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STOCHASTIC ALGORITHMS FOR COMPUTING MEANS OF

PROBABILITY MEASURES

MARC ARNAUDON, CLÉMENT DOMBRY, ANTHONY PHAN, AND LE YANG

Abstract. Consider a probability measure µ supported by a regular geodesic
ball in a manifold. For any p ≥ 1 we define a stochastic algorithm which con-
verges almost surely to the p-mean ep of µ. Assuming furthermore that the
functional to minimize is regular around ep, we prove that a natural renormal-
ization of the inhomogeneous Markov chain converges in law into an inhomo-
geneous diffusion process. We give an explicit expression of this process, as
well as its local characteristic.

Contents

1. Introduction 1
2. Results 2
2.1. p-means in regular geodesic balls 2
2.2. Fluctuations of the stochastic gradient algorithm 4
3. Proofs 5
3.1. Proof of Proposition 2.2 6
3.2. Proof of Theorem 2.3 7
3.3. Proof of Proposition 2.5 10
3.4. Proof of Theorem 2.6 11
4. Examples, simulations and pictures 17
4.1. Median of the uniform measure on an equilateral triangle in the plane 17
4.2. Uniform measure on the unit square in the plane 17
4.3. A non uniform measure on a square in the plane 17
4.4. A non uniform measure on the sphere S2 18
4.5. Another non uniform measure on the unit square in the plane 19
References 19

1. Introduction

The geometric barycenter of a set of points is the point which minimizes the sum
of the distances at the power 2 to these points. It is the most common estimator
is statistics, however it is sensitive to outliers, and it is natural to replace power 2
by p for some p ∈ [1, 2), which leads to the definition of p-mean. When p = 1, the
minimizer is the median of the set of points, very often used in robust statistics. In
many applications, p-means with some p ∈ (1, 2) give the best compromise.

The Fermat-Weber problem concerns finding the median e1 of a set of points in
an Euclidean space. Numerous authors worked out algorithms for computing e1.
The first algorithm was proposed by Weiszfeld in [21]. It has been extended to
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sufficiently small domains in Riemannian manifolds with nonnegative curvature by
Fletcher and al in [7]. A complete generalization to manifolds with positive or neg-
ative curvature, including existence and uniqueness results (under some convexity
conditions in positive curvature), has been given by one of the authors in [22].

The Riemannian barycenter or Karcher mean of a set of points in a manifold or
more generally of a probability measure has been extensively studied, see e.g. [8],
[10], [11], [5], [18], [2], where questions of existence, uniqueness, stability, relation
with martingales in manifolds, behaviour when measures are pushed by stochastic
flows have been considered. The Riemannian barycenter corresponds to p = 2 in
the above description. Computation of Riemannian barycenters by gradient descent
has been performed by Le in [13].

In [1] Afsari proved existence and uniqueness of p-means, p ≥ 1 on geodesic

balls with radius r <
1

2
min

{

inj(M),
π

2α

}

if p ∈ [1, 2), and r <
1

2
min

{

inj(M),
π

α

}

if p ≥ 2. Here inj(M) is the injectivity radius of M and α > 0 is such that the
sectional curvatures in M are bounded above by α2. The point is that in the case
p ≥ 2, the functional to minimize is not convex any more, which makes the situation
much more difficult to handle.

In this paper, under the assumptions of [1] we provide in Theorem 2.3 stochastic
algorithms which converge almost surely to p-means in manifolds, which are easier
to implement than gradient descent algorithm since computing the gradient of the
function to minimize is not needed. The idea is at each step to go in the direction of
a point of the support of µ. The point is chosen at random according to µ and the
size of the step is a well chosen function of the distance to the point, p and the num-
ber of the step. For general convergence results on recursive stochastic algorithms,
see [14] Theorem 1. However they do not cover the manifold case and nonlinear-
ity of geodesics. Here we give a proof using martingale convergence theorem, and
the main point consists in determining and estimating all the geometric quanti-
ties, checking that under our curvature conditions all the convergence assumptions
are fulfilled, since our processes live in manifolds. See also [3] for convergence in
probability of recursive algorithms.

The speed of convergence is studied, and in theorem 2.6 we prove that the
renormalized inhomogeneous Markov chain of Theorem 2.3 converges in law to an
inhomogeneous diffusion process. This is an invariance principle type result, see
e.g. [9], [15], [4], [6] for related works. Here again the main point is to obtain the
characteristics of the limiting process from the curvature conditions, the conditions
on the support of the mesure and estimates on Jacobi fields. Moreover we consider
convergence in law for the Skorohod topology, and the limit depends in a crucial
way on the decreasing steps of the algorithms.

Finally Section 4 is devoted to simulations.

2. Results

2.1. p-means in regular geodesic balls. Let M be a Riemannian manifold with
pinched sectional curvatures. Let α, β > 0 such that α2 is a positive upper bound
for sectional curvatures on M , and −β2 is a negative lower bound for sectional
curvatures on M . Denote by ρ the Riemannian distance on M .
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In M consider a geodesic ball B(a, r) with a ∈ M . Let µ be a probability measure
with support included in a compact convex subset Kµ of B(a, r). Fix p ∈ [1,∞).
We will always make the following assumptions on (r, p, µ):

Assumption 2.1. The support of µ is not reduced to one point. Either p > 1 or
the support of µ is not contained in a line, and the radius r satisfies

(2.1) r < rα,p with

{

rα,p = 1
2 min

{

inj(M), π
2α

}

if p ∈ [1, 2)
rα,p = 1

2 min
{

inj(M), πα
}

if p ∈ [2,∞)

Note that B(a, r) is convex if r < 1
2 min

{

inj(M), πα
}

.
Under assumption 2.1, it has been proved in [1] (Theorem 2.1) that the function

Hp : B(a, r) → R+

x 7→
∫

M

ρp(x, y)µ(dy)
(2.2)

has a unique minimizer ep in M , the p-mean of µ, and moreover ep ∈ B(a, r). If
p = 1, e1 is the median of µ.

It is easily checked that if p ∈ [1, 2), then Hp is strictly convex on B(a, r). On
the other hand, if p ≥ 2 then Hp is of class C2 on B(a, r).

Proposition 2.2. Let K be a convex subset of B(a, r) containing the support of µ.

Then there exists Cp,µ,K > 0 such that for all x ∈ K,

(2.3) Hp(x) − Hp(ep) ≥
Cp,µ,K

2
ρ(x, ep)

2.

Moreover if p ≥ 2 then we can choose Cp,µ,K so that for all x ∈ K,

(2.4) ‖ gradx Hp‖2 ≥ Cp,µ,K (Hp(x) − Hp(ep)) .

In the sequel, we fix

(2.5) K = B̄(a, r − ε) with ε =
ρ(Kµ, B(a, r)c)

2
.

We now state our main result: we define a stochastic gradient algorithm (Xk)k≥0

to approximate the median ep and prove its convergence.

Theorem 2.3. Let (Pk)k≥1 be a sequence of independent B(a, r)-valued random

variables, with law µ. Let (tk)k≥1 be a sequence of positive numbers satisfying

(2.6) ∀k ≥ 1, tk ≤ min

(

1

Cp,µ,K
,
ρ(Kµ, B(a, r)c)

2p(2r)p−1

)

,

(2.7)

∞
∑

k=1

tk = +∞ and

∞
∑

k=1

t2k < ∞.

Letting x0 ∈ K, define inductively the random walk (Xk)k≥0 by

(2.8) X0 = x0 and for k ≥ 0 Xk+1 = expXk

(

−tk+1 gradXk
Fp(·, Pk+1)

)

where Fp(x, y) = ρp(x, y), with the convention gradx Fp(·, x) = 0.
The random walk (Xk)k≥1 converges in L2 and almost surely to e.

In the following example, we focus on the case M = R
d and p = 2 where drastic

simplifications occur.
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Example 2.4. In the case when M = R
d and µ is a compactly supported proba-

bility measure on R
d, the stochastic gradient algorithm (2.8) simplifies into

X0 = x0 and for k ≥ 0 Xk+1 = Xk − tk+1 gradXk
Fp(·, Pk+1).

If furthermore p = 2, clearly e2 = E[P1] and gradx Fp(·, y) = 2(x − y), so that the
linear relation

Xk+1 = (1 − 2tk+1Xk) + 2tk+1Pk+1, k ≥ 0

holds true and an easy induction proves that

(2.9) Xk = x0

k−1
∏

j=0

(1 − 2tk−j) + 2

k−1
∑

j=0

Pk−jtk−j

j−1
∏

ℓ=0

(1 − 2tk−ℓ), k ≥ 1.

Now, taking tk =
1

2k
, we have

k−1
∏

j=0

(1 − 2tk−j) = 0 and

j−1
∏

ℓ=0

(1 − 2tk−ℓ) =
k − j

k

so that

Xk =

k−1
∑

j=0

Pk−j
1

k
=

1

k

k
∑

j=1

Pj .

The stochastic gradient algorithm estimating the mean e2 of µ is given by the em-
pirical mean of a growing sample of independent random variables with distribution
µ. In this simple case, the result of Theorem 2.3 is nothing but the strong law of
large numbers. Moreover, fluctuations around the mean are given by the central
limit theorem and Donsker’s theorem.

2.2. Fluctuations of the stochastic gradient algorithm. The notations are
the same as in the beginning of section 2.1. We still make assumption 2.1. Let us
define K and ε as in (2.5) and let

(2.10) δ1 = min

(

1

Cp,µ,K
,
ρ(Kµ, B(a, r)c)

2p(2r)p−1

)

.

We consider the time inhomogeneous M -valued Markov chain (2.8) in the par-
ticular case when

(2.11) tk = min

(

δ

k
, δ1

)

, k ≥ 1

for some δ > 0. The particular sequence (tk)k≥1 defined by (2.11) satisfies (2.6)
and (2.7), so Theorem 2.3 holds true and the stochastic gradient algorithm (Xk)k≥0

converges a.s. and in L2 to the p-mean ep.
In order to study the fluctuations around the p-mean ep, we define for n ≥ 1 the

rescaled Tep
M -valued Markov chain (Y n

k )k≥0 by

(2.12) Y n
k =

k√
n

exp−1
ep

Xk.

We will prove convergence of the sequence of process (Y n
[nt])0≤t≤1 to a non-

homogeneous diffusion process. The limit process is defined in the following propo-
sition:
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Proposition 2.5. Assume that Hp is C2 in a neighborhood of ep, and that δ >

C−1
p,µ,K . Define

Γ = E

[

gradep
Fp(·, P1) ⊗ gradep

Fp(·, P1)
]

and Gδ(t) the generator

(2.13) Gδ(t)f(y) := 〈dyf, t−1(y − δ∇dHp(y, ·)♯)〉 +
1

2
Hessyf (Γ)

where ∇dHp(y, ·)♯ denotes the dual vector of the linear form ∇dHp(y, ·).
There exists a unique inhomogeneous diffusion process (yδ(t))t>0 on Tep

M with

generator Gδ(t) and converging in probability to 0 as t → 0+.

The process yδ is continuous, converges a.s. to 0 as t → 0+ and has the following

integral representation:

(2.14) yδ(t) =

d
∑

i=1

t1−δλi

∫ t

0

sδλi−1〈δσ dBs, ei〉ei, t ≥ 0,

where Bt is a standard Brownian motion on Tep
M , σ ∈ End(Tep

M) satisfies

σσ∗ = Γ, (ei)1≤i≤d is an orthonormal basis diagonalizing the symmetric bilin-

ear form ∇dHp(ep) and (λi)1≤i≤d are the associated eigenvalues.

Note that the integral representation (2.14) implies that yδ is the centered Gauss-
ian process with covariance

(2.15) E

[

yiδ(t1)y
j
δ(t2)

]

=
δ2Γ(e∗i ⊗ e∗j )

δ(λi + λj) − 1
t1−δλi

1 t
1−δλj

2 (t1 ∧ t2)
δ(λi+λj)−1,

where yiδ(t) = 〈yδ(t), ei〉, 1 ≤ i, j ≤ d and t1, t2 ≥ 0.
Our main result on the fluctuations of the stochastic gradient algorithm is the

following:

Theorem 2.6. Assume that Hp is C2 in a neighborhood of ep, and that δ > C−1
p,µ,K .

The sequence of processes
(

Y n
[nt]

)

t≥0
weakly converges in D((0,∞), Tep

M) to yδ.

Remark 2.7. From section 2.1 we know that, when p ∈ (1, 2], the constant

Cp,µ,K = p(2r)p−2 (min (p − 1, 2αr cot (2αr)))

is explicit. The constraint δ > C−1
p,µ,K can easily be checked in this case.

Remark 2.8. In the case M = R
d, Y n

k = k√
n
(Xk−ep) and the tangent space Tep

M

is identified to R
d. Theorem 2.6 holds and, in particular, when t = 1, we obtain a

central limit Theorem:
√

n(Xn − e) converges as n → ∞ to a centered Gaussian
d-variate distribution (with covariance structure given by (2.15) with t1 = t2 = 1).
This is a central limit theorem: the fluctuations of the stochastic gradient algorithm
are of scale n−1/2 and asymptotically Gaussian.

3. Proofs

For simplicity, let us write shortly e = ep in the proofs.
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3.1. Proof of Proposition 2.2.

For p = 1 this is a direct consequence of [22] Theorem 3.7.
Next we consider the case p ∈ [1, 2).
Let K ⊂ B(a, r) be a compact convex set containing the support of µ. Let

x ∈ K\{e}, t = ρ(e, x), u ∈ TeM the unit vector such that expe(ρ(e, x)u) = x,
and γu the geodesic with initial speed u : γ̇u(0) = u. For y ∈ K, letting hy(s) =
ρ(γu(s), y)p, s ∈ [0, t], we have since p > 1

hy(t) = hy(0) + th′
y(0) +

∫ t

0

(t − s)h′′
y(s) ds

with the convention h′′
y(s) = 0 when γu(s) = y. Indeed, if y 6∈ γ([0, t]) then hy is

smooth, and if y ∈ γ([0, t]), say y = γ(s0) then hy(s) = |s − s0|p and the formula
can easily be checked.

By standard calculation,

h′′
y(s)

≥ pρ(γu(s), y)p−2

×
(

(p − 1)‖γ̇u(s)T (y)‖2 + ‖γ̇u(s)N(y)‖2αρ(γu(s), y) cot (αρ(γu(s), y))
)

(3.1)

with γ̇u(s)
T (y) (resp. γ̇u(s)

N(y)) the tangential (resp. the normal) part of γ̇u(s)

with respect to n(γu(s), y) =
1

ρ(γu(s), y)
exp−1

γu(s)(y):

γ̇u(s)
T (y) = 〈γ̇u(s), n(γu(s), y)〉n(γu(s), y), γ̇u(s)

N(y) = γ̇u(s) − γ̇u(s)
T (y).

From this we get

h′′
y(s) ≥ pρ(γu(s), y)p−2 (min (p − 1, 2αr cot (2αr))).(3.2)

Now

Hp(γu(t
′))

=

∫

B(a,r)

hy(γu(t
′))µ(dy)

=

∫

B(a,r)

hy(0)µ(dy) + t′
∫

B(a,r)

h′
y(0)µ(dy) +

∫ t′

0

(t′ − s)

∫

B(a,r)

hy(s)
′′ µ(dy)

and Hp(γu(t
′)) attains its minimum at t′ = 0, so

∫

B(a,r)

h′
y(0)µ(dy) = 0 and we

have

Hp(x) = Hp(γu(t)) = Hp(e) +

∫ t

0

(t − s)

∫

B(a,r)

hy(s)
′′ µ(dy).

Using Equation (3.2) we get

Hp(x) ≥ Hp(e)

+

∫ t

0

(

(t − s)

∫

B(a,r)

pρ(γu(s), y)p−2 (min (p − 1, 2αr cot (2αKr))) µ(dy)

)

ds.

(3.3)
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Since p ≤ 2 we have ρ(γu(s), y)p−2 ≥ (2r)p−2 and

Hp(x) ≥ Hp(e) +
t2

2
p(2r)p−2 (min (p − 1, 2αr cot (2αr))) .(3.4)

So letting

Cp,µ,K = p(2r)p−2 (min (p − 1, 2αr cot (2αr)))

we obtain

(3.5) Hp(x) ≥ Hp(e) +
Cp,µ,Kρ(e, x)2

2
.

To finish let us consider the case p ≥ 2.
In the proof of [1] Theorem 2.1, it is shown that e is the only zero of the maps

x 7→ gradx Hp and x 7→ Hp(x) − Hp(e), and that ∇dHp(e) is strictly positive.
This implies that (2.3) and (2.4) hold on some neighbourhood B(e, ε) of e. By
compactness and the fact that Hp−Hp(e) and gradHp do not vanish on K\B(e, ε)
and Hp−Hp(e) is bounded, possibly modifying the constant Cp,µ,K , (2.3) and (2.4)
also holds on K\B(e, ε).

�

3.2. Proof of Theorem 2.3.

Note that, for x 6= y,

gradx F (·, y) = pρp−1(x, y)
− exp−1

x (y)

ρ(x, y)
= −pρp−1(x, y)n(x, y),

whith n(x, y) :=
exp−1

x (y)

ρ(x, y)
a unit vector. So, with the condition (2.6) on tk, the

random walk (Xk)k≥0 cannot exit K: if Xk ∈ K then there are two possibilities for
Xk+1:

• either Xk+1 is in the geodesic between Xk and Pk+1 and belongs to K by
convexity of K;

• or Xk+1 is after Pk+1, but since

‖tk+1 gradXk
Fp(·, Pk+1)‖ = tk+1pρp−1(Xk, Pk+1)

≤ ρ(Kµ, B(a, r)c)

2p(2r)p−1
pρp−1(Xk, Pk+1)

≤ ρ(Kµ, B(a, r)c)

2
,

we have in this case

ρ(Pk+1, Xk+1) ≤
ρ(Kµ, B(a, r)c)

2

which implies that Xk+1 ∈ K.

First consider the case p ∈ [1, 2).
For k ≥ 0 let

t 7→ E(t) :=
1

2
ρ2 (e, γ(t)) ,

γ(t)t∈[0,tk+1] the geodesic satisfying γ̇(0) = − gradXk
Fp(·, Pk+1). We have for all

t ∈ [0, tk+1]

(3.6) E′′(t) ≤ C(β, r, p) := p2(2r)2p−1β cotanh(2βr)
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(see e.g. [22]). By Taylor formula,

ρ(Xk+1, e)
2

= 2E(tk+1)

= 2E(0) + 2tk+1E
′(0) + t2k+1E

′′(t) for some t ∈ [0, tk+1]

≤ ρ(Xk, e)
2 + 2tk+1〈gradXk

Fp(·, Pk+1), exp−1
Xk

(e)〉 + t2k+1C(β, r, p).

Now from the convexity of x 7→ Fp(x, y) we have for all x, y ∈ B(a, r)

(3.7) Fp(e, y) − Fp(x, y) ≥
〈

gradx Fp(·, y), exp−1
x (e)

〉

.

This applied with x = Xk, y = Pk+1 yields
(3.8)

ρ(Xk+1, e)
2 ≤ ρ(Xk, e)

2 − 2tk+1 (Fp(Xk, Pk+1) − Fp(e, Pk+1)) + C(β, r, p)t2k+1.

Letting for k ≥ 0 Fk = σ(Xℓ, 0 ≤ ℓ ≤ k), we get

E
[

ρ(Xk+1, e)
2|Fk

]

≤ ρ(Xk, e)
2 − 2tk+1

∫

B(a,r)

(Fp(Xk, y) − Fp(e, y))µ(dy) + C(β, r, p)t2k+1

= ρ(Xk, e)
2 − 2tk+1 (Hp(Xk) − Hp(e)) + C(β, r, p)t2k+1

≤ ρ(Xk, e)
2 + C(β, r, p)t2k+1

so that the process (Yk)k≥0 defined by

(3.9) Y0 = ρ(X0, e)
2 and for k ≥ 1 Yk = ρ(Xk, e)

2 − C(β, r, p)

k
∑

j=1

t2j

is a bounded supermartingale. So it converges in L1 and almost surely. Conse-
quently ρ(Xk, e)

2 also converges in L1 and almost surely.
Let

(3.10) a = lim
k→∞

E
[

ρ(Xk, e)
2
]

.

We want to prove that a = 0. We already proved that

(3.11) E
[

ρ(Xk+1, e)
2|Fk

]

≤ ρ(Xk, e)
2 − 2tk+1 (Hp(Xk) − Hp(e)) + C(β, r, p)t2k+1.

Taking the expectation and using Proposition 2.2, we obtain

(3.12) E
[

ρ(Xk+1, e)
2
]

≤ E
[

ρ(Xk, e)
2
]

− tk+1Cp,µ,KE
[

ρ(Xk, e)
2
]

+ C(β, r, p)t2k+1.

An easy induction proves that for ℓ ≥ 1,

(3.13) E
[

ρ(Xk+ℓ, e)
2
]

≤
ℓ
∏

j=1

(1 − Cp,µ,K tk+j)E
[

ρ(Xk, e)
2
]

+ C(β, r, p)

ℓ
∑

j=1

t2k+j .

Letting ℓ → ∞ and using the fact that
∑∞

j=1 tk+j = ∞ which implies

∞
∏

j=1

(1 − Cp,µ,K tk+j) = 0,
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we get

(3.14) a ≤ C(β, r, p)

∞
∑

j=1

t2k+j .

Finally using
∑∞

j=1 t2j < ∞ we obtain that limk→∞
∑∞
j=1 t2k+j = 0, so a = 0. This

proves L2 and almost sure convergence.
Next assume that p ≥ 2.
For k ≥ 0 let

t 7→ Ep(t) := Hp(γ(t)),

γ(t)t∈[0,tk+1] the geodesic satisfying γ̇(0) = − gradXk
Fp(·, Pk+1). With a calcula-

tion similar to (3.6) we get for all t ∈ [0, tk+1]

(3.15) E′′
p (t) ≤ 2C(β, r, p) :=

p3

2
(2r)3p−4 (2rβ cotanh(2βr) + 2p − 4) .

(see e.g. [22]). By Taylor formula,

Hp(Xk+1) = Ep(tk+1)

= Ep(0) + tk+1E
′
p(0) +

t2k+1

2
E′′
p (t) for some t ∈ [0, tk+1]

≤ Hp(Xk) + tk+1〈dXk
Hp, gradXk

Fp(·, Pk+1)〉 + t2k+1C(β, r, p).

We get

E [Hp(Xk+1)|Fk]

≤ Hp(Xk) − tk+1

〈

dXk
Hp,

∫

B(a,r)

gradXk
Fp(·, y)µ(dy)

〉

+ C(β, r, p)t2k+1

= Hp(Xk) − tk+1

〈

dXk
Hp, gradXk

Hp(·)
〉

+ C(β, r, p)t2k+1

= Hp(Xk) − tk+1

∥

∥gradXk
Hp(·)

∥

∥

2
+ C(β, r, p)t2k+1

≤ Hp(Xk) − Cp,µ,Ktk+1 (Hp(Xk) − Hp(e)) + C(β, r, p)t2k+1

(by Proposition 2.2) so that the process (Yk)k≥0 defined by
(3.16)

Y0 = Hp(X0) − Hp(e) and for k ≥ 1 Yk = Hp(Xk) − Hp(e) − C(β, r, p)

k
∑

j=1

t2j

is a bounded supermartingale. So it converges in L1 and almost surely. Conse-
quently Hp(Xk) − Hp(e) also converges in L1 and almost surely.

Let

(3.17) a = lim
k→∞

E [Hp(Xk) − Hp(e)] .

We want to prove that a = 0. We already proved that

E [Hp(Xk+1) − Hp(e)|Fk]

≤ Hp(Xk) − Hp(e) − Cp,µ,K tk+1 (Hp(Xk) − Hp(e)) + C(β, r, p)t2k+1.
(3.18)
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Taking the expectation we obtain
(3.19)

E [Hp(Xk+1) − Hp(e)] ≤ (1 − tk+1Cp,µ,K)E [Hp(Xk) − Hp(e)] + C(β, r, p)t2k+1

so that proving that a = 0 is similar to the previous case.
Finally (2.3) proves that ρ(Xk, e)

2 converges in L1 and almost surely to 0. �

3.3. Proof of Proposition 2.5. Fix ε > 0. Any diffusion process on [ε,∞) with
generator Gδ(t) is solution of a sde of the type

(3.20) dyt =
1

t
Lδ(yt) dt + δσ dBt

where Lδ(y) = y − δ∇dHp(y, ·)♯ and Bt and σ are as in Proposition 2.5. This sde
can be solved explicitely on [ε,∞). The symmetric endomorphism y 7→ ∇dHp(y, ·)♯
is diagonalisable in the orthonormal basis (ei)1≤i≤d with eigenvalues (λi)1≤i≤d.
The endomorphism Lδ = id−δ∇dHp(e)(id, ·)♯ is also diagonalisable in this basis

with eigenvalues (1 − δλi)1≤i≤d. The solution yt =

d
∑

i=1

yitei of (3.20) started at

yε =

d
∑

i=1

yiεei is given by

(3.21) yt =

d
∑

i=1

(

yiεε
δλi−1 +

∫ t

ε

sδλi−1〈δσ dBs, ei〉
)

t1−δλiei, t ≥ ε.

Now by definition of Cp,µ,K we clearly have

(3.22) Cp,µ,K ≤ min
1≤i≤d

λi.

So the condition δCp,µ,K > 1 implies that for all i, δλi − 1 > 0, and as ε → 0,

(3.23)

∫ t

ε

sδλi−1〈δσ dBs, ei〉 →
∫ t

0

sδλi−1〈δσ dBs, ei〉 in probability.

Assume that a continuous solution yt converging in probability to 0 as t → 0+

exists. Since yiεε
δλi−1 → 0 in probability as ε → 0, we necessarily have using (3.23)

(3.24) yt =

d
∑

i=1

t1−δλi

∫ t

0

sδλi−1〈δσ dBs, ei〉ei, t ≥ 0.

Note yiδ is Gaussian with variance
tδ2Γ(e∗i ⊗ e∗i )

2δλi − 1
, so it converges in L2 to 0 as t → 0.

Conversely, it is easy to check that equation (3.24) defines a solution to (3.20).
To prove the a.s. convergence to 0 we use the representation

∫ t

0

sδλi−1〈δσ dBs, ei〉 = Bi
ϕi(t)

where Bi
s is a Brownian motion and ϕi(t) =

δ2Γ(e∗i ⊗ e∗i )

2δλi − 1
t2δλi−1. Then by the law

of iterated logarithm

lim sup
t↓0

t1−δλiBi
ϕi(t)

≤ lim sup
t↓0

t1−δλi

√

2ϕi(t) ln ln
(

ϕ−1
i (t)

)
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But for t small we have
√

2ϕi(t) ln ln
(

ϕ−1
i (t)

)

≤ tδλi−3/4

so

lim sup
t↓0

t1−δλiBi
ϕi(t)

≤ lim
t↓0

t1/4 = 0.

This proves a.s. convergence to 0. Continuity is easily checked using the integral
representation (3.24). �

3.4. Proof of Theorem 2.6. Consider the time homogeneous Markov chain (Zn
k )k≥0

with state space [0,∞) × TeM defined by

(3.25) Zn
k =

(

k

n
, Y n
k

)

.

The first component has a deterministic evolution and will be denoted by tnk ; it
satisfies

(3.26) tnk+1 = tnk +
1

n
, k ≥ 0.

Let k0 be such that

(3.27)
δ

k0
< δ1.

Using equations (2.8), (2.12) and (2.11), we have for k ≥ k0,
(3.28)

Y n
k+1 =

ntnk + 1√
n

exp−1
e

(

expexpe
1√
ntn

k
Y n

k

(

− δ

ntnk + 1
grad 1√

ntn
k
Y n

k
Fp(·, Pk+1)

))

.

Consider the transition kernel Pn(z, dz′) on (0,∞) × TeM defined for z = (t, y)
by

Pn(z, A) =

P

[(

t +
1

n
,
nt + 1√

n
exp−1

e

(

expexpe
1√
nt
y

(

− δ

nt + 1
gradexpe

1√
nt
y Fp(·, P1)

)))

∈ A

]

(3.29)

where A ∈ B((0,∞) × TeM). Clearly this transition kernel drives the evolution of
the Markov chain (Zn

k )k≥k0 .
For the sake of clarity, we divide the proof of Theorem 2.6 into four lemmas.

Lemma 3.1. Assume that for all x ∈ B(a, r) the application Fp(·, x) is of class

C2 in a neighbourhood of e. Fix δ > 0. Let B be a bounded set in TeM and let

0 < ε < T . We have for all C2 function f on TeM

n

(

f

(

nt + 1√
n

exp−1
e

(

expexpe
1√
nt
y

(

− δ

nt + 1
gradexpe

1√
nt
y Fp(·, x)

)))

− f(y)

)

=
〈

dyf,
y

t

〉

−
√

n〈dyf, δ grade Fp(·, x)〉 − δ∇dFp(·, x)
(

grady f,
y

t

)

+
δ2

2
Hessyf (grade Fp(·, x) ⊗ grade Fp(·, x)) + O

(

1√
n

)

(3.30)

uniformly in y ∈ B, x ∈ Kµ, t ∈ [ε, T ].
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Proof. Let x ∈ Kµ, y ∈ TeM , u, v ∈ R sufficiently close to 0, and q = expe

(uy

t

)

.

For s ∈ [0, 1] denote by a 7→ c(a, s, u, v) the geodesic with endpoints c(0, s, u, v) = e
and

c(1, s, u, v) = expexpe(
uy
t )

(

−vs gradexpe(
uy
t ) Fp(·, x)

)

:

c(a, s, u, v) = expe

{

a exp−1
e

[

expexpe(
uy
t )

(

−sv gradexpe(
uy
t ) Fp(·, x)

)]}

.

This is a C2 function of (a, s, u, v) ∈ [0, 1]2 × (−η, η)2, η sufficiently small. It also

depends in a C2 way of x and y. Letting c(a, s) = c

(

a, s,
1√
n

,
δ

nt + 1

)

, we have

exp−1
e

(

expexpe
1√
nt
y

(

− δ

nt + 1
gradexpe

1√
nt
y Fp(·, x)

))

= ∂ac(0, 1).

So we need a Taylor expansion up to order n−1 of
nt + 1√

n
∂ac(0, 1).

We have c(a, s, 0, 1) = expe (−as grade Fp(·, x)) and this implies

∂2
s∂ac(0, s, 0, 1) = 0, so ∂2

s∂ac(0, s, u, 1) = O(u).

On the other hand the identities c(a, s, u, v) = c(a, sv, u, 1) yields ∂2
s∂ac(a, s, u, v) =

v2∂2
s∂ac(a, s, u, 1), so we obtain

∂2
s∂ac(0, s, u, v) = O(uv2)

and this yields

∂2
s∂ac(0, s) = O(n−5/2),

uniformly in s, x, y, t. But since

‖∂ac(0, 1) − ∂ac(0, 0) − ∂s∂ac(0, 0)‖ ≤ 1

2
sup
s∈[0,1]

‖∂2
s∂ac(0, s)‖

we only need to estimate ∂ac(0, 0) and ∂s∂ac(0, 0).
Denoting by J(a) the Jacobi field ∂sc(a, 0) we have

nt + 1√
n

∂ac(0, 1) =
nt + 1√

n
∂ac(0, 0) +

nt + 1√
n

J̇(0) + O

(

1

n2

)

.

On the other hand
nt + 1√

n
∂ac(0, 0) =

nt + 1√
n

y√
nt

= y +
y

nt

so it remains to estimate J̇(0).
The Jacobi field a 7→ J(a, u, v) with endpoints J(0, u, v) = 0e and

J(1, u, v) = −v gradexpe(
uy
t ) Fp(·, x)

satisfies

∇2
aJ(a, u, v) = −R(J(a, u, v), ∂ac(a, 0, u, v))∂ac(a, 0, u, v) = O(u2v).

This implies that

∇2
aJ(a) = O(n−2).

Consequently, denoting by Px1,x2
: Tx1

M → Tx2
M the parallel transport along the

minimal geodesic from x1 to x2 (whenever it is unique) we have

(3.31) Pc(1,0),eJ(1) = J(0) + J̇(0) + O(n−2) = J̇(0) + O(n−2).
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But we also have

Pc(1,0,u,v),eJ(1, u, v) = Pc(1,0,u,v),e

(

−v gradc(1,0,u,v) Fp(·, x)
)

= −v grade Fp(·, x) − v∇∂ac(0,0,u,v) grad· Fp(·, x) + O(vu2)

= −v grade Fp(·, x) − v∇dFp(·, x)
(uy

t
, ·
)♯

+ O(vu2)

where we used ∂ac(0, 0, u, v) = uy
t and for vector fields A, B on TM and a C2

function f1 on M

〈∇Ae
gradf1, Be〉 = Ae〈grad f1, Be〉 − 〈grad f1,∇Ae

B〉
= Ae〈df1, Be〉 − 〈df1,∇Ae

B〉
= ∇df1(Ae, Be)

which implies

∇Ae
grad f1 = ∇df1(Ae, ·)♯.

We obtain

Pc(1,0),eJ(1) = − δ

nt + 1
grade Fp(·, x) − δ√

n(nt + 1)
∇dFp(·, x)

(y

t
, ·
)♯

+ O(n−2).

Combining with (3.31) this gives

J̇(0) = − δ

nt + 1
grade Fp(·, x) − δ

nt + 1
∇dFp(·, x)

(

y√
nt

, ·
)♯

+ O

(

1

n2

)

.

So finally
(3.32)
nt + 1√

n
∂ac(0, 1) = y +

y

nt
− δ√

n
grade Fp(·, x) − δ∇dFp(·, x)

( y

nt
, ·
)♯

+ O
(

n−3/2
)

.

To get the final result we are left to make a Taylor expansion of f up to order 2. �

Define the following quantities:

(3.33) bn(z) = n

∫

{|z′−z|≤1}
(z′ − z)Pn(z, dz′)

and

(3.34) an(z) = n

∫

{|z′−z|≤1}
(z′ − z) ⊗ (z′ − z)Pn(z, dz′).

The following property holds:

Lemma 3.2. Assume that there exists a neighbourhood Ve of e such that for all

x ∈ B(a, r) the application Fp(·, x) is of class C2 in Ve.

(1) For all R > 0 and ε > 0, there exists n0 such that for all n ≥ n0 and

z ∈ [ε, T ] × B(0e, R), where B(0e, R) is the open ball in TeM centered at

the origin with radius R,

(3.35)

∫

1{|z′−z|>1} Pn(z, dz′) = 0.
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(2) For all R > 0 and ε > 0,

(3.36) lim
n→∞

sup
z∈[ε,T ]×B(0e,R)

|bn(z) − b(z)| = 0

with

(3.37) b(z) =

(

1,
1

t
Lδ(y)

)

and Lδ(y) = y − δ∇dH(y, ·)♯.

(3) For all R > 0 and ε > 0,

(3.38) lim
n→∞

sup
z∈[ε,T ]×B(0e,R)

|an(z) − a(z)| = 0

with

(3.39) a(z) = δ2diag(0, Γ) and Γ = E [grade Fp(·, P1) ⊗ grade Fp(·, P1)] .

Proof. (1) We use the notation z = (t, y) and z′ = (t′, y′). We have
∫

1{|z′−z|>1} Pn(z, dz′)

=

∫

1{max(|t′−t|,|y′−y|)>1}P
n(z, dz′)

=

∫

1{max( 1
n
,|y′−y|)>1}P

n(z, dz′)

= P

[∣

∣

∣

∣

nt + 1√
n

exp−1
e

(

expexpe
1√
nt
y

(

− δ

nt + 1
gradexpe

1√
nt
y Fp(·, P1)

))

− y

∣

∣

∣

∣

> 1

]

.

On the other hand, since Fp(·, x) is of class C2 in a neighbourhood of e, we
have by (3.32)

(3.40)
∣

∣

∣

∣

nt + 1√
n

exp−1
e

(

expexpe
1√
nt
y

(

− δ

nt + 1
gradexpe

1√
nt
y Fp(·, P1)

))

− y

∣

∣

∣

∣

≤ Cδ√
nε

for some constant C > 0.
(2) Equation (3.35) implies that for n ≥ n0

bn(z)

= n

∫

(z′ − z)Pn(z, dz′)

= n

(

1

n
, E

[

nt + 1√
n

exp−1
e

(

expexpe
y√
nt

(

− δ

nt + 1
gradexpe

y√
nt

Fp(·, P1)

))]

− y

)

.

We have by lemma 3.1

n

(

nt + 1√
n

exp−1
e

(

expexpe
1√
nt
y

(

− δ

nt + 1
gradexpe

1√
nt
y Fp(·, P1)

))

− y

)

=
1

t
y − δ

√
n grade Fp(·, P1) − δ∇dFp(·, P1)

(

1

t
y, ·
)♯

+ O

(

1

n1/2

)

a.s. uniformly in n, and since

E
[

δ
√

n grade Fp(·, P1)
]

= 0,

this implies that

n

(

E

[

nt + 1√
n

exp−1
e

(

expexpe
1√
nt
y

(

− δ

nt + 1
gradexpe

1√
nt
y Fp(·, P1)

))]

− y

)
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converges to

(3.41)
1

t
y − E

[

δ∇dFp(·, P1)

(

1

t
y, ·
)♯
]

=
1

t
y − δ∇dHp

(

1

t
y, ·
)♯

.

Moreover the convergence is uniform in z ∈ [ε, T ] × B(0e, R), so this
yields (3.36).

(3) In the same way, using lemma 3.1,

n

∫

(y′ − y) ⊗ (y′ − y)Pn(z, dz′)

=
1

n
E
[(

−
√

nδ grade Fp(·, P1)
)

⊗
(

−
√

nδ grade Fp(·, P1)
)]

+ o(1)

= δ2
E [grade Fp(·, P1) ⊗ grade Fp(·, P1)] + o(1)

uniformly in z ∈ [ε, T ] × B(0e, R), so this yields (3.38).
�

Lemma 3.3. Suppose that tn =
δ

n
for some δ > 0. For all δ > C−1

p,µ,K ,

(3.42) sup
n≥1

nE
[

ρ2(e, Xn)
]

< ∞.

Proof. First consider the case p ∈ [1, 2).
We know by (3.12) that there exists some constant C(β, r, p) such that

(3.43) E
[

ρ2(e, Xk+1)
]

≤ E
[

ρ2(e, Xk)
]

exp (−Cp,µ,Ktk+1) + C(β, r, p)t2k+1.

From this (3.42) is a consequence of Lemma 0.0.1 (case α > 1) in [16]. We give the
proof for completeness. We deduce easily by induction that for all k ≥ k0,

E
[

ρ2(e, Xk)
]

≤ E
[

ρ2(e, Xk0)
]

exp



−Cp,µ,K

k
∑

j=k0+1

tj



+ C(β, r, p)
k
∑

i=k0+1

t2i exp



−Cp,µ,K

k
∑

j=i+1

tj



 ,

(3.44)

where the convention
∑k
j=k+1 tj = 0 is used. With tn = δ

n , the following inequality
holds for all i ≥ k0 and k ≥ i:

(3.45)

k
∑

j=i+1

tj = δ

k
∑

j=i+1

1

j
≥ δ

∫ k+1

i+1

dt

t
≥ δ ln

k + 1

i + 1
.

Hence,

E
[

ρ2(e, Xk)
]

≤ E
[

ρ2(e, Xk0)
]

(

k0 + 1

k + 1

)δCp,µ,K

+
δ2C(β, r, p)

(k + 1)δCp,µ,K

k
∑

i=k0+1

(i + 1)δCp,µ,K

i2
.

(3.46)

For δCp,µ,K > 1 we have as k → ∞
(3.47)

δ2C(β, r, p)

(k + 1)δCp,µ,K

k
∑

i=k0+1

(i + 1)δCp,µ,K

i2
∼ δ2C(β, r, p)

(k + 1)δCp,µ,K

kδCp,µ,K−1

δCp,µ,K − 1
∼ δ2C(β, r, p)

δCp,µ,K − 1
k−1
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and

E
[

ρ2(e, Xk0)
]

(

k0 + 1

k + 1

)δCp,µ,K

= o(k−1).

This implies that the sequence kE
[

ρ2(e, Xk)
]

is bounded.
Next consider the case p ≥ 2.
Now we have by (3.19) that

(3.48)
E [Hp(Xk+1) − Hp(e)] ≤ E [Hp(Xk) − Hp(e)] exp (−Cp,µ,Ktk+1) + C(β, r, p)t2k+1.

From this, arguing similarly, we obtain that the sequence kE [Hp(Xk) − Hp(e)] is
bounded. We conclude with (2.3). �

Lemma 3.4. Assume δ > C−1
p,µ,K and that Hp is C2 in a neighbourhood of e. For

all 0 < ε < T , the sequence of processes
(

Y n
[nt]

)

ε≤t≤T
is tight in D([ε, T ], Rd).

Proof. Denote by

(

Ỹ n
ε =

(

Y n
[nt]

)

ε≤t≤T

)

n≥1

, the sequence of processes. We prove

that from any subsequence
(

Ỹ φ(n)
ε

)

n≥1
, we can extract a further subsequence

(

Ỹ ψ(n)
ε

)

n≥1
that weakly converges in D([ε, 1], Rd).

Let us first prove that
(

Ỹ φ(n)
ε (ε)

)

n≥1
is bounded in L2.

∥

∥

∥Ỹ φ(n)
ε (ε)

∥

∥

∥

2

2
=

[φ(n)ε]2

φ(n)
E
[

ρ2(e, X[φ(n)ε])
]

≤ ε sup
n≥1

(

nE
[

ρ2(e, Xn)
])

and the last term is bounded by lemma 3.3.

Consequently
(

Ỹ φ(n)
ε (ε)

)

n≥1
is tight. So there is a subsequence

(

Ỹ ψ(n)
ε (ε)

)

n≥1

that weakly converges in TeM to the distribution νε. Thanks to Skorohod theorem
which allows to realize it as an a.s. convergence and to lemma 3.2 we can apply

Theorem 11.2.3 of [20], and we obtain that the sequence of processes
(

Ỹ ψ(n)
ε

)

n≥1

weakly converges to a diffusion (yt)ε≤t≤T with generator Gδ(t) given by (2.13) and
such that yε has law νε. This achieves the proof of lemma 3.4. �

Proof of Theorem 2.6. Let Ỹ n =
(

Y n
[nt]

)

0≤t≤T
. It is sufficient to prove that

any subsequence of
(

Ỹ n
)

n≥1
has a further subsequence which converges in law

to (yδ(t))0≤t≤T . So let
(

Ỹ φ(n)
)

n≥1
a subsequence. By lemma 3.4 with ε = 1/m

there exists a subsequence which converges in law on [1/m, T ]. Then we extract a

sequence indexed by m of subsequence and take the diagonal subsequence Ỹ η(n).
This subsequence converges in D((0, T ], Rd) to (y′(t))t∈(0,T ]. On the other hand, as
in the proof of lemma 3.4, we have

‖Ỹ η(n)(t)‖2
2 ≤ Ct

for some C > 0. So ‖Ỹ η(n)(t)‖2
2 → 0 as t → 0, which in turn implies ‖y′(t)‖2

2 → 0
as t → 0. The unicity statement in Proposition 2.5 implies that (y′(t))t∈(0,T ] and
(yδ(t))t∈(0,T ] are equal in law. This achieves the proof. �
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4. Examples, simulations and pictures

4.1. Median of the uniform measure on an equilateral triangle in the

plane.

(4.1)
0
0

0.25

0.25

0.5

0.5

0.75

0.75

1

1

Here M is the Euclidean plane R
2, µ is the uniform measure on an equilateral

triangle. The red path represents one trajectory of the inhomogeneous Markov chain
(Xk)k≥0 corresponding to p = 1, with linear interpolation between the different
steps. The red point in the middle is e1.

4.2. Uniform measure on the unit square in the plane.

(4.2)
0
0

0.25

0.25

0.5

0.5

0.75

0.75

1

1

Again M is the Euclidean plane R
2, but here µ is the uniform measure on the

square [0, 1]× [0, 1]. The red path represents one trajectory of the inhomogeneous
Markov chain (Xk)k≥0 corresponding to p = 1, with linear interpolation between
the different steps. The red point in the middle is e1.

4.3. A non uniform measure on a square in the plane.

(4.3)
0
0

1

1

2

2

3

3

4

4
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M is still the Euclidean plane R
2, now here µ is the renormalized restriction to the

square [0, 4]×[0, 4] of an exponential law on [0,∞)×[0,∞). The red path represents
one trajectory of the inhomogeneous Markov chain (Xk)k≥0 corresponding to p = 1,
with linear interpolation between the different steps. The red point is e1. Black
circles represent the values of (Pk)k≥1

4.4. A non uniform measure on the sphere S2.

(4.4)

Here M is the embedded sphere S2 and µ is a non uniform law. Again the red path
represents one trajectory of the inhomogeneous Markov chain (Xk)k≥0 correspond-
ing to p = 1, with linear interpolation between the different steps. The red point
is e1. Black circles represent the values of (Pk)k≥1. One can observe that even if
the convexity assumptions are not fulfilled, convergence still holds.
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4.5. Another non uniform measure on the unit square in the plane.

(4.5)

-1

-0.5

0

0.5

1

-2-2
-1.5-1.5

-1-1
-0.5-0.5

00
0.50.5

11
1.51.5

22

This is an example of density on the square [0, 1]× [0, 1].

(4.6) -2
-2

-1.5

-1.5

-1

-1

-0.5

-0.5

0

0

0.5

0.5

1

1

1.5

1.5

2

2

Here µ is given by the density of figure (4.5). The red path represents one trajectory
of the inhomogeneous Markov chain (Xk)k≥0 corresponding to p = 1, with linear
interpolation between the different steps. The red point is e1. Black circles represent
the values of (Pk)k≥1.
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