define K and ε as in (2.5) and let (2.10)

δ 1 = min 1 C p,µ,K , ρ(K µ , B(a, r) c ) 2p(2r) p-1 .
We consider the time inhomogeneous M -valued Markov chain (2.8) in the particular case when (2.11)

t k = min δ k , δ 1 , k ≥ 1
for some δ > 0. The particular sequence (t k ) k≥1 defined by (2.11) satisfies (2.6) and (2.7), so Theorem 2.3 holds true and the stochastic gradient algorithm (X k ) k≥0 converges a.s. and in L 2 to the p-mean e p .

In order to study the fluctuations around the p-mean e p , we define for n ≥ 1 the rescaled

T ep M -valued Markov chain (Y n k ) k≥0 by (2.12) Y n k = k √ n exp -1 ep X k .
We will prove convergence of the sequence of process (Y n [nt] ) t≥0 to a non-homogeneous diffusion process. The limit process is defined in the following proposition:

Proposition 2.5. Assume that H p is C 2 in a neighborhood of e p , and that δ > C -1 p,µ,K . Define Γ = E grad ep F p (•, P 1 ) ⊗ grad ep F p (•, P 1 )
and G δ (t) the generator

(2.13) G δ (t)f (y) := d y f, t -1 (y -δ∇dH p (y, •) ♯ ) + δ 2 2 Hess y f (Γ)
where ∇dH p (y, •) ♯ denotes the dual vector of the linear form ∇dH p (y, •).

There exists a unique inhomogeneous diffusion process (y δ (t)) t>0 on T ep M with generator G δ (t) and converging in probability to 0 as t → 0 + . The process y δ is continuous, converges a.s. to 0 as t → 0 + and has the following integral representation:

(2.14) y δ (t) = d i=1 t 1-δλi t 0 s δλi-1 δσ dB s , e i e i , t ≥ 0,
where B t is a standard Brownian motion on T ep M , σ ∈ End(T ep M ) satisfies σσ * = Γ, (e i ) 1≤i≤d is an orthonormal basis diagonalizing the symmetric bilinear form ∇dH p (e p ) and (λ i ) 1≤i≤d are the associated eigenvalues.

Note that the integral representation (2.14) implies that y δ is the centered Gaussian process with covariance

(2.15) E y i δ (t 1 )y j δ (t 2 ) = δ 2 Γ(e * i ⊗ e * j ) δ(λ i + λ j ) -1 t 1-δλi 1 t 1-δλj 2 (t 1 ∧ t 2 ) δ(λi+λj )-1 ,
where y i δ (t) = y δ (t), e i , 1 ≤ i, j ≤ d and t 1 , t 2 ≥ 0. Our main result on the fluctuations of the stochastic gradient algorithm is the following: Theorem 2.6. Assume that either e p does not belong to the support of µ or p ≥ 2.

Assume furthermore that δ > C -1 p,µ,K . The sequence of processes Y n [nt] t≥0 weakly converges in D((0, ∞), T ep M ) to y δ . Remark 2.7.
The assumption on e p implies that H p is of class C 2 in a neighbourhood of e p . In the case p > 1, in the "generic" situation for applications, µ is a discrete measure and e p does not belong to its support. For p = 1 one has to be more careful since if µ is equidistributed in a random set of points, then with positive probability e 1 belongs to the support of µ.

Remark 2.8. From section 2.1 we know that, when p ∈ (1, 2], the constant

C p,µ,K = p(2r) p-2 (min (p -1, 2αr cot (2αr)))
is explicit. The constraint δ > C -1 p,µ,K can easily be checked in this case.

Remark 2.9. In the case

M = R d , Y n k = k √ n (X k -e p )
and the tangent space T ep M is identified to R d . Theorem 2.6 holds and, in particular, when t = 1, we obtain a central limit Theorem:

√ n(X n -e p ) converges as n → ∞ to a centered Gaussian d-variate distribution (with covariance structure given by (2.15) with t 1 = t 2 = 1). This is a central limit theorem: the fluctuations of the stochastic gradient algorithm are of scale n -1/2 and asymptotically Gaussian.

Proofs

For simplicity, let us write shortly e = e p in the proofs.

Proof of Proposition 2.2.

For p = 1 this is a direct consequence of [START_REF] Yang | Riemannian median and its estimation[END_REF] Theorem 3.7.

Next we consider the case p ∈ (1, 2). Let K ⊂ B(a, r) be a compact convex set containing the support of µ. Let x ∈ K\{e}, t = ρ(e, x), u ∈ T e M the unit vector such that exp e (ρ(e, x)u) = x, and γ u the geodesic with initial speed u : γu (0) = u. For y ∈ K, letting h y (s) = ρ(γ u (s), y) p , s ∈ [0, t], we have since p > 1

h y (t) = h y (0) + th ′ y (0) + t 0 (t -s)h ′′ y (s) ds
with the convention h ′′ y (s) = 0 when γ u (s) = y. Indeed, if y ∈ γ([0, t]) then h y is smooth, and if y ∈ γ([0, t]), say y = γ(s 0 ) then h y (s) = |s -s 0 | p and the formula can easily be checked.

By standard calculation,

h ′′ y (s) ≥ pρ(γ u (s), y) p-2 × (p -1) γu (s) T (y) 2 + γu (s) N (y) 2 αρ(γ u (s), y) cot (αρ(γ u (s), y)) (3.1)
with γu (s) T (y) (resp. γu (s) N (y) ) the tangential (resp. the normal) part of γu (s)

with respect to n(γ u (s), y) = 1 ρ(γ u (s), y) exp -1 γu(s) (y): γu (s) T (y) = γu (s), n(γ u (s), y) n(γ u (s), y), γu (s) N (y) = γu (s) -γu (s) T (y) .
From this we get

h ′′ y (s) ≥ pρ(γ u (s), y) p-2 (min (p -1, 2αr cot (2αr))). (3.2) Now H p (γ u (t ′ )) = B(a,r) h y (γ u (t ′ )) µ(dy) = B(a,r) h y (0) µ(dy) + t ′ B(a,r) h ′ y (0) µ(dy) + t ′ 0 (t ′ -s) B(a,r) h y (s) ′′ µ(dy) ds
and H p (γ u (t ′ )) attains its minimum at t ′ = 0, so

B(a,r)
h ′ y (0) µ(dy) = 0 and we have

H p (x) = H p (γ u (t)) = H p (e) + t 0 (t -s) B(a,r) h y (s) ′′ µ(dy) ds.
Using Equation (3.2) we get

H p (x) ≥ H p (e) + t 0 (t -s) B(a,r) pρ(γ u (s), y) p-2 (min (p -1, 2αr cot (2αr))) µ(dy) ds. (3.3) Since p ≤ 2 we have ρ(γ u (s), y) p-2 ≥ (2r) p-2 and H p (x) ≥ H p (e) + t 2 2 p(2r) p-2 (min (p -1, 2αr cot (2αr))) . (3.4) So letting C p,µ,K = p(2r) p-2 (min (p -1, 2αr cot (2αr)))
we obtain

(3.5) H p (x) ≥ H p (e) + C p,µ,K ρ(e, x) 2 2 .
To finish let us consider the case p ≥ 2.

In the proof of [START_REF] Afsari | Riemannian L p center of mass : existence, uniqueness, and convexity[END_REF] Theorem 2.1, it is shown that e is the only zero of the maps x → grad x H p and x → H p (x) -H p (e), and that ∇dH p (e) is strictly positive. This implies that (2.3) and (2.4) hold on some neighbourhood B(e, ε) of e. By compactness and the fact that H p -H p (e) and grad H p do not vanish on K\B(e, ε) and H p -H p (e) is bounded, possibly modifying the constant C p,µ,K , (2.3) and (2.4) also holds on K\B(e, ε).

Proof of Theorem 2.3.

Note that, for x = y,

grad x F (•, y) = pρ p-1 (x, y) -exp -1 x (y) ρ(x, y) = -pρ p-1 (x, y)n(x, y),
whith n(x, y) := exp -1 x (y) ρ(x, y) a unit vector. So, with the condition (2.6) on t k , the random walk (X k ) k≥0 cannot exit K: if X k ∈ K then there are two possibilities for X k+1 :

• either X k+1 is in the geodesic between X k and P k+1 and belongs to K by convexity of K; • or X k+1 is after P k+1 , but since

t k+1 grad X k F p (•, P k+1 ) = t k+1 pρ p-1 (X k , P k+1 ) ≤ ρ(K µ , B(a, r) c ) 2p(2r) p-1 pρ p-1 (X k , P k+1 ) ≤ ρ(K µ , B(a, r) c ) 2 ,
we have in this case

ρ(P k+1 , X k+1 ) ≤ ρ(K µ , B(a, r) c ) 2 which implies that X k+1 ∈ K. First consider the case p ∈ [1, 2). For k ≥ 0 let t → E(t) := 1 2 ρ 2 (e, γ(t)) , γ(t) t∈[0,t k+1 ] the geodesic satisfying γ(0) = -grad X k F p (•, P k+1 ). We have for all t ∈ [0, t k+1 ] (3.6) E ′′ (t) ≤ C(β, r, p) := p 2 (2r) 2p-1 β cotanh(2βr)
(see e.g. [START_REF] Yang | Riemannian median and its estimation[END_REF]). By Taylor formula,

ρ(X k+1 , e) 2 = 2E(t k+1 ) = 2E(0) + 2t k+1 E ′ (0) + t 2 k+1 E ′′ (t) for some t ∈ [0, t k+1 ] ≤ ρ(X k , e) 2 + 2t k+1 grad X k F p (•, P k+1 ), exp -1 X k (e) + t 2 k+1 C(β, r, p).
Now from the convexity of x → F p (x, y) we have for all x, y ∈ B(a, r)

(3.7) F p (e, y) -F p (x, y) ≥ grad x F p (•, y), exp -1
x (e) . This applied with x = X k , y = P k+1 yields (3.8) We want to prove that a = 0. We already proved that

ρ(X k+1 , e) 2 ≤ ρ(X k , e) 2 -2t k+1 (F p (X k , P k+1 ) -F p (e, P k+1 )) + C(β, r, p)t 2 k+1 . Letting for k ≥ 0 F k = σ(X ℓ , 0 ≤ ℓ ≤ k), we get E ρ(X k+1 , e) 2 |F k ≤ ρ(X k , e) 2 -2t k+1 B(a,r) (F p (X k , y) -F p (e, y)) µ(dy) + C(β, r, p)t 2 k+1 = ρ(X k , e) 2 -2t k+1 (H p (X k ) -H p (e)) + C(β, r, p)t 2 k+1 ≤ ρ(X k , e) 2 + C(β, r, p)t 2
(3.11) E ρ(X k+1 , e) 2 |F k ≤ ρ(X k , e) 2 -2t k+1 (H p (X k ) -H p (e)) + C(β, r, p)t 2 k+1 .
Taking the expectation and using Proposition 2.2, we obtain

(3.12) E ρ(X k+1 , e) 2 ≤ E ρ(X k , e) 2 -t k+1 C p,µ,K E ρ(X k , e) 2 + C(β, r, p)t 2
k+1 . An easy induction proves that for ℓ ≥ 1,

(3.13) E ρ(X k+ℓ , e) 2 ≤ ℓ j=1 (1 -C p,µ,K t k+j )E ρ(X k , e) 2 + C(β, r, p) ℓ j=1 t 2 k+j .
Letting ℓ → ∞ and using the fact that

∞ j=1 t k+j = ∞ which implies ∞ j=1 (1 -C p,µ,K t k+j ) = 0, we get (3.14) a ≤ C(β, r, p) ∞ j=1 t 2 k+j .
Finally using ∞ j=1 t 2 j < ∞ we obtain that lim k→∞ ∞ j=1 t 2 k+j = 0, so a = 0. This proves L 2 and almost sure convergence.

Next (see e.g. [START_REF] Yang | Riemannian median and its estimation[END_REF]). By Taylor formula,

H p (X k+1 ) = E p (t k+1 ) = E p (0) + t k+1 E ′ p (0) + t 2 k+1 2 E ′′ p (t) for some t ∈ [0, t k+1 ] ≤ H p (X k ) + t k+1 d X k H p , grad X k F p (•, P k+1 ) + t 2 k+1 C(β, r, p).
We get

E [H p (X k+1 )|F k ] ≤ H p (X k ) -t k+1 d X k H p , B(a,r) grad X k F p (•, y)µ(dy) + C(β, r, p)t 2 k+1 = H p (X k ) -t k+1 d X k H p , grad X k H p (•) + C(β, r, p)t 2 k+1 = H p (X k ) -t k+1 grad X k H p (•) 2 + C(β, r, p)t 2 k+1 ≤ H p (X k ) -C p,µ,K t k+1 (H p (X k ) -H p (e)) + C(β, r, p)t 2 k+1
(by Proposition 2.2) so that the process (Y k ) k≥0 defined by (3.16) 

Y 0 = H p (X 0 ) -H p (e) and for k ≥ 1 Y k = H p (X k ) -H p (e) -C(β,
E [H p (X k ) -H p (e)] .
We want to prove that a = 0. We already proved that

E [H p (X k+1 ) -H p (e)|F k ] ≤ H p (X k ) -H p (e) -C p,µ,K t k+1 (H p (X k ) -H p (e)) + C(β, r, p)t 2 k+1 .
(3.18)

Taking the expectation we obtain

(3.19) E [H p (X k+1 ) -H p (e)] ≤ (1 -t k+1 C p,µ,K )E [H p (X k ) -H p (e)] + C(β, r, p)t 2 k+1
so that proving that a = 0 is similar to the previous case. Finally (2.3) proves that ρ(X k , e) 2 converges in L 1 and almost surely to 0. 

y t = d i=1 y i ε ε δλi-1 + t ε s δλi-1 δσ dB s , e i t 1-δλi e i , t ≥ ε.
Now by definition of C p,µ,K we clearly have

(3.22) C p,µ,K ≤ min 1≤i≤d λ i .
So the condition δC p,µ,K > 1 implies that for all i, δλ i -1 > 0, and as ε → 0, Assume that a continuous solution y t converging in probability to 0 as t → 0 + exists. Since y i ε ε δλi-1 → 0 in probability as ε → 0, we necessarily have using (3.23)

(3.24) y t = d i=1 t 1-δλi t 0 s δλi-1 δσ dB s , e i e i , t ≥ 0.
Note y i δ is Gaussian with variance

tδ 2 Γ(e * i ⊗ e * i ) 2δλ i -1
, so it converges in L 2 to 0 as t → 0.

Conversely, it is easy to check that equation (3.24) defines a solution to (3.20).

To prove the a.s. convergence to 0 we use the representation

t 0 s δλi-1 δσ dB s , e i = B i ϕi(t)
where B i s is a Brownian motion and ϕ i (t) =

δ 2 Γ(e * i ⊗ e * i ) 2δλ i -1 t 2δλi-1 .
Then by the law of iterated logarithm lim sup

t↓0 t 1-δλi B i ϕi(t) ≤ lim sup t↓0 t 1-δλi 2ϕ i (t) ln ln ϕ -1 i (t)
But for t small we have 2ϕ i (t) ln ln ϕ -1 i (t) ≤ t δλi-3/4 so lim sup

t↓0 t 1-δλi B i ϕi(t) ≤ lim t↓0 t 1/4 = 0.
This proves a.s. convergence to 0. Continuity is easily checked using the integral representation (3.24).

3.4. Proof of Theorem 2.6. Consider the time homogeneous Markov chain (Z n k ) k≥0 with state space [0, ∞) × T e M defined by

(3.25) Z n k = k n , Y n k .
The first component has a deterministic evolution and will be denoted by t n k ; it satisfies

(3.26) t n k+1 = t n k + 1 n , k ≥ 0.
Let k 0 be such that

(3.27) δ k 0 < δ 1 .
Using equations (2.8), (2.12) and (2.11), we have for k ≥ k 0 , (3.28)

Y n k+1 = nt n k + 1 √ n exp -1 e exp exp e 1 √ nt n k Y n k - δ nt n k + 1 grad 1 √ nt n k Y n k F p (•, P k+1 ) .
Consider the transition kernel P n (z, dz ′ ) on (0, ∞) × T e M defined for z = (t, y) by

P n (z, A) = P t + 1 n , nt + 1 √ n exp -1 e exp exp e 1 √ nt y - δ nt + 1 grad exp e 1 √ nt y F p (•, P 1 ) ∈ A (3.29)
where A ∈ B((0, ∞) × T e M ). Clearly this transition kernel drives the evolution of the Markov chain (Z n k ) k≥k0 . For the sake of clarity, we divide the proof of Theorem 2.6 into four lemmas. Lemma 3.1. Assume that either p ≥ 2 or e does not belong to the support supp(µ) of µ (note this implies that for all x ∈ supp(µ) the function F p (•, x) is of class C 2 in a neighbourhood of e). Fix δ > 0. Let B be a bounded set in T e M and let 0 < ε < T . We have for all

C 2 function f on T e M n f nt + 1 √ n exp -1 e exp exp e 1 √ nt y - δ nt + 1 grad exp e 1 √ nt y F p (•, x) -f (y) = d y f, y t - √ n d y f, δ grad e F p (•, x) -δ∇dF p (•, x) grad y f, y t + δ 2 2 Hess y f (grad e F p (•, x) ⊗ grad e F p (•, x)) + O 1 √ n (3.30) uniformly in y ∈ B, x ∈ supp(µ), t ∈ [ε, T ].
Proof. Let x ∈ supp(µ), y ∈ T e M , u, v ∈ R sufficiently close to 0, and q = exp e uy t . For s ∈ [0, 1] denote by a → c(a, s, u, v) the geodesic with endpoints c(0, s, u, v) = e and c(1, s, u, v) = exp exp e ( uy t ) -vs grad exp e ( uy t ) F p (•, x) : c(a, s, u, v) = exp e a exp -1 e exp exp e ( uy t ) -sv grad exp e ( uy t ) F p (•, x) .

This is a C 2 function of (a, s, u, v) ∈ [0, 1] 2 × (-η, η) 2 , η sufficiently small. It also depends in a C 2 way of x and y. Letting c(a, s) = c a, s,

1 √ n , δ nt + 1 , we have exp -1 e exp exp e 1 √ nt y - δ nt + 1 grad exp e 1 √ nt y F p (•, x) = ∂ a c(0, 1).
So we need a Taylor expansion up to order n -1 of nt + 1 √ n ∂ a c(0, 1).

We have c(a, s, 0, 1) = exp e (-as grad e F p (•, x)) and this implies

∂ 2 s ∂ a c(0, s, 0, 1) = 0, so ∂ 2 s ∂ a c(0, s, u, 1) = O(u). On the other hand the identities c(a, s, u, v) = c(a, sv, u, 1) yields ∂ 2 s ∂ a c(a, s, u, v) = v 2 ∂ 2 s ∂ a c(a, s, u, 1), so we obtain ∂ 2 s ∂ a c(0, s, u, v) = O(uv 2 ) and this yields ∂ 2 s ∂ a c(0, s) = O(n -5/2 ), uniformly in s, x, y, t. But since ∂ a c(0, 1) -∂ a c(0, 0) -∂ s ∂ a c(0, 0) ≤ 1 2 sup s∈[0,1] ∂ 2 s ∂ a c(0, s)
we only need to estimate ∂ a c(0, 0) and ∂ s ∂ a c(0, 0). Denoting by J(a) the Jacobi field ∂ s c(a, 0) we have

nt + 1 √ n ∂ a c(0, 1) = nt + 1 √ n ∂ a c(0, 0) + nt + 1 √ n J(0) + O 1 n 2 .
On the other hand

nt + 1 √ n ∂ a c(0, 0) = nt + 1 √ n y √ nt = y + y nt
so it remains to estimate J(0). The Jacobi field a → J(a, u, v) with endpoints J(0, u, v) = 0 e and

J(1, u, v) = -v grad exp e ( uy t ) F p (•, x) satisfies ∇ 2 a J(a, u, v) = -R(J(a, u, v), ∂ a c(a, 0, u, v))∂ a c(a, 0, u, v) = O(u 2 v). This implies that ∇ 2 a J(a) = O(n -2
). Consequently, denoting by P x1,x2 : T x1 M → T x2 M the parallel transport along the minimal geodesic from x 1 to x 2 (whenever it is unique) we have (3.31) P c(1,0),e J(1) = J(0) + J(0) + O(n -2 ) = J(0) + O(n -2 ).

But we also have

P c(1,0,u,v),e J(1, u, v) = P c(1,0,u,v),e -v grad c(1,0,u,v) F p (•, x) = -v grad e F p (•, x) -v∇ ∂ac(0,0,u,v) grad • F p (•, x) + O(vu 2 ) = -v grad e F p (•, x) -v∇dF p (•, x) uy t , • ♯ + O(vu 2 )
where we used ∂ a c(0, 0, u, v) = uy t and for vector fields A, B on T M and a

C 2 function f 1 on M ∇ Ae grad f 1 , B e = A e grad f 1 , B e -grad f 1 , ∇ Ae B = A e df 1 , B e -df 1 , ∇ Ae B = ∇df 1 (A e , B e ) which implies ∇ Ae grad f 1 = ∇df 1 (A e , •) ♯ .
We obtain

P c(1,0),e J(1) = - δ nt + 1 grad e F p (•, x) - δ √ n(nt + 1) ∇dF p (•, x) y t , • ♯ + O(n -2 ).
Combining with (3.31) this gives

J(0) = - δ nt + 1 grad e F p (•, x) - δ nt + 1 ∇dF p (•, x) y √ nt , • ♯ + O 1 n 2 . So finally (3.32) nt + 1 √ n ∂ a c(0, 1) = y + y nt - δ √ n grad e F p (•, x) -δ∇dF p (•, x) y nt , • ♯ + O n -3/2 .
To get the final result we are left to make a Taylor expansion of f up to order 2.

Define the following quantities:

(3.33) b n (z) = n {|z ′ -z|≤1} (z ′ -z)P n (z, dz ′ ) and (3.34) a n (z) = n {|z ′ -z|≤1} (z ′ -z) ⊗ (z ′ -z)P n (z, dz ′ ).
The following property holds: Proof.

(1) We use the notation z = (t, y) and z ′ = (t ′ , y ′ ). We have

1 {|z ′ -z|>1} P n (z, dz ′ ) = 1 {max(|t ′ -t|,|y ′ -y|)>1} P n (z, dz ′ ) = 1 {max( 1 n ,|y ′ -y|)>1} P n (z, dz ′ ) = P nt + 1 √ n exp -1 e exp exp e 1 √ nt y - δ nt + 1 grad exp e 1 √ nt y F p (•, P 1 ) -y > 1 .
On the other hand, since 

F p (•, x) is of class C 2 in
b n (z) = n (z ′ -z) P n (z, dz ′ ) = n 1 n , E nt + 1 √ n exp -1 e exp exp e y √ nt - δ nt + 1 grad exp e y √ nt F p (•, P 1 ) -y .
We have by lemma 3.1 Proof. First consider the case p ∈ [1, 2). We know by (3.12) that there exists some constant C(β, r, p) such that

n nt + 1 √ n exp -1 e exp exp e 1 √ nt y - δ nt + 1 grad exp e 1 √ nt y F p (•, P 1 ) -y = 1 t y -δ √ n grad e F p (•, P 1 ) -δ∇dF p (•, P 1 ) 1 t y, • ♯ + O 1 n 1/2
(3.43) E ρ 2 (e, X k+1 ) ≤ E ρ 2 (e, X k ) exp (-C p,µ,K t k+1 ) + C(β, r, p)t 2 k+1 .
From this (3.42) is a consequence of Lemma 0.0.1 (case α > 1) in [START_REF] Nedic | Convergence rate of incremental subgradient algorithms, Stochastic optimization : algorithms and applications[END_REF]. We give the proof for completeness. We deduce easily by induction that for all k ≥ k 0 ,

E ρ 2 (e, X k ) ≤ E ρ 2 (e, X k0 ) exp   -C p,µ,K k j=k0+1 t j   + C(β, r, p) k i=k0+1 t 2 i exp   -C p,µ,K k j=i+1 t j   , (3.44) 
where the convention k j=k+1 t j = 0 is used. With t n = δ n , the following inequality holds for all i ≥ k 0 and k ≥ i:

(3.45) k j=i+1 t j = δ k j=i+1 1 j ≥ δ k+1 i+1 dt t ≥ δ ln k + 1 i + 1 .
Hence, This implies that the sequence kE ρ , the sequence of processes. We prove that from any subsequence Ỹ φ(n) ε n≥1

E ρ 2 (e, X k ) ≤ E ρ 2 (e, X k0 ) k 0 + 1 k + 1 δCp,µ,K + δ 2 C(β, r, p) (k + 1) δCp,µ,K k i=k0+1 (i + 1) δCp,µ,K i 2 . ( 3 
, we can extract a further subsequence

Ỹ ψ(n) ε n≥1
that weakly converges in D([ε, 1], R d ).

Let us first prove that Ỹ φ(n) weakly converges to a diffusion (y t ) ε≤t≤T with generator G δ (t) given by (2.13) and such that y ε has law ν ε . This achieves the proof of lemma 3. This subsequence converges in D((0, T ], R d ) to (y ′ (t)) t∈(0,T ] . On the other hand, as in the proof of lemma 3.4, we have Ỹ η(n) (t) 2 2 ≤ Ct for some C > 0. So Ỹ η(n) (t) 2 2 → 0 as t → 0, which in turn implies y ′ (t) 2 2 → 0 as t → 0. The unicity statement in Proposition 2.5 implies that (y ′ (t)) t∈(0,T ] and (y δ (t)) t∈(0,T ] are equal in law. This achieves the proof.

ε (ε) n≥1 is bounded in L 2 . Ỹ φ(n) ε (ε) 2 2 = [φ(n)ε] 2 φ(n) E ρ 2 (e, X [φ(n)ε] ) ≤ ε sup

2 j

 2 k+1 so that the process (Y k ) k≥0 defined by (3.9) Y 0 = ρ(X 0 , e) 2 and for k ≥ 1 Y k = ρ(X k , e) 2 -C(β, r, p) is a bounded supermartingale. So it converges in L 1 and almost surely. Consequently ρ(X k , e) 2 also converges in L 1 and almost surely. Let (3.10) a = lim k→∞ E ρ(X k , e) 2 .

s 0 s

 0 δλi-1 δσ dB s , e i → t δλi-1 δσ dB s , e i in probability.

Lemma 3 . 2 . 1 )( 2 )( 3 )

 32123 Assume that either p ≥ 2 or e does not belong to the support supp(µ). (For all R > 0 and ε > 0, there exists n 0 such that for all n ≥ n 0 and z ∈ [ε, T ] × B(0 e , R), where B(0 e , R) is the open ball in T e M centered at the origin with radius R, (3.35) 1 {|z ′ -z|>1} P n (z, dz ′ ) = 0. For all R > 0 and ε > 0and L δ (y) = y -δ∇dH(y, •) ♯ . For all R > 0 and ε > 0, (3.38) lim n→∞ sup z∈[ε,T ]×B(0e,R) |a n (z) -a(z)| = 0 with (3.39) a(z) = δ 2 diag(0, Γ) and Γ = E [grad e F p (•, P 1 ) ⊗ grad e F p (•, P 1 )] .

2 ∼ δ 2 C 1 andE ρ 2

 2212 .46) For δC p,µ,K > 1 we have as k → ∞ (3.47)δ 2 C(β, r, p) (k + 1) δCp,µ,K k i=k0+1 (i + 1) δCp,µ,K i (β, r, p) (k + 1) δCp,µ,K k δCp,µ,K -1 δC p,µ,K -1 ∼ δ 2 C(β, r, p) δC p,µ,K -1 k -(e, X k0 ) k 0 + 1 k + 1 δCp,µ,K = o(k -1 ).

n≥1 nE ρ 2

 2 (e, X n ) and the last term is bounded by lemma 3.3.Consequently Ỹ φ(n) ε (ε) n≥1 is tight. So there is a subsequence Ỹ ψ(n) ε (ε) n≥1that weakly converges in T e M to the distribution ν ε . Thanks to Skorohod theorem which allows to realize it as an a.s. convergence and to lemma 3.2 we can apply Theorem 11.2.3 of[START_REF] Stroock | Multidimensional diffusion processes[END_REF], and we obtain that the sequence of processes Ỹ ψ(n) ε n≥1

4 .

 4 Proof of Theorem 2.6.Let Ỹ n = Y n [nt] 0≤t≤T. It is sufficient to prove that any subsequence of Ỹ n n≥1 has a further subsequence which converges in law to (y δ (t)) 0≤t≤T . So let Ỹ φ(n) n≥1 a subsequence. By lemma 3.4 with ε = 1/m there exists a subsequence which converges in law on [1/m, T ]. Then we extract a sequence indexed by m of subsequence and take the diagonal subsequence Ỹ η(n) .

  (y t ) dt + δσ dB t where L δ (y) = y -δ∇dH p (y, •) ♯ and B t and σ are as in Proposition 2.5. This sde can be solved explicitely on [ε, ∞). The symmetric endomorphism y → ∇dH p (y, •) ♯ is diagonalisable in the orthonormal basis (e i ) 1≤i≤d with eigenvalues (λ i ) 1≤i≤d . The endomorphism L δ = id -δ∇dH p (e)(id, •) ♯ is also diagonalisable in this basis with eigenvalues (1 -δλ i ) 1≤i≤d . The solution y t =

	3.3. Proof of Proposition 2.5. Fix ε > 0. Any diffusion process on [ε, ∞) with generator G δ (t) is solution of a sde of the type
	(3.20)	dy t =	1 t	L δ d
				y i t e i of (3.20) started at
				i=1
	d			
	y ε =	y i ε e i is given by		
	i=1			
	(3.21)			

  = δ 2 E [grad e F p (•, P 1 ) ⊗ grad e F p (•, P 1 )] + o(1)uniformly in z ∈ [ε, T ] × B(0 e , R), so this yields (3.38).

		converges to							
	(3.41)		1 t	y -E δ∇dF p (•, P 1 )	1 t	y, •	♯	=	1 t	y -δ∇dH p	1 t	y, •	♯	.
		Moreover the convergence is uniform in z ∈ [ε, T ] × B(0 e , R), so this yields (3.36).
	(3) In the same way, using lemma 3.1,	
		n (y ′ -y) ⊗ (y ′ -y) P n (z, dz ′ )	
		=	1 n	E -	√ nδ grad e F p (•, P 1 ) ⊗ -	√ nδ grad e F p (•, P 1 ) + o(1)
	Lemma 3.3. Suppose that t n =	δ n	for some δ > 0. For all δ > C -1 p,µ,K ,
	(3.42)						sup					
		a.s. uniformly in n, and since			
							E δ	√ n grad e F p (•, P 1 ) = 0,
		this implies that							
	n E	nt + 1 √ n	exp -1 e	exp exp e 1 √ nt y -	δ nt + 1	grad exp e 1 √ nt y F p (•, P 1 )	-y

n≥1 nE ρ 2 (e, X n ) < ∞.

  2 (e, X k ) is bounded. Next consider the case p ≥ 2. Now we have by(3.19) that (3.48) E [H p (X k+1 ) -H p (e)] ≤ E [H p (X k ) -H p (e)] exp (-C p,µ,K t k+1 ) + C(β, r, p)t 2k+1 . From this, arguing similarly, we obtain that the sequence kE [H p (X k ) -H p (e)] is bounded. We conclude with (2.3). Lemma 3.4. Assume δ > C -1 p,µ,K and that H p is C 2 in a neighbourhood of e. For all 0 < ε < T , the sequence of processes Y n [nt] ε≤t≤T is tight in D([ε, T ], R d ).

	Proof. Denote by Ỹ n ε = Y n [nt] ε≤t≤T n≥1