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ON CERTAIN CONSTRUCTIONS OF p-ADIC FAMILIES OF
SIEGEL MODULAR FORMS OF EVEN GENUS

HISA-AKI KAWAMURA

To Professor Hiroshi Saito in memoriam

ABSTRACT. Suppose that p > 5 is a rational prime. Starting from
a well-known p-adic analytic family of ordinary elliptic cusp forms of
level p due to Hida, we construct a certain p-adic analytic family of
holomorphic Siegel cusp forms of arbitrary even genus and of level p
associated with Hida’s p-adic analytic family via the Duke-Imamoglu
lifting provided by Ikeda. Moreover, we also give a similar results for
the Siegel Eisenstein series of even genus with trivial Nebentypus.
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1. INTRODUCTION

For a given rational prime p > 5, the study of p-adic analytic families
of modular forms was initiated by Kummer and Eisenstein for the Eisen-
stein series on the elliptic modular group SLg(Z), and afterwards was de-
veloped from various points of view by Iwasawa, Kubota-Leopoldt, Serre,
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Swinnerton-Dyer, Katz, Deligne-Ribet, Hida, Wiles and others. In par-
ticular, Hida [H3] and Wiles [Wi], among others, introduced the notion
of A-adic modular forms, where A = Z,[[1 + pZ,]] is the Iwasawa alge-
bra, as formal g-expansions with coefficients in a finite flat A-algebra R
whose specialization at each arithmetic point in the A-adic analytic space
X(R) = Homeont (R, @p) gives rise to the g-expansion of an elliptic modular
form. In this context, a p-adic analytic family of modular forms can be
regarded as an infinite collection of modular forms parametrized by vary-
ing weights whose components are interpolated by a A-adic modular form
simultaneously.

In fact, a specific use of Hida’s theory allows us to construct a A-adic
modular form such that every specialization gives rise to a p-ordinary elliptic
Hecke eigenform (i.e. a simultaneous eigenfunction of all Hecke operators
such that the eigenvalue of the Atkin-Lehner U,-operator is a p-adic unit),
which is called the universal ordinary p-stabilized newform of tame level 1:

Fact 1.1 (cf. §3.1 below). Let Ay = Zp[[Z)]] be the completed group ring on
Z,y over Zp, and w = wy the Teichmiiller character. There exist a A;-algebra
R finite flat over A and a formal g-expansion f,.q € R°"4[[¢]] such that for
each arithmetic point P € X(R°) of weight 2k > 2 with trivial Nebentypus
(i.e. P lies over the @; -valued continuous character y — y?*w(y)?* on Zy),
the specialization f,.q(P) coincides with an ordinary p-stabilized newform
fa,. of weight 2k on the congruence subgroup I'g(p) C SLa(Z) of level p with
trivial Nebentypus. Namely, there exists a p-ordinary normalized cuspidal
Hecke eigenform for, = > o7 am(for)g™ of weight 2k on SLy(Z) such that

far(2) = fan(2) = Bp(far) far(p2)

for all z € 9 := {z € C|Im(z) > 0}, and f;, possesses the Up-eigenvalue
ap( for), where oy (far) and By ( fax) denote the unit and non-unit p-adic roots
of the equation

(1) X%~ ap(fo)X +p* 1 =0,

respectively.

In this setting, we pick an integer kg > 6 as small as possible to have an
arithmetic point Py € X(R°9) of weight 2kq with trivial Nebentypus cor-
responding to an actual modular form fy.4(Py) = f;ko, and fix an analytic
neighborhood $4y of Py in X(R°™Y) on which every coefficient of f,,q can be
regarded as a p-adic analytic function. Then, by varying the weights 2k
of arithmetic points P € iy with trivial Nebentypus, we obtain an ordi-
nary p-adic analytic family {f5,} parametrized by weights 2k > 2ky with
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2k = 2kg (mod (p — 1)p™~1) for some sufficiently large integer m > 1. Here-
inafter, we refer to it as the Hida family of level p.

On the other hand, as an affirmative answer to the Duke-Imamoglu con-
jecture concerning on a generalization of the Saito-Kurokawa lifting towards
higher genus, Tkeda [I1] established the following:

Fact 1.2 (cf. §2.1 below). For each integer n > 1, let f be a normalized
cuspidal Hecke eigenform of weight 2k on SLo(Z) with £ = n (mod 2). Then
there exists a non-zero cuspidal Hecke eigenform Lift(Q")( f) of weight k +n
on the Siegel modular group Spy,,(Z) C GLyy,(Z) of genus 2n such that the
standard L-function L(s, Lift®™(f), st) is taken of the form

2n
L(s, Lift®™(f), st) = ¢(s) [[ L(s + k +n =1, f),
i=1

where ((s) and L(s, f) denote Riemann’s zeta function and Hecke’s L-
function associated with f, respectively.

When n = 1, Lift(2)( f) coincides with the Saito-Kurokawa lifting of f,
whose existence was firstly conjectured by Saito and Kurokawa [Ku], and
afterwards was shown by Maafl [M], Andrianov [An] and Zagier [Z]. In
accordance with the tradition, we refer to Lift*™ (f) as the Duke-Imamoglu
lifting of f throughout the present article. We should mention that such
particular objects obtained by means of the lifting process from lower genus
are, of course, not “genuine” Siegel cusp forms of higher genus in the strict
sense. Indeed, the above functoriality equation yields that the associated

Satake parameter (¢o(p), ¥1(p), - ,¥an(p)) € (@;)%H at p is taken as

pnk—n(n+1)/2 if i =0,

Yi(p) = ap(flpFT if1<i<n,
Bp(f)p~F+m ifn+1 <i < 2n,

uniquely up to the action of the Weyl group Wa, ~ Gy, x {£1}?", where
(ap(f), Bp(f)) denotes the ordered pair of the roots of the same equation as
(1) with the inequality of p-adic valuations vy,(a,(f)) < vp(Bp(f)). There-
fore the famous Ramanujan-Petersson conjecture for f implies the fact that
Lift(zn)( f) generates a non-tempered cuspidal automorphic representations
of the group GSpy,(Aqg) of symplectic similitudes, where Ag denotes the
ring of adeles of Q. However, it has also been observed that some significant
properties of Lift(2")( f) can be derived from corresponding properties of f.
For instance, as will be explained more precisely in the sequel, the Fourier
expansion of Lift(2")( f) can be written explicitly in terms of those of f and
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a cuspidal Hecke eigenform of half-integral weight corresponding to f via
the Shimura correspondence.

Now, let us explain our results. Let {for} be the infinite collection of
p-ordinary normalized cuspidal Hecke eigenforms on SLy(Z) corresponding
to the Hida family {f;,} via the ordinary p-stabilization. The aim of the
present article is to construct a p-adic analytic family of Siegel cusp forms
on the congruence subgroup I'g(p) C Spy,(Z) of level p corresponding to the
collection {Lift®™ (fy;)} under a suitable p-stabilization process. Namely,
our main results are summarized as follows:

Theorem 1.3. For each integer n > 1, let kg be a positive integer with
ko >n+1 and kg =n (mod 2), Py € X(RY) an arithmetic point of weight
2kg with trivial Nebentypus, and gy a fized analytic neighborhood of Py. For
each integer k > ko with k = k:o (mod 2), put

oY) = (Y —ap(far)") ! H II & —v@vu® - ¢.k).
r=1 1<41 <<, <2n

UA(Y) = (V= ap(for)" P T — an(far)™ ™ Bp(far)p™ ),

1=1

\I’*(O‘p(f%)n) e (2n) "
= Byapa) 1 ) e @5 (Uo)

where (o(p),1(p),- -, Yan(p)) is the Satake parameter of Lift*™) ( for,) taken
as above, and Uy, is the Hecke operator corresponding to the double coset

Lift ™) (for,)* :

Iy, diag(1,--- ,1,p,--- ,p) Lun
2n 2n
with respect to the standard Iwahori subgroup I, of Gszg(Zp). Then we
have
(i) Lift@™ (for)* is a cuspidal Hecke eigenform of weight k+n on To(p) C
SPuan(Z) with trivial Nebentypus such that the eigenvalues agree with
those of Lift(zn)(fgk) for each prime | # p, and we have

Lift ™) (for ) |oan Upo = ap(for)™ - Lift ™M (for,)*.

(ii) Let o0 : Ay — Ay be the ring homomorphism induced from the group
homomorphism y — y> on Ly, and

Rord Rord ®A1, A17

a finite A1-algebra with the structure homomorphism A — 1@ X on A;.
If Po € %(Rord) 18 an arithmetic point lying over Py, there exist a for-

mal Fourier expansion F with coefficients in the localization (Rord) (Py)

of Rord gt ]50, and a choice of p-adic periods Qp € @p for P € iy in
the sense of Greenberg-Stevens [GS] satisfying the following properties:
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hd QPo 7& 0.
e There exists a normalization of Lift(2n) ( for) such that for each
arithmetic point P € %(Rord) lying over some arithmetic point
P € Yy of weight 2k with trivial Nebentypus, we have
Qp
Q<(P)

F(P) = Lift ™) (for)* # 0,

where Q°(P) € C* is the non-zero complex period of fo, with
signature € € {x} in the sense of Manin [Ma] and Shimura [S2].

Therefore we obtain a p-adic analytic family of non-zero Siegel cusp forms
Qp_1ift(2n) (for)*} parametrized by varying weights 2k > 2kg with

0<(P)
k= ko (mod 2) and 2k = 2ko (mod (p — 1)p™1)

for some sufficiently large m > 1.

We note that the existence of such p-adic analytic families have been
suggested by Guerzhoy [Gu| for n = 1, and conjectured by Panchishkin
[P2] for arbitrary n > 1. In particular, Guerzhoy [Gu] derived a similar
p-adic interpolation property of an essential part of the Fourier expansion
of Lift® (fy;,) under mild conditions. The above theorem can be regarded
as a generalization of his result reformulated in the way that seems most
appropriate for the study of p-adic properties of the Duke-Imamoglu lifting.

For the proof of Theorem 1.3, we will give an explicit form of the Fourier
expansion of Lift?™) (f5,)* (cf. Theorem 4.1 below). By combining this with
the A-adic Shintani lifting due to Stevens [St], we will give a A-adic analogue
of the classical Duke-Imamoglu lifting for the universal ordinary p-stabilized
newform f,.4, which allows us to resolve the p-adic interpolation problem
for the whole Fourier expansion of Lift(®) ( fo;.)* (cf. Theorem 4.4 below).

Remark 1.4. From a geometric point of view, a p-adic deformation theory
for Siegel modular forms of arbitrary genus has been established by Hida in
the ordinary case (cf. [H4, H5], see also [TU]). Unfortunately, Lift®™ ( for)
does not admit the ordinary p-stabilization in the sense of Hida. However,
it turns out that a slight weaker version Lift(>™) (fo;,)* is sufficient to adapt
the ordinary theory. In the same spirit as Skinner-Urban [SU], we refer to
it as the “semi-ordinary” p-stabilization of Lift(*™) (fo},). For further details
on the topic will be discussed in §4 below.

When n = 1, more generally in the same direction, Skinner-Urban [SU]
produced a p-adic deformation of the cuspidal automorphic representation
of GSp,(Ag) generated by Lift® (f) within the framework of a significant
study of the Selmer group H} (Q, V¢(k)) defined by Bloch-Kato [BK], where
Vr denotes the p-adic Galois representation associated with f in the sense of
Eichler-Shimura and Deligne (cf. [De]). Although they must be not entirely
smooth (e.g. we cannot associate Siegel modular forms of genus 2n > 4
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with Galois representations so far), similar arithmetic applications of p-
adic analytic families would be stimulated by the recent progress on Ikeda’s
generalization of the Duke-Imamoglu lifting towards a Langlands functorial
lifting of cuspidal automorphic representations of PGLa(Ag) to Spy, (Ax)
over a totally real field extension K/Q (cf. [I3]). Indeed, as a consequence
of the period relation for Lift®™ (f) that was conjectured by Ikeda [I2] and
afterwards was shown by Katsurada and the author [KaK], we may produce
a certain kind of congruence properties occurring between Lift(2”)( f) and
some genuine Siegel cusp forms of genus 2n under mild conditions, which
is very similar to those in [SU] (cf. [Ka2, Ka3], see also Brown [Br] for
n = 1). This type of congruence properties and their applications were
firstly conjectured by Harder [Ha| for the Saito-Kurokawa lifting and by
Doi-Hida-Ishii [DHI] for the Doi-Naganuma lifting.

It should be emphasized that our approach based on the description of
Fourier expansions is more explicit than the method using the theory of
automorphic representations, and hence yields some practical benefit. For
instance, the semi-ordinary p-stabilized form Lift(zn)( for)* can be regarded
naturally as the Duke-Imamoglu lifting of fJ,, although the p-local compo-
nent of the associated cuspidal automorphic representation of Spy,(Ag) is
a quadratic twist of the Steinberg representation in general (cf. [I3]).

Finally, as will be explained in §5, we note that the method we use for the
Duke-Imamoglu lifting is adaptable to the Eisenstein series as well. Indeed,
by taking Serre’s p-adic analytic family of ordinary p-stabilized Eisenstein
series instead of the Hida family, we also obtain a similar result for the Siegel
Eisenstein series of genus 2n, which is closely related to the results due to
Takemori [Ta] and Panchishkin [P1]. In addition, as conjectured in [P2],
our constructions of p-adic analytic families are also extendable to those of
families of Siegel cusp forms of odd genus by means of the Miyawaki lifting
(cf. [I2]). The corresponding result will appear elsewhere.

Acknowledgements. The author is deeply grateful to Professor Alexei
Panchishkin and Professor Haruzo Hida for their valuable suggestions and
comments. Moreover, discussions with Professor Jacques Tilouine, Profes-
sor Hidenori Katsurada, Professor Siegfried Bocherer, Professor Tamotsu
Ikeda, Professor Marc-Hubert Nicole and Dr. Tomokazu Kashio have been
illuminating for him.

Notation. We denote by Z, Q, R, and C the ring of integers, fields of rational
numbers, real numbers and complex numbers, respectively. We put e(x) =
exp(2my/—1x) for z € C. For each rational prime I, we denote by Q;, Z; and
Z;, the field of l-adic numbers, the ring of [-adic integers and the group of
units of Z;, respectively. Hereinafter, we fix an algebraic closure Q; of Q.
Let v;(*) denote the l-adic valuation normalized as v;(l) = 1, and ¢;(*) the
continuous additive character on Q; such that e;(y) = e(y) for all y € Q.
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Throughout the article, we fix an odd prime p > 5. From now on, we take
the algebraic closure Q of Q inside C, and identify it with the image under
a fixed embedding Q — @p once for all.

For each integer g > 1, let GSpy, and Spy, be the Q-linear algebraic
groups introduced as follows:

GSpyy :={ M € GLyy | "M JM = p(M)J for some u(M) € GL1 },
SPag = { M € GSpy, | u(M) =1},

where J = Jy, = (_Ofg éz) with the g X g unit (resp. zero) matrix 1, (resp.
04). We denote by By, the standard Borel subgroup of GSpyg, and by Py, the
associated Siegel parabolic subgroup, that is, Pog = {M = (0*9 I) € Gszg}.
Each real point M = (& B) € GSpy,(R) with A, B, C, D € Mat4(R) and
w(M) > 0 acts on the Siegel upper-half space

9y ={Z=X+V-1Y € Matyy(C) |'Z = Z, Y > 0(positive definite) }

of genus g via the linear transformation Z — M(Z) = (AZ+B)(CZ+ D).
Then for a given k € Z and a function F on §,,, we define an action of M
on F' by

(F|M)(Z) := p(M)95799FTV/2 qet(CZ + D) "F(M(Z)).

For handling Siegel modular forms of genus g, we consider the following
congruence subgroups of the Siegel modular group Spy,(Z): for each integer
N > 1, put

To(N) := {M c Sp2g(Z)' M= < o*g j: ) (mod N) }

T1(N) = {M € sng(Z)' M= < o*g 1*g > (mod N) }

For each k € Z, the space #,(T'1(N))@ of (holomorphic) Siegel modular
forms of weight x on I't(N) C Spy,(Z), consists of C-valued holomorphic
functions F' on §), satisfying the following conditions:
(i) F|«M =F for any M € T'1(N);
(ii) For each M € Spy,(Z), the function F|,M possesses a Fourier ex-
pansion of the form

(FIM)(Z)= Y Ap(F|<M)e(trace(TZ)),
TeSymg(Z)

where we denote by Symg(Z) the dual lattice of Symg(Z), that is,
consisting of all half-integral symmetric matrices:

Symyg(Z) = {T = (ti;) € Symy(Q) [tsi, 2t;; € Z (1 <i<j<g)}

It satisfies that Ap(F|,M) = 0 unless T' > 0 (semi positive definite)
for all M € Spy,(Z).

A modular form F € ., (T'1(N))9 is said to be cuspidal (or a cusp form)
if it satisfies a stronger condition Ay (F|,M) = 0 unless T' > 0 for all M €
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Spag(Z). We denote by Z(T1(N))@ the subspace of ., (I'1(N))¥ con-
sisting of all cusp forms. When N = 1, we subsequently write .#};(Spy,(Z))
and .7 (Spy,(Z)) instead of M(T1(1))@ and 7, (T'1(1))9), respectively.
For each Dirichlet character y modulo N, we denote by .Z(T'o(N), x)©

the subspace of ., (I'1(N))¥) consisting of all forms F with Nebentypus x,
that is, satisfying the condition

F|.M = x(det D)F for all M = (4 B) € To(N),

and put ., (To(N), x)9) := A (To(N), )9 N.Z(T1(N))9. In particular,
if x = xo is the principal character, we naturally write . (To(N))¥) =
M(To(N), x0)@ and .7, (To(N))9) = .7, (To(N), x0)'9, respectively.

For each T' = (t;;) € Symy(Z) and Z = (2;5) € 4, we write

gl = e(trace(T'2)) qu H Z-j 7
i<j<g
where ¢;; = e(2;;) (1 <i < j < n). Then it follows from the definition that
cach F € .#,(T'1(N))¥ possesses the usual Fourier expansion

F(Z)y= Y Ap(F)qd" eClgi |1<i<j<glllan, - qgll-
TESym;(Z)7
T>0

For each ring R, we write R[[¢]]¥) := R[qw 11 <i<j<glllar, - agll;

which is a generalization of Serre’s ring R[[¢]](Y) = R|[[¢]] consisting of all for-
mal g-expansions with coefficients in R. In particular, if F € . (T'1(N))
is a Hecke eigenform (i.e. a simultaneous eigenfunction of all Hecke oper-
ators with similitude prime to N), then it is well-known that the field Kg
obtained by adjoining all Fourier coefficients of F' to Q is a totally real alge-
braic field of finite degree, to which we refer as the Hecke field of F'. Hence
we have

F e Kp[l]” < Qla))? < Q,[lg]]").

For further details on Siegel modular forms set out above, see [AnZ] or [Fr].

2. PRELIMINARIES

2.1. Classical Duke-Imamoglu lifting. In this subsection, we review
Ikeda’s construction of the Duke-Imamoglu lifting for elliptic cusp forms
(cf. [I1]) and Kohnen’s description of its Fourier expansion (cf. [Ko5]).

To begin with, we recall some basic facts on elliptic modular forms of
half-integral weight which were initiated by Shimura. For each M € T'g(4) C
SLo(Z) and z € $7, put

01/2(M(2))

J(M,2) = 91/2(73)
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where 0, 5(2) = >, .7 e(m?z) is the standard theta function. It is well-

known that j(M,z) for M € T'y(4) satisfies a usual 1-cocycle relation, and
hence defines a factor of automorphy. Then for each integers k, N > 1, a
C-valued holomorphic function h on $7 is called a modular form of weight
k+1/2 on T'g(4N) if it satisfies the following conditions similar to those in
the integral weight case:

() (hlis1/pM)(2) = j(M, 2)"2*" (M (2)) = h(z) for any M € To(4N);
(ii) For each M € SL(Z), the form h|j4/2M has a Fourier expansion

(Plg1/2M)(2 Z cm(hlrg12M) ¢
m=0
where ¢ = e(2).
In particular, a modular form h is said to be cuspidal (or a cusp form)
if it satisfies the condition co(h|p12M) = 0 for all M € SLp(Z). We
denote by ///k+1/2(F0(4N))(1) and yk+1/2(1—‘0(4N))(1) the space consisting
of all modular forms of weight £+ 1/2 on I'g(4NV) and its cuspidal subspace,
respectively.

As one of the most significant properties of such forms of half-integral
weight, Shimura [S1] established that there exists a Hecke equivariant linear
correspondence between ///k+1/2(I‘0(4N))(1) and o, (To(N))D), to which
we refer as the Shimura correspondence. More precisely, Kohnen introduced

the plus spaces %k+1/2(F0(4N))(1) and Y,:Srl/z(Fo(ZlN))(l) respectively to

be the subspaces of ///k+1/2(F0(4N))(1) and ,7k+1/2(F0(4N))(1) consisting
of all forms h with

em(h) =0 unless (—1)*m =0o0r 1 (mod 4),

and showed that if either k > 2 or kK = 1 and N is cubefree, the Shimura
correspondence gives the diagram of linear isomorphisms

M (Lo(AN) D 5y, (To(N)) D)
U U

S To(AN)D S S (To(N)D),

k+1/2

which is commutative with the actions of Hecke operators (cf. [Kol, Ko2,
Ko3]). When N = 1, the Shimura correspondence can be characterized
explicitly in terms of Fourier expansions as follows: If f =32, a,,(f)g™ €
o1 (SLa(Z)) is a Hecke eigenform normalized as a1(f) = 1, and

h= > em(h)g™ € S 1p(To(4) W

m>1,
(=1)*m=0,1 (mod 4)

corresponds to f via the Shimura correspondence, then for each fundamental
discriminant 0 (i.e. 9 is either 1 or the discriminant of a quadratic field) with
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(-=1)*0 > 0, and 1 < m € Z, we have
(2) Cpom2 (h) = cpp| (R ZM ( > A" Yagma)(f),

where p(d) is the Mobius function, and ( ) the Kronecker character cor-
responding to 0. We note that the inverse correspondence of the Shimura
correspondence is determined uniquely up to scalar multiplication. It is be-
cause unlike the integral weight case, there is no canonical normalization of
half-integral weight forms. Hence we should choose a suitable normalization
of it in accordance with the intended use.

Remark 2.1. As will be explained more precisely in §§3.2 below, for integers
N > 1, k > 2 and a fundamental discriminant 0 with (—1)*d > 0, Shintani
[Sh] and Kohnen [Ko2] constructed a theta lifting

o+ Sar(Lo(N)W — 75, (To(4N)) D,
which gives an inverse correspondence of the Shimura correspondence ad-
mitting an algebraic normalization with respect to (—1)Fd.

On the other hand, for each integers n, k > 1 with kK >n+1and n =k
(mod 2), we define the (holomorphic) Siegel Fisenstein series of weight k+n
on Spy,(Z) as follows: for each Z € £y, put

EZXN(Z) = 27°¢(1—k—n)[[¢(1 -2k —2n + 2i)
=1
X > det(CZ + D)~k

M=(& ) E€PanNSpay (2)\Sp4 (2)

It is well-known that ;7 (2n) 4 ., is a non-cuspidal Hecke eigenform in .2}, (Spy,,(Z)).
In addition, for each T 6 Symj, (Z) with T' > 0, we decompose the associ-
ated discriminant ®p := (—1)" det(27") into the form

Dr =07 f4

with the fundamental discriminant 07 corresponding to the quadratic field

extension Q(v/D7)/Q and an integer fp > 1. Then the Fourier coefficient

AT(E;i,i) is taken of the following form:

3) Ar(BY) = L(1 - ( >HF1 T, ),

Ufr

where L(s, (%)) := Y0 | (32) m™*, and for each prime [, F;(T; X) denotes
the polynomial in one variable X with coefficients in Z appearing in the
factorization of the formal power series

b(T; X) == Z ¢/ (trace(TR)) X" R),|
ReSymy,, (Qi)/Symay,, (Zy)
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where vg = [Z7" + Z?"R : 73", that is,
(1= X[, (0 = X?)
()

(cf. [S1, S4, Kil, Fe]). Moreover, it is known that F;(T'; X) is the polynomial
of degree 2u;(fr) with Fi(T; 0) = 1 and satisfies the functional equation

(5) Fl(T; l—2n—1X—1) — (l2n+1X2)—vl(fT)Fl(T; X)

(cf. [Kal]). In particular, we have Fi(T; X) = 1 if v;(fr) = 0. We easily see
that Fj(uT; X) = Fy(T; X) for each u € Z;°.

(4) b(T; X) = F(T; X)

Remark 2.2. For each prime [, the formal power series b;(T; X) gives rise
to the local Siegel series by(T'; s) := by(T; I7°) for s € C with Re(s) > 0. In
particular, for each even integer k > 2n-+ 1, then the value b;(T; k) coincides
with the local density

x#{ U € Matoxon(Zi/I"Z) |'UHpxU — T € I"Sym,, (Zy) }
where Hy, = % ((1)2 (1)2) In this connection, there have been numerous

papers focusing on the local densities of quadratic forms.

Following [I1], we construct the the Duke-Imamoglu lifting as follows:

Theorem I (Theorems 3.2 and 3.3 in [I1]). Suppose that n, k are positive
integers with n = k (mod 2). Let f =Y >, amn(f)q™ € Sk (SL2(Z)) be a
normalized Hecke eigenform, and h =73 <, cim(h)q™ Y,:jrl/z( 0(4)® ¢
corresponding Hecke eigenform as in (2). Then for each 0 < T € Symj,,(Z)
with discriminant D7 = 0 f%, put

©)  ApTIEE(F) = oy () [[aa(F) BT 1FBi(f)),
Ufr
where for each prime 1, we denote by (aqy(f),B1(f)) the ordered pair of the
f)

roots of X2 — a;(f)X + 12571 = 0 with vi(ay(f)) < v(Bi(f)). Then the
Fourier expansion

Lift@)(f) = Y Ap(Lift@"(f))¢"
TeSymj3,, (Z),
T>0

gives rise to a Hecke eigenform in %1y (Spa,(Z)) such that
2n
L(s, Lift®M (), st) HL (s+k+n—i, f)

Remark 2.3. For a given Hecke eigenform F' € .#;1,(Spa,(Z)) with the
Satake parameter (vo(1),11(1),- - ,¥2n(l)) € (CX)2" 1 /Wy, for each prime
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[, then the spinor L-function L(s, F|, spin) and the standard L-function
L(s, F, st) associated with F' are respectively defined as follows:

L(s, F, spin)
-1

2n
= J[{a-v@ T II Q=v@eu@-- v

<00 r=11<i1 << <2n

2n -1
L(s, Fyst) =[] {(1 — ) [ - e —u}i(zrlm} ,

I<oo i=1
Then it follows from the explicit form of L(s, Lift®™(f), st) and the fun-
damental equation 1 (1)%¢1(1) - - - hop (1) = 12ME+P)=n2n+1) that the Satake
parameter of Lift™ (f) is taken as

[kt )/2 - if =,
(7) W) = aq(fHITFTE i1 <i<n,
BUf)IRFm i1 << 2n.

Hence the spinor L-function L(s, Lift(2")( f), spin) can be also written ex-
plicitly in terms of the symmetric power L-functions L(s, f, sym") of f with
some 0 <7 <n (cf. [Mu, Sc2]).

According to the equation (3), we may formally look at the Siegel Eisen-

stein series E,(jiz as the Duke-Imamoglu lifting of the normalized elliptic
Eisenstein series

Ej) = @ + Y oor-1(m)q™ € Mor(SLa(Z)),

where 091 (m) = Z d?*~1. Indeed, we easily see that for each prime I,
O 0y )
(al(E2k )751(E2k )) = (17l2k_1)7

and it is well-known that Cohen’s Eisenstein series Hy /5 € ., ,:rl /2 (o (4))M
(1)

. . .
corresponds to Es,” via the Shimura correspondence, which possesses the
Fourier coeflicient

(i) = 20~ b (2))

*

for each fundamental discriminant ® with (—1)¥0 > 0 (cf. [Co, EZ)).

We also note that the Duke-Imamoglu lifting does not vanishes identically.
Indeed, for each 0 < T € Sym3,, (Z) with ©7 = 07 (i.e. fp = 1), the equation
(6) yields the equation

Ap(Lift® (f)) = cop (h)-
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Hence the non-vanishing of A7 (Lift®™(f)) is guaranteed by the well-studied
non-vanishing theorem for Fourier coefficients of h as follows:

Lemma 2.4. For each integer k > 6, let f € S(SLa(Z)) and h €

Yk+1/2(F0(4))(1) be taken as above. Then there exists a fundamental dis-
criminant ® with (—1)¥0 > 0 such that

¢ (h) # 0.

Moreover, for each prime p, a similar statement remains valid under the
additional condition either 9 =0 (mod p) or 0 Z0 (mod p).

Proof. For each fundamental discriminant o with (—1)*d > 0, Kohnen-
Zagier [KoZ] established the equation

cpo|(h)° _ (k=D 12 La(k, f)
®) . SR TTE

where Ly(s, f) := Yooo_1 () am(f)m ™%, and we denote by || f|* and ||h|?

m=1
the Petersson norms square of f and h respectively, that is,

I = f) = / o+ Ty)Py?2dady,
SL2(Z)\$1

WP = h) = < b + Ty Py 2 ddy
To(4)\91
Hence the existence of a fundamental discriminant 9 with desired proper-
ties follows immediately from the non-vanishing theorem for Ly, (k, f) (cf.
[BFH, Wa2]). We complete the proof. O

For the convenience in the sequel, we describe the Fourier expansion of
Lift(zn)( f) a little more precisely. For each prime [ dividing f7, by virtue of
the functional equation (5), we have

a(f) IV B (T 17 By (f)) = Bu(f) T F(Ts 7Ry (),

and hence ay(f)"07) F(T,17%="6,(f)) can be written in terms of oy(f) +
Bi(f) = ai(f) and =%y (f)B;(f) = 1¥~1. In fact, Kohnen showed that for
each [,

v (fr)

9)  a(H) IR T B(f Z ¢ (1T gy (),

with some arithmetic function ¢p(d) with values in Z defined for each integer
d > 1 dividing fr (cf. [Ko5]). Hence we obtain another explicit form

v (fr)

Ar (LD (£)) = cpp (W ] Y dr () =5)enlr) =00 g, ).
l‘fT =0

We will make use of this equation as well as (6) in the sequel.
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Remark 2.5. For a given f € .%;(SLa(Z)), Ikeda’s construction of Lift(>™) ( f)
obviously depends on the choice of h € y,:;l /2( 0(4)®. By combin-
ing the equation (2) with Kohnen’s refinement of the Fourier expansion of
Lift(2")( f), we may realize the Duke-Imamoglu lifting as an explicit linear
mapping yk+1/2( 0@))W = F 0 (Spy,(Z)). Moreover, Kohnen-Kojima
[KoK] and Yamana [Y] characterized the image of the mapping in terms of
a relation between Fourier coefficients, which can be regarded as a general-
ization of Maass’ characterization of Lift® (f).

2.2. A-adic Siegel modular forms. In this subsection, we introduce the
notion of A-adic Siegel modular forms of arbitrary genus g > 1 from point
of view of Fourier expansions.

Let I' = 1 + pZ, be the maximal torsion-free subgroup of Z;. We choose

and fix a topological generator v € I" such that I' = 2. Let A = Z,[[I']]
and Ay = Zy[[Z;]] be the completed group rings on I" and on Z; over
Zy, respectively. We easily see that A; has a natural A-algebra structure
induced from the natural isomorphism Ay >~ Afu,—1], where p,_1 denotes
the maximal torsion subgroup consisting of all (p — 1)-th roots of unity.

Remark 2.6. As is well-known, A is isomorphic to the power series ring
Zp[[X]] in one variable X with coefficients in Z, under v — 1+ X. In ad-
dition, it is also known that Z,[[X]] is isomorphic to the ring Dist(Z,,Z,)
consisting of all distributions on Z, with values in Z,. Indeed, any distribu-
tion p € Dist(Zy, Z,,) corresponds to the power series

AL(X) = /Zp(1+X Z/Z < ) ) X™ € Z,[[X]],

where (m) is the binomial function. Therefore we obtain
m
A = Z,[[X]] = Dist(Z,, Z,),

which allows us to consider the definition of A-adic Siegel modular forms
below from a different point of view.

To begin with, we introduce the A-adic analytic spaces as an alternative
notion for the weights of holomorphic Siegel modular forms in the following:

Definition 2.7 (A-adic analytic spaces). For each Aj-algebra R finite flat

over A, we define the A-adic analytic space X(R) associated with R as
X(R) := Homeont (R, Q,),

on which the following arithmetic data are introduced:

(i) A point P € X(R) is said to be arithmetic if there exists an integer
k > 2 such that the restriction of P to X(A) := Homeont (A, Q) =~

Homeon (I, @; ) corresponds to a continuous character P, : I" — @;
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satisfying P.(y) = 7. We denote by X,;(R) the subset consisting
of all arithmetic points in X(R).

(ii) An arithmetic point P € X,(R) is said to be of signature (k, €)
if there exist an integer k > 2 and a finite character ¢ : Z; — @;

such that P lies over the point Py . € Xag(A1) ~ Homeong (Z;,@;)
corresponding to the character P .(y) = y"e(y) on Z,. For sim-
plicity, we denote such P by P = (k,¢) and often refer to it as the
arithmetic point of weight k with Nebentypus ew™" in the sequel.

We note that X(A) has a natural analytic structure induced from the
identification Homeont (A, Q) ~ Homeons(I', @,). Moreover, restrictions to
A7 and then to A induce a surjective finite-to-one mapping

m: X(R) » X(A1) > X(A),

which allows us to define analytic charts around all points of X,5(R). In-
deed, it is established by Hida that each P € X,5(R) is unramified over
X(A), and consequently there exists a natural local section of 7

Sp:Up CX(A) —» X(R)

defined on a neighborhood Up of 7(P) such that Sp(w(P)) = P. These local
sections endow X(R) with analytic charts around points in X,5(R). For each
P € Xa(R), a function f : 8 C X(R) — Q, defined on 4l = Sp(Up) is called
analytic if foSp:Up — @p is analytic. In parallel, an open subset 3 C
X(R) containing some P € X,4(R) is called an analytic neighborhood of P if
3 = Sp(Up). For instance, we easily see that each element a € R gives rise
to an analytic function a : X, (R) — Q, defined by a(P) = P(a). In most
generality, if P € X(R) is unramified over X(A), then each element a € Rp)
gives rise to an analytic function defined on some analytic neighborhood of
P, where R(p) denotes the localization of R at P, and gives rise to a discrete
valuation ring finite and unramified over A (cf. Corollary 1.4 in [H1]). From
this point of veiw, we refer to the evaluation a(P) at P € X,(R) as the
specialization of a at P according to the custom.

Following [GS, H3] and [P1], we define the A-adic Siegel modular forms
as follows:

Definition 2.8 (A-adic Siegel modular forms). Let R be a Aj-algebra finite
flat over A. For each integer g > 1, pick Py = (Ko, w"™) € Xag(R) with
ko > g+ 1. A formal Fourier expansion

F = Z arq’ € R(PO)HQH(Q)
TGSym;(Z)7
T>0

is called a A-adic Siegel modular form of genus g and of level 1 if there
exists an analytic neighborhood 4y of Py such that for each arithmetic point
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P = (k,w") € 4y with k > kg, the specialization

F(P):=) ar(P)q" €Qylla))”
T

gives rise to the Fourier expansion of a holomorphic Siegel modular form in
M (To(p))9). In particular, a A-adic Siegel modular form F is said to be
cuspidal (or a cusp form) if F(P) € Z(To(p))9) for almost all P € il,.

If there exists a A-adic Siegel modular form F € R po)[[q]](g), then each
coeflicient ar € R(p,) of F gives rise to an analytic function defined on .
Hence every specialization F(P) gives a holomorphic Siegel modular form
whose Fourier coefficients are p-adic analytic functions on y. In this con-
text, we mean by a p-adic analytic family the infinite collection of holomor-
phic Siegel modular forms {F(P) € .#,(To(p))9} parametrized by varying
arithmetic points P = (k,w") € iy. In addition, by identifying such P € Ll
with the element (k, k (mod p — 1)) in Serre’s p-adic weight space

Ly x Z)(p = 1)Z =~ Yim Z/(p — )p™ " 'Z,

m>1

we may also regard {F(P)} as a usual p-adic analytic family parametrized by
varying integers k > rg with K = ko (mod (p — 1)p™~!) for some sufficiently
large m > 1.

Remark 2.9. On purpose to construct a A-adic Siegel modular form F, we
should take a Py = (ko,w"™) € Xag(R) having a smallest possible ko € Z
such that F(Fy) coincides with an actual holomorphic Siegel modular form
F,, € My, (To(p))¥). For this reason, the condition kg > g + 1 set out
above, will be practically required in the subsequent arguments for the Duke-
Imamoglu lifting and the holomorphic Siegel Eisenstein series. Indeed, this
is neither more nor less than the condition of holomorphy of the Siegel
Eisenstein series of genus g. However, in the same context, it should better
to assume a more general condition kg > g + 1, which is evident form the
fact that the smallest possible weight for holomorphic Siegel modular forms
of genus g occurring in the de Rham cohomology is g + 1.

3. CUSPIDAL A-ADIC MODULAR FORMS OF GENUS 1

In this section, we review Hida’s construction of a cuspidal A-adic modular
form of genus 1 and of level 1, and the A-adic Shintani lifting due to Stevens.

3.1. Hida’s universal ordinary p-stabilized newforms. For each inte-
ger r > 1, let X1(p") = T1(p")\$H1 UPHQ) be the compactified modular
curve, and V, = H'(X;(p"),Z,) the simplicial cohomology group of X;(p")
with values in Z,. It is well-known that V. is canonically isomorphic to the
parabolic cohomology group HZ,.(I'1(p"),Zy) € H'(I'1(p™),Z,), which is
defined to be the image of the compact-support cohomology group under
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the natural map (cf. [S3]). We denote the abstract A-adic Hecke algebra of
tame level 1 by the free polynomial algebra

T := A [Ty |1 < m € Z

generated by T,, over A;. Since T ~ Zp[Tm,Z;], a natural action of T
on V,. is defined by regarding the generator T,, acts via the m-th Hecke
correspondence and elements of Z; act via the usual Nebentypus actions.
For each pair of positive integers (r1,72) with r1 > ry, the natural inclusion
I'i(p™) < T'i(p™) induces the corestriction V;, — V,,, which commutes
with the actoin of T. Hence we may consider the projective limit
Voo i1= l&l V,
r>1

with a T-algebra structure. We denote by V.4 the direct factor of Vi, cut
out by Hida’s ordinary idempotent e,.q = W}gr)lw Tpm!, that is,

ord
Voo = €ord ° Vom

on which T}, acts invertibly. We note that Vord is a A-algebra free of finite
rank (cf. Theorem 3.1 in [H1]). Moreover, let £ = Frac(A) be the fractional
field of A, Hida constructed an idempotent epin, in the image of T ® £ in
End (Vo4 @4 L), which can be regarded as an analogue to the projection
to the space of primitive Hecke eigenforms in Atkin-Lehner theory (cf. [H1],
pp.250, 252). Then we define the universal ordinary parabolic cohomology
group of tame level 1 by the T-algebra

yord .— Vooord N eprim(Vo%rd ®A L),

which is a reflexive A-algebra of finite rank and is consequently locally free
of finite rank over A. Then the universal p-ordinary Hecke algebra of tame
level 1 is defined to be the image R°™ of T in Endy, (V') under the homo-
morphism

h: T —s Endy, (V'9).

We note that R°'d is naturally equipped with a formal g-expansion

(10) fora = Z amq" € Rord[[QH’ am = h(Thm),

m=1

which is called the universal p-stabilized ordinary form of tame level 1.

Next, we introduce the global data to be interpolated by f,.q as follows:

Definition 3.1 (ordinary p-stabilized newforms). For given integers x > 2
and r > 1, a Hecke eigenform f} € Z(T1(p")) M is called an ordinary
p-stabilized newform if one of the following conditions holds true:
(i) f¥ is a p-ordinary Hecke eigenform in .#2%(T';(p"))"), where we
denote by .72%(T';(p"))() the subspace consisting of all newforms
in .7 (T (p7))W.
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(ii) If » = 1, then there exists a normalized ordinary Hecke eigenform
fro =21 am(fx)q™ € F(SLa(Z)) such that

f;:(z) = fn(z) - Bp(fn)fn(pz) (Z S fjl)a
where £,(f,) is the non-unit root of X2 — a,(f,)X +p"~! =0.

Remark 3.2. It follows from the definition that ordinary p-stabilized new-
forms are literally p-ordinary Hecke eigenforms. Indeed, the assertion is
trivial in the case of (i). If f € .Z(I'1(p))) is taken as in (ii), then for
each prime [, we have

N\ al(fl-@) lfl#pv
al(fﬁ) B { ap(fn) if [ =D,

where a,(f..) denotes the p-adic unit appearing in the factorization

X2 —ap(f)X + 1" = (X = ap(f))(X = Bp(f))-

Hence we have
L(s, f2) = L¥)(s, fx) - (1= ap(fu)p™) 7",

where L) (s, f,.) denotes Hecke’s L-function of f, with the Euler factor at p
removed. For a given p-ordinary Hecke eigenform in .7, (SLa(Z)), this type
of p-adic normalization process selecting half the Euler factor at p is called
the ordinary p-stabilization. However, we should note that each ordinary
p-stabilized newform f* € .7 (I'1(p))) is actually an oldform except for
x = 2. Indeed, if f¥ € .72V (I'y(p))V), then we have

jap (£2)] = 7!

(cf. Theorem 4.6.17 (ii) in [Mi]). If x > 2, this contradicts the assump-
tion that f: is ordinary at p. Hence we summarize that each ordinary
p-stabilized newform is in fact a p-ordinary Hecke eigenform occurring in ei-
ther 7% (1 (p)) 1), F24(T (p)) V) = 7 (D (p)) 1) — #29% (' (p)) D) with
k> 2, or V(D (p"))D) with some x > 2 and 7 > 1.

Then the following theorem has been established by Hida:

Theorem II (cf. Theorem 2.6 in [GS]). Let r be a fized positive integer,
and forq =Y o0 am@™ € R[q]] the universal ordinary p-stabilized form
of tame level 1 introduced above. Then for each P € %alg(Rord), the special-
1zation

fa(P) = " an(P)g™ € T, ]
m=1
induces a one-to-one correspondence
{P = (K,€) € Xag(R™) ‘ 2<K€Z, c:Ly — @; (finite character)

& {f;: e Fu(To(p"), e ")V

ordinary p-stabilized newform
of tame level 1 ’
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Remark 3.3. In most generality, for each positive integer N prime to p,
Hida constructed the universal ordinary p-stabilized newform of tame level
N whose specialization gives holomorphic cusp forms on I'g(Np") with r > 1.

By applying Theorem 1II for 7 = 1, each P = (2k,w?*) € X,,(R°"Y) cor-
responds to an ordinary p-stabilized newform f,q(P) = f3;, € Far(To(p))V
associated with a p-ordinary normalized Hecke eigenform fo, € 51 (SL2(Z))
via the ordinary p-stabilization. However, we note that dim¢ .7 (SLo(Z)) =
0 for k < 6, and hence f,.q(P) vanishes identically at {P = (2k,w?¥)
Xalg(R) |1 < k < 6}. Therefore, for a fixed Py = (2ko, w? ) € Xp15(R9)
with ko > 6, we may regard f,.q € R"4[[¢]] as a A-adic cusp form of genus 1,
and we consequently obtain a p-adic analytic family of ordinary p-stabilized
newforms {f,.q(P) = f3,} parametrized by P = (2k,w?) € Xa4(R'Y) with
ko <keZ.

In our setting, the choice of Py = (2k0,w2k0) having the smallest pos-
sible weight 2k is obviously taken as kg = 6, that is, Py corresponds to
Ramanujan’s A-function

In addition, we may choose any analytic neighborhood iy of such Py in
X(R°'Y). Since we will apply some lifting for f,.q in the sequel, the choices
of ko, Py and 4y may vary depending on the intended use. For readers’ con-
venience, we present a list of ordinary primes with respect to the unique nor-
malized Hecke eigenforms for,, € -ar, (SL2(Z)) with ky € {6, 8, 9, 10, 11, 13},
that is, rational primes at which fay, is ordinary:

ko p

6 11 < p < 2399, 2417 < p < 19597

8 |17 < p <53, 61 < p < 15269, 15277 < p < 19597
9 17 < p < 14879

10 19 < p < 3361, 3373 < p < 9973

11 p=11, 23 < p < 9973

13 29 < p < 9973

TABLE 1. Ordinary primes for fo,
For the smallest ordinary prime p = 11 with respect to fi2, we give a
numerical example of another components of the Hida family:

Example 3.4. Since 6 + (11 — 1) = 16, we focus on the 2-dimensional
space .#32(SL2(Z)). Then we may take a normalized Hecke eigenform f35 €
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#39(SLa(Z)) determined uniquely up to Galois conjugation such that

faa = q+xq® + (4322 4 50220)¢> + (39960 + 87866368)q*
— (14185602 — 18647219790)¢° + (17312940z + 965671206912)¢"
— (71928864 — 16565902491320)¢" — (4628156802 — 89324586639360)¢°
+(75008851202 — 200500912849563)¢”
— (380384378102 + 3170978118696960)q"°
+(290009092002 — 4470615038375388)¢* + - - - € Ks3[[q]],

where K39 denotes the real quadratic field
Q[z]/(z* — 39960z — 2235350016).

We easily check that the norm of the difference a1 (f12) —a11(f32) is factored
into

28.3%. 5. 11 - 368789 - 99988481 - 7376353157.
Therefore we obtain a congruence between fi2 and f33 modulo a prime ideal
of the ring Ok,, of integers in K3y lying over 11, which implies that their
ordinary 1l-stabilizations f{, and f3, reside both in the Hida family for
p=11.

3.2. A-adic Shintani lifting. As mentioned in the previous §§2.1, we reveiw
the construction of an inverse correspondence of the Shimura correspondence
in the sense of Shintani [Sh] and Kohnen [Ko4]. Moreover, we introduce a
similar lifting for the universal ordinary p-stabilized newform f;.q, which was
constructed by Stevens [St].

For simplicity, suppose that N > 1 is odd squarefree and k > 2. Let © be
an integer with ® =0, 1 (mod 4) and (—1)*D > 0. We denote by £(D) the
set of all primitive matrices @) € Sym3(Z) with discriminant — det(2Q) = D.
We may naturally identify each element @ = <b72 bé 2) € L(®) with an
integral binary quadratic form Q(x,y) = ax?+bxy+cy? with ged(a, b, c) = 1.
For simplicity, we write @ = [a, b, ¢] instead of ( b72 bé 2) in the sequel. We
also denote by Ly (D) the subset of £L(®) consisting of all elements [a, b, c|
with a =0 (mod N). We easily see that if ® =0 (mod N), then

Ly®)={]a,b,c] € L(D)]a=b=0 (mod N) }.
We note that the congruence subgroup I'g(N) C SLy(Z) acts on Ln(D) as
ﬁN(Q) X Fo(N) — ﬁN(Q)
(Q, M) — QoM :=t'MQM,
and we easily see that Lyn(D)/Io(N) is finite. For each @Q = [a,b,c] €
LN (D), we associate it with a geodesic cycle Cg in I'g(N)\$; that is defined
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as the image of the semicircle
az’ 4+ bRe(z) + ¢ =0

oriented either from left to right (resp. from right to left) if a > 0 (resp.
a < 0) or from —c/b to v/—1oo according as a # 0 or a = 0. Then for each
f € Fk(To(N)), we define a cycle integral associated with f by

rQ(f) = (2)Q(z,1)*dz.

Cq

Then the following theorem is given by Shintani and Kohnen:

Theorem III (cf. Theorem 2 in [Ko2]). Let d be a fized fundamental dis-
criminant with (—1)*0 > 0. For each f € S5, (To(N)), put

)= 3 > i) (§)

m>1, 0<d|N
(=1)*m=0,1 (mod 4)

X > Xo(Q)rq(f) ¢ a™

QEL(nay(dmd?)/To(Nd)

where xp denotes the generalized genus character associated with g (cf.
[GKZ]) Then we have Uy(f) € th_lp(Fo(élN))(l). Moreover, the map-
ping

o+ Lo (Co(N)V — 75 | o (To(4N) W

1s Hecke equivariant in the sense of the Shimura correspondence.

This type of lifting from integral weight to half-integral weight was firstly
introduced by Shintani [Sh], and afterwards was reformulated by Kohnen
[Ko2]. According to the custom, we refer to ¥, as the d-th Shintani lifting.

For a given normalized Hecke eigenform f € ., (To(V)), we note that all

of the Shintani lifting 9, ( f) give rise to Hecke eigenforms in ykt_l /o (To(4N))™)

corresponding to f via the Shimura correspondence, however they differ from
each other by the normalization of the Fourier coefficients depending on 9.
Indeed, suppose for simplicity that N = 1, f € % (SLy(Z)) is a normalized
Hecke eigenform and h € ykt_l /2(F0(4))(1) a corresponding Hecke eigenform
via the Shimura correspondence as in (2). Then for each integer m > 1 with
(=1)km =0, 1 (mod 4), we have

any  en®) (DR 3

Rk I7T°

_1\[k/2]9k
_ (WTQQcmwa(f»

X (@) re(f)

QeL(om)/SL2(Z)
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(cf. Theorem 3 in [Kod4]). Namely, the choice of 0 determines the normal-
ization datum.

Remark 3.5. We note that the 9-th Shintani lifting ¥5(f) admits a nice
algebraic property. Indeed, by the equations (8) and (11), we have

ol(0a(1)) = (=)W I L, 1),

On the other hand, by Manin [Ma] and Shimura [S2], we may associate
f with two complex periods Q27 and Q= such that for each critical point
s € Z with 0 < s < 2k, the special value 77 °Ly(s, f)/Q° resides in the

field K¢(+/]0]), where € € {+£} is the signature of (—1)* (_%) Therefore we

obtain ¢p| (Y (f))/Q2° € Kf(+/]0]). Moreover, let Oy be the ring of integers
in Ky. Then by combining Kohnen’s theory and a result of Stevens (cf.
Proposition 2.3.1 in [St]), we have

o ) € Olla]

after taking a suitable normalization.

Now, let us consider a A-adic analogue of the Shintani lifting for the
universal ordinary p-stabilized newform f,.q € R°*[[q]] (cf. (10) in §§3.1):
We define the metaplectic double covering of the universal ordinary Hecke
algebra R°'4 by

éord = Rord ®A1,o A17
where the tensor product is taken with respect to the ring homomorphism
o : Ay — A; corresponding to the group homomorphism y — 32 on Ly
We note that R°'d has a natural Aj-algebra structure induced from the
homomorphism A — 1 ® A on A;. Therefore we may define the associated

A-adic analytic space X(R'9) and its subset .’falg(]:éord) of arithmetic points
as well as R°"d. However, we should mention that the ring homomorphism

Rord — ﬁord
a — a®l

is not a Aj-algebra homomorphism. This causes the fact that the mapping
induced by pullback on A-adic analytic spaces %(ﬁord) — X(R°'%) does not
preserve the signatures of arithmetic points. Indeed, we easily see that if
P = (k) € f{alg(ﬁord) lies over P € X,15(R?), then P = (2k,¢?).

Then the following theorem is a refinement of Stevens’ A-adic Shintani
lifting for f,.q4 € R™[[q]]:

Theorem IV (cf. Theorem 3 in [St]). For a fized Py = (2ko,w?) €
Xatg (R with ko > 1, let 0y be a fundamental discriminant with (—1)k00g >
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0 and 99 =0 (mod p). Then there exist a formal q-expansion

= 3" b(og: m)q™ € R*lq]

m>1

and a choice of p-adic periods Qp € Q, for P € Xug(R) (cf. [GS])
satisfying the following:

6) On, £0. )
(ii) For each P = (k‘ wk) € %alg(Rord) the specialization
0, (P) = Y b(20; m)(P) g™ € Q,[[g]
m>1

gives rise to a holomorphic cusp form in Ykﬂ/z(Fo(le))(l).
In particular, there exists an analytic neighborhood thy of Py
such that for each P lying over P = (2k,w?*) € Uy, we have
~ Op
P)=—— 19, (fora(P)),
O (P) = 3 PolEona(P)

where Q¢(P) denotes the complex periods of f,,q(P) with
signature € € {+}.

We note that a non-vanishing property of ©y, is naturally induced from
the one of the classical Shintani lifting v,,. Indeed, if ¥y, (forq(Fo)) is non-
zero, then by virtue of the property (i), ©y, does not vanish on an analytic
neighborhood iy of Py. Hence a suitable choice of (Do,ilo) yields a p-adic
analytic family of non-zero half-integral weight forms {Q6 57 Voo (fora(P))}
parametrized by varying arithmetic points P = (2k,w?*) € iy with k > ko.
For further details on the non-vanishing properties of the classical Shintani
lifting and its generalizations, see [Wal, Wa2].

For each P = (2k,w?) € YUy with k > ko, let fo € or(SLa(Z))
be a p-ordinary normalized Hecke eigenform corresponding to f.q(P) €
For(To(p))V (ie. fora(P) = f5,). Then by Theorem IV, we may also re-
solve the p-adic interpolation problem for some Fourier coeflicients of the
classical Shintani lifting ¥, (for) € yk+1/2( 0(4)M.

For such occasions, we prepare the following:

Lemma 3.6. Suppose that ® =0 (mod p). Then we have
(i) For each Q € L(D), there exists Q' € L,(D) such that

Q' =Q (mod SLy(Z)).

(i) If® =0 (mod p?) and (%fﬁ) =1, then for each Q € L,(D), there
exists [a, b, c] € L,(D) such that a =0 (mod p?) and
Q = [a,b,c] (mod T'y(p)).
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(iii) The identification [a,b,c] mod Ty(p) — [a,b,c] mod SLe(Z) induces
a one-to-one correspondence between L,(D)/T'o(p) and L,(D)/SLa(Z).

(iv) If® £ 0 (mod p?), then the mapping [a, b, c] mod To(p) — [p~1a,b, pc]
mod SLy(Z) induces a one-to-one correspondence between L,(D)/I'o(p)
and L(D)/SLa(Z).

Proof. The assertions (i), (ii), (iii) and (iv) have appeared respectively as
Lemmas 1, 3, 2 of [Gu] and Proposition in §I.1 of [GKZ]. For the readers’
convenience, we present all of their proofs. For each [a,b,c] € L(D) with
b# 0 (mod p), the assumption ® =0 (mod p) yields a Z 0 (mod p). Then
we put 5 = —b/(2a) (mod p) and

[a', b, c]:=[a,b,c|o < (1) f ) =[a,b,c] (mod SLy(Z)).

We note that & = 2a8 + b =0 (mod p). Hence we may assume that b = 0
(mod p). If [a,b,c] € L(D) satisfies a Z 0 (mod p), then we easily see that
¢ =0 (mod p). Hence we have

la,b,d] = [a,b,d] o < porl ) € £,(D) (mod SLy(Z))

and we obtain the assertion (i). For each Q = [a,b,c] € L,(D) with ® =0
(mod p?), we easily see that a = 0 (mod p?). If Q' = [d/,V,c] € L,(D)
satisfies Q' = Q o <:§> with some (?; g) € To(p), then the condition

<%p2> = 1 yields that the quadratic form [p~2a,p~'b,c] € LP(Q/pQ) satis-

fies

[p2a,p™'b,d(c, p ") = (p%a)a®+(p~ 'b)a(p™ ' Y)+c(p”'y)? =0 (mod p).

This equation implies the fact that Q' satisfies p~2a’ = 0 (mod p), and hence

we obtain the assertion (ii). For the proof of the assertion (iii), it suffices to
show the injectivity of the mapping [a, b, ¢] mod T'g(p) — [a, b, ¢] mod SLo(Z).

Indeed, for [a,b, ], [d,V, ] € L,(D), if there exists (3 g) € SLy(Z) such

that
VAR a f
[a,b,c]—[a,b,c]o<7 5),

then we have @’ = aa®+bay+cy?. Since a,a’,b =0 (mod p) and ged(c,p) =
1, we obtain v = 0 (mod p). Namely, [a,b,c] = [d/,V/, ] (mod T'y(p)). In
order to prove the assertion (iv), it also suffices to show that the injectiv-
ity of the mapping [a, b, ] mod I'g(p) — [p~'a,b, pc] mod SLy(Z). Indeed,
suppose that [a, b, c], [,V ] € L,(D) satisty

1./ 3 0 [.—1 a B
[p a,b,pc]—[ CL,b,pC]O<7 5)

with (3?) € SLy(Z). The assumption ® # 0 (mod p?) yields a # 0
(mod p?). Since pd’ = p~taB? + b3S + pcd?, we have =0 (mod p). Then
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we have
-1
W =fando( 0 77,
0 =l e (07
and hence [/, V/, '] = [a,b,¢] (mod Ty(p)). We complete the proof. O

As a consequence of Theorem IV, we have the following:

Proposition 3.7. Under the same notation and assumptions as above, let
00 be a fived fundamental discriminant with (—1)kd9 > 0, 99 = 0 (mod p)
and cppy| (Voo (fary)) # 0 (cf. Lemma 2.4). Then for each integer k > ko and
each fundamental discriminant 0 with (—1)¥0 > 0, there exist an analytic
neighborhood g of Py = (2kg, w?*) € X4(R") and an element c(do; [0]) €
(Eord)(ﬁo) such that

Q?(ij) (1 - (%) ﬁp(f%)p_k) cp| (Fo, (f2r))

for each P = (k,w") € %alg(ﬁord) lying over P = (2k,w?*) € Y,.

c(20; o|)(P) =

Proof. The following proof is essentially the same as the one of the main the-
orem in [Gu]: By virtue of Theorem IV, there exists an element b(2g; [9]) €
R such that for each P € X,4(RY) lying over P = (2k,w?*) € 8y,

(R0l (P) = e ()
- g X @l

QELp(20[0])/To(p)

(I) Suppose that 9 # 0 (mod p). Then by (i), (iii) of Lemma 3.6, we have

Z Xoo (@) T (far) = Z Xoo (@) 7Q(fa2k)
QEL(2[0])/To(p) QEL(00[0])/SLa(Z)
—Olf2r) ) Xao([a,b, c]) / For(p2)(az? + bz + &) dz,
[a.b,c]€Lp(20[0]) /To (p) Clabyel

Here we easily see that

n(la.0n) = () sl
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for each [a,b,c] € L,(00[0]), and hence it follows from (iv) of Lemma 3.6
that

Z XDO([CL7 b, C]) / f2k(p2)(az2 + bz + C)k_ldz

[a,b,c]€Lp(20]2])/To(p) Cla,b,el

- (%) Y xalabd)

[a,b,c]eL(d0]0])/SL2(Z)

x/ Jor(p2){a(p=)? + b(pz) + 1 piFde
C[a,b,c]

= (2, > X0 (@) q(far),
)

p Q=[a,b,€L(@0[0])/SLa(Z)

where in the second equation we have made use of the transformation law
with respect to z — p~1z. Therefore we obtain that c(do; [9]) := b(d0; [0]) €

Rord gatisfies the equation

_ Q?(l;) (1— (%) ﬂp(fgk)p_k> Z Xoo (@) 7Q (fr)

QeL(d0[0])/SL2(Z)

= (1 - (%) Bp(fzk)p_k> cpo| (Vo (f2r))-

(IT) Suppose that @ = 0 (mod p) and (M) = 1. Similarly to the case

(I), in order to show that c(dp; [9|) := b(dp; [0]) satisfies the desired prop-
erty, it suffices to show the equation
(12)

Z Xao([av b, C]) / f2k(p2)(a22 + bz + C)k_le =0.

[a.b,c]€Lp(20[0]) /To (p) Clabyel

Indeed, we easily see that for each s € Z/pZ, the cycle integrals on the
left-hand side of the equation (12) are invariant under the translation z —
2z +p~ s, and hence we have

Z Xoo ([a, b, ]) / for(p2)(az® + bz + ¢)FLdz

[a,b,c]€Lp(20]0])/To(p) Cla,b,c]
= > </ for(pz)(az® + bz + c)k_ldz>
[a,b,]€Lp(200])/To(p) \” Clasbicl

x> xeol[a, 207 a)s +b, (p2a)s” + (p710)s + ] ) -
SEL/PZL
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Then it follows from (ii) of Lemma 3.6 and a simple calculation that

Y xeol[a, 2007 a)s + b, (p72a)s? + (p710)s + c])
SEL/PZ

B <M> 2 <<p—2a>s+1<)p—1b>s+c>

SEL/pZ

- (2) X (jobiee) o

SEZL/PZ

Hence we obtain the desired equation (12). (IIT) Suppose that 9 = 0 (mod p)

00[0|/p?
p

and = —1. We note that we cannot prove the assertion along the

same lines as (I) and (II). However, we may fortunately take an alternative
route as follows: We note that by virtue of Lemma 2.4 and the equation
(11), there exists a fundamental discriminant 9; with (—1)%d; > 0,91 Z0
(mod p) and cjp, (P, (f2r,)) # 0. Then by taking the d-th Shintani lifting
Ya(far) as well as Yy, (far), the equation (9) yields

Cpoy | (Do (f2r)) * Cpog| (Too (f2r))
Cpoy| (Voo (f2r))

(1 — (%) ﬁp(f%)p_k) ¢oy| (Vo (f2r))  €og| (Voo (f2r))
(1= (%) Bola0) %) iy (W ()

where in the second equation of the above, we note that the p-adic interpo-
lation properties of the numerator and the denominator have been already
proved at the previous steps (I) and (II). Therefore, by taking a smaller an-
alytic neighborhood 4y of Py € %alg(Rord) if it’s necessary to avoid possible
vanishing of the denominator, we obtain that the element

b(0; [01]) - b(d0; [20])

| (Vog (for) =

c(0g; |0|) := c Eord -
(90: o) b(20; [01]) RIGS
defines a quotient of analytic functions on iy and satisfies the desired inter-
polation property. We complete the proof. O

4. MAIN RESULTS

In this section, we construct a A-adic Duke-Imamoglu lifting for the uni-
versal ordinary p-stabilized newform f,.q € R°9[[q]]. Therefore, we first
introduce a suitable p-stabilization process for the Duke-Imamoglu lifting of
ordinary Hecke eigenforms in .55 (SLa(Z)). Moreover, to consider the p-adic
interpolation problem in the sequel, we give an explicit form of its Fourier
expansion.

Suppose that positive integers n and k are fixed as n = k (mod 2). Let
f € F(SLa(Z)) be a normalized Hecke eigenform ordinary at p, and h €
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S k+1/2
spondence. As mentioned in §§2.1, the Duke-Imamoglu lifting Lift(2")( f) e
Zh+n(SPan(Z)) is characterized as a Hecke eigenform such that for each

prime I, the Satake parameter (vo(l), ¥1(1), -+, ¥2n (1)) € (@ )+ /Way,
is written explicitly in terms of the ordered pair (ay(f),5i(f)) satisfying

X2 = ai(f)X + P = (X — ag(/))(X = Bi(f)) and wi(eu(f)) < u(Bi(f))
(cf. Remark 2.4). In particular, if [ = p, the ordinarity condition implies

that a,(f) is a p-adic unit, and hence v,(8,(f)) = 2k — 1. Then we recall

that the Hecke polynomial ®,(Y") € @; [V] associated with Lift®™ (f) at p
is defined as

(To(4))™ a corresponding Hecke eigenform via the Shimura corre-

O, (Y) = (Y — o(p H I & =@ i)

r=1 1<i1 <<, <2n

We note that the equation (7) yields that tg(p) = p"™*"(*+1/2 and the
product

(13) ¥o(p) Hwi(p) = ap(f)"

is a unique unit p-adic root of ®,(Y"). Put
n

oY) = (V) {(Y = o) (Y — olp) [ [ i)}

i=1

2n
11 11 (Y = o(p)vi(p) - - - ¥i,(p)),

r=1 1<ij<-<ip<2n,
(i1, i) #(1,0,m)

and
Vi(Y) = (Y —olp (Hm )wzn
ﬁY volp <Hw, )wm P)2n—j1(p))
i
(Y = to(p (Hw, )wzn ))-
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Obviously, we have W (Y) |®7(Y) [ ®,(Y) and it follows from the equation
(7) that ®;(Y) and ¥} (Y') can be taken of the forms in Theorem 1.3.

On the other hand, the following Hecke operators at p are fundamental
in the p-adic theory of Siegel modular forms of arbitrary genus g > 1:

Idiiag(lv"' 717p7"' 7p)1297 leZO,
—— ——
U,;:= . g g 2 2 . .
bt Idilag(lv"'71p7"'7p7p7"'7p p)"'7p)12g7 1f1§z§g_17
7 g—1i 7 g—1i
where Iy, := {M € GSpyy(Z,)| M mod p € Byy(Z/pZ)}. We note that
these Hecke operators Uy o, Up 1, - -+, Upg—1 generate the Hecke algebra

Hp(Iag, S2g) := { IogM Iog | M € Ing\Sog/Iog },
where Sgy C GSpy,(Qp) is a semi-group such that
[Tog N M ™S9y M : Ing), [Iog N M SggM : M~Se,M] < 400

for all M € Sy4. In particular, we are interested in the operator U, which
plays a central role in these operators. For instance, if F' = ETZO Ar(F)q" €

M (To(N))9 with x > 0 and N > 1, the action of U,y on F admits the
Fourier expansion

(14) FleUpo = Z ApT(F)qT’
T>0

which can be regarded as a generalization of the Atkin-Lehner U,-operator
acting on elliptic modular forms. Then we easily see that

M (To(N)W,  if p|N,
M (To(Np))9, if pfN,

and the action of U,y commutes with those of all Hecke operators at each
prime [ # p. For further details on the operator U, o, see [AnZ, B&).

F|RUP70 € {

Now, we define a p-stabilization of Lift(Q")( f) by

ony e Yplap()T) o, .
(15) Llft(2 )(f) = m : Llft(z )(f)|k+n q>p(UP70)'
Obviously, the equation (13) yields that
i (op(f)")
— # 0.
T30 7

In particular, if n = 1, we have U3(Y) = ®5(Y) = (Y — p*)(Y — B,(f)),
and hence W3(ay,(f))/®;(ap(f)) = 1. It also follows immediately from the
above-mentioned properties of U, that Lift™ (f)* € .Z n(To(p))®™ is
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a Hecke eigenform such that for each prime [ # p, the Hecke eigenvalues
coincide with those of Lift(™)(f).

Then the Fourier expansion of Lift(®™ (f)* is written explicitly as follows:

Theorem 4.1. Under the same notation and assumptions as above, if 0 <
T € Sym}, (Z) satisfies D7 = drf%, then we have
Ap(Lift® (f)7) = <1 - < ) Bp(f)p~ > ¢op|(h)

x agp(f) IR ) TT o (£) 00 BT 7R3y ().

Ufr,
l#p

Proof. By virtue of the equations (6) and (13), we obtain

A (Llft @) (£)%)

( P(f) v (fr) k—n
= 7”/6‘ T‘ H Oél T 'F1l T I~ IBl(f))
w1

222 ' 1<r<2n,
x > (=15 ({%(P)l/fn(P)“'l/m(P) 1<ip <-or <ip < 2n, })
Jj=0 (Z177Zn)7é(177n)

X (f) T @ =2)=ni b (2" =220 pmkeng (£))
— C‘DT‘(h)ap(f)vp(fT)‘i'”(”"'l) H al(f)vl(fT)F‘l(T; l‘k‘”ﬂl(f))

L,
I#p

)T e, ()
() 200 ()]

22n_9

X (—1)s; ({%(f)"%(l’)?bn(p) i (p)

j=0

1 <r < 2n,

(ilv"' 7ZTL) 7é (17
X Ep(p?" 29T p 7B 1)),

where s;({X7, - ,X22n_2}) denotes the j-th elementary symmetric polyno-
mial in variables Xi, -+, Xo2n_,. Here by the equation (7), we easily see

that oy, (f) "¢ (p) = P+ 2By (Fp~F

B 1 <i <,
vilp) = pi{ﬂp(f)p_k_"}, ifn+1<i<2n,

1<iy < <i, <2n,

)
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and

ap(f) TV (ay ()")

_ (1_ 2n{ﬁp —k n} H 2n+22 1{@0( ) —k—n}2)‘
i=1

Put

pr DR X i i =0,
&pa(X) = q p' X, if1<i<n,
p'X, ifn+1<i<2n,

Hence it suffices to show that the equation

n
2nX H 2n+2z 1X2)
=1

22n_9 _ 1 <r<2n,
X Z (=1)7s5{ { &p,0(X)&p,ir(X) -+ &p,i(X) 1<ip <. <ip < 2n,
Jj=0 (11772n)7é(177n)

x Fy(p*" ~27IT; X)

- (1o (% )nx)H [T 0 6u6aE) - &ulX)

r=1 1<i;<-<ir<2n,
(117' 7"’7’)75(177/”)

holds for each T' € Sym3, (Z) with T' > 0. First, we prove the assertion for
n = 1. In that case, it suffices to show the equation

F,(p*T; X) — (0 X + p*X?)E,(pT; X) + p° X3 Fp(T; X) =1 — <°pT> pX.

Indeed, for each T € Sym3(Z) with T' > 0, the polynomial F,(T; X') admits
the explicit form

Fp(T§ X)
vp(mr) - (enlin)—i o vp(fr)—i1 |
= (p*X)’ (P°X?) — (?) pX Y. X%,
=0 =0 =0
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F,(p*T; X) — (p*
»(0°T; X) — (P*X + p° X?)F,(pT; X) + p° X°F,(T; X)

vp(mr)+2 vp(fr)—i
— Z (p2X)i{ o 3 0 i
> (P’ X?) - (—T Z '
2 2 » pX (p3X2)J
v, -
p?X)! (p*X2)! 0 o
2 pPX2) — <_T /
0 7=0 p pX Z (p3X2)j
Jj=0

=0
j=0

vp(me)+1 vp(fr) i
S T e (2) Y
. 2+l _ (2T -
(p*X?) (?) 2.8 (p3X2)j+1}

vp(mr) vp(fr)—1
2 2 ? pX (p3X2)J+1
_ vP(mT)+2( 9 ,{UP(fT)H‘? ( .
_ 2x Y Ry (a I
2 pPX% — (= '
> 2 , ) pX Z (p3X2)J
vp(iT:)'f‘2 vp(fr)—i+2 "
- (p2X)”'{ Sy ()Y
> pPX2) — <_T
=1 j=0 p px Z (p3X2)j
7=0

vp(mp)+1 op(fr)—i
- Z (sz)i P %Z‘H 5 2 vp(fr)
. 2+l _ (2T -
(p*X?) ( > 2.8 (p3X2)j+1}

vp (mp)+1 vp(fr)—i+1
+ 4 (sz)i{ (p3X2)j+1_ a_T vp (fr)—1 .
ZE:1 2 » pX E (p3X2)J+1
Jj=0

vp(fiw (i)
_ (P3X2) — (a_ el :
) o) pX > Xy

J=0
J=0

vp(fr)+1 (
B _ vp(fr)
(pPX2)H — or 3 j
> ) o) pX > (P x?)

=0 '
op(i7)+2 (i7) ”
_ (pPx2y — (2L el '
]Z:;) ) o) X (p*X?)!
=0
{vp(fiw j (i7)
_ (pPX2) — <°_T RN '
2 ) o) X (p*X?)!
j=1

0
- 1_<_T>X
p )P
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For each n > 1, it follows from the equation (4) that the desired equation is
equivalent to the following:

22n_2 ' 1 <r<2n,
(_1)J3j gp,O(X)gp,il(X) T fp,ir(X) 1 <1 < o <y < 2n,
Jj=0 (217"'7Zn)7é(17"'7n)

xby(p> " ~27IT; X)

n

2n
1-x)JJa-r"x>]] 11 (1= &0(X)&pir(X) -+ &i(X))

i=1 r=1 1<i1<-<i,<2n,

(i17"'7in)7£(17"' 7”)
(1 _ p2nX) H(l . p2n+2i—1X2)
=1

This can be proved by making use of the same arguments as in [Zh] and
[Ki2] (see also [B6S]). Now we complete the proof. O

As a consequence of Theorem 4.1, we also have

Corollary 4.2. Under the same assumption as above, we have

Lift ™ (£) |ggnUpo = op(f)" - Lift @V ()",

Indeed, the desired equation follows immediately from Theorem 4.1. O

We should mention that Courtieu-Panchishkin [CP] stated a general phi-
losophy of the p-stabilization for Siegel modular forms. In accordance with
it, we may also consider another p-stabilization

Lift™) (f)T o= Lift®™) (f)[5gn (Y — 20 (p)) - ©5(Upyo)

n

= Lift®") (f)esn®p(Up) - (Upo — vo(p) [ [ wi(p) ™

1=1

Since Uy, o annihilates the Hecke polynomial ®,(X) (cf. Proposition 6.10 in
[AnZ]), it follows from the equation (13) that

Lift ™ () ppnUpo = to(p) [ ¢i(p) - Litt @ (£)1
i=1

= ap(f)" - Life ()T

We easily verify that U, o annihilates ®5(X)- (X —o(p) [T2; ¥i(p)) as well,
and hence we may also prove Corollary 4.2 along the same line as above.
Since we have

Vi (ap(f)")

A AN BT (2n) T _ nk—n(n+1)/2y if (2n) *
(I);;(ap(f)") Lift (f) (1 p ) Lift (f) s
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Lift(2")( f)* and Lift(2")( )t are essentially the same, however, the former
can be regarded as the principle p-stabilization for Lift@")( f) and the Siegel

Eisenstein series E,(j:?z (cf. §85.1 below).

Remark 4.3 (semi-ordinarity). Unfortunately, even if f is ordinary (and so
is the associated Galois representation), Lift?™)(f) does not admit the ordi-
nary p-stabilization in the sense of Hida (cf. [H4, H5]). That is, Lift™ (f)
may not be an eingenfunction of the Hecke operators Uy o, Up1---, Up2n—1
such that all the eigenvalues are p-adic units. It is because the fact that
the p-local spherical representation associated with Lift(2”)( f) is not equal
to any induced representation of an unramified character. On the other
hand, Corollary 4.2 implies that there exists a p-stabilization Lift(2")( f)* so
that the eigenvalue of U, is a p-adic unit. Following [SU], we refer to it
as the semi-ordinary p-stabilization of Lift®™ (f). In fact, it turns out that
this condition is sufficient to adapt the ordinary theory. Since the operator
Up,o is given by the trace of the Frobenius operator acting on the ordinary
part of the cohomology of the Siegel variety, there is no need to use the
overconvergence of canonical subgroup.

Now, for the universal ordinary p-stabilized newform f,.q4 = Zm21 anqm €

R°"[[¢]] interpolating the Hida family { fa.}, we construct its A-adic lifting
interpolating the semi-ordinary p-stabilized Duke-Imamoglu lifting {Lift( fox)* }:

Theorem 4.4. For each integer n > 1, and a fized integer kg > n + 1 with
ko =n (mod 2), let 0y and g be a pair of a fundamental discriminant and
an analytic neighborhood of Py € %alg(Rord) taken as in Proposition 3.7.
For each integer k > ko with k = ko (mod 2), we denote by Liftgin)(fgk)
the Duke-Imamoglu lifting of for associated with the 0g-th Shintani lifting
Yoo (for). Then for Py = (ko,who) € %alg(éord) lying over Py, there exist a
formal Fourier expansion

F= Z arq’ € (éord)(ﬁo)[[qm%)
>0

and a choice of p-adic period Qp € @p for P € Uy satisfying the following:

(i) Qp, #0. B
(ii) For each P = (k,w") € Xag(RY) lying over P = (2k,w?) € Yo
with k = ko (mod 2), we have

ar(P) = % A (Life™ (for)®),

where Q°(P) € C* is the complex period of P with signature ¢ € {£}.
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Proof. By combining Theorem 4.1 with the equation (9), we have
Ap(Lift ™ (fo1,)")

- (1 - (%) ﬁp(fzk)p‘k> for| (Voo (far))

x ap(for) I TT on(for) 0 FL(T, 0757 B far)

Ufr,
I#p

= (1= (%) Bura*) e 0n, 7

v (fr)
x ap(for)" "I D2 (001 o) =)k ().

l|fr, =0
l#p

We easily see that for each prime [ # p and each integer r > 0, there exists
an element d(I") € A such that d(I")(P) = I"*~1 for each P = (2k, w?*) €

Xalg(RY). We define an element ar € (Eord)(~ B) DY
v (fr) '
(16)  ar = c(d; P))ay T Y ¢r(00=)d(@ 00 ay,
l|fr, =0
l#p

where c(g; |9]) € (Eord)(ﬁo) is the element in Proposition 3.7. Then the

desired interpolation property follows immediately from Theorem II and
Proposition 3.7, and we complete the proof. O

According to the explicit form (16), the A-adic Duke-Imamoglu lifting
admits a non-vanishing property as well as the A-adic Shintani lifting that
we have already established in §§3.2. Therefore we consequently obtain
a semi-ordinary p-adic analytic family of non-zero cuspidal Hecke eigen-
forms {QE L Llft(2" (for)* € Frsn(To(p))?M} parametrized by varying P =

(2k, w?) € ilo with & = kg =n (mod 2).

Remark 4.5. Recently, Tkeda [I3] generalized the classical Duke-Imamoglu
lifting to a Langlands functorial lifting of cuspidal automorphic represen-
tations of PGLa(Ag) to Spy,(Ak) over a totally real algebraic field K,
which contains some generalizations of the classical Duke-Imamoglu lifting
for .Zo,(To(N))M with N > 1. Unfortunately, the case N = p has been ex-
cluded from the framework so far. It is because resulting automorphic rep-
resentations of Spy,, (Ax) are likely to have the Steinberg representations as
their p-local components. Therefore we cannot use the Duke-Imamoglu lift-
ing of f3, € Sa1(To(p))V) directly. However, by virtue of Theorem 4.1 and
Corollary 4 2 we may regard the semi-ordinary p-stabilized Duke-Imamoglu

lifting Llftao (fzk)* € Fhin(To(p))® naturally as a possible generalized
Duke-Imamoglu lifting of f5, € Z59(To(p))!). The author expects that
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the theory of the p-adic stabilization for Siegel modular forms is not only
interesting in its own right but also useful in the study of classical Siegel
modular forms and the associated automorphic representations.

5. APPENDIX

5.1. A-adic Siegel Eisenstein series of even genus. As applications of
the methods we have used in the previous §4, we give a similar result for
the Siegel Eisenstein series of even genus.

Recall that for the Eisenstein series Eé? € Mo (SLa(Z)), the ordinary
p-stabilization

(S (2) == B (2) — p* 7 B (p2) € ton(To(0)) ) (2 € $1)

can be assembled into a p-adic analytic family (cf. [H3]). On the other
hand, we have mentioned in §§2.1 that for each pair of positive integers n, k
with & > n+ 1 and kK = n (mod 2), the Siegel Eisenstein series El(j:z €
M1 (SPyy,(Z)) can be formally regarded as the Duke-Imamoglu lifting of
Eé}f) Therefore by replacing the Hida family {f;, } with {(Eéi))*}, we may
naturally deduce the following:

Theorem 5.1. For each positive integers n and k with k >n+1 and k =n
(mod 2), put

27L k
B @ (Uyo),

where ®;(Y), Ui (Y) € @; [Y] denote the polynomials defined in §4, but for
(ap(Eéi)),ﬁp(Eéi))) = (1,p**71). Then we have

(i) (E,(j:?z)* is a non-cuspidal Hecke eigenform in My n(To(p)) ) such

that the Hecke eigenvalues agree with E,(jZ)L for each | # p and

(E/(fﬂ)* lk+nUp,0 = (El(ji:z)*

(ii) Let £ = Frac(A) be the field of fractions of A. If 0 < T € Symj, (Z)
satisfies either rank(T) = 0 or rank(T") = 2n (i.e.T > 0), there exists
an element ep € L such that

er(Po) = AT((Em)*)

for each Py, € Xaig(A) with Poy(y) = 2k,

Proof. By making use of the fundamental properties of U, stated as in §4,
we easily obtain the assertion (i). For each T' € Sym3, (Z) with rank(T) =
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2n, by applying Theorem 4.1 for Eé}f) instead of fo, we have

an((eE) = (1= () ) pa -k () [T Aers i

Ufr,
l#p

= 100k () I At
U,
l#p

where L) (s, (3z)) = L(s, (32))(1 — (%) p~®). If T € Symj,(Z) has

(2n)

. that

rank(7") = 0, then it follows from the definition of E

ql*
Ar(BEDY) = q)gﬂ (1) Ap(E)

= 27¢P (A —k—n) [[¢P (1 - 2k — 2n + 20),
i=1
where () (s) := ¢(s)(1 — p~*). Therefore, the assertion (ii) follows immedi-

ately from the constructions of p-adic L-functions in the sense of Kubota-
Leopoldt. O

Remark 5.2. More generally in the same context, Panchishkin [P1] has
already obtained a similar result for the twisted Siegel Eisenstein series of
arbitrary genus g by a cyclotomic character. However, in that case, we may
conduce only the p-adic interpolation properties of the Fourier coefficients
for each positive definite 7' € Symy(Z) with p Jdet(T). Fortunately, in our
setting, the description of the p-stabilization process allows us to resolve the
p-adic interpolation problem for more general Fourier coefficients, but only
for T' € Sym3,,(Z) with rank occupying in extreme cases.

When n = 1, by virtue of [K]|, we obtain a complete satisfactory result
for the A-adic Siegel Eisenstein series of genus 2 and of level 1 as follows:

Corollary 5.3. There exists a formal Fourier expansion
E=Y erq” e £fg)®
T>0
such that )
E(P2k) = (E;(gll)*

for each Py, € Xa1g(A) with k> 2 and k =1 (mod 2).

Indeed, by virtue of Theorem 5.1, it suffices to show the assertion for
each 0 < T € Symj(Z) with rank(T") = 1. Then Theorem in [K] yields that
AT((E,(jZl)*) can be written as

Ar(E) = (= 2k) JLEY (mrs 1),

l\mT
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where my = max{0 < m € Z|m T € Sym}(Z)} and Fl(l)(b, X) =

Zflz(g)(lX )" for each integer b > 0. Since we easily see that
EM (p*mr; pX)—(p* X +p° X*)FY (pmp; pX)+p° X3EM (my; pX) = 1-p* X2,

we have
2 * 1 _
Ar((BR)") =¢P (1 —2k) [T £ (mgs 571,
l‘l’l’lT7
l#p
Hence we obtain the assertion. O

For each n > 1, the author does not know the explicit form of the Fourier
coefficient AT(EgZ)L) for 0 < T € Syms3,,(Z) with 1 < rank(7T") < 2n. How-
ever, the A-adic Siegel Eisenstein series which interpolates the whole Fourier
expansion of (E,7 )" is expected to exist in general.

Remark 5.4. Along the same line as above, Takemori [Ta] independently
proved that for each integer r > 0 and each integer N > 1 prime to p, a
similar result also holds for the Siegel Eisenstein series of genus 2 and of level
Np" with a primitive character. In the present article, we mainly dealt with
the Duke-Imamoglu lifting according to [I1], which requires the conditions
r =0 and N = 1. Therefore the Siegel Eisenstein series has been discussed
under the same conditions, but for arbitrary even genus 2n > 2. We note
that the method we use is also extendable to the Siegel Eisenstein series of
even genus in a more general setting, at least, for N > 1.

5.2. Numerical evidences. Finally in this section, we present some nu-
merical evidences of the p-adic analytic family {Lift>™ (f,)*} which have
been done by using the Wolfram Mathematica 7.

Example 5.5. As mentioned in Example 3.4, Ramanujan’s A-function
fi2 € F12(SLa(Z)) and a normalized Hecke eigenform f3o € .#32(SLa(Z))
can be assembled into the same Hida family for p = 11. We easily see that

hizjs = q—56q" +120¢° — 240¢° + 9¢” + 1440¢" + - - - € Z[[q]],
haz;p = q+ (x—32768)¢" + (2 — 65568)¢° + (218z — 7116672)¢®
+(4322 — 14298687)¢° — (29162 — 103037184)¢"? + - - - € Ok, [[¢]]

give rise to Hecke eigenforms in Ylg/g(F0(4))(1) and Ygg/g(F0(4))(1) corre-
sponding respectively to fi2 and fs3o via the Shimura correspondence, where
Ok, denotes the ring of integers in the real quadratic field K32. By making
use of the induction formulas of Fj(T; X) (cf. [Kal]), we computed Fourier
coefficients of Lift™® (f12) € Z5(Sp4(Z)) and Lift™(fss) € S15(Spy(Z)) for
4475 half-integral symmetric matrices in Sym}(Z) according to Nipp’s table
of equivalent classes of quaternary quadratic forms with discriminant up to
457 (cf. [N]). For simplicity, we denote by

[t11,t22, t33, taa, ti2, t13, 3, tia, toa, t34]
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the matrix
tin t12/2 t13/2 t14/2
t12/2  tao  ta3/2 to4/2
t13/2 ta3/2  t3z t34/2
t14/2 toa/2 t3u/2  tu
For each 0 < T € Sym}(Z) with ®7 = det(27") = 121, o7 = 1 and fr = 11,
is equivalent to one of the following three representatives:

Ty =[1,1,3,3,0,1,0,0,1,0], Tp=[1,1,4,4,1,1,0,1,1,4],

€ Symj(Z).

Ty =(2,2,2,2,2,1,0,1,1,2).
By virtue of Theorem in [Kal], we obtain
F11(Ti; X) =1 — 1452X + 161051 X2

for ¢ =1, 2, 3. Then we checked that the norm of the difference
Ar (Lift™ (f12)) — Az, (Lift ™ (f2)) (i =1, 2, 3)

is factored into
28.3%4.5% .11 - 171449 - 680531 - 35058959130397.

Moreover, for each 0 < T € Sym}(Z) with 4 < ©p < 457 appearing in
[N], the norm of Ap(Lift™(f19)) — Ap(Lift™(fs9)) is indeed divisible by
p = 11. This fact supports that Lift™ (fi2) is congruent to Lift((fss)
modulo a prime ideal of Og,, lying over p = 11, and hence their semi-
ordinary 11-stabilizations Lift™ (fi2)* and Lift™ (fs2)* reside both in the
same 11-adic analytic family. Similarly, we also produced another examples
of congruences between Fourier coefficients of Lift™(fa) € #12(Sp,(Z))
and Lift™ (fs6) € S0(Spy(Z)) for p = 19.
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