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Abstract— In Wireless Sensor Networks (WSN), a tradeoff
between the network lifetime (limited by energy of sensors)
and redundancy of actively sensing and communicating sensors
(implicated by coverage requirements for the measured area) has
to be established, typically in an over-deployed environment. This
is achieved by scheduling algorithms which periodically alternate
the state of sensors between ”asleep” and ”awake”. Obviously, the
period length of the periodical synchronized scheduling affects
the network performance and lifetime. Controlled Greedy Sleep
algorithm is a quasi-optimal synchronized sensor scheduling
algorithm which increases network lifetime while maintaining
correct functionality, based on local decisions of sensors. This
paper investigates the optimization of the period length of this
algorithm and highlights best practices with simulations. Studies
have been performed within a ring topology and in random
square topology.

Index Terms—Ad hoc networking, sensor network, energy con-
servation, sensor scheduling, synchronized alternation, optimal
period length, simulation.

I. INTRODUCTION AND PROBLEM STATEMENT

Wireless sensor networks (WSNs) are deployed to monitor
and to measure areas in a reliable manner. WSNs have several
application domains: to monitor the environment, to collect
information, to register and process environmental parame-
ters for optimization or prediction, and/or to insure security
([1] describes many applications and challenges). Often, the
measurement or surveillance task of a WSN requires the
complete coverage of a target area or a set of target objects.
In a general WSN architecture, several sensor nodes send the
observation data to Base Stations (BSs) or sinks. Then data can
be processed by the sinks and later send to the potential clients.
The sensors are performing sensing and communication tasks
and the main problems and challenges of this kind of networks
are associated to these two activities [2]. The sensor network
should be capable to measure in the target area and to process
the measured values and transmit them to sink nodes.

While usual BSs are fix and powered by wire, sensors
are generally battery powered. Low cost sensors operate,
generally, on limited-power battery. For example, AA type
battery equipped sensors can run continuously for some days
but the observation duration of the network should last at
least some weeks or months [3]. Thus the efficiency of the
energy consumption is of the highest importance because it
determines the lifetime of the WSN. Moreover WSN are over-
dimensioned (i.e. sensors are deployed with a high redundancy

rate) to provide alternative sensors for a good coverage of
the target area. This over-dimensioning can be exploited to
put some sensors in sleep state for a previously determined
time interval, thus saving their electrical energy. Consequently
all sensors can alternate between sleep and awake states.
This alternation permits to keep on the WSN activities: to
maintain the coverage over an area and communication while
minimizing the network energy consumption (thus maximizing
the network lifetime) [4], [5]. A scheduling algorithm (often
distributed over all sensors) should be used to decide which
sensors (and when) have to move from one state to the
other. To assure good space coverage and pervasive services,
efficient but simple algorithms should be applied to optimize
the utilization of limited network resources and capabilities.
Using sleep scheduling in the WSN, both the measurement
and the communication tasks should be provided with the
remaining awake sensors. Usually, the election and alternation
of awake sensor sets is based on periodical synchronization of
the sensors. This periodical procedure also consumes energy.
Intuitively, if the period length is small, the scheduling pro-
cedure has a heavy overhead. Contrarily, if the period is too
long, the sensor battery capacities might not be harnessed to
their full extent.

In this paper we consider the analysis of the impact of the
scheduling period length on the network lifetime. Section II
presents the interest of the sensor scheduling and the usual
scheduling techniques. Our analysis is based on a quasi-
optimal scheduling algorithm proposed in [6], which is briefly
described in Section III. The energy consumption model and
the used simulation technique are detailed in Section IV
Section V respectively. Simulation results on the impact of
the period length follow in Section VI. We propose a method
for choosing a period length in Section VII. Conclusions and
perspectives close our study.

II. SENSOR SCHEDULING

Sensors have generally limited power capacity but WSNs
has to meet relatively strong lifetime requirements, thus the
energy conservation is a critical issue in WSN. Mostly, high
density of sensors and a scheduled sleeping algorithm are
employed to preserve energy of the sensors and provide the
network services. Sensors periodically alternate between sleep



and awake states using a given period length T , thus saving
energy.

A. Our Hypothesis

The performance of a sensor scheduling depends on the
network topology (i.e. on the sensor locations). In a WSN,
sensors can be deployed randomly or in a controlled way.
The controlled deployment of sensors may only be feasible
in an accessible environment. In inhospitable or inaccessible
fields, sensors are randomly placed. In [7] a recent state of
the art on optimized node placement identifies the various
objectives and enumerates the different models for static and
dynamic WSNs. In our problem, we consider both controlled
and random sensor topologies.

The measurement and data transmission of sensors in the
space can be characterized by their sensing range, communi-
cation range respectively. Generally the communication range
of a sensor is greater than the twice of the sensing one;
so, one can suppose that the sensors sharing the measure-
ment/observation task anywhere can also communicate one
with the other. Consequently, if the target area is covered
with awake sensors, then the connectivity of the WSN is also
ensured [8]. So, scheduling algorithms may focus only at the
solution of the coverage problem.

In our study, we suppose that the sensors are placed in such
a way that each point of the area is covered by at least K
sensors.

B. The K-coverage Problem

Let us suppose that the relations between targets and sensors
is represented by a bi-bipartite graph G = (R ∪ S,E) where
R is the finite set of observed regions and S is the available
sensor set. An edge er,s ∈ E exists in G, if the sensor s ∈ S
can observe the region r ∈ R.

1) Static K-coverage: The simple static K-coverage prob-
lem corresponds to find a sub-graph Ga = (R ∪ Sa, Ea) of
G so that for all regions r ∈ R its degree is at least K. The
set Sa corresponds to an awake subset of available sensors
such that it guarantees the K-coverage of each region. A graph
G′

a = (R ∪ S′
a, E

′
a) is non-redundant if it does not exist

Sb ⊂ S′
a generating Gb = (R∪Sb, Eb) that solves the simple

K-coverage problem.
The minimal static K-coverage problem is to find a non-

redundant sub-graph Gm = (R ∪ Sm, Em) that solves the K-
coverage and |Em| is minimal. Similarly to the Minimal Cover
Vertex Set problem, the static minimum K-coverage problem
is considered as an NP-difficult problem.

2) Dynamic K-coverage: The goal of the dynamic sensor
network scheduling (K-coverage) is more complex that the
computation of static minimal K-covering sets. The scheduling
algorithms aim to prolong the lifetime of the sensor network
with the help of the alternation of appropriate (non-redundant
but not necessary minimal) K-covering sets minimizing the
power consumption and maximizing the duration of the K-
coverage of the target area. In fact, performing a K-coverage

using a certain subset of sensors for awhile consumes the
power of the participating sensors.

Formally, the dynamic K-coverage problem aims to find
a sequence of graphs Gk each solving the strict static K-
coverage problem for an associated duration time tk. The
sensors of each subset Sk are supposed awake during tk and
have sufficient available power. A solution can be described
as:

O = {(Sk, tk), k = 1, . . .m} (1)

where the sensors in Sk ⊆ S are awake during the time interval
tk. The total duration of the K-coverage provided by O is equal
to t =

∑m
k=1 tk.

To take into account topology changes, dynamic scheduling
algorithms are needed. The problem of complex dynamic com-
putation is that small size sensors can not perform complex
algorithms. Thus simple scheduling techniques are needed.

C. Scheduling Techniques

Scheduling algorithms can be classified according to differ-
ent aspects: centralized or distributed, random or deterministic,
etc.

Centralized scheduling needs a central node with sufficient
computation capacities and induces additional communica-
tions between the central node and all sensors. These commu-
nications consume energy, may produce network congestion
or link collision around the central node and are very suscep-
tible to central node failure but the result of the centralized
scheduling is generally efficient. For instance, in [9] a dynamic
mixed integer linear programming (MILP) model is presented
to solve a coupled coverage and connectivity dynamic problem
(CCDP) in flat WSNs. A good example for distributed, random
sleeping algorithm can be found in [10] where nodes make
local decisions on whether to sleep or to join a forwarding
backbone, to ensure measurement and communications. Each
node bases its decision on an estimation of the number of other
neighbor sensors which will benefit from its awake period and
the amount of remaining energy.

In [3] the authors propose a simple randomized scheduling
for dense and mostly sleeping sensor networks. They suppose
that there are many redundant sensors in the target area and
one can compute and ensure the required (identical) duty
cycle for individual sensors. In the proposed Randomized
Independent Sleeping (RIS) algorithm, time is divided into
periods. At the beginning of each period, each sensor decides
whether to go to sleep (with probability p computed from the
duty cycle) or not, thus the lifetime of the network is increased
by a factor 1/p. This solution is very simple and does not
require communication between sensors. The drawback of the
random scheduling propositions is that there is no guarantee
for coverage nor for network connectivity.

For a more precise scheduling, the authors in [11] propose
a Role-Alternating, Coverage-preserving, Coordinated Sleep
Algorithm (RACP). Each sensor sends a message periodically
to its neighborhood containing its location, residual energy and
other control information. An explicit acknowledgment-based



election algorithm permits to decide the sleep/awake status.
The coordinated sleep is more robust and reduces the duty
cycle of sensors compared to the random sleep algorithm.

Many scheduling algorithms work periodically. The period
length of the scheduling impacts the efficiency of the solution:
this is the subject of our investigation. We propose to analyze
the impact of the period length on the efficiency using a quasi-
optimal distributed scheduling algorithm which is presented in
the following.

III. CONTROLLED GREEDY SLEEP ALGORITHM

The analyzed Controlled Greedy Sleep (CGS) algorithm
is a synchronized scheduling algorithm which was proposed
in [6]. CGS is based on periodic synchronization between
sensors in order to determine which of them are the most
critical and are eventually allowed to go to sleep for a period
of time. In this scheduling nodes have local information on
their neighborhood only. Each sensor node q will use a locally
known sub-graph Gq(Sq

∪
Rq, Eq). This sub-graph contains

geographical regions Rq covered by q, the set Sq of sensors
which participate the coverage of at least one region of Rq.
Eq contains the edges between the regions and sensors. The
scheduling is based on a particular factor. The drowsiness
factor of the node with remaining energy Ps is defined by

Dq =


1

Pα
q

∑
∀r∈R

if ϕr > 0, ∀r

−1 otherwise
(2)

where α is a positive constant (e.g. α = 2), and ϕr is the
coverage ratio of region r ∈ Rq.

The coverage ratio is positive if the region is over-covered,
and negative otherwise: in this latter case the operation of
all sensors covering r is essential. Moreover, the smaller
the energy of q, the larger its drowsiness. CGS enforces
the sensors in critical positions to go to sleep whenever it
is possible, to conserve their energy for times when their
participation will become inevitable. A sensor q can go to
sleep when its neighbors with larger drowsiness factor decided
their state for the next period and q has no critical (not
over-covered) region to monitor. Consequently, each sensor
should know the drowsiness factor of its neighbors and the
decision of neighbors with larger factor. To organize the local
communication, a communication delay (DTD) is associated
with each sensor. This delay is inversely proportional with the
drowsiness factor. So the sensors with large factor broadcast
their decision earlier. Only the awake state decision should
be broadcasted explicitly, in this way the communication
overhead can be minimal.

The main steps of the Controlled Greedy Sleep (CGS)
Algorithm are the followings:

1) At the beginning of the period, wake up all sensors
whose remaining energy is enough for spending at least
one period awake.

2) Alive sensors broadcast local Hello messages containing
their locations. Based on received Hello messages each

sensor q builds up its local set of alive neighbors Sq and
generates the local bi-partite graph Gq(Sq

∪
Rq, Eq),

and then it calculates its drowsiness factor Dq.
3) Based on Dq each node q selects a Decision Time Delay

(DTDq). Small drowsiness means large DTD, large
drowsiness means small DTD. These delays provide
priorities when nodes announce their Awake Message
(AM ). Each sensor q broadcasts its DTDq and starts
collecting DTD and AM messages from the neigh-
borhood. From the received DTD and AM messages
it builds a Delay List (DLq) and a List of Awake
Neighbors (LANq) respectively.

4) When DTDq time elapsed the node q makes a decision
based upon LANq and DLq:
- if all regions in Rq can be K-covered using only nodes
present in LANq and/or nodes u present in DLq for
which DTDu > DTDq then go to sleep
- otherwise stay awake and broadcast an AM to inform
the neigbors of this decision.

Figure 1 illustrates a typical period of the CGS algorithm.

t0 T

sleep or awake

DTD Te

messages messages messages
AMHello     DTD  

Figure 1. A typical period of CGS

Obviously, the communication overhead of the algorithm
depends on the length of periods. At the begining of the
period there are three time intervals: to exchange Hello,
DTD and AM messages respectively. A sensor broadcasts
at most three messages during Te (two if it the node will
go to sleep, three otherwise) and must stay awake in order
to complete the election process. During this extra Te time
sensors consume energy. The scheduling communication and
awake-time overhead can be low if the length T of a period is
significantly longer than Te. But, one can state that this period
can not be too long either.

The determination of the optimal length T is a hard com-
putation problem. In real cases only empirical and estimated
solutions can be formulated. The study of this period length
with simulation offers significant elements to choose the
period length.

IV. ENERGY CONSUMPTION MODEL

A. Periodical energy consumption

For purposes of optimization of the period length T , the
periodical energy consumption of the sensors can be modeled
as the sum of two components. The first component contains
the communication overhead during the initial phase at the
beginning of each period, and any other costs independent
from the length of the period, such as clock synchronization
or staying awake for the duration Te. The second component
is the time-proportional energy consumption; it contains the
cost of the measurement and communication activities which



are supposedly proportional to T . It is important to point out
that both the fixed communication cost and the consumption
rate depend on whether the particular sensor spends the period
awake or asleep: sleeping sensors send only 2 CGS messages,
while awake ones send 3, and spending a period asleep
consumes energy by a much lower rate that staying awake
and measuring (which is the whole point of using CGS).
Apart from the difference between sleeping and awake sensors,
however, we assume that these cost are the same for all
sensors. Thus our energy consumption model is described by
the following formula:

EX = FX + CX ∗ T (3)

where EX is the periodical energy consumption, FX is the
fixed overhead of a period, CX is the consumption rate of the
time-proportional component, and X is the type of the period
(A for awake or S for sleep).

B. Limiting the lifetime of K-Coverage

Let ET be the combined average energy consumption rate
of a single sensor, including both fixed and time-proportional
costs, during the lifetime of K-coverage. If NK is the number
of periods while K-coverage is maintained, and NA is the
avearge number of periods spent awake by a sensor during
K-coverage, then

ET =
NA ∗ EA + (NK −NA) ∗ ES

NK ∗ T
(4)

Let’s define pA as the average portion of periods spent awake
by a sensor:

pA =
NA

NK
(5)

The value of pA is dependent on the overdosing of the area
to be observed, and also the actual topology of the sensors.
Now we can combine the above equations to get:

ET =
pA ∗ EA + (1− pA) ∗ ES

T

=
pA ∗ (FA + CA ∗ T ) + (1− pA) ∗ (FS + CS ∗ T )

T

and thus

ET = pA∗CA+(1−pA)∗CS+
pA ∗ FA + (1− pA) ∗ FS

T
(6)

The goal to be maximized would be the performance P of
the network, which is the total lifetime of K-coverage:

P = NK ∗ T (7)

Let E be the initial energy level of the sensor nodes; once
again, we assume that sensors are symmetric. Obviously

E ≥ P ∗ ET (8)

Combining the above two and expanding the energy consump-
tion model yields the following:

P ≤ E

ET
=

E

pA ∗ CA + (1− pA) ∗ CS + pA∗FA+(1−pA)∗FS

T
(9)

The above formula suggests that by increasing T , the commu-
nication overhead diminishes and performance of the network
increases. This misleading: one could even assume that the
best choice would be Tmax, the largest possible period length
permitted by the battery capacity, for which a single awake
period consumes all energy:

Tmax =
E − FA

CA
(10)

However, (9) merely gives an upper bound for the perfor-
mance. As our simulations reveal in Section VI, there are
also other factors to consider that may be more relevant with
realistic parameters, making the choice of T a much more
difficult decision.

C. Estimation of realistic values

It is quite common to employ standard AA batteries as the
energy source of wireless sensor nodes. The energy capacity
of these batteries typically range between 5kJ and 16kJ . In
accordance with [12], we assume that sleeping sensors with
a disabled radio consume energy by a rate in the order of
magnitude of 10−5 Watts, while an active sensor drains power
in the order of magnitude of 10−2 Watts.

To assess communication costs in accordance with [13],
we assume that sending messages (with potential multipath
fading) has a cost of lEelec + lϵmpd

4 where l is the numer of
transmitted bits, d is the range of acceptable reception, Eelec

is 5 ∗ 10−8J/bit and ϵmp is approximately 10−15J/bit/m4.
Furthermore, we take 125 bytes including overhead (l =
1000bits) as a safe over-approximation of the length of CGS
messages, and they are broadcast to a range of d = 100m.
This puts the cost of one CGS message at around 1.5∗10−4J ;
sleeping nodes have to send two, while awake nodes have to
send three such messages.

While a single set of parameters cannot predict the be-
haviour of a broad range of sensor networks, running sim-
ulations with realistic data samples improves the credibility of
the conslusions. Table I summarizes our estimates of energy
consumption parameters.

Table I
ESTIMATED ENERGY PARAMETERS

E FA FS CA CS

104J 4.5 ∗ 10−4J 3.0 ∗ 10−4J 10−2W 10−5W

V. SIMULATION TECHNIQUE

To observe the behaviour of a WSN without actually
building it, a simulator is required. Network simulators (e.g.,
NS2, J-Sim, OPNET) usually require a long development
process to adapt to a protocol, and further efforts each time the
same protocol is examined in a different way. Therefore we
opted to implement the simulator over a graph transformation
system instead, which allowed us to specify the behaviour
of CGS in a formal, declarative way. Our simulator was
implemented in VIATRA2, a model transformation framework
primarily used for software engineering purposes. The motive



of this decision was twofold. First, the graph transformation
formalism provides an easy way to capture complex graph-
like relationships and transitions. Additionally, the formal
and declarative nature of the behaviour specification can be
capitalized upon: most of it will be reusable in a stochastic
simulation, like the one in [14], or a more thorough analysis
based on state space exploration; also a high level service/fault
model can be introduced in a heterogeneous sensor environ-
ment where different measurement objectives arise (a planned
future research step).

The VIATRA2 framework, an Eclipse subproject [15] de-
veloped at department MIT of the Budapest University of
Technology and Economics (BME), aims primarily at pro-
viding efficient model transformation, which is a key step in
model based software engineering. The descriptive power of
the mathematical formalisms and techniques (graph transfor-
mations, abstract state machines) utilized by the transformation
language [16], however, makes the tool suitable for a broader
range of research areas, for example simulation of domain-
specific models. Also the underlying pattern matching mecha-
nism makes VIATRA2 an efficient tool for simulating problems
with many local state changes and complex pattern matching
inbetween [17]. Simulating sensor network models is merely
one possible utilization of VIATRA2.

We have implemented a VIATRA2-based discrete time
simulator to model, demonstrate and measure the dynamic
behaviour of CGS. The development of the simulator consisted
of the following steps:

• A metamodel was defined over the elements of the
simulation: sensors, energy, states, regions, covering,
messages, etc. The state of the sensor net was captured
as a graph formed by elements of this metamodel.

• Graph patterns were specified to capture conditions and
relations of simulation elements. For example, one graph
pattern identifies neighbors of a sensor sharing a certain
common region and having lower drowsiness. Relying on
efficient pattern matching algorithms, this pattern can be
used to decide whether a particular sensor can afford to
go to sleep.

• Graph transformation rules were defined to describe
elementary actions that change the model, for instance
broadcasting messages to neighbor sensors.

• The control flow of the entire simulation, most notably
the sequence of CGS steps, was captured in the transfor-
mation language of VIATRA2, based on the mathematical
notion of abstract state machines.

VI. SIMULATION RESULTS

A. Ring Topology

The first measurement is carried out on a synthetic ring
topology. 10 sensors are arranged into a ring, each neighboring
4 sharing a common region; the goal is 2-coverage. Because
of the regularity of the problem, the optimal solution is
easily obtained: every other sensor should stay awake for
the first period (thereby providing exact 2-coverage for all

Figure 2. Ring Topology Measurement Results (10 sensors)

regions), while the rest are asleep, and then switch roles at
the second period; thus the optimal lifetime of the network is
approximately twice the awake lifetime of an individual sensor.
We used the realistic energy parameters introduced in IV-C;
this puts the lifetime of one sensor (E/CA) at one million
seconds or cca. 16700 minutes. The actual CGS simulation
was carried out with period lengths ranging from 1% to 99% of
this lifetime. The performance metric P (the total duration of
providing K-coverage for the entire network) is plotted against
the chosen period length in Figure 2 (continuous line).

It is apparent from the figure that contrary to the superficial
estimation in Section IV-B, the performace of the CGS sensor
network is not monotonous with respect to T ; it admits a much
more complex behaviour, and remains far from the optimum
(cca. 33300 minutes, see above) except for small values of
T . To explain the sharp discontinuities, we have to recall that
according to the CGS algorithm (see Section III) only sensors
with at least EA energy left can contribute to the sensing.
Sensors with less energy become permanently inactive and
their leftover energy can be considered lost. Therefore if the
period length is too large for sensors to remain awake for two
periods (and asleep for two periods while others are awake),
then they can only stay awake for one period, and the rest
of the energy (up to half of the total) is lost. On the other
hand, if the period length is just small enough so that two
awake periods fit in (cca. 500 000 seconds), then most of
the energy can be utilized, and the lifetime of the network is
significantly longer. A similar singularity is present between
two or three awake periods, between three or four, etc., and
also one between zero or one awake periods. For shorter period
lengths (enough for several thousand periods), the number of
asleep periods can also factor in, making the performace even
less predictable. The total amount of leftover energy of sensors
at the end of the simulation is plotted on the graph with a
dashed line; it is easy to see a connection between leftover
energy and performance. As the potential amount of leftover
energy is upper bounded by EA, it diminishes by choosing
smaller period lengths, therefore even the local minima are



less disadvantageous at smaller ranges of T .
On the other hand, one would expect that the performace

at local maxima should increase by the period length, as
larger T values mean a smaller number of periods, fewer
messages, thus FA and FS cause less overhead. However,
this turns out to be false: the measurements show that the
performance is significantly worse at larger values of T . This
is a consequence of CGS being a distibuted algorithm, that
can only take into account local information. In this particular
example, the global optimum would be a regular awake-
asleep-awake-asleep-awake-. . . configuration of the sensors,
alternating every other round. This symmetry can be easily
broken by local decisions; while most of these decisions are
still locally optimal, they just do not connect properly to form a
regular pattern on the whole ring. For example, awake-awake-
asleep-asleep–awake-awake-. . . provides strict 2-coverage for
some regions, but the ring size is not divisible by 4, therefore it
has to contain four adjacent awake sensors at some point. Such
symmetry breaking ultimately results in overcovering and thus
wasted energy and the premature depletion of a few sensors. In
this experiment, the majority of the network is actually still 2-
covered for the projected lifetime, but our goal is complete
2-coverage, which fails much earlier due to some sensors
having spent disproportionately more energy than others. This
explanation of the energy deficit is supported by evidence:
if CGS is artificially hinted to choose the optimal awake
partition, the deficit disappears and optimal performance is
obtained.

Our observation is that for shorter period lengths, the
network has more CGS periods at its disposal, therefore
more opportunities to adaptively reorganize the set of awake
sensors and compensate for the inequal distribution of energy.
Even though some energy is wasted each round due to the
overcovering (inevitable for a distributed protocol), this energy
deficit is evenly distributed among sensors, which helps to
maintain K-coverage as long as possible. This energy redistri-
bution effect (actually caused by the the increased drowsiness
of sensors with energy deficit) is one of the main benefits
of CGS. We have also conducted measurements with larger
ring topologies (e.g., 50 sensors) and different parameter
settings; all experiments confirmed that the local maxima of
the performance generally increase towards small values of T ,
except for extremely short periods (not depicted on the figure)
when the communication overhead becomes significant due to
the very large number of periods.

B. Ring Topology, Short Periods

We have also conducted conducted a second experiment
with the same topology to inspect small values of T . Figure 3
shows how CGS behaves for T between 0.1s and 10s. It
is easily seen that for extremely short period lengths, the
fixed periodical communication cost become a dominant waste
of energy, seriously impacting the lifetime of K-coverage.
However, if T is sufficiently large (at least a couple of seconds
with our data), then this effect can be neglected, and CGS has
consistently good performance.

Figure 3. Ring Topology, Reduced Energy, Short Periods

Note that for such short periods, a simulation run could last
several million periods for every single value of T . In order to
plot this graph in a reasonable time, we have downscaled the
battery capacities (and thus the resulting performance) by a
factor of 1000. We believe this change has little effect on the
overall shape of the performance graph, as the simulation still
lasts for several hundred or thousand periods. But it should
be noted that relative effects of leftover energy (the slight
fluctuation) are consequently upscaled by a factor of 1000 on
this graph; they are actually even less noticable, and the graph
should appear even smoother.

C. Mesh Topology, Fair Random Placement

The behaviour of sensors placed randomly in a 2D area
is much less predictable than the ring topology, therefore the
importance of simulation over analytical planning is increased.

This simulation involved scattering 144 sensors with 50m
sensing radius each in a 300m by 300m square territory,
of which the central 200 by 200 square meters are the
observed area that should be 3-covered. Thus the scattering
area dominates the observation area by a frame as wide as
the observation radius, as depicted on Figure 4. This ensures
that the corners of the observation area are covered by the
same expected density as the central areas; on the other hand,
a small number of sensors (e.g., 8 or 10) will go to waste
by being deployed entirely outside. After the placement of
sensors, regions are formed with a granularity of 10m.

If sensors where placed with an uniform distribution, some
areas would likely be disproportionally underdosed (while
other could end up significantly overdosed), making K-
coverability impossible. Placing sensors on a regular grid,
however, would be unrealistic to deploy. Therefore we have
opted to strike a balance and model the deployment in a
sufficiently random but spatially fair way. The scattering area
is divided into square sectors (6 by 6 sectors in our simulation)
and a fixed amount of sensors (4 in our case) are deployed in
each sector, with uniform random placement within the sector.

Figure 5 shows the result of a mesh topology simulation run.
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Figure 4. Illustration of Mesh Topology

Figure 5. Mesh Topology Measurement Results (134 sensors, 373 regions)

Due to the randomness of the topology generation, subsequent
runs yielded different results, but they all shared the same
basic shape and characteristics. This more realistic topology
confirms the observation that choosing small period lengths
is beneficial due to greater CGS adaptivity and a smaller risk
of leftover energy. Furthermore, a priori analytical derivation
of the local optima is completely unfeasible in a random
scenario, and optimization after the placement would break
the distributed nature of the system; thus a general observation
(choose small period lengths!) is more useful than formulae
here.

VII. CHOICE OF PERIOD LENGTH

Section VI-A and VI-C suggested choosing a small period
length. Smaller values of T are also preferred in order to be
able to quickly adapt after sensor failures or other events.
However, minimizing T should not be taken to the extreme.
Section VI-B shows that for very short values of T , fixed
periodical costs (FA and FS) dominate time-proportional costs
(CA and CS), and a large portion of energy will be wasted for
communication. Additionally, T cannot be shorter than Te, the
length of the election process at the beginning of each period.
Therefore our proposition is to choose the smallest suitable

period length for which fixed cost are already negligible. Our
task is now to find this ideal T .

To find a T where the fixed costs are negligible, we have
to recall the combined average energy consumption rate ET

and (6). We want to limit the portion of energy wasted for
periodical fixed costs. Specifically, we choose a small value λ
(e.g., λ = 0.01) with the goal that

λ ∗ (pA ∗ CA + (1− pA) ∗ CS) ≥
pA ∗ FA + (1− pA) ∗ FS

T
(11)

This goal can be satisfied by the following subgoals:

λ

2
∗ (pA ∗ CA) ≥ pA ∗ FA

T
(12)

λ

2
∗ (pA ∗ CA) ≥ (1− pA) ∗ FS

T
(13)

It is important to point out that we used CA for the upper
bound in both cases, as it can be several orders of magnitude
larger than CS , and also the latter has coefficient 1−pA, which
would be harder to find a lower bound for. The two subgoals
impose the following constraints on T:

T ≥ 2 ∗ FA

λ ∗ CA
(14)

T ≥
2 ∗ FS ∗ 1−pA

pA

λ ∗ CA
(15)

The problem is that the value of pA is not known a priori;
this will be adressed by the following argument. Let n be
the number of sensors and nA the average number of awake
sensors during the periods of K-coverage. Clearly

nA

n
=

NA

N
= pA (16)

If Aobs is the area under observation, and R is the measure-
ment radius of the sensors, then K-coverage requires that the
are is covered K times, implying

nA ∗R2 ∗ π ≥ K ∗Aobs (17)

Thus

pA = nA/n ≥ K ∗Aobs

n ∗R2 ∗ π
= p0A (18)

where p0A (basically the reciprocal of the area overdosing
factor) can be a priori known.

We have established an a priori lower bound p0A for pA,
which gives an upper bound for 1−pA

pA
, thereby allowing us to

specify a a stricter condition than (15) to ensure proper choice
of T :

T ≥
2 ∗ FS ∗ 1−p0

A

p0
A

λ ∗ CA
(19)

≥
2 ∗ FS ∗ 1−pA

pA

λ ∗ CA
(20)

Finally, this gives us the following a priori decision method
to ensure that fixed cost can be practically neglected, also



observing the lower and upper limits:

T = min(Tmax,max(
2 ∗ FA

λ ∗ CA
;
2 ∗ FS ∗ 1−p0

A

p0
A

λ ∗ CA
;Te)) (21)

Of course, if the resulting T is larger than λ ∗ Tmax,
then the result could not be a considered a short period
after all, and leftover energy could dominate energy wasted
on communication, making this argument pointless. In these
cases, λ is too strict, a larger value should be chosen.

For example, with λ = 0.01 and the mesh topology of Sec-
tion VI-C: Tmax would be approximately 106s, p0A = 0.114,
and the first two lower limits of T turn out to be 9s and
23.31s. T = 24s is therefore likely a good choice of period
length, and enough to include Te. For the ring topology of
Section VI-A: p0A = 0.5, and the lower limits are 9s and
3s, respectively; therefore 9s is predicted to be a safe choice
(justified by Figure 3).

VIII. CONCLUSIONS AND PERSPECTIVES

We have conducted theoretical and experimental analysis of
the choice of period length for the CGS scheduling algorithm.

Analytical a priori (i.e. before deployment) computation of
the optimum of network lifetime, even by neglecting commu-
nication costs and power consumption of asleep sensors, is
only easy for synthetic topologies like the ring arrangement,
and completely infeasible for realistic, randomly scattered
deployment. But even if a global, non-distributed decision of
period length could be made after the scattering of sensors in
an arbitrary topology, it would likely be not worth the risk. As
the performace function is non-continous, the computed period
length is easily tipped over into a local minimum due to small
measurement errors. Therefore we recommend that period
length is not chosen based on exact analytical calculation
of local extrema, but based on our proposal that takes into
account the potential risk of landing in a local minimum.

We propose that small T values should be chosen, just long
enough so that the communication overhead can be neglected.
Both the minima and the maxima have larger performace at
smaller values of T , so this is a safe choice if we cannot predict
whether a given T is a local maximum or minimum, which
is the case for most topologies. Short periods also result in
better adaptability with respect to energy inbalance or external
events. Section VII elaborated the proposed method of chosing
T , and yielded the formula (21). This reasoning is supported
by measurements that show the same basic characteristics over
different topologies.

The problem addressed in this paper can be relevant for
other distributed perdiodic WSN schedulers as well. [18] has
similar constraints and observations about the period length
of a different protocol. We believe that analogous arguments
can be constructed to optimize the period length of other
scheduling protocols mentioned in Section II-C.
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