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A rigorous proof of the Landau-Peierls formula
and much more

March 30, 2011

Philippe Briet1, Horia D. Cornean2, Baptiste Savoie3

Abstract

We present a rigorous mathematical treatment of the zero-field orbital magnetic suscep-
tibility of a non-interacting Bloch electron gas, at fixed temperature and density, for both
metals and semiconductors/insulators. In particular, we obtain the Landau-Peierls formula
in the low temperature and density limit as conjectured by T. Kjeldaas and W. Kohn in 1957.
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1 Introduction and the main results

Understanding the zero-field magnetic susceptibility of a Bloch electron gas is one of the oldest
problems in quantum statistical mechanics.

The story began in 1930 with a paper by L. Landau [30], in which he computed the diamagnetic
susceptibility of a free degenerate gas. (Note that the rigorous proof of Landau’s formula for free
electrons was given by Angelescu et al. [1] and came as late as 1975.) For Bloch electrons (which
are subjected to a periodic background electric potential), the problem is much harder and -to our
best knowledge- it has not been solved yet in its full generality.

The first important contribution to the periodic problem came in 1933, when R. Peierls [34]
introduced his celebrated Peierls substitution and constructed an effective band Hamiltonian which
permitted to reduce the problem to free electrons. Needless to say that working with only one
energy band instead of the full magnetic Schrödinger operator is an important simplification.
Under the tight-binding approximation he claimed that the dominant contribution to the zero-field
orbital susceptibility of a Bloch electron gas in metals (at zero temperature) is purely diamagnetic
and is given by the so-called Landau-Peierls formula which consists of replacing in the Landau
formula the mass by the effective mass of the electron. He showed as well the existence of another
contribution which has no simple interpretation and whose magnitude and sign are uncertain.

In 1953, E.N. Adams [2] claimed that the Landau-Peierls susceptibility is not always the
dominant contribution to the zero-field orbital susceptibility. By considering the case of ’simple
metals’ (for which the tight-binding approximation is not appropriate), he showed that there exists
others contributions (certain have even positive sign!) coming from the bands not containing the
Fermi energy. Besides in special cases these contributions are of the same order of magnitude than
the Landau-Peierls formula. However any general formulation of these contributions were stated.

In 1957, T. Kjeldaas and W. Kohn [26] were probably the first ones who suggested that for
’simple metals’ the Landau-Peierls approximation is only valid in the limit of weak density of
electrons, moreover, the Landau-Peierls formula (see below (1.17) and (1.18)) has to be corrected
with some higher order terms in the particle density, and these terms must come from the bands
not containing the Fermi energy.

These three papers generated a lot of activity, where the goal was to write down an exact
expression for the zero-field magnetic susceptibility of a Bloch electron gas in metals at zero
temperature. In what follows we comment on some of the most important works.

The first attempt to address the full quantum mechanical problem -even though the carriers
were boltzons and not fermions- was made by J.E. Hebborn and E.H. Sondheimer [21, 22] in 1960.
Unlike the previous authors, they developed a magnetic perturbation theory for the trace per unit
volume defining the pressure. The biggest problem of their formalism is that they assumed that
all Bloch energy bands are not overlapping (this is generically false; for a proof of the Bethe-
Sommerfeld conjecture in dimension 3 see e.g. [23]), and that the Bloch basis is smooth in the
quasi-momentum variables. This assumption can fail at the points where the energy bands cross
each other. Not to mention that no convergence issues were addressed in any way.

In 1962, L.M. Roth [36] developed a sort of magnetic pseudodifferential calculus starting from
the ideas of Peierls, Kjeldaas and Kohn. She used this formalism in order to compute local traces
and magnetic expansions. Similar results are obtain by E.I. Blunt [9]. Their formal computations
can most probably be made rigorous in the case of simple bands.

In 1964, Hebborn et al. [20] simplified the formalism developed in [22] and gave for the first
time a formula for the zero-field susceptibility of a boltzon gas. Even though the proofs lack any
formal rigor, we believe that their derivation could be made rigorous for systems where the Bloch
bands do not overlap. But this is generically not the case.

The same year, G.H. Wannier and U.N. Upadhyaya [40] go back to the method advocated
by Peierls, and replace the true magnetic Schrödinger operator with a (possibly infinite) number
of bands modified with the Peierls phase factor. They claim that their result is equivalent with
that one of Hebborn and Sondheimer [22], but no details are given. Anyhow, the result uses in
an essential way the non-overlapping of Bloch bands. At the same time, L. Glasser [18] gave an
expression of the bulk zero-field susceptibility in terms of effective mass by the usual nearly free
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electron approximation.
In 1969, P.K. Misra and L.M. Roth [32] combined the method of [36] with the ideas of Wannier

in order to include the core electrons in the computation.
In 1972, P.K. Misra and L. Kleinman [31] had the very nice idea of using sum-rules in order

to replace derivatives with respect to the quasi-momentum variables, with matrix elements of the
”true” momentum operator. They manage in this way to rewrite the formulas previously derived
by Misra and Roth (which only made sense for non-overlapping bands) in a form which might also
hold for overlapping bands.

As we have already mentioned, the first serious mathematical approach on the zero-field sus-
ceptibility appeared as late as 1975, due to Angelescu et al. [1]. Then in 1990, B. Helffer and J.
Sjöstrand [24] developed for the first time a rigorous theory based on the Peierls substitution and
considered the connection with the de Haas-Van Alphen effect. These and many more results were
reviewed by G. Nenciu in 1991 [33]. A related problem in which the electron gas is confined by a
trapping potential was considered by M. Combescure and D. Robert in 2001 [11]. They obtained
the Landau formula in the limit ~ → 0.

Finally we mention that the magnetic response can be described using the semiclassical theory
of the orbital magnetism and the Berry-phase formula, see [35] for further details. The link between
this approach and our work has yet to be clarified.

Our current paper is based on what we call magnetic perturbation theory, as developed by the
authors and their collaborators in a series of papers starting with 2000 (see [13, 12, 14, 15, 16, 3,
4, 5, 6, 7] and references therein). The results we obtain in Theorem 1.2 give a complete answer
to the problem of zero-field susceptibility. Let us now discuss the setting and properly formulate
the mathematical problem.

1.1 The setting

Consider a confined quantum gas of charged particles obeying the Fermi-Dirac statistics. The
spin is not considered since we are only interested in orbital magnetism. Assume that the gas is
subjected to a constant magnetic field and an external periodic electric potential. The interactions
between particles are neglected and the gas is at thermal equilibrium.

The gas is trapped in a large cubic box, which is given by ΛL =
(
− L

2 ,
L
2

)3
, L ≥ 1.

Let us introduce our one-body Hamiltonian. We consider a uniform magnetic fieldB = (0, 0, B)
with B ≥ 0, parallel to the third direction of the canonical basis of R3. Let a(x) be the symmetric
(transverse) gauge a(x) := 1

2 (−x2, x1, 0) which generates the magnetic field (0, 0, 1).
We consider that the background electric potential V is smooth, i.e. V ∈ C∞(R3) is a real-

valued function and periodic with respect to a (Bravais) lattice Υ with unit cell Ω. Without loss
of generality, we assume that Υ is the cubic lattice Z3, thus Ω is the unit cube centered at the
origin of coordinates.

When the box is finite i.e. 1 ≤ L < ∞, the dynamics of each particle is determined by a
Hamiltonian defined in L2(ΛL) with Dirichlet boundary conditions on ∂ΛL:

HL(ω) =
1

2

(
− i∇x − ωa(x)

)2
+ VL(x) (1.1)

where VL stands for the restriction of V to the box ΛL. Here ω := e
cB ∈ R denotes the cyclotron

frequency. The operator HL(ω) is self-adjoint on the domain D(HL(ω)
)
= H1

0(ΛL)∩H2(ΛL). It is
well known (see [37]) that HL(ω) is bounded from below and has compact resolvent. This implies
that its spectrum is purely discrete with an accumulation point at infinity. We denote the set of
eigenvalues (counting multiplicities and in increasing order) by {ej(ω)}j≥1.

When L = ∞ we denote by H∞(ω) the unique self-adjoint extension of the operator

1

2

(
− i∇x − ωa(x)

)2
+ V (x) (1.2)

initially defined on C∞
0 (R3). Then H∞(ω) is bounded from below and only has essential spectrum

(see e.g. [8]).
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Now let us define some quantum statistical quantities related to the quantum gas introduced
above. For the moment we use the grand canonical formalism. The finite volume pressure and
density of our quantum gas at inverse temperature β := (kBT )

−1 > 0 (kB stands for the Boltzmann
constant), at fugacity z := eβµ > 0 (µ ∈ R stands for the chemical potential) and at cyclotron
frequency ω ∈ R are given by (see e.g. [19]):

PL(β, z, ω) :=
1

β|ΛL|
TrL2(ΛL)

{
ln
(
1+ ze−βHL(ω)

)}
=

1

β|ΛL|

∞∑

j=1

ln
(
1 + ze−βej(ω)

)
(1.3)

ρL(β, z, ω) := βz
∂PL

∂z
(β, z, ω) =

1

|ΛL|

∞∑

j=1

ze−βej(ω)

1 + ze−βej(ω)
. (1.4)

As the semi-group e−βHL(ω) is trace class, the series in (1.3) and (1.4) are absolutely convergent.
Since the function R ∋ ω 7→ PL(β, z, ω) is smooth (see [7]), we can define the finite volume
orbital susceptibility as the second derivative of the pressure with respect to the intensity B of
the magnetic field at B = 0 (see e.g. [1]):

XGC
L (β, z) :=

(
e

c

)2
∂2PL

∂ω2
(β, z, 0). (1.5)

When ΛL fills the whole space, we proved in [39] that the thermodynamic limits of the three
grand canonical quantities defined above exist. By denoting P∞(β, z, ω) := limL→∞ PL(β, z, ω),
we proved moreover the following pointwise convergence:

ρ∞(β, z, ω) := βz
∂P∞
∂z

(β, z, ω) = lim
L→∞

βz
∂PL

∂z
(β, z, ω) (1.6)

XGC
∞ (β, z) :=

(
e

c

)2
∂2P∞
∂ω2

(β, z, 0) = lim
L→∞

(
e

c

)2
∂2PL

∂ω2
(β, z, 0) (1.7)

and the limit commutes with the first derivative (resp. the second derivative) of the grand canonical
pressure with respect to the fugacity z (resp. to the external magnetic field B).

Now assume that our fixed external parameter is the density of particles ρ0 > 0. We prefer to
see ρ∞ as a function of the chemical potential µ instead of the fugacity z; the density is a strictly
increasing function with respect to both µ and z. Denote by µ∞(β, ρ0) ∈ R the unique solution
of the equation:

ρ0 = ρ∞
(

β, eβµ∞(β,ρ0), 0
)

. (1.8)

The bulk orbital susceptibility at β > 0 and fixed density ρ0 > 0 defined from (1.7) is defined as:

X (β, ρ0) := XGC
∞

(

β, eβµ∞(β,ρ0)
)

. (1.9)

In fact one can also show that X (β, ρ0) = −
(
e
c

)2 ∂2f∞
∂ω2 (β, ρ0, 0) where f∞(β, ρ0, ω) is the thermo-

dynamic limit of the reduced free energy defined as the Legendre transform of the thermodynamic
limit of the pressure (see e.g.[38]). Note that for a perfect quantum gas and in the limit of low
temperatures, (1.9) leads to the so-called Landau diamagnetic susceptibility, see e.g. [1].

In order to formulate our main result, we need to introduce some more notation. In the case
in which ω = 0, the Floquet theory for periodic operators (see e.g. [10], [29] and section 3) allows
one to use the band structure of the spectrum of H∞(0). Denote by Ω∗ = 2πΩ the Brillouin zone
of the dual lattice Υ∗ ≡ 2πZ3.

If j ≥ 1, the jth Bloch band function is defined by Ej := [mink∈Ω∗ Ej(k),maxk∈Ω∗ Ej(k)]
where {Ej(k)}j≥1 is the set of eigenvalues (counting multiplicities and in increasing order) of the
fiber Hamiltonian h(k) := 1

2 (−i∇+ k)2 + V living in L2(T3) with T3 := R3/Z3 the 3-dimensional
torus. With this definition, the Bloch energies Ej(·) are continuous on the whole of Ω∗, but they
are differentiable only outside a zero Lebesgue measure subset of Ω∗ corresponding to cross-points.
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In the following we make the assumption that the Ej ’s are simple eigenvalues for k in a subset of
Ω∗ with full measure. Note that this assumption is not essential for our approach but it simplifies
the presentation, see Remark 3 below the Theorem 1.2.

The spectrum of H∞(0) is absolutely continuous and given (as a set of points) by σ(H∞(0)) =
⋃∞

j=1 Ej . Note that the sets Ej can overlap each other in many ways, and some of them can even
coincide even though they are images of increasingly ordered functions. The energy bands are
disjoint unions of Ej ’s. Moreover, if max Ej < min Ej+1 for some j ≥ 1 then we have a spectral
gap. Since the Bethe-Sommerfeld conjecture holds true under our conditions [23], the number of
spectral gaps is finite, if not zero.

It remains to introduce the integrated density of states of the operator H∞(0). Recall its
definition. For any E ∈ R, let NL(E) be the number of eigenvalues of HL(0) not greater than E.
The integrated density of states of H∞(0) is defined by the limit (see [17]):

n∞(E) := lim
L→∞

NL(E)

|ΛL|
= lim

L→∞

Tr
{
χ(−∞,E](HL(0))

}

|ΛL|
(1.10)

and n∞(·) is a positive continuous and non-decreasing function (see e.g. [10]). In this case one
can express n∞(E) with the help of the Bloch energies in the following way:

n∞(E) =
1

(2π)3

∑

j≥1

∫

Ω∗

χ[E0,E](Ej(k)) dk (1.11)

where χ[E0,E](·) is the characteristic function of the interval [E0, E]. Thus n∞ is clearly continuous
in E due to the continuity of the Bloch bands. Moreover, this function is piecewise constant when
E belongs to a spectral gap.

1.2 The statements of our main results

The first theorem is not directly related to the magnetic problem, and it deals with the rigorous
definition of the Fermi energy for Bloch electrons. Even though these results are part of the ’physics
folklore’, we have not found a serious mathematical treatment in the literature.

Theorem 1.1. Let ρ0 > 0 be fixed. If µ∞(β, ρ0) is the unique real solution of the equation
ρ∞

(
β, eβµ, 0

)
= ρ0 (see (1.8)), then the limit:

EF (ρ0) := lim
β→∞

µ∞(β, ρ0) (1.12)

exists and defines an increasing function of ρ0 called the Fermi energy. There can only occur two
cases:

SC (semiconductor/insulator/semimetal): Suppose that there exists some N ∈ N∗ such that
ρ0 = n∞(E) for all E ∈ [max EN ,min EN+1]. Then:

EF (ρ0) =
max EN +min EN+1

2
. (1.13)

M (metal): Suppose that there exists a unique solution EM of the equation n∞(EM ) = ρ0
which belongs to (min EN ,max EN ) for some (possibly not unique) N . Then :

EF (ρ0) = EM . (1.14)

Remark 1 . In other words, a semiconductor/semimetal either has its Fermi energy in the middle
of a non-trivial gap (this occurs if max EN < min EN+1), or where the two consecutive Bloch bands
touch each other closing the gap (this occurs if max EN = min EN+1). As for a metal, its Fermi
energy lies in the interior of a Bloch band.
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Remark 2 . According to the above result, EF is discontinuous at all values of ρ0 for which the
equation n∞(E) = ρ0 does not have a unique solution. Each open gap gives such a discontinuity.

Now here is our main result concerning the orbital susceptibility of a Bloch electrons gas at
fixed density and zero temperature:

Theorem 1.2. Denote by E0 := inf σ(H∞(0)).
(i). Assume that the Fermi energy is in the middle of a non-trivial gap (see (1.13)). Then

there exist 2N functions cj(· ), dj(· ), with 1 ≤ j ≤ N , defined on Ω∗ outside a set of Lebesgue
measure zero, such that the integrand in (1.15) can be extended by continuity to the whole of Ω∗

and:

XSC(ρ0) := lim
β→∞

X (β, ρ0) =

(
e

c

)2
1

2

1

(2π)3

∫

Ω∗

dk

N∑

j=1

{

cj(k) +
{
Ej(k)− EF (ρ0)

}
dj(k)

}

. (1.15)

(ii). Suppose that there exists a unique N ≥ 1 such that EF (ρ0) ∈ (min EN ,max EN). Assume
that the Fermi surface SF := {k ∈ Ω∗ : EN (k) = EF (ρ0)} is smooth and non-degenerate. Then
there exist 2N + 1 functions FN(·), cj(·), dj(·) with 1 ≤ j ≤ N , defined on Ω∗ outside a set
of Lebesgue measure zero, in such a way that they are all continuous on SF while the second
integrand in (1.16) can be extended by continuity to the whole of Ω∗:

XM(ρ0) := lim
β→∞

X (β, ρ0) = −
(
e

c

)2
1

12

1

(2π)3
(1.16)

{∫

SF

dσ(k)
∣
∣∇EN (k)

∣
∣

[
∂2EN (k)

∂k21

∂2EN (k)

∂k22
−
(
∂2EN (k)

∂k1∂k2

)2

− 3FN(k)

]

− 6

∫

Ω∗

dk

N∑

j=1

[

χ[E0,EF (ρ0)]

(
Ej(k)

)
cj(k) +

{
Ej(k)− EF (ρ0)

}
χ[E0,EF (ρ0)]

(
Ej(k)

)
dj(k)

]}

.

Here χ[E0,EF (ρ0)](· ) denotes the characteristic function of the interval E0 ≤ t ≤ EF (ρ0).
(iii). Let kF := (6π2ρ0)

1

3 be the Fermi wave vector. Then in the limit of small densities, (1.16)
gives the Landau-Peierls formula:

XM(ρ0) = − e2

24π2c2
(m∗

1m
∗
2m

∗
3)

1

3

m∗
1m

∗
2

kF + o(kF ); (1.17)

here
[

1
m∗

i

]

1≤i≤3
are the eigenvalues of the positive definite Hessian matrix {∂2

ijE1(0)}1≤i,j≤3.

Remark 1 . The functions cj(·) and dj(·) with 1 ≤ j ≤ N which appear in (1.15) are the same as
the ones in (1.16). All of them (as well as FN (·)) can be explicitely written down in terms of Bloch
energy functions and their associated eigenfunctions. One can notice in (1.16) the appearance of
an explicit term associated with the Nth Bloch energy function; it is only this term which will
generate the linear kF behavior in the Landau-Peierls formula.
Remark 2 . The functions cj(·) and dj(·) might have local singularities at a set of Lebesgue
measure zero where the Bloch bands might touch each other. But their combinations entering the
integrands above are always bounded because the individual singularities get canceled by the sum.
Remark 3 . The results in (i) and (ii) hold true even if some Bloch bands are degenerate on a
subset of full Lebesgue measure of Ω∗. But in this case the functions cj(·), dj(·) and FN (· ) cannot
be expressed in the same way as mentioned in Remark 1. Their expressions are more complicated
and require the use of the orthogonal projection corresponding to Ej(·), see the proof of Lemma
3.7 for further details.
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Remark 4 . When m∗
1 = m∗

2 = m∗
3 = m∗ holds in (iii), (1.17) is nothing but the usual Landau-

Peierls susceptibility formula:

XM(ρ0) ∼ − e2

24π2m∗c2
kF when kF → 0. (1.18)

Note that our expression is twice smaller than the one in [34] since we do not take into account
the degeneracy related to the spin of the Bloch electrons.
Remark 5 . The assumption V ∈ C∞(T3) can be relaxed to V ∈ Cr(T3) with r ≥ 23. The
smoothness of V plays an important role in the absolute convergence of the series defining X (β, ρ0)
in Theorem 3.1, before the zero-temperature limit; see [16] for a detailed discussion on sum rules
and local traces for periodic operators.
Remark 6 . The role of magnetic perturbation theory (see Section 3) is crucial when one wants
to write down a formula for X (β, ρ0) which contains no derivatives with respect to the quasi-
momentum k. Remember that the Bloch energies ordered in increasing order and their corre-
sponding eigenfunctions are not necessarily differentiable at crossing points.
Remark 7 . We do not treat the semi-metal case, in which the Fermi energy equals EF (ρ0) =
max EN = min EN+1 for some N ≥ 1 (see (1.13)). This remains as a challenging open problem.

1.3 The content of the paper

Let us briefly discuss the content of the rest of this paper:

• In Section 2 we thoroughly analyze the behavior of the chemical potential µ∞ when the
temperature goes to zero defining the Fermi energy. These results are important for our
main theorem.

• In Section 3 we give the most important technical result. Applying the magnetic perturbation
theory we arrive at a general formula for X (β, ρ0) which contains no derivatives with respect
to k. The strategy is somehow similar to the one used in [14] for the Faraday effect.

• In Section 4 we perform the zero temperature limit and separately analyze the situations in
which the Fermi energy is either in an open spectral gap or inside the spectrum. It contains
the proofs of Theorem 1.2 (i) and (ii).

• In Section 5 we obtain the Landau-Peierls formula by taking the low density limit. It contains
the proof of Theorem 1.2 (iii).

2 The Fermi energy

This section, which can be read independently of the rest of the paper, is only concerned with
the location of the Fermi energy when the intensity of the magnetic field is zero (i.e. ω = 0). In
particular, we prove Theorem 1.1. Although we assumed in the introduction that V ∈ C∞(T3),
all results of this section can be extended to the case V ∈ L∞(T3).

2.1 Some preparatory results

Let ξ 7→ f(β, µ; ξ) := ln
(
1 + eβ(µ−ξ)

)
be a holomorphic function on the domain {ξ ∈ C : ℑξ ∈

(−π/β, π/β)}. Let Γ the positively oriented simple contour included in the above domain defined
by:

Γ :=
{

ℜξ ∈ [δ,∞), ℑξ = ± π

2β

}

∪
{

ℜξ = δ, ℑξ ∈
[

− π

2β
,
π

2β

]}

, (2.1)

where δ is any real number smaller than E0 := inf σ(H∞(0)) ≤ inf σ(H∞(ω)). In the following we
use δ := E0 − 1.
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The thermodynamic limit of the grand-canonical density at β > 0, µ ∈ R and ω ≥ 0 is given
by (see e.g. [8]):

ρ∞(β, eβµ, ω) =
1

|Ω|
i

2π
TrL2(R3)

{

χΩ

∫

Γ

dξ fFD(β, µ; ξ)(H∞(ω)− ξ)−1

}

(2.2)

where fFD(β, µ; ξ) := −β−1∂ξf(β, µ; ξ) = (eβ(ξ−µ) + 1)−1 is the Fermi-Dirac distribution function
and χΩ denotes the characteristic function of Ω. We prove in [39] (even for singular potentials)
that ρ∞(β, ·, ω) can be analytically extended to the domain C \ (−∞,−eβE0(ω)].

Now assume that the intensity of the magnetic field is zero (ω = 0). The following proposition
(stated without proof since the result is well known), allows us to rewrite (2.2) only using the
Bloch energy functions k 7→ Ej(k) of H∞(0):

Proposition 2.1. Let β > 0 and µ ∈ R. Denote by Ω∗ the first Brillouin zone of the dual lattice
2πZ3. Then:

ρ∞(β, eβµ, 0) =
1

(2π)3

∞∑

j=1

∫

Ω∗

dk fFD(β, µ;Ej(k)). (2.3)

Note that another useful way to express the grand-canonical density at zero magnetic field
consists in bringing into play the integrated density of states (IDS) of the operator H∞(0) (see
(1.10) for its definition):

ρ∞(β, eβµ, 0) = −
∫ ∞

−∞
dλ

∂fFD

∂λ
(β, µ;λ)n∞(λ). (2.4)

When the density of particles ρ0 > 0 becomes the fixed parameter, the relation between the
fugacity and density can be inverted. This is possible since for all β > 0, the map ρ∞(β, ·, 0) is
strictly increasing on (0,∞) and defines a C∞-diffeomorphism of this interval onto itself. Then
there exists an unique z∞(β, ρ0) ∈ (0,∞) and therefore an unique µ∞(β, ρ0) ∈ R satisfying:

ρ∞(β, eβµ∞(β,ρ0), 0) = ρ0. (2.5)

We now are interested in the zero temperature limit. The following proposition (again stated
without proof) is a well known, straightforward consequence of the continuity of n∞(·):

Proposition 2.2. Let µ ≥ E0 := inf σ(H∞(0)) be fixed. We have the identity:

lim
β→∞

ρ∞(β, eβµ, 0) =
1

(2π)3

∞∑

j=1

∫

Ω∗

dkχ[E0,µ](Ej(k)) = n∞(µ), (2.6)

where χ[E0,µ](·) denotes the characteristic function of the interval [E0, µ].

We end this paragraph with another preparatory result concerning the behavior of n∞ near
the edges of a spectral gap. This result is contained in the following lemma:

Lemma 2.3. Let ρ0 > 0 be fixed. Assume that there exists N ≥ 1 such that n∞(E) = ρ0 for all E
satisfying max EN ≤ E ≤ min EN+1. We set aN := max EN and bN := min EN+1. Assume that the
gap is open, i.e. aN < bN . Then for δ > 0 sufficiently small, there exists a constant C = Cδ > 0
such that:

n∞(aN )− n∞(λ) ≥ C(aN − λ)3 whenever λ ∈ [aN − δ, aN ] (2.7)

and
n∞(λ)− n∞(bN ) ≥ C(λ − bN)3 whenever λ ∈ [bN , bN + δ]. (2.8)
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Proof . We only prove (2.7), since the proof of the other inequality (2.8) is similar. Since aN =
maxk∈Ω∗ EN (k), the maximum is attained in a (possibly not unique) point k0, i.e. aN = EN (k0).
This means that aN is a discrete eigenvalue of finite multiplicity 1 ≤ M ≤ N of the fiber operator
h(k0) =

1
2 (−i∇ + k0)

2 + V . In particular, aN is isolated from the rest of the spectrum since we
assumed that aN < bN ≤ EN+1(k0). Now when k slightly varies around k0, the eigenvalue aN
will split into at most M different eigenvalues, the largest of which being EN (k). Thus from the
second equality in (2.6) we obtain:

n∞(aN )− n∞(λ) ≥ 1

(2π)3
Vol{k ∈ Ω∗ : λ ≤ EN (k) ≤ aN}.

We now choose δ small enough such that

σ(h(k0)) ∩ [aN − δ, aN + δ] = {EN (k0)}.

We use analytic perturbation theory in order to control the location of the spectrum of h(k) when
|k − k0| is small (we assume without loss of generality that k0 lies in the interior of Ω∗). By
writing

h(k) = h(k0) + (k − k0) · (−i∇+ k0) + (k− k0)
2/2 =: h(k0) +W (k),

we see that we can find a constant C > 0 such that

‖W (k)(h(k0)− i)−1‖ ≤ C|k− k0|, |k− k0| ≤ 1.

Take a circle γ with center at aN and radius r = (aN − λ)/2 ≤ δ/2. For any z ∈ γ, by virtue of
the first resolvent equation:

(h(k0)− z)−1 = (h(k0)− i)−1 + (z − i)(h(k0)− i)−1(h(k0)− z)−1

and by using the estimate ‖(h(k0) − z)−1‖ = 2/(aN − λ), we can find another constant Cδ > 0
such that:

sup
z∈γ

‖W (k)(h(k0)− z)−1‖ ≤ Cδ
|k− k0|
(aN − λ)

, |k− k0| ≤ 1.

It turns out that if |k− k0|/(aN − λ) is smaller than some ǫ > 0, then

sup
z∈γ

‖W (k)(h(k0)− z)−1‖ ≤ ǫCδ whenever |k− k0| ≤ (aN − λ)ǫ.

Standard analytic perturbation theory insures that if ǫ is chosen small enough, h(k) will have
exactly M eigenvalues inside γ. Thus for all k satisfying |k− k0| ≤ ǫ(aN − λ), we have σ(h(k)) ∩
[aN − δ, aN ] ⊆ [(aN + λ)/2, aN ] ⊂ [λ, aN ]. In particular, λ < EN (k) ≤ aN for all such k’s. But
the ball in Ω∗ where |k− k0| ≤ (aN − λ)ǫ has a volume which goes like (aN − λ)3, and the proof
is finished.

�

2.2 Proof of Theorem 1.1

In this paragraph we prove the existence of the Fermi energy. We separately investigate the
semiconducting case and the metallic case.

2.2.1 The semiconducting case (SC)

We here consider the same situation as in Lemma 2.3 in which there exists N ≥ 1 such
that n∞(E) = ρ0 for all E satisfying max EN ≤ E ≤ min EN+1. We set aN := max EN and
bN := min EN+1. Let µ(β) := µ∞(β, ρ0) be the unique solution of the equation ρ∞(β, eβµ, 0) = ρ0.
We start with the following lemma:
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Lemma 2.4.
aN ≤ µ1 := lim inf

β→∞
µ(β) ≤ lim sup

β→∞
µ(β) =: µ2 ≤ bN . (2.9)

Proof . We will only prove the inequality aN ≤ µ1, since the proof of the other one (µ2 ≤ bN ) is
similar. Assume the contrary: µ1 < aN . Define ǫ := aN − µ1 > 0. Then there exists a sequence
{βn}n≥1 with βn → ∞ and an integer Mǫ ≥ 1 large enough such that:

lim
n→∞

µ(βn) = µ1 and µ(βn) ≤ aN − ǫ/2 < aN , ∀n ≥ Mǫ.

Since ρ∞(β, eβµ, 0) is an increasing function of µ, we have:

ρ0 = ρ∞(βn, e
βnµ(βn), 0) ≤ ρ∞(βn, e

βn(aN−ǫ/2), 0).

By letting n → ∞ in the above inequality, (2.6) implies:

ρ0 ≤ n∞(aN − ǫ/2) < n∞(aN ) = ρ0

where in the second inequality we used (2.7). We have arrived at a contradiction. �

Now if aN = bN , the proof of (1.13) is over. Thus we can assume that aN < bN , i.e. the gap
is open. We have the following lemma:

Lemma 2.5. Define cN = (aN + bN )/2. For any 0 < ǫ < (bN − aN)/2, there exists βǫ > 0 large
enough such that µ(β) ∈ [cN − ǫ, cN + ǫ] whenever β > βǫ.

Proof . We know that µ(β) exists and is unique, thus if we can construct such a solution in the
given interval, it means that this is the one. We use (2.4) in which we introduce µ(β) and arrive
at the following identities:

n∞(aN ) = ρ0 =

∫ ∞

−∞
dλ

∂fFD

∂λ
(β, µ(β);λ)n∞(λ) = −

∫ aN

−∞
dλ

∂fFD

∂λ
(β, µ(β);λ)n∞(λ)

− n∞(bN )fFD(β, µ(β); bN ) + n∞(aN )fFD(β, µ(β); aN )

−
∫ ∞

bN

dλ
∂fFD

∂λ
(β, µ(β);λ)n∞(λ),

where in the last term we used the fact that n∞(·) is constant on the interval [aN , bN ], and this
constant is nothing but ρ0. We can rewrite the above equation as:
∫ aN

−∞
dλ

∂fFD

∂λ
(β, µ(β);λ){n∞(λ)−n∞(aN )} =

∫ ∞

bN

dλ
∂fFD

∂λ
(β, µ(β);λ){n∞(bN )−n∞(λ)} (2.10)

where we used the fact that fFD(β, µ(β);−∞) = 1 and fFD(β, µ(β);λ) ≤ Ce−λβ for large λ.
In the left hand side of (2.10) we now introduce the explicit formula:

∂λfFD(β, µ(β);λ) = −β
eβ(λ−µ(β))

(eβ(λ−µ(β)) + 1)2
= −βeβ(aN−µ(β)) eβ(λ−aN )

(eβ(λ−µ(β)) + 1)2
,

while in the right hand side of (2.10) we use another expression:

∂λfFD(β, µ(β);λ) = −β
e−β(λ−µ(β))

(1 + e−β(λ−µ(β)))2
= −βe−β(bN−µ(β)) e−β(λ−bN )

(1 + e−β(λ−µ(β)))2
.

Then (2.10) can be rewritten as:

∫ aN

−∞
dλ

eβ(λ−aN )

(eβ(λ−µ(β)) + 1)2
{n∞(aN )− n∞(λ)}

= eβ{2µ(β)−(aN+bN )}
∫ ∞

bN

dλ
e−β(λ−bN )

(1 + e−β(λ−µ(β)))2
{n∞(λ) − n∞(bN )}, (2.11)
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or by taking the logarithm:

µ(β) = cN +
1

2β

{

ln

(∫ aN

−∞
dλ

eβ(λ−aN )

(eβ(λ−µ(β)) + 1)2
{n∞(aN )− n∞(λ)}

)

− ln

(∫ ∞

bN

dλ
e−β(λ−bN )

(1 + e−β(λ−µ(β)))2
{n∞(λ) − n∞(bN )}

)}

.

Let us define the smooth function f : [cN − ǫ, cN + ǫ] 7→ R given by:

f(x) := cN +
1

2β

{

ln

(∫ aN

−∞
dλ

eβ(λ−aN )

(eβ(λ−x) + 1)2
{n∞(aN )− n∞(λ)}

)

− ln

(∫ ∞

bN

dλ
e−β(λ−bN )

(1 + e−β(λ−x))2
{n∞(λ) − n∞(bN )}

)}

. (2.12)

We will prove that if β is large enough, then f invariates the interval [cN − ǫ, cN + ǫ], which is
already enough for the existence of a fixed point. This would also show that µ(β) must be in that
interval. But in fact one can prove more: f is a contraction for large enough β.

The idea is to find some good upper and lower bounds when β is large for the integrals under
the logarithms. We start by finding a lower bound in β for the first integral. Let δ > 0 sufficiently
small. Using (2.7) in the left hand side of (2.11) we get:

∫ aN

−∞
dλ

eβ(λ−aN )

(eβ(λ−x) + 1)2
{n∞(aN )− n∞(λ)} ≥ C

4

∫ aN

aN−δ

e−β(aN−λ)(aN − λ)3 (2.13)

where we used that x ≥ aN ≥ λ in order to get rid of the numerator. After a change of variables
and using some basic estimates one arrives at another constant C > 0 such that for β sufficiently
large:

∫ aN

−∞
dλ

eβ(λ−aN )

(eβ(λ−x) + 1)2
{n∞(aN )− n∞(λ)} ≥ C

β5
. (2.14)

By restricting the interval of integration to [bN , bN + δ] and by using (2.8), we obtain by the same
method a similar lower bound for the second integral under the logarithm. Moreover, using the
Weyl asymptotics which says that n∞(λ) ∼ λ

3

2 for large λ (see e.g. [27]), one can also get a
power-like upper bound in β for our two integrals.

We deduce from these estimates that there exists a constant Cǫ > 0 such that:

sup
x∈[cN−ǫ,cN+ǫ]

|f(x)− cN | ≤ Cǫ ln(β)

β
, β > 1.

Thus if β is large enough, f invariates the interval. Being continuous, it must have a fixed point.
Moreover, the derivative f ′(x) decays exponentially with β uniformly in x ∈ [cN − ǫ, cN + ǫ]. It
implies that if β is large enough, then ‖f ′‖∞ < 1, that is f is a contraction. �

2.2.2 The metallic case (M)

Consider the situation in which there exists a unique solution EM of the equation n∞(EM ) =
ρ0, and this solution lies in the interior of a Bloch band. In other words, there exists (a possibly
not unique) integer N ≥ 1 such that min EN < EM < max EN . We will use in the following that
the IDS n∞(·) is a strictly increasing function on the interval [min EN ,max EN ].

Let µ(β) := µ∞(β, ρ0) be the unique real solution of the equation ρ∞(β, eβµ(β), 0) = ρ0. Let
us show that :

EM ≤ lim inf
β→∞

µ(β) ≤ lim sup
β→∞

µ(β) ≤ EM , (2.15)

which would end the proof. We start with the first inequality.
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Assume ad-absurdum that µ1 := lim infβ→∞ µ(β) < EM . Then there exists ǫ > 0 and a
sequence {βn}n≥1 satisfying βn → ∞ such that:

lim
n→∞

µ(βn) = µ1, µ(βn) ≤ EM − ǫ, ∀n ≥ 1.

Since ρ∞(β, eβµ, 0) is increasing with µ, we have:

n∞(EM ) = ρ0 = lim
n→∞

ρ∞(βn, e
βnµ(βn), 0) ≤ lim

n→∞
ρ∞(βn, e

βn(EM−ǫ), 0) = n∞(EM − ǫ), (2.16)

where in the last equality we used (2.6). But the inequality n∞(EM ) ≤ n∞(EM − ǫ) is in
contradiction with the fact that n∞(·) is a strictly increasing function near EM . Thus EM ≤ µ1.

Now assume ad-absurdum that µ2 := lim supβ→∞ µ(β) > EM . Then there exists ǫ > 0 and a
sequence {βn}n≥1 satisfying βn → ∞ such that:

lim
n→∞

µ(βn) = µ2, EM + ǫ ≤ µ(βn), ∀n ≥ 1.

We again use that ρ∞(β, eβµ, 0) is increasing with µ and write:

n∞(EM + ǫ) = lim
n→∞

ρ∞(βn, e
βn(EM+ǫ), 0) ≤ lim

n→∞
ρ∞(βn, e

βnµ(βn), 0) = ρ0 = n∞(EM ), (2.17)

where in the first equality we again used (2.6). But the inequality n∞(EM + ǫ) ≤ n∞(EM ) is
also in contradiction with the fact that n∞(·) is a strictly increasing function near EM . Therefore
µ2 ≤ EM . �

3 The zero-field susceptibility at fixed density and positive

temperature

In this section we prove a general formula for the zero-field grand-canonical susceptibility of a
Bloch electrons gas at fixed density and positive temperature.

Here is the main result of this section:

Theorem 3.1. Let β > 0 and ρ0 > 0 be fixed. Let µ∞ = µ∞(β, ρ0) ∈ R the unique solution of
the equation ρ∞(β, eβµ, ω = 0) = ρ0. Then for each integer j1 ≥ 1 there exists four families of
functions cj1,l(· ), with l ∈ {0, 1, 2, 3}, defined on Ω∗ outside a set of Lebesgue measure zero, such
that the integrand below can be extended by continuity to the whole of Ω∗:

X (β, ρ0) = −
(
e

c

)2
1

2β

1

(2π)3

∞∑

j1=1

∫

Ω∗

dk

3∑

l=0

∂lf

∂ξl
(
β, µ∞;Ej1(k)

)
cj1,l(k), (3.1)

with the convention (∂0
ξ f)(β, µ∞;Ej1(k)) = f(β, µ∞;Ej1(k)) := ln(1 + eβ(µ∞−Ej1

(k))).

This formula is a necessary step in the proof of Theorem 1.2 (i) and (ii) (this is the aim of the
following section) when we will take the limit of zero temperature.

The special feature of this formula lies in the fact that each function cj1,l(·) can be only
expressed in terms of Bloch energy functions and their associated eigenfunctions. For each integer
j1 ≥ 1, the functions cj1,2(·) and cj1,3(·) are identified respectively in (3.28) and (3.27). As for the
functions cj1,l(·) with l ∈ {0, 1}, they can also be written down but their explicit expression is not
important for the proof of Theorem 1.2. Note as well that the above formula brings into play the
Fermi-Dirac distribution and its partial derivatives up to the second order. This will turn out to
be very important when we will take the limit β → ∞ in the following section.
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3.1 Starting the proof: a general formula from the magnetic perturba-
tion theory

We start by giving a useful formula for the thermodynamic limit of the grand-canonical sus-
ceptibility. Let β > 0 and z := eβµ ∈ (0,∞) the fixed external parameters. Let Γ be the positively
oriented contour defined in (2.1), going round the half-line [E0,∞), and included in the analiticity
domain of the map ξ 7→ f(β, z; ξ) = ln(1 + ze−βξ). Denote by R∞(ω, ξ) := (H∞(ω)− ξ)−1 for all
ξ ∈ ρ(H∞(ω)) and ω ∈ R. Taking into account the periodic structure of our system, it is proved
(see [7], Theorem 3.8) that the thermodynamic limit of the grand-canonical pressure of the Bloch
electron gas at any intensity of the magnetic field B is given by:

P∞(β, z, ω) :=
1

β|Ω|
i

2π
TrL2(R3)

{

χΩ

∫

Γ

dξ f(β, z; ξ)R∞(ω, ξ)

}

, (3.2)

where Ω is the unit cube centered at the origin of coordinates (χΩ denotes its characteristic
function). Although the integral kernel R∞(· , · ;ω, ξ) of the resolvent has a singularity on the
diagonal, the integration with respect to ξ in (3.2) provides us with a jointly continuous kernel on
R3×R3. One can see this by performing an integration by parts in (3.2) and using the fact that the
kernel of R2

∞(ω, ξ) is jointly continuous. Moreover, one can prove [4, 5, 6] that the thermodynamic
limit of the grand-canonical pressure is jointly smooth on (z, ω) ∈ (−eβE0,∞)× R.

Let ω ∈ R and ξ ∈ ρ(H∞(ω)). Introduce the bounded operators T∞,1(ω, ξ) and T∞,2(ω, ξ)
generated by the following integral kernels:

T∞,1(x,y;ω, ξ) := a(x − y) · (i∇x + ωa(x))R∞(x,y;ω, ξ) (3.3)

T∞,2(x,y;ω, ξ) :=
1

2
a2(x− y)R∞(x,y;ω, ξ), x 6= y, (3.4)

where a(·) stands for the usual symmetric gauge a(x) = 1
2e3 ∧ x = 1

2 (−x2, x1, 0). We introduce
the following operators :

W∞,1(β, µ, ω) :=
i

2π

∫

Γ

dξ f(β, µ; ξ)R∞(ω, ξ)T∞,1(ω, ξ)T∞,1(ω, ξ) (3.5)

W∞,2(β, µ, ω) :=
i

2π

∫

Γ

dξ f(β, µ; ξ)R∞(ω, ξ)T∞,2(ω, ξ) (3.6)

One can prove using the same techniques as in [15] that these operators are locally trace class and
have a jointly continuous kernel on R

3 × R
3. By a closely related method as the one in [4], [5], it

is proved in [39] that we can invert the thermodynamic limit with the partial derivatives w.r.t. ω
of the grand-canonical pressure. Then the bulk orbital susceptibility reads as:

XGC
∞ (β, eβµ, ω) :=

(
e

c

)2
∂2P∞
∂ω2

(β, eβµ, ω)

=

(
e

c

)2
2

β|Ω|
{

TrL2(R3)

{
χΩW∞,1(β, µ, ω)

}
− TrL2(R3)

{
χΩW∞,2(β, µ, ω)

}}

We mention that the above formula is obtained using the so-called ’gauge invariant magnetic
perturbation theory’ applied to the resolvent integral kernel (see e.g. [15] for further details)
which allows to control the linear growth of the magnetic vector potential.

The quantity which we are interested in is the orbital susceptibility at zero magnetic field and
at fixed density of particles ρ0. Note that the pressure is an even function of ω, thus its first order
derivative at ω = 0 is zero. This explains why the susceptibility is the relevant physical quantity
for the weak magnetic field regime.

The orbital susceptibility at zero magnetic field and fixed density ρ0 is given by (see also (1.8)):

X (β, ρ0) : = XGC
∞ (β, eβµ∞(β,ρ0), 0)

=

(
e

c

)2
2

β|Ω|
{

TrL2(R3)

{
χΩW∞,1(β, µ∞, 0)

}
− TrL2(R3)

{
χΩW∞,2(β, µ∞, 0)

}}

.
(3.7)
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The formula (3.7) constitutes the starting-point in obtaining (3.1). The next step consists in
rewriting the local traces appearing in (3.7) in a more convenient way:

Proposition 3.2. Let pα := −i∂α with α ∈ {1, 2, 3} be the cartesian components of the momentum
operator defined in L2(R3). Then we have:

TrL2(R3)

{
χΩW∞,1(β, µ∞, 0)

}
=

1

4

i

2π
TrL2(R3)

{

χΩ

∫

Γ

dξ f(β, µ∞; ξ)

[
R∞(0, ξ)p1R∞(0, ξ)p2R∞(0, ξ)

{
p2R∞(0, ξ)p1R∞(0, ξ)− p1R∞(0, ξ)p2R∞(0, ξ)

}
+

+R∞(0, ξ)p2R∞(0, ξ)p1R∞(0, ξ)
{
p1R∞(0, ξ)p2R∞(0, ξ)− p2R∞(0, ξ)p1R∞(0, ξ)

}]
}

(3.8)

and

TrL2(R3)

{
χΩW∞,2(β, µ∞, 0)

}
= −1

4

i

2π
TrL2(R3)

{

χΩ

∫

Γ

dξ f(β, µ∞; ξ)

R∞(0, ξ)R∞(0, ξ)
[
p2R∞(0, ξ)p2R∞(0, ξ) + p1R∞(0, ξ)p1R∞(0, ξ)−R∞(0, ξ)

]
}

. (3.9)

Proof . We begin with the justification of (3.9). By rewriting (3.4) as:

T∞,2(x,y; 0, ξ) =
1

8
{e3 ∧ (x− y)} · {e3 ∧ (x − y)}R∞(x,y; 0, ξ)

=
1

8

[
(x2 − y2)

2 + (x1 − y1)
2
]
R∞(x,y; 0, ξ),

from (3.6) it follows:

W∞,2(x,x;β, µ, 0) (3.10)

=
1

8

∫

Γ

dξ f(β, µ; ξ)

∫

R3

dzR∞(x, z; 0, ξ)
[
(z2 − x2)

2 + (z1 − x1)
2
]
R∞(z,x; 0, ξ), ∀x ∈ R

3.

Let l ∈ {1, 2}. Denote by X the multiplication operator with x. Then for all z 6= x we can write:

(zl − xl)R∞(z,x; 0, ξ) =
[
X · el, R∞(0, ξ)

]
(z,x) =

{
R∞(0, ξ)

[
H∞(0),X · el

]
R∞(0, ξ)

}
(z,x).

We know that [H∞(0),X · el] = −ipl. Thus:

(zl − xl)R∞(z,x; 0, ξ) = −i
{
R∞(0, ξ)plR∞(0, ξ)

}
(z,x). (3.11)

Using standard commutation rules, we deduce from (3.11) that for l ∈ {1, 2} and for all z 6= x:

(zl − xl)
2R∞(z,x; 0, ξ) = −

{
2R∞(0, ξ)plR∞(0, ξ)plR∞(0, ξ)−R∞(0, ξ)R∞(0, ξ)

}
(z,x). (3.12)

It remains to put (3.12) in (3.10), and we get (3.9).
Let us now prove now (3.8). Since the divergence of a is zero, then for x 6= y we have:

T∞,1(x,y; 0, ξ) =
i

2
∇x · {e3 ∧ (x− y)}R∞(x,y; 0, ξ)

= i∇x ·
[

− (x2 − y2)

2
e1 +

(x1 − y1)

2
e2

]

R∞(x,y; 0, ξ).

From (3.5) it follows that for all x ∈ R3:

W∞,1(x,x;β, µ, 0) =
1

4

∫

Γ

dξ f(β, µ; ξ)

∫

R3

dz1

∫

R3

dz2 R∞(x, z1; 0, ξ)

{
(i∇z1 · e1)[−(z1,2 − z2,2)R∞(0, ξ)(z1, z2)] + (i∇z1 · e2)[(z1,1 − z2,1)R∞(0, ξ)(z1, z2)]

}
·

·
{
(i∇z2 · e1)[−(z2,2 − x2)R∞(0, ξ)(z2,x)] + (i∇z2 · e2)[(z2,1 − x1)R∞(0, ξ)(z2,x)]

}
.
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Then by using (3.11), we get (3.8) from the following identity:

∀x ∈ R
3, W∞,1(x,x;β, µ, 0) =

1

4

∫

Γ

dξ f(β, µ; ξ)

∫

R3

dz1

∫

R3

dz2 R∞(x, z1; 0, ξ)

{
ip1

(
R∞(0, ξ)p2R∞(0, ξ)

)
(z1, z2)− ip2

(
R∞(0, ξ)p1R∞(0, ξ)

)
(z1, z2)

}

{
ip1

(
R∞(0, ξ)p2R∞(0, ξ)

)
(z2,x)− ip2

(
R∞(0, ξ)p1R∞(0, ξ)

)
(z2,x)

}
.

�

3.2 Using the Bloch decomposition

We know that (see e.g. [10]) H∞(0) can be seen as a direct integral
∫ ⊕
Ω∗ dkh(k) where the fiber

Hamiltonians h(k) acting in L2(T3) are given by :

h(k) =
1

2
(−i∇+ k)2 + V. (3.13)

Recall that h(k) is essentially self-adjoint in C∞(T3); the domain of its closure is the Sobolev
space H2(T3). For each k ∈ Ω∗, h(k) has purely discrete spectrum. We have already denoted by
{Ej(k)}j≥1 the set of eigenvalues counting multiplicities and in increasing order. The correspond-
ing eigenfunctions {uj(· ;k)}j≥1 form a complete orthonormal system in L2(T3) and satisfy:

h(k)uj(·;k) = Ej(k)uj(·;k).

The eigenfunctions uj’s are defined up to an arbitrary phase depending on k. These phases cannot
be always chosen to be continuous at crossing points, and even less differentiable. For the following
let us introduce another notation. Let α ∈ {1, 2, 3}, and let i, j ≥ 1 be any natural numbers. Then
for all k ∈ Ω∗ we define:

π̂i,j(α;k) :=

∫

Ω

dxui(x;k)[(pα + kα)uj(x;k)] = 〈ui(· ;k), (pα + kα)uj(· ;k)〉. (3.14)

Note that due to the phases presence in the eigenfunctions uj ’s, we cannot be sure that the π̂i,j ’s
are continuous/differentiable at crossing points. But all these ’bad’ phase factors will disappear
when we take the traces (see (3.20) and (3.23) below).

We now can write the local traces of Proposition 3.2 in the following way:

Proposition 3.3. Let β > 0 and ρ0 > 0 be fixed. Let µ∞ = µ∞(β, ρ0) ∈ R be the unique solution
of the equation ρ∞(β, eβµ, 0) = ρ0. Then both quantities (3.8) and (3.9) can be rewritten as:

TrL2(R3)

{
χΩW∞,1(β, µ∞, 0)

}
= −1

4

1

|Ω∗|

∞∑

j1,...,j4=1

∫

Ω∗

dk Cj1,j2,j3,j4(k)

1

2iπ

∫

Γ

dξ
f(β, µ∞; ξ)

(
Ej1(k)− ξ

)2(
Ej2(k) − ξ

)(
Ej3(k) − ξ

)(
Ej4(k) − ξ

) , (3.15)

and

TrL2(R3)

{
χΩW∞,2(β, µ∞, 0)

}
= −1

4

1

|Ω∗|

{ ∞∑

j1=1

∫

Ω∗

dk
1

2iπ

∫

Γ

dξ
f(β, µ∞; ξ)

(
Ej1(k) − ξ

)3+

−
∞∑

j1,j2=1

∫

Ω∗

dk Cj1,j2(k)
1

2iπ

∫

Γ

dξ
f(β, µ∞; ξ)

(
Ej1 (k)− ξ

)3(
Ej2(k)− ξ

)

}

, (3.16)

where the functions Ω∗ ∋ k 7→ Cj1,j2,j3,j4(k) and Ω∗ ∋ k 7→ Cj1,j2(k) are defined by:

Cj1,j2,j3,j4(k) :=
{
π̂j1,j2(1;k)π̂j2,j3(2;k)− π̂j1,j2(2;k)π̂j2,j3(1;k)

}

×
{
π̂j3,j4(2;k)π̂j4,j1(1;k)− π̂j3,j4(1;k)π̂j4,j1(2;k)

}
(3.17)

15



and

Cj1,j2(k) := π̂j1,j2(1;k)π̂j2,j1(1;k)+ π̂j1,j2(2;k)π̂j2,j1(2;k) =
∣
∣π̂j1,j2(1;k)

∣
∣
2
+
∣
∣π̂j1,j2(2;k)

∣
∣
2
. (3.18)

We do not give more details since this result is just a straightforward application of the following
rather non-trivial technical lemma (recently proved in [16]):

Lemma 3.4. Let β > 0 and µ ∈ R be fixed. For n,m ∈ N with m,n ≥ 1, consider the local trace
given by:

J (m)
α1,...,αn

:= TrL2(R3)

{

χΩ

∫

Γ

dξ f(β, µ; ξ)(H∞(0)− ξ)−mpα1
(H∞(0)− ξ)−1 · · · pαn

(H∞(0)− ξ)−1

}

Then under the assumption that V ∈ C∞(T3) we have:

J (m)
α1,...,αn

=
1

|Ω∗|
∑

j1,...,jn≥1

∫

Ω∗

dk π̂j1,j2(α1;k) . . . π̂jn,j1(αn;k)

∫

Γ

dξ
f(β, µ; ξ)

(
Ej1(k) − ξ

)m+1(
Ej2(k) − ξ

)
· · ·

(
Ejn(k) − ξ

) . (3.19)

where all the above series are absolutely convergent and π̂i,j(α;k) is defined by (3.14).

3.3 Applying the residue calculus

Consider the expression of the susceptibility at fixed density (3.7) in which the local traces are
now given by (3.15) and (3.16). Remark that these quantities now are written in a convenient way
in order to apply the residue theorem. Denote the integrands appearing in (3.15) and (3.16) by:

gj1,j2(β, µ∞; ξ) :=
f(β, µ∞; ξ)

(
Ej1 (k)− ξ

)3(
Ej2(k)− ξ

) , j1, j2 ∈ N
∗

hj1,j2,j3,j4(β, µ∞; ξ) :=
f(β, µ∞; ξ)

(
Ej1 (k)− ξ

)2(
Ej2(k)− ξ

)(
Ej3(k)− ξ

)(
Ej4(k)− ξ

) , j1, j2, j3, j4 ∈ N
∗.

Note that gj1,j2(β, µ∞; · ) can have first order, third order, or even fourth order poles (in the case
when j1 = j2). In the same way, hj1,j2,j3,j4(β, µ∞; · ) can have poles from the first order up to
at most fifth order (in the case when j1 = j2 = j3 = j4). Hence we expect that the integrals of
hj1,j2,j3,j4(β, µ∞; · ) in (3.15) (resp. of gj1,j2(β, µ∞; · ) in (3.16)) to make appear partial derivatives
of f(β, µ∞; · ) with order at most 4 (resp. with order at most 3). But we will see below that the
factor multiplying (∂4

ξ f)(β, µ∞; · ) is identically zero.
Getting back to the susceptibility formula in (3.7) and by virtue of the previous remarks, we

expect to obtain an expansion of the orbital susceptibility of the type (3.1). The next two results
identify the functions cj1,l(· ) coming from (3.15) and (3.16):

Lemma 3.5. The quantity defined by (3.15) can be rewritten as:

TrL2(R3)

{
χΩW∞,1(β, µ∞)

}
= −1

4

1

|Ω∗|

∞∑

j1=1

∫

Ω∗

dk

3∑

l=0

∂lf

∂ξl
(
β, µ∞;Ej1(k)

)
aj1,l(k) (3.20)

where for all j1 ∈ N∗ and k ∈ Ω∗, the functions aj1,3(·) and aj1,2(·) are given by:

aj1,3(k) :=
1

3!

{
∣
∣π̂j1,j1(1;k)

∣
∣
2

∞∑

j2=1
j2 6=j1

∣
∣π̂j1,j2(2;k)

∣
∣
2

Ej2(k) − Ej1(k)
+
∣
∣π̂j1,j1(2;k)

∣
∣
2

∞∑

j2=1
j2 6=j1

∣
∣π̂j1,j2(1;k)

∣
∣
2

Ej2(k) − Ej1(k)

− π̂j1,j1(1;k)π̂j1,j1(2;k)

∞∑

j2=1
j2 6=j1

2ℜ
(
π̂j1,j2(2;k)π̂j2,j1(1;k)

)

Ej2 (k)− Ej1 (k)

}

(3.21)
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and

aj1,2(k) := − 1

2!

{ ∞∑

j2=1
j2 6=j1

∞∑

j3=1
j3 6=j1

Cj1,j1,j2,j3(k) + Cj1,j2,j1,j3(k) + Cj1,j2,j3,j1(k)
(
Ej2(k) − Ej1(k)

)(
Ej3(k) − Ej1(k)

)

+

∞∑

j2=1
j2 6=j1

Cj2,j1,j1,j1(k)− Cj1,j1,j2,j1(k)
(
Ej2(k)− Ej1 (k)

)2

}

. (3.22)

Note that it is possible to identify in (3.20) all the functions aj1,l(·) for j1 ≥ 1 and l ∈ {1, 0}
since such a result is based only on identities provided by the residue theorem. However, the
number of terms is large and we will not need their explicit expressions in order to prove our
theorem.

Now we treat the next term.

Lemma 3.6. The quantity defined by (3.16) can be rewritten as:

TrL2(R3)

{
χΩW∞,2(β, µ∞)

}
=

1

4

1

|Ω∗|

∞∑

j1=1

∫

Ω∗

dk

3∑

l=0

∂lf

∂ξl
(
β, µ∞;Ej1(k)

)
bj1,l(k) (3.23)

where for all integers j1 ≥ 1 and all k ∈ Ω∗ we have:

bj1,3(k) :=
1

6

{∣
∣π̂j1,j1(1;k)

∣
∣
2
+

∣
∣π̂j1,j1(2;k)

∣
∣
2}

, (3.24)

bj1,2(k) := −1

2

∞∑

j2=1
j2 6=j1

∣
∣π̂j1,j2(1;k)

∣
∣
2
+
∣
∣π̂j1,j2(2;k)

∣
∣
2

Ej2(k) − Ej1(k)
+

1

2
, (3.25)

bj1,s(k) := −(2− s)

∞∑

j2=1
j2 6=j1

∣
∣π̂j1,j2(1;k)

∣
∣
2
+
∣
∣π̂j1,j2(2;k)

∣
∣
2

(
Ej2(k) − Ej1(k)

)3−s , s ∈ {0, 1}.

Thus our Lemmas 3.5 and 3.6 provide an expansion of the type announced in (3.1), where the
coefficients are given by:

cj1,l(k) := aj1,l(k) + bj1,l(k), l ∈ {0, 1, 2, 3}. (3.26)

In particular, for all integer j1 ≥ 1 and for all k ∈ Ω∗, the functions cj1,3(· ) and cj1,2(· ) are
respectively given by:

cj1,3(k) :=
1

3!

{

|π̂j1,j1(1;k)|2
(

1 +

∞∑

j2=1
j2 6=j1

|π̂j1,j2(2;k)|2
Ej2(k) − Ej1(k)

)

+

+ |π̂j1,j1(2;k)|2
(

1 +

∞∑

j2=1
j2 6=j1

|π̂j1,j2(1;k)|2
Ej2(k)− Ej1 (k)

)

+

− π̂j1,j1(1;k)π̂j1,j1(2;k)

∞∑

j2=1
j2 6=j1

2ℜ
(
π̂j1,j2(2;k)π̂j2,j1(1;k)

)

Ej2 (k)− Ej1 (k)

}

(3.27)
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and

cj1,2(k) := −1

2

{ ∞∑

j2=1
j2 6=j1

|π̂j1,j2(1;k)|2 + |π̂j1,j2(2;k)|2
Ej2(k) − Ej1(k)

− 1 +
∞∑

j2=1
j2 6=j1

Cj2,j1,j1,j1(k)− Cj1,j1,j2,j1(k)
(Ej2(k) − Ej1(k))

2
+

+
∞∑

j2=1
j2 6=j1

∞∑

j3=1
j3 6=j1

Cj1,j1,j2,j3(k) + Cj1,j2,j1,j3(k) + Cj1,j2,j3,j1(k)
(Ej2 (k)− Ej1 (k))(Ej3 (k) − Ej1(k))

}

, (3.28)

where for all integers j1, j2, j3, j4 ∈ N
∗, Ω∗ ∋ k 7→ Cj1,j2,j3,j4(k) is defined in (3.17).

In order to conclude the proof of Theorem 3.1, it remains to use this last result (its proof is in
the appendix of this section):

Lemma 3.7. For all integers j1 ≥ 1 and l ∈ {0, 1, 2, 3}, the maps Ω∗ ∋ k 7→ aj1,l(k) and
Ω∗ ∋ k 7→ bj1,l(k) are bounded and continuous on any compact subset of Ω∗ where Ej1 is isolated
from the rest of the spectrum.

Thus for all integers j1 ≥ 1 and k ∈ Ω∗, the maps cj1,l(· ) appearing in (3.1) might be singular
on a set with zero Lebesgue measure where Ej1 can touch the neighboring bands. However, the
whole integrand in (3.1) is bounded and continuous on the whole Ω∗ because it comes from two
complex integrals ((3.15) and (3.16)) which do not have local singularities in k.

3.4 Appendix - Proofs of the intermediate results

Here we prove Lemmas 3.5, 3.6, and 3.7.
Proof of Lemma 3.5. Let Ω∗ ∋ k 7→ Cj1,j2,j3,j4(k) be the complex-valued function appearing in
(3.15):

Cj1,j2,j3,j4(k) :=
{
π̂j1,j2(1;k)π̂j2,j3(2;k)− π̂j1,j2(2;k)π̂j2,j3(1;k)

}

×
{
π̂j3,j4(2;k)π̂j4,j1(1;k)− π̂j3,j4(1;k)π̂j4,j1(2;k)

}
. (3.29)

Note that this function is identically zero for the following combinations of subscripts:

j1 = j2 = j3 = j4, j1 = j2 = j3 6= j4, j1 = j3 = j4 6= j2. (3.30)

Therefore the expansion of (3.15) consists of partial derivatives of f(β, µ∞; · ) of order at most equal
to three. On the other hand, since the functions Cj1,j1,j1,j4(· ) and Cj1,j2,j1,j1(· ) are identically equal
to zero (see (3.30)), the quadruple summation in (3.15) is reduced to :

∞∑

j1,...,j4=1

Cj1,j2,j3,j4(k)
(

1

2iπ

)∫

Γ

dξ
f(β, µ∞; ξ)

(
Ej1 (k)− ξ

)2(
Ej2 (k)− ξ

)(
Ej3 (k)− ξ

)(
Ej4 (k)− ξ

)

=

∞∑

j1=1

∞∑

j3=1
j3 6=j1

Cj1,j1,j3,j1(k)
(

1

2iπ

)∫

Γ

dξ
f(β, µ∞; ξ)

(
Ej1(k) − ξ

)4(
Ej3 (k)− ξ

)

+

∞∑

j1=1

∞∑

j2=1
j2 6=j1

Cj1,j2,j2,j2(k)
(

1

2iπ

)∫

Γ

dξ
f(β, µ∞; ξ)

(
Ej1(k) − ξ

)2(
Ej2(k) − ξ

)3

+

∞∑

j1,...,j4=1
︸ ︷︷ ︸

at most 2 equal
subscripts

Cj1,j2,j3,j4(k)
(

1

2iπ

)∫

Γ

dξ
f(β, µ∞; ξ)

(
Ej1(k) − ξ

)2(
Ej2(k) − ξ

)(
Ej3(k) − ξ

)(
Ej4(k) − ξ

) .

(3.31)
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By applying the residue theorem in the first term of the right hand side of (3.31) we get:

∞∑

j3=1
j3 6=j1

Cj1,j1,j3,j1(k)
(

1

2iπ

)∫

Γ

dξ
f(β, µ∞; ξ)

(
Ej1(k)− ξ

)4(
Ej3(k) − ξ

) =
∞∑

j3=1
j3 6=j1

Cj1,j1,j3,j1(k)

{
1

3!

1

Ej3(k) − Ej1(k)

∂3f

∂ξ3
(
β, µ∞;Ej1(k)

)
+

3

3!

1
(
Ej3(k) − Ej1(k)

)2

∂2f

∂ξ2
(
β, µ∞;Ej1(k)

)
+

+ others terms involving
∂lf

∂ξl
(β, µ∞; ·), with l ≤ 1

}

. (3.32)

The function Cj1,j1,j3,j1(· ) appearing in front of ∂3f
∂ξ3

(
β, µ∞;Ej1(k)

)
in (3.32) corresponds to aj1,3(· )

since:
∀k ∈ Ω∗, Cj1,j1,j3,j1(k) =

∣
∣π̂j1,j1(1;k)π̂j1,j3(2;k)− π̂j1,j1(2;k)π̂j1,j3(1;k)

∣
∣
2
.

Note that the function Cj1,j1,j3,j1(·) contributes to the term aj1,2(·), too.
By applying once again the residue theorem in the second term of the right hand side of (3.31)

we obtain:

∞∑

j2=1
j2 6=j1

Cj1,j2,j2,j2(k)
(

1

2iπ

)∫

Γ

dξ
f(β, µ∞; ξ)

(
Ej1(k)− ξ

)2(
Ej3(k) − ξ

)3

=

∞∑

j2=1
j2 6=j1

Cj1,j2,j2,j2(k)
{

− 1

2!

1
(
Ej1 (k)− Ej2(k)

)2

∂2f

∂ξ2
(
β, µ∞;Ej2 (k)

)

+ others terms involving
∂lf

∂ξl
(β, µ∞; ·), with l ≤ 1

}

. (3.33)

The function Cj1,j2,j2,j2(· ) appearing in front of ∂2f
∂ξ2

(
β, µ∞;Ej2(k)

)
contributes to aj1,2(· ).

It remains to isolate in (3.31) (where at most two subscripts are equal) all combinations which
provide a second order derivative of f(β, µ∞; · ). These combinations are:

j1 = j2 6= j3, j4; j1 = j3 6= j2, j4; j1 = j4 6= j2, j3.

Finally, we once again apply the residue theorem and gathering all terms proportional with
∂2f
∂ξ2 (β, µ∞; · ). The proof is over. �

Proof of Lemma 3.6. By separating the cases j1 = j2 and j1 6= j2, the double summation in
the right hand side of (3.16) reads as:

∞∑

j1=1

∞∑

j2=1

Cj1,j2(k)
(

1

2iπ

)∫

Γ

dξ
f(β, µ∞; ξ)

(
Ej1 (k)− ξ

)3(
Ej2(k)− ξ

)

=

∞∑

j1=1

Cj1,j1(k)
(

1

2iπ

)∫

Γ

dξ
f(β, µ∞; ξ)

(
Ej1(k) − ξ

)4

+

∞∑

j1=1

∞∑

j2=1
j2 6=j1

Cj1,j2(k)
(

1

2iπ

)∫

Γ

dξ
f(β, µ∞; ξ)

(
Ej1 (k)(k)− ξ

)3(
Ej2(k) − ξ

) . (3.34)

By using the residue theorem in the first term of the r.h.s. of (3.34) :

(
1

2iπ

)∫

Γ

dξ
f(β, µ∞; ξ)

(
Ej1 (k)− ξ

)4 =
1

3!

∂3f

∂ξ3
(
β, µ∞;Ej1(k)

)
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This is only the one term which provides a third-order partial derivative of f(β, µ∞; · ). The rest
of the proof is just plain computation using the residue theorem. We do not give further details.
�

Proof of Lemma 3.7. Let pα := −i∂α be the α component of the momentum operator with
periodic boundary conditions in L2(Ω), α ∈ {1, 2, 3}. Now assume that Ej1(k) is isolated and
non-degenerate if k belongs to some compact K ⊂ Ω∗. We have to investigate integrals of the
type

TrL2(Ω)

∫

Γ

dξ f(β, µ∞; ξ)(h(k) − ξ)−1pα1
(h(k) − ξ)−1 · · · pα4

(h(k) − ξ)−1. (3.35)

Let k0 ∈ K, and let Γ1 be a simple, positively oriented path surrounding Ej1 (k0) but no other
eigenvalue of h(k0). If |k− k0| is small enough, Γ1 will still only contain Ej1 (k). The projection
Π(k) corresponding to Ej1(k) is given by a Riesz integral. We have:

Π(k) =
i

2π

∫

Γ1

dz (h(k) − z)−1, (3.36)

and is continuous at k0 in the trace norm topology. Moreover,

Π(k)(h(k) − ξ)−1 =
1

Ej1(k)− ξ
Π(k), (1−Π(k))(h(k) − ξ)−1 =

1

2πi

∫

Γ1

dz
1

z − ξ
(h(k) − z)−1.

(3.37)

Clearly, Π(k)(h(k)− ξ)−1 is analytic in ξ in the exterior of Γ1. We can decompose the integral on
Γ in (3.35) as a sum of three integrals, one of which being on a simple contour Γ2 around Ej1 (k0),
completely surrounded by Γ1. The other two integrals will never have Ej1(k) as a singularity, so
they cannot contribute to the formula of aj1,l(k). On the other hand, in the integral on Γ2 we can
replace the resolvents with the decomposition in (3.37) and use the fact that (1−Π(k))(h(k)−ξ)−1

is analytic if ξ lies inside Γ2. Now one can apply the Cauchy residue formula. For example, we
can compute the integral in which we have Π(k) at the extremities, and (1−Π(k)) in the interior;
in that case Ej1 = Ej1 (k) will be a double pole:

TrL2(Ω)

∫

Γ2

dξ f(ξ)Π(k)(h(k) − ξ)−1pα1
(h(k) − ξ)−1(1−Π(k)) · · · pα4

(h(k) − ξ)−1Π(k)

= 2πi

{

(∂ξf)(Ej1 (k))TrL2(Ω)

{
Π(k)pα1

(h(k) − Ej1)
−1(1−Π(k)) · · · pα4

Π(k)
}
+ (3.38)

+ f(Ej1 (k))
d

dξ
TrL2(Ω)

{
Π(k)pα1

(h(k)− ξ)−1(1−Π(k)) · · · (h(k) − ξ)−1(1−Π(k))pα4

}

ξ=Ej1
(k)

}

.

Thus one contribution to aj1,1(k) will be:

TrL2(Ω)

{
Π(k)pα1

(h(k) − Ej1)
−1(1−Π(k)) · · · pα4

Π(k)
}
.

This expression does not use eigenvectors, only resolvents and projectors. Since Ej1 is continuous
at k0, the map

k 7→ (1−Π(k))(h(k) − Ej1(k))
−1 =

1

2πi

∫

Γ1

dz
1

z − Ej1(k)
(h(k) − z)−1

is operator norm continuous at k0, and the map k 7→ Π(k) is continuous in the trace norm. By
using standard perturbation theory (see e.g. [25]), the same holds for the maps:

k 7→ (1−Π(k))(h(k) − Ej1(k))
−1pαl

and k 7→ pαl
(1−Π(k))(h(k) − Ej1 (k))

−1pαk
.

Thus the trace defines a continuous function; all other coefficients can be treated in a similar way.
�
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4 The zero-field susceptibility at fixed density and zero

temperature

In this section, we separately investigate the semiconducting and metallic cases from the ex-
pansion (3.1). In particular, we prove Theorem 1.2 (i) and (ii).

4.1 The semiconducting case (SC)- Proof of Theorem 1.2 (i)

By using that fFD(β, µ; ξ) = −β−1∂ξf(β, µ; ξ), (3.1) can be rewritten as:

X (β, ρ0) =

(
e

c

)2
1

2

1

(2π)3

∞∑

j1=1

∫

Ω∗

dk

{ 2∑

l=0

∂lfFD

∂ξl
(
β, µ∞;Ej1(k)

)
cj1,1+l(k) −

1

β
f
(
β, µ∞;Ej1(k)

)
cj1,0(k)

}

. (4.1)

From (4.1), the proof of Theorem 1.2 (i) is based on two main ingredients. The first one is that
for any fixed µ ≥ E0 we have the following pointwise convergences:

lim
β→∞

1

β
f(β, µ; ξ) = (µ− ξ)χ[E0,µ](ξ), lim

β→∞
fFD(β, µ; ξ) = χ[E0,µ](ξ), ∀ ξ ∈ [E0,∞) \ {µ},

(4.2)
while in the distributional sense:

lim
β→∞

∂fFD

∂ξ
(β, µ; ξ) = −δ(ξ − µ), lim

β→∞

∂2fFD

∂ξ2
(β, µ; ξ) = −∂ξδ(ξ − µ). (4.3)

The second ingredient is related to the decay of the derivatives of the Fermi-Dirac distribution:
for all d > 0 and for all j ∈ N∗, there exists a constant Cj,d > 0 such that

sup
|ξ−µ|≥d>0

∣
∣
∣
∣

∂jfFD

∂ξj
(β, µ; ξ)

∣
∣
∣
∣
≤ Cj,de

−β|ξ−µ|
2 . (4.4)

Now assume that we are in the semiconducting case with a non-trivial gap, that is there
exists N ∈ N∗ such that limβ→∞ µ∞(β, ρ0) = (max EN + min EN+1)/2 = EF (ρ0) and max EN <
min EN+1. Since the Fermi energy lies inside a gap, all terms containing derivatives of the Fermi-
Dirac distribution will converge to zero in the limit β → ∞. Here (4.4) plays a double important
role: first, it makes the series in j1 convergent, and second, it provides an exponential decay to
zero. Then by taking into account (4.2), we immediately get (1.15) from (4.1). �

4.2 The metallic case (M)- Proof of Theorem 1.2 (ii)

Now we are interested in the metallic case. The limit β → ∞ is not so simple as in the previous
case, because the Fermi energy lies in the spectrum. The starting point is the same formula (3.1),
but we have to modify it by getting rid of the third order partial derivatives of f in order to make
appear a Landau-Peierls type contribution. However, this operation needs the already announced
additional assumption of non-degeneracy (which will provide regularity in k) in a neighborhood
of the Fermi surface:

Assumption 4.1. We assume that there exists a unique N ∈ N∗ such that limβ→∞ µ∞(β, ρ0) =
EF (ρ0) ∈ (min EN ,max EN ), which means that the Fermi energy lies inside the N th Bloch band
EN . We also assume that the Fermi surface defined by SF := {k ∈ Ω∗ : EN (k) = EF (ρ0)} is
smooth and non-degenerate.
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Recall that EN (k) is supposed to be non degenerate outside a (possibly empty) zero Lebesgue
measure set of k-points. Our assumption leads to the following consequence:

dist
{
EF (ρ0),∪N−1

j=1 Ej
}
= d1 > 0, dist

{
EF (ρ0),∪∞

j=N+1Ej
}
= d2 > 0. (4.5)

Note that the minimum of the lowest Bloch band E1 is always simple. If the density ρ0 is small
enough then Assumption 4.1 is automatically satisfied since the Bloch energy function k 7→ E1(k)
is non-degenerate in a neighborhood of k = 0 (see e.g. [28]).

In fact, the non-degeneracy assumption is indispensable for to use of the regular perturbation
theory in order to express the functions defined by (3.24), (3.25) and (3.21) (only in the case where
j1 = N) with the help of the partial derivatives of EN (·) with respect to the ki-variables, for k in
a neighborhood of the Fermi surface:

∂EN (k)

∂ki
= π̂N,N(i;k), i ∈ {1, 2, 3}, (4.6)

∂2EN (k)

∂k2i
= 1 + 2

∞∑

j=1
j 6=N

∣
∣π̂j,N (i;k)

∣
∣
2

EN (k)− Ej(k)
, i ∈ {1, 2, 3}, (4.7)

∂2EN (k)

∂k1∂k2
=

∞∑

j=1
j 6=N

2ℜ
{
π̂j,N (1;k)π̂N,j(2;k)

}

EN (k) − Ej(k)
=

∂2EN (k)

∂k2∂k1
. (4.8)

Such identities have been studied in [16]. Note that the above series are absolutely convergent if
the potential V is smooth enough ([16]).

Now using Assumption 4.1, we can group the coefficients corresponding to the third and second
order derivatives of f appearing in (3.1). This operation allows us to isolate a Landau-Peierls type
contribution (the proof can be found in the appendix of this section):

Proposition 4.2. Assume for simplicity that EN is a simple band. Let Ω∗ ∋ k 7→ cN,2(k) and
Ω∗ ∋ k 7→ cN,3(k) the functions respectively defined by (3.28) and (3.27) with j1 = N . Then:

∫

Ω∗

dk
3∑

l=2

∂lf

∂ξl
(
β, µ∞;EN (k)

)
cN,l(k)

=

∫

Ω∗

dk
∂2f

∂ξ2
(
β, µ∞;EN (k)

)
{

1

3!

∂2EN (k)

∂k21

∂2EN (k)

∂k22
− 1

3!

(
∂2EN (k)

∂k1∂k2

)2

+ aN,2(k)

}

, (4.9)

where Ω∗ ∋ k 7→ aj1,2(k) are the functions defined in (3.22).

From (3.1) and Proposition 4.2 we get an expansion for the orbital susceptibility at fixed
density ρ0 > 0 and inverse of temperature β > 0:

Proposition 4.3. Assume for simplicity that EN is a simple band. For every j1 ∈ N∗ there
exist four families of functions cj1,l(·) with l ∈ {0, 1, 2, 3}, defined on Ω∗ outside a set of Lebesgue
measure zero, such that the second integrand below is bounded and continuous on Ω∗:

X (β, ρ0) = −
(
e

c

)2
1

12β

1

(2π)3
·

{∫

Ω∗

dk
∂2f

∂ξ2
(
β, µ∞;EN (k)

)
[
∂2EN (k)

∂k21

∂2EN (k)

∂k22
−
(
∂2EN (k)

∂k1∂k2

)2

− 3FN(k)

]

+ 6

∫

Ω∗

dk

[ ∞∑

j1=1
j1 6=N

3∑

l=2

∂lf

∂ξl
(
β, µ∞;Ej1(k)

)
cj1,l(k) +

∞∑

j1=1

1∑

l=0

∂lf

∂ξl
(
β, µ∞;Ej1(k)

)
cj1,l(k)

]}

, (4.10)
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where by convention (∂0
ξ f)(β, µ∞; ·) := f(β, µ∞; ·) and:

FN (k) := −2aN,2(k) =

∞∑

j2=1
j2 6=N

∞∑

j3=1
j3 6=N

CN,N,j2,j3(k) + CN,j2,N,j3(k) + CN,j2,j3,N (k)
(
Ej2 (k)− EN (k)

)(
Ej3 (k)− EN (k)

)

+

∞∑

j2=1
j2 6=N

Cj2,N,N,N(k) − CN,N,j2,N (k)
(
Ej2(k) − EN (k)

)2 . (4.11)

Note that we can use identities provided by the regular perturbation theory in order to express
the functions cj1,l (as well as FN ) appearing in (4.10) in terms of derivatives of Ej and uj w.r.t.
the k-variable. But this formulation will only hold true outside a set of k-points of Lebesgue
measure zero, while the formulation involving π̂i,j ’s is more general, physically relevant, providing
us with bounded and continuous coefficients on Ω∗ (see Lemma 3.7). Finally keep in mind that
the main goal is the Landau-Peierls formula, and it will turn out that only the factor multiplying
the second partial derivative of f will contribute to it.

In order to complete the proof of Theorem 1.2 (ii), it remains to take the limit when β → ∞
in (4.10). Since the Fermi energy lies inside the band EN and it is isolated from all other bands,
then using (4.3) and (4.4) we have:

lim
β→∞

1

β

∫

Ω∗

dk

∞∑

j=1
j 6=N

3∑

l=2

∂lf

∂ξl
(β, µ∞(β, ρ0);Ej(k))cj,l(k) = 0

and

lim
β→∞

− 1

β

∫

Ω∗

dk
∂2f

∂ξ2
(β, µ∞;EN (k))

{
∂2EN (k)

∂k21

∂2EN (k)

∂k22
−
(
∂2EN (k)

∂k1∂k2

)2

− 3FN(k)

}

= −
∫

SF

dσ(k)

|∇EN (k)|

{
∂2EN (k)

∂k21

∂2EN (k)

∂k22
−
(
∂2EN (k)

∂k1∂k2

)2

− 3FN(k)

}

where SF denotes the Fermi surface. Using these two identities together with (4.2) in (4.10), we
obtain (1.16).

4.3 Appendix - Proof of Proposition 4.2

Using (3.26) we get:

∫

Ω∗

dk

3∑

l=2

∂lf

∂ξl
(
β, µ∞;EN (k)

)
cN,l(k) =

∫

Ω∗

dk
∂2f

∂ξ2
(
β, µ∞;EN (k)

)
aN,2(k)

+

∫

Ω∗

dk

[ 3∑

l=2

∂lf

∂ξl
(
β, µ∞;EN (k)

)
bN,l(k) +

∂3f

∂ξ3
(
β, µ∞;EN (k)

)
aN,3(k)

]

.

Using (4.6) and (4.7), the functions bN,l(·), l ∈ {2, 3}, can be rewritten as:

bN,3(k) =
1

3!

{(
∂EN (k)

∂k1

)2

+

(
∂EN (k)

∂k2

)2}

,

bN,2(k) = − 1

2!

{

− 1

2

(
∂2EN (k)

∂k21
− 1

)

− 1

2

(
∂2EN (k)

∂k22
− 1

)

− 1

}

=
1

2!

1

2

{
∂2EN (k)

∂k21
+

∂2EN (k)

∂k22

}

.
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Since EN (· ) ∈ C2(R3/(2πZ3)), a simple integration by parts gives us:

∀ i ∈ {1, 2},
∫ π

−π

dki
∂EN (k)

∂ki

∂f3

∂ξ3
(
β, µ∞;EN (k)

)∂EN (k)

∂ki

= −
∫ π

−π

dki
∂f2

∂ξ2
(
β, µ∞;EN (k)

)∂2EN (k)

∂k2i
(4.12)

whence:
∫

Ω∗

dk
∂3f

∂ξ3
(
β, µ∞;EN (k)

)
bN,3(k) = − 1

3!

∫

Ω∗

dk
∂2f

∂ξ2
(
β, µ∞;EN (k)

)
{
∂2EN (k)

∂k21
+

∂2EN (k)

∂k22

}

and:

∫

Ω∗

dk

3∑

l=2

∂lf

∂ξl
(
β, µ∞;EN (k)

)
bN,l(k) =

1

3!

1

2

∫

Ω∗

dk
∂2f

∂ξ2
(
β, µ∞;EN (k)

)
{
∂2EN (k)

∂k21
+

∂2EN (k)

∂k22

}

(4.13)
On the other hand, using (4.6), (4.7) and (4.8), the function aN,3(· ) can be rewritten as :

aN,3(k) =
1

3!

{(
∂EN (k)

∂k1

)2
1

2

(

1− ∂2EN (k)

∂k22

)

+

(
∂EN (k)

∂k2

)2
1

2

(

1− ∂2EN (k)

∂k21

)

−
(
∂EN (k)

∂k1

)(
∂EN (k)

∂k2

)(

− ∂2EN (k)

∂k1∂k2

)}

. (4.14)

Note that by a simple integration by parts:

∀ i 6= j ∈ {1, 2},
∫ π

−π

dkj
∂EN (k)

∂kj

∂3f

∂ξ3
(
β, µ∞;EN (k)

)∂EN (k)

∂kj

∂2EN (k)

∂k2i
(4.15)

= −
∫ π

−π

dkj
∂2f

∂ξ2
(
β, µ∞;EN (k)

) ∂

∂kj

[
∂EN (k)

∂kj

∂2EN (k)

∂k2i

]

= −
∫ π

−π

dkj
∂2f

∂ξ2
(
β, µ∞;EN (k)

)
{
∂2EN (k)

∂k2j

∂2EN (k)

∂k2i
+

∂EN (k)

∂kj

∂

∂kj

∂2EN (k)

∂k2i

}

= −
∫ π

−π

dkj
∂2f

∂ξ2
(
β, µ∞;EN (k)

)
{
∂2EN (k)

∂k2j

∂2EN (k)

∂k2i
+

∂EN (k)

∂kj

∂

∂ki

∂2EN (k)

∂kj∂ki

}

.

By virtue of (4.14), using (4.15) and (4.12), we get:

∫

Ω∗

dk
∂3f

∂ξ3
(
β, µ∞;EN (k)

)
aN,3(k) =

1

3!

1

2

∫

Ω∗

dk
∂2f

∂ξ2
(
β, µ∞;EN (k)

)
{

2
∂2EN (k)

∂k21

∂2EN (k)

∂k22

+
∂EN (k)

∂k1

∂

∂k2

∂2EN (k)

∂k1∂k2
+

∂EN (k)

∂k2

∂

∂k1

∂2EN (k)

∂k2∂k1
− ∂2EN (k)

∂k21
− ∂2EN (k)

∂k22

}

+
1

3!

∫

Ω∗

dk
∂3f

∂ξ3
(
β, µ∞;EN (k)

)∂EN (k)

∂k1

∂EN (k)

∂k2

∂2EN (k)

∂k1∂k2
. (4.16)

Finally, by a last integration by parts:

∀ i 6= j ∈ {1, 2},
∫ π

−π

dkj
∂EN (k)

∂kj

∂2f

∂ξ2
(
β, µ∞;EN (k)

) ∂

∂ki

∂2EN (k)

∂kj∂ki

= −
∫ π

−π

dkj
∂

∂ki

[
∂EN (k)

∂kj

∂2f

∂ξ2
(
β, µ∞;EN (k)

)
]
∂2EN (k)

∂kj∂ki

= −
∫ π

−π

dkj

{
∂2EN (k)

∂ki∂kj

∂2f

∂ξ2
(
β, µ∞;EN (k)

)
+

∂EN (k)

∂kj

∂EN (k)

∂ki

∂3f

∂ξ3
(
β, µ∞;EN (k)

)
}
∂2EN (k)

∂kj∂ki
.
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Then (4.16) is reduced to:

∫

Ω∗

dk
∂3f

∂ξ3
(
β, µ∞;EN (k)

)
aN,3(k) =

1

3!

1

2

∫

Ω∗

dk
∂2f

∂ξ2
(
β, µ∞;EN (k)

)

{

2
∂2EN (k)

∂k21

∂2EN (k)

∂k22
− 2

(
∂2EN (k)

∂k1∂k2

)2

− ∂2EN (k)

∂k21
− ∂2EN (k)

∂k22

}

. (4.17)

By adding (4.13) to (4.17) we get :

∫

Ω∗

dk

[ 3∑

l=2

∂lf

∂ξl
(
β, µ∞;EN (k)

)
bN,l(k) +

∂3f

∂ξ3
(
β, µ∞;EN (k)

)
aN,3(k)

]

=
1

3!

∫

Ω∗

dk
∂2f

∂ξ2
(
β, µ∞;EN (k)

)
{
∂2EN (k)

∂k21

∂2EN (k)

∂k22
−
(
∂2EN (k)

∂k1∂k2

)2}

and we are done. Note that the proof does not work if EN can touch other bands because we loose
regularity. In that case the integration by parts have to be done across a tubular neighborhood
of the Fermi surface SF , the price being the apparition of some extra terms. These terms will
though disappear in the limit β → ∞ because they will decay exponentially with β. �

5 The Landau-Peierls formula

The aim of this section is to establish an asymptotic expansion of (1.16) in the limit of small
densities (ρ0 → 0). Here we prove the expansion (1.17), of which (1.18) is a particular case which
has allready been suggested by T. Kjeldaas and W. Kohn in 1957 [26].

5.1 Proof of Theorem 1.2 (iii)

Let us recall that E0 = mink∈Ω∗ E1(k) = E1(0), and E1(k) is non degenerate near the origin
with a positive definite Hessian matrix (see e.g. [28]). The same reference insures the existence of
the following quadratic expansion of E1(k) for k → 0:

E1(k) = E0 +
1

2!
kT

[

∂2E1

∂ki∂kj
(0)

]

1≤i,j≤3

k+O
(
k4

)
when k → 0

As the Hessian matrix is symmetric, then up to a change of coordinates this quadratic expansion
can be rewritten as :

E1(k) = E0 +
1

2

3∑

i=1

k2i
m∗

i

+O
(
k4

)
when k → 0 (5.1)

where
[

1
m∗

i

]

1≤i≤3
are the eigenvalues of the inverse effective-mass tensor.

Consider the assumption of weak density ρ0 ∈ (0, 1). In this case the Fermi energy defined by
(1.12) lies in the interval (E0,maxk∈Ω∗ E1(k)). When ρ0 → 0 it follows that EF (ρ0) converges to
E0. The k-subset of Ω∗ where E0 ≤ E1(k) ≤ EF (ρ0) is therefore only localized near the origin.

From (5.1) we get the following asymptotic expansion of EF (ρ0)−E0 when ρ0 → 0 (the proof
is given in the appendix of this section):

Proposition 5.1. When ρ0 → 0, we have the following expansion:

EF (ρ0)− E0 = sρ
2

3

0 +O
(
ρ

4

3

0

)
, s :=

(6π2)
2

3

2

(
1

m∗
1m

∗
2m

∗
3

) 1

3

. (5.2)

In the particular case when m∗
i = m∗ > 0 for i ∈ {1, 2, 3} and by setting kF := (6π2ρ0)

1

3 :

EF (ρ0)− E0 =
1

2m∗ k
2
F +O

(
k4F

)
. (5.3)
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Before proving Theorem 1.2 (iii), we need one more technical result (its proof is also in the
appendix of this section):

Lemma 5.2. Assume that E1(k) remains non-degenerate on the ball Bǫ0(0) := {k ∈ Ω∗ : |k| ≤
ǫ0} with ǫ0 > 0 small enough. Consider any continuous function F : Bǫ0(0) → C. Then when
ρ0 → 0 we have the following asymptotic expansions:

∫

SF

dσ(k)
∣
∣∇E1(k)

∣
∣
F (k) = Aρ

1

3

0 + o
(
ρ

1

3

0

)
with A :=

√

m∗
1m

∗
2m

∗
34
√
2πF (0)

√
s (5.4)

and

∫

Ω∗

dkχ[E0,EF (ρ0)]

(
E1(k)

)
F (k) = Bρ0 + o

(
ρ0
)

with B :=
√

m∗
1m

∗
2m

∗
3

8
√
2π

3
F (0)s

3

2 , (5.5)

where s is the coefficient defined in (5.2).

Now we are ready to prove the Landau-Peierls formula in (1.17). For this, consider the formula
(1.16). Remember that E1(·) is non-degenerate and analytic in a neighborhood of the origin. Let
us concentrate ourselves on the first term appearing in (1.16):

−
(
e

c

)2
1

12

1

(2π)3

∫

SF

dσ(k)
∣
∣∇E1(k)

∣
∣

{
∂2E1(k)

∂k21

∂2E1(k)

∂k22
−
(
∂2E1(k)

∂k1∂k2

)2

− 3F1(k)

}

, (5.6)

since only this term will have a nonzero contribution to the leading term in (1.17). The other
term will go to zero like ρ0; this can be shown using (5.5), (5.1), and the fact that the coefficients
c1,1 and c1,0 are continuous near 0 (see Lemma 3.7).

Now consider the following function:

F (k) :=
∂2E1(k)

∂k21

∂2E1(k)

∂k22
−
(
∂2E1(k)

∂k1∂k2

)2

− 3F1(k).

By taking into account that F1(· ) = −2a1,2(· ) (see (4.11)) and by virtue of Lemma 3.7, F (·) is
continuous near the origin. According to (5.4), the only thing we need to do is to compute F (0).
The determinant of the Hessian matrix gives after a short computation:

∂2E1(k)

∂k21

∂2E1(k)

∂k22
−
(
∂2E1(k)

∂k1∂k2

)2

=
1

m∗
1m

∗
2

+O
(
k2

)
when k → 0. (5.7)

Thus we can write:

XM(ρ0) = −
(
e

c

)2
1

24π2

(
m∗

1m
∗
2m

∗
3

) 1

3

[
1

m∗
1m

∗
2

− 3F1(0)

]

(6π)
1

3 ρ
1

3

0 + o
(
ρ

1

3

0

)
when ρ0 → 0.

The only thing we have left to do, is proving that F1(0) = 0. The definition of F1 can be found
in (4.11), while the coefficients entering in its definition are defined in (3.29).

Let us start by showing that for all integers j2, j3 ≥ 2 we have:

C1,1,j2,j3(0) = C1,j2,j3,1(0) = Cj2,1,1,1(0) = C1,1,j2,1(0) = 0.

Indeed, in the expression of each of these functions it is possible to identify a factor of the type
π̂1,1(α;0), α ∈ {1, 2} which are nothing but partial derivatives of E1 at the origin, thus they must
be zero. It follows that:

F1(0) =
∞∑

j2=2

∞∑

j3=2

C1,j2,1,j3(0)
(
Ej2(0)− E1(0)

)(
Ej3(0)− E1(0)

) . (5.8)
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Since:

C1,j2,1,j3(0) = π̂1,j2(1;0)π̂j2,1(2;0)π̂1,j3(2;0)π̂j3,1(1;0)+ π̂1,j2(2;0)π̂j2,1(1;0)π̂1,j3(1;0)π̂j3,1(2;0)

− π̂1,j2 (2;0)π̂j2,1(1;0)π̂1,j3(2;0)π̂j3,1(1;0)− π̂1,j2 (1;0)π̂j2,1(2;0)π̂1,j3(1;0)π̂j3,1(2;0),

then (5.8) can be rewritten as :

F1(0) = 2

∣
∣
∣
∣

∞∑

j=2

π̂1,j(2;0)π̂j,1(1;0)

Ej(0)− E1(0)

∣
∣
∣
∣

2

−
( ∞∑

j=2

π̂1,j(2;0)π̂j,1(1;0)

Ej(0)− E1(0)

)2

−
( ∞∑

j=2

π̂1,j(2;0)π̂j,1(1;0)

Ej(0)− E1(0)

)2

.

(5.9)
But for k = 0 we may choose all our eigenfunctions ul(· ;0) to be real. It means that for all
integers j ≥ 2 and α ∈ {1, 2}, the matrix elements π̂1,j(α;0) are purely imaginary. As a result,
the sums in (5.9) are real numbers and cancel each other, thus F1(0) = 0. �

5.2 Appendix - Proofs of intermediate results

Here we prove Proposition 5.1 and Lemma 5.2.
Proof of Proposition 5.1. In (5.1) use the change of variables k̃i :=

ki√
m∗

i

, with i ∈ {1, 2, 3}.
This gives:

Ẽ1(k̃) := E1(
√

m∗
i k̃) = E0 +

1

2

{
k̃21 + k̃22 + k̃23

}
+O(k̃4).

In spherical coordinates:

Ẽ1(r, θ, φ) = E0 +
1

2
r2 +O(r4) when r → 0. (5.10)

We would like to express r as a function of Ẽ1, θ and φ. Clearly, the equation Ẽ1

(
r(θ, φ), θ, φ

)
=

E0+∆ has a unique solution r(θ, φ,∆) if ∆ > 0 is small enough. This solution obeys a fixed point
equation of the type:

r(θ, φ,∆) =
√
2∆

[
1 +O

(
r2(θ, φ,∆)

)]
(5.11)

which leads to the estimate:

r(θ, φ,∆) =
√
2∆

[
1 +O

(
∆
)]

when ∆ → 0. (5.12)

We can finally determine ∆ (thus the Fermi energy) as a function ρ0. By setting Ω̃∗ := Ω∗√
m∗

1
m∗

2
m∗

3

,

it follows from (2.6):

ρ0 =

√
m∗

1m
∗
2m

∗
3

(2π)3

∫

Ω̃∗

dk̃χ[E0,E0+∆]

(
Ẽ1(k̃)

)
.

Using spherical coordinates:

ρ0 =

√
m∗

1m
∗
2m

∗
3

(2π)3

∫ 2π

0

dφ

∫ π

0

dθ sin θ

{∫
√
2∆

0

dr r2 +

∫ r(θ,φ,∆)

√
2∆

dr r2
}

.

This is the equation we have to solve in order to find ∆ as a function of ρ0. Then by standard
fixed point arguments we arrive at the estimate (5.2) and we are done. �

Proof of Lemma 5.2. We only prove (5.4), the other estimate being similar. As before, we prefer
the new variables k̃i =

ki√
m∗

i

where i ∈ {1, 2, 3}. Denote by Ẽ1(k̃) = E1(k), by F̃ (k̃) = F (k) and

with Ω̃∗ := Ω∗√
m∗

1
m∗

2
m∗

3

. Then we can formally write:

∫

SF

dσ(k)
∣
∣∇E1(k)

∣
∣
F (k) =

∫

Ω∗

dk δ
(
EF (ρ0)− E1(k)

)
F (k)

=
√

m∗
1m

∗
2m

∗
3

∫

Ω̃∗

dk̃ δ
(
EF (ρ0)− Ẽ1(k̃)

)
F̃ (k̃)

=
√

m∗
1m

∗
2m

∗
3

∫

{ k̃∈Ω̃∗ s.t. Ẽ1(k̃)=EF (ρ0) }

dσ(k̃)

|∇
k̃
Ẽ1(k̃)|

F̃ (k̃). (5.13)
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The quadratic expansion (5.1) implies |∇
k̃
Ẽ1(k̃)| = |k̃|

[
1 +O

(
k̃2

)]
when k̃ → 0. Then:

∫

SF

dσ(k)
∣
∣∇E1(k)

∣
∣
F (k) =

√

m∗
1m

∗
2m

∗
3F (0)

∫

{ k̃∈Ω̃∗ s.t. Ẽ1(k̃)=EF (ρ0) }
dσ(k̃) |k̃|−1

[
1 + o(1)

]
. (5.14)

Using spherical coordinates, let us denote as before by r(θ, φ, ρ0) the unique root of the equation
Ẽ1

(
r(θ, φ, ρ0), θ, φ

)
= EF (ρ0). Then (5.14) can be rewritten as:

∫

SF

dσ(k)
∣
∣∇E1(k)

∣
∣
F (k) =

√

m∗
1m

∗
2m

∗
3F (0)

∫ 2π

0

dφ

∫ π

0

dθ sin(θ) r(θ, φ, ρ0)
[
1 + o(1)

]
.

Now by setting ∆ := EF (ρ0)− E0 and by using (5.12) when ∆ → 0:

∫

SF

dσ(k)
∣
∣∇E1(k)

∣
∣
F (k) =

√

m∗
1m

∗
2m

∗
3 4

√
2πF (0)

√
∆
[
1 + o(1)

]
.

Finally, we use (5.2) and the proof is over.
�
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