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Abstract—Detecting the changes is the common issue in many
application fields due to the non-stationary distribution of the
applicative data, e.g., sensor network signals, web logs and grid-
running logs. Toward Autonomic Grid Computing, adaptively
detecting the changes in a grid system can help to alarm the
anomalies, clean the noises, and report the new patterns. In
this paper, we proposed an approach of self-adaptive change
detection based on the Page-Hinkley statistic test. It handles
the non-stationary distribution without the assumption of data
distribution and the empirical setting of parameters. We validate
the approach on the EGEE streaming jobs, and report its better
performance on achieving higher accuracy comparing to the
other change detection methods. Meanwhile this change detection
process could help to discover the device fault which was not
claimed in the system logs.

I. INTRODUCTION

Autonomic Computing (AC) is acknowledged as a key topic

for the economy of computational systems, in terms of both

power consumption and resource allocation [1], and human

labor and maintenance support [2]. To realize these autonomic

functionalities, the system behavior is analyzed to provide the

principles for decision-making. For example, in EGEE grid,

we exploited the gLite reports on the lifecycle of the jobs and

on the behavior of the middleware components for providing

the summarized information of grid running status [3].

One special issue in the analysis of system behavior is the

non-stationary distribution. In EGEE grid, for example, on

each day more than 300,000 jobs are submitted by different

users from various fields. The behaviors of jobs are in non-

stationary distribution due to the evolution of the phenomenon,

e.g., the traffic, the users and the modes of usage. More

generally, the non-stationary distribution exists in many other

domains, such as sensor network signals, web logs and com-

puter network traffic.

One challenge of handling the data in non-stationary dis-

tribution is to detect the changes in the underlying data

distribution. The detection of changes can help for i) anomaly

detection – triggers alerts/alarms; ii) data cleaning – detects

errors in data feeds; iii) data mining – indicates when to learn

a new model.

The general idea for detecting “changes” is to compare a

reference distribution with a current window of events. To
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detect item changes, for example, individual items with big

frequency change, sketches based techniques can be used.

Another widely used approach is non-parametric change de-

tection. It has few parameters to set, but must specify when

to call a change significant as did in [4], [5].

The approach proposed in [6] detects changes by analyzing

the trend of data. Data density estimated by Kernel density

estimation (KDE) and changes of data density estimated by

Velocity density estimation (VDE) are used to discover the

evolution of data: dissolution, coagulation and shift.

In [4], Dasu et al. use relative entropy, also called the

Kullback-Leibler distance, to measure the difference between

two given distributions. The first step of this approach is to par-

tition the reference data (a part of the firstly arrived data), and

compute the discrete probability p over the partitioned regions.

Then over a window of recent streaming items, the same space

division is applied and discrete probability q is computed. The

KL divergence of recent stream items and the reference data is

computed by D(p||q) =
∑

x
p(x)log2p(x)/q(x). A statistical

inference procedure based on the theory of bootstrapping is

used to tell the significant of KL divergence.

In [5], a statistical test called the density test is defined for

detecting changes, saying whether the newly observed data

points S′ are sampled from the underlying distribution that

produced the baseline data set S. This test statistic is strictly

distribution-free under the null hypothesis.

All the above methods of change detection are based on

stationary reference data. In many application areas, however,

the data is typically streaming and not stationary. For example,

in network intrusion detection by monitoring network traffic,

the distribution of reference data (usually normal data) is

evolving over time.

In this paper, we propose a self-adaptive method of change

detection based on the analysis of outliers that were discovered

by a dynamic online models. We use our previously proposed

algorithm StrAP [7] for online discovering the outliers as

StrAP gives better performance in terms of accuracy than

other online clustering methods. The outliers are the arrived

data items which deviate from the reference model. The

appearance of outliers can be caused by the normal concept

drift, or the abnormal behaviors or the noise. In this paper,

we analyze the outliers and detect the changes in the non-

stationary data distribution with the purpose of identifying



the possible reasons causing the changes. Coupling with

the Autonomic Computing, the proposed method adaptively

detects the changes based on the online updating model and

the self-adaption of the algorithm parameters according to the

data distribution.

The rest of this paper is organized as follows. In Section II,

we describe our proposed self-adapative approach for change

detection. Section III shows the experimental results applied

on EGEE jobs. Finally, we conclude and give our perspectives

in Section IV.

II. SELF-ADAPTIVE CHANGE DETECTION ALGORITHM

Our proposed approach is based on a statistical change point

detection test, the so-called Page-Hinkley test (PH) [8], [9]. We

firstly introduce this PH statistical test method.

A. Page-Hinkley statistical test

Formally, let pt denote the observation of the variable in

non-stationary distribution. To detect the changes of variable

pt, the PH test is controlled after a detection threshold λ and

tolerance δ, as follows:

p̄t = 1

t

∑t

ℓ=1
pℓ

mt =
∑t

ℓ=1
(pℓ − p̄ℓ + δ)

Mt = max{mℓ, ℓ = 1...t}

PHt = Mt − mt

If PHt > λ, change is detected

(1)

We give an example for showing how PH is used to detect

the changes in Fig. 1. In this figure, red line pt is the non-

stationary distribution (change happened after 300). p̄t, mt and

Mt are computed from equation (1), where δ is usually set to

a very small value, e.g.,10−2. The gap between Mt and mt,

i.e. PHt, keeps increasing after the change happened at 300.

A threshold λ can be set to report the detected change.

0 100 200 300 400 500 600 700 800 900 1000
−5

0

5

10

15

20

25

30

35

40

time t

 

 

pt

p̄t

mt

Mt

Fig. 1. The demonstration of change detection by PH

The threshold λ is an important parameter for detecting

the changes in non-stationary distribution. Fixing λ by an

empirical value is unfavorable for the detection of changes.

A too large value of λ would delay or miss the detection

of changes, while a too small one would falsely alarm the

changes frequently. A self-adpated threshold λ according to

the evolving distribution catches better the changes.

In [10], we have considered the λ adaption problem as a se-

quential control task that can be handled using an exploration-

exploitation algorithm. The goal is to adjust the setting of λ
to obtain better clustering model. Therefore, we define the

observation object pt as the proportion of outliers comparing

with the clustering model. The method consists of recording

a quality measurement of the clustering obtained and scoring

each single value of λ that have been used. The quality of

clustering model is measured by the Bayesian Information

Criterion (BIC) [11], which is defined as the distortion loss of

the model + the size of model + the proportion of outliers. In

order to find out the appropriate setting of λ for minimizing

the BIC cost, we used two approaches. One is e-greedy action

selection approach for selecting discrete value for λ. The

other is Gaussian Process regression approach for generating

continuous value for λ.

This previous approach of self-adaptive change detection

formalizes the adaptation of the threshold λ by an optimization

problem. However, there are several difficulties. The first

difficulty is that it defines the observation object pt as the pro-

portion of outliers w.r.t. the clustering model. This definition of

pt ignores the time-dependence of outliers, which is important

for categorizing outliers. The densely arriving outliers would

be the normal concept drift while irregularly arriving outliers

can be noise or anomalies. The second difficulty is that the BIC

object function for optimization has to be computed frequently,

increasing the computational cost.

We will adapt the threshold λ according to the definition of

observation object pt.

B. Definition of pt based on weighted standard deviation

Let us consider the sequence of outliers ut in a non-

stationary distribution. If ut comes densely with similar values,

they could be a new pattern. If ut irregularly comes with

values in a large range, they can be noise or rare anomalies.

Therefore, we define the weighted standard deviation τt by

simultaneously considering the value of ut and the time lt
when ut appears.

τt =

√

√

√

√

1

t

t
∑

i=1

ωi(ui − ū)2

where ū = 1

t

∑t

i=1
ui is the mean of ui, and the coefficient

ωi = log(li − li−1) + 1, li and li−1 are the time when ui and

ui−1 come. In a special case when ωi ≡ 1 or li − li−1 = 1
(ui comes uniformly), weighted standard deviation (std) is

the normal definition of std.

When ut comes densely with similar values, τt will keep

decreasing towards 0. PH can be used to detect the changing

trend of τt, by defining pt as the weighted std τt computed

in a sliding window along ut.

C. Self-adaptive threshold λ

Using PH for detecting the changes of ut, the change

reporting threshold λ is expected to be adapted in real-time. In



other words, this threshold λt is computed at each time step

t.
From equation (1), we know that PHt is a non-negative

variable. The perfect case of setting threshold λ is to adapt it

according to the trend of new-arriving items.

Proposition 1: The threshold for detecting changes by PH

can be computed as

λt =

{

0 if PHt = 0
f ∗ p̄t otherwise

or

λt0 =

{

0 if PHt = 0
f ∗ p̄t0 otherwise

where, f is a constant called the λ factor, which is the number

of required witnesses seeing the changes, e.g., f = 30. t0 is

the moment since when PHt0 6= 0. p̄t and p̄t0 are the moving

average computed after equation (1).

Proof: The detection of change is triggered when PHt >
λ. In order to see how to set λ, firstly we have a look at how

the non-negative PHt increases. As defined in equation (1),

if PHt−1, PHt 6= 0, the increase from PHt−1 up to PHt is

PHt − PHt−1 = (Mt − mt) − (Mt−1 − mt−1)

because PHt−1, PHt > 0, we have Mt ≡ Mt−1. Then

PHt −PHt−1 = mt−1 −mt = mt−1 − (mt−1 + pt − p̄t + δ)

= p̄t − pt − δ

Therefore, since PHt0 > 0 (i.e., p̄t0 > pt0 + δ), for t ≥ t0,

we have

PHt =

t
∑

i=t0

(p̄i − pi − δ) (2)

From equation (2), we can see that PHt is the collection of

deviation of pt from p̄t. The scenario of changes happening

is the weighted std pt decreasing towards 0. To be sure of

the effective changes, not fake anomalies, evidence should be

collected in longer time. We define a λ factor, called f , to

be the number of steps when PHt keeps increasing. As pt is

decreasing towards 0, δ is a very small value (10−2), and p̄t

decreases slowly, after f steps, PHt ≈ f ∗ p̄t. Therefore, the

first option for setting λ is

λt = f ∗ p̄t

To avoid computing λt frequently, it can be set immediately

when PHt > 0. Then the second way for setting λ is

λt0 = f ∗ p̄t0

where t0 is the moment from when PHt0 6= 0.

In Proposition 1, λt is computed according to inner variable

p̄t which reveals the changing trend of pt. The only short-

coming is the empirically defined constant f . Fortunately, the

meaning of f is the number of waiting steps before making

the decision. It is independent and has no relationship with

any other variables, e.g., pt and ut. Therefore, we can set it to

be a common value, e.g., 30, which is not too large to detect

changes in time and not too small to collect sufficient evidence

for making a decision.

The parameter δ in PH is a tolerance parameter that makes

the PH test more robust when dealing with slowly varying

distribution. If δ = 0, the mt in equation (1) may keep

decreasing when pt is decreasing or slowly increasing but

lower than p̄t. Then the detection of change is impatiently

reported before pt slowly increasing above p̄t. However, δ
should not be set to a large value, because a large δ will

dominate the increasing of mt and the change of pt on basis

of p̄t will be neglected. The detection of changes will be then

overleaped. δ is usually set to a very small value in range of

[10−3 10−1]. In this paper we set δ = 10−2.

III. EXPERIMENTAL RESULTS ON EGEE JOBS

We validate our self-adaptive change detection approach in

the framework of StrAP method used in [10]. StrAP combines

a clustering method called Affinity Propagation (AP) with

the change point detection test. The clustering method AP is

used for summarizing the streaming data and change detection

is used for catching the non-stationary distribution in the

streaming data. In the original StrAP framework, there are

several ways for detecting the changes. One way is called

“MaxR” which detects the changes through specifying the

maximum number of outliers referred to as “size of reservoir”.

The other ways are based on PH test with threshold λ specified

by a fixed-value, or with threshold λ adapted by optimization

approaches, e.g., e-greedy selection and Gaussian Process

Regression [10].

In the validation of this paper, we will use the self-adaptive

change detection approach in StrAP framework. The goal

of the validation is to show that the self-adatpive change

detection approach can achieve better clustering accuracy,

comparing to the other ways in original StrAP method [10].

The cluster accuracy measures the model of StrAP in a fashion

of supervised learning, where the labels of data items are

known from the prior knowledge. In StrAP model, each data

item is assigned to one cluster, and its label is expected to be

the same as the label of the exemplar in its assigned cluster.

The accuracy of clustering is defined as

Clustering accuracy =

∑K

i=1
|Ce

i
|

N
(3)

where |Ce
i
| is the number of data items whose labels are the

same as the exemplar’s label in cluster Ci, K is the number

of clusters, and N is the total number of data items. Higher

accuracy means the better quality of the model in terms of

summarizing the patterns of data steams and tracking the

evolving distribution of data steams.

The data set we used for validation is the EGEE jobs.

As described in [3], this data set includes 5,268,564 jobs

from EGEE grid during 5 months (from 2006-01-01 to 2006-

05-31). Each job is labeled by its final state, successfully

finished (good job) or failed (bad job, including about 45

error types. The 5 million jobs include about 20 main error
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Fig. 2. Performance of StrAP on EGEE jobs: using the self-adaptive change detection approach λt = 30 ∗ p̄t, λ adapted by e-greedy and Gaussian Process
in [10], and λ fixed by a given value 40.
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types (more than 1,500 occurrences). Using StrAP method on

these streaming jobs produces the visible summarized results

to the administrators. The clustering accuracy is evaluated to

guarantee that the compact description is correct.

To be clear, we need to explain why the lables of jobs are

not used in the stream clustering process but why they are

used for evaluation. As suggested by the experts, the labels

of jobs might introduce some confusion, because they do not

indicate the properties of the jobs regarding the failure reasons.

Therefore, we do not use the labels in the clustering process,

by contrast we aim to discover something not claimed in

the label. However, since there is no reference interpretation,

the labels could be the approximation of the classes of jobs

although they are not precise enough. At least, the labels

distinguish the good (successfully finished) jobs from the bad

(failed) jobs.

In Fig. 2, we show the clustering accuracy of StrAP for

clustering the EGEE job streams. We compare the performance

of different change detection approaches, our proposed self-

adaptive approach (real-time adapted threshold λt = 30 ∗ p̄t),

and the λ adapted by e-greedy and Gaussian Process in [10],

and the λ fixed by a given value 40. Meanwhile, we use the

streaming k-centers as the baseline for comparison, which

exactly uses the same framework of StrAP, just replacing

clustering method Affinity Propagation with k-centers.

From Fig. 2, it can be seen that our proposed self-adaptive

change detection approach with real-time adapted threshold λt

has higher accuracy than all the other approaches.

Fig. 3 shows the frequently detected changes on some spe-

cial days, and the corresponding reasons causing the changes.

The top figure in Fig. 3 shows the number of changes detected

per day by our proposed method. The second figure in Fig. 3

is the number of distinct type of labels claimed in the logs of

jobs. Since there is only 1 type of good job but 45 types of

bad jobs, the number of distinct type of labels is indeed the

number of distinct type of errors of failed jobs. The third one

shows the number of job exemplars (clusters) which are the

anomalies in StrAP model. After analyzing the time durations

of these abnormal jobs spent on different services, we find that

these anomalies are related a device fault called “LogMonitor

is clogged”, which was not claimed in the job labels. The

bottom figure demonstrates the number of submitted jobs per

day.

Through analyzing the number of changes detected per day

in the top figure of Fig. 3, we see that changes are detected

more than 15 times in around 10 different days. On the next

day of the peak days, the number of changes is usually largely

dropped. The decrease of the number of detected changes after

peaks indicates that the StrAP model has caught the changes

and was well-updated for handling the changed distribution.

An interesting thing is to investigate the reasons why

changes are frequently detected in these days. Comparing the

peak days in the top figure and the peak days in the other 3

figures in Fig. 3, we find that on 3 days the frequent changes

are related to the large number of different types of errors

of the jobs failed in one day (marked by the red squares). On

another 5 days frequent changes are caused by the device fault

“LogMonitor is clogged” (marked by the red circles). The last

frequent change happened on day149 is caused by the heavy

load of submitted jobs.

From the experimental results and analysis, we see that our

proposed approach of change detection can firstly effectively

discover the changes of the distribution in streaming data and

make the StrAP model catch better the evolving distribution

to achieve more accurate clustering results (Fig. 2). Secondly,

the frequency of detected changes is related to the appearance

of the unusual grid status, e.g. heavy load, large number of

distinct errors and specific device fault (Fig. 3). It is important

to note that the discovered fault of device is not claimed in

the job labels, but firstly suspected by causing the frequent

detection of changes and then confirmed by the StrAP model.

IV. CONCLUSION

In this paper, we proposed a self-adaptive change detection

approach for detecting the changes in EGEE gird jobs with

non-stationary distribution. This approach is based on the

Page-Hinkley statistic test. The threshold λ for deciding the

detection of changes is self-adapted instead of setting by a

fixed value. Embedded in the streaming clustering process,

StrAP, this self-adaptive change detection approach shows

its flexibility and better performance on higher accuracy as

reported in the experimental results. There are several per-

spectives opened by this approach. Firstly we will apply this

self-adaptive change detection approach on more application

fields, e.g. anomaly detection in grid computing system and in

network traffic. Second, we will diagnose the different types

of changes happened in the non-stationary distribution, such

as dissolution, coagulation and shift.
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