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Transient radiative tranfer in the grey ase:well-balaned and asymptoti-preserving shemesbuilt on Case's elementary solutionsLaurent Gosse�November 26, 2010AbstratAn original well-balaned (WB) Godunov sheme relying on an exatRiemann solver involving a nononservative (NC) produt is developedin order to solve aurately the time-dependent one-dimensional radiativetransfer equation in the disrete-ordinates approximation with an arbi-trary even number of veloities. The ollision term is thus onentratedonto a disrete lattie by means of Dira masses; this indues steady jumprelations aross with the stationary problem is solved by taking advantageof the method of elementary solutions mainly developed by Case, Zweifeland Cerignani. This approah produes a rather simple sheme thatompares advantageously to standard existing upwind shemes, espeiallyfor the deay in time toward a Maxwellian distribution. It is possible toreformulate this sheme in order to handle properly the paraboli salingin order to generate a so{alled asymptoti-preserving (AP) disretizationfor whih the onsisteny with the di�usive approximation holds indepen-dently of the omputational grid. Several numerial results are displayedto show the realizability and the eÆieny of the method.1 IntrodutionThis paper is a ontinuation of the former works [22, 23, 24℄; it aims at pushingtoward more omplex kineti models the development of numerial shemessatisfying both the well-balaned (WB) and the asymptoti-preserving (AP)riteria in hyperboli and paraboli salings, respetively. More preisely, we�rst derive a WB sheme whih solves the Cauhy problem for a simple modelof \grey" radiative transfer:�tf + ��xf = 2 Z 1�1 f(t; x; �0)d�0 � f; � 2 [�1; 1℄; x 2 R; t > 0: (1)�IAC{CNR \Mauro Pione" (sezione di Bari), Via Amendola 122/D, 70126 Bari (Italy)l.gosse�ba.ia.nr.it 1



This model is also relevant for neutron transport: in this ase, the parameter 2 [0; 1℄ stands for the mean number of seondary neutrons obtained by both�ssion and sattering per ollision. It is of ourse ompleted by initial onditions:f(t = 0; x; �) = f0(x; �); � 2 [�1; 1℄; x 2 R:A entral feature of kineti problems of the type (1) is to admit a so{alled\di�usive approximation": let us de�ne the marosopi density and ux as%(t; x) = Z 1�1 f(t; x; �)d�; J(t; x) = Z 1�1 �f(t; x; �)d�;then, for  = 1, it an be shown rigorously that upon resaling (1) as follows,"2�tf + "��xf = 12 Z 1�1 f(t; x; �0)d�0 � f; 0 < "� 1; (2)in the limit "! 0, the following di�usion holds [3, 38℄:�t%� 13�xx% = 0; x 2 R; t > 0: (3)In partiular, one obtains in this ase:f(t; x; �) � 12%(t; x); J(t; x) = �13�x%(t; x):Our goal in this paper is to derive a numerial sheme for the time-dependentequation (1) in the disrete-ordinates approximation [44℄; it is meant to beonsistent with both the large-time asymptoti behavior (see e.g. [2℄) and withthe di�usive approximation (3) when applied to the paraboli saling (2). Upto now, this program has been ompleted only for 2-veloities models [22, 23℄.We stress that these algorithms have been used in several meaningful areas ofappliation: see e.g. [6, 8, 9, 28℄.Two omplementary methodologies emerged for deriving numerial shemesapproximating nonhomogeneous hyperboli problems: the well-balaned shemes[25℄ roughly asking for an enhaned onsisteny with the long-time behavior ofthe original equation, and the asymptoti-preserving shemes [33, 31℄ whih en-sure that the limiting proess "! 0 leading to the di�usive approximation stillholds at the disrete level independently of the size of the omputational grid.For disrete veloity models, it has been shown rigorously in [22, 23, 24℄ that theasymptoti-preserving property is atually a onsequene of the well-balanedwhen one implements it through a Godunov sheme relying onto an exat Rie-mann solver. More preisely, the path is to pass from the Cauhy problem for (1)to the homogeneous (but non-onservative) one (15). This reformulation, whihonentrates the ollision term onto a disrete lattie related to the omputa-tional grid, allows to treat the right-hand side by means of Rankine-Hugoniottype jump relations aross whih one follows the solution of the stationary prob-lem for (1), see (4). Clearly, the sti�ness issue disappear beause multiplying2



the right-hand side by any big number boils simply down to going muh fareron these steady-state urves as a resaling in x easily shows.More interestingly, it has been �rst shown in [22℄ that these non-onservativejump relations an be divided into 2 qualitatively di�erent terms: the �rst one isO(1) and orresponds to the strong relaxation onto the Maxwellian distributionand the seond one is O(") and ontains the di�usive terms whih allow tobe onsistent with (3) as " ! 0 with " � �x and �x > 0. Clearly, in thisregime, the time-step has to meet with the usual paraboli CFL ondition, that is�t = O(�x2). E�orts have been made in [23, 24℄ (and more reently in [21℄ for amodel of hemotaxis movement) to extend this framework toward more omplexkineti models: we present in this paper an original Godunov WB sheme for(1) whih is built on the lassial theory of so{alled \elementary solutions"introdued by Case [10℄ and developed by various authors [11, 12, 13, 14℄. Asit was the ase for simpler disrete-veloity models, this WB sheme an bereformulated in order to handle the di�usive saling (2) and be onsistent as"! 0 with the limiting equation (3).Another feature emerged while studying this type of numerial shemes:namely, it appears that onventional upwind shemes for the linear equation (1)generally do not stabilize onto the exat Maxwellian distribution as t ! +1with �x > 0 �xed despite the fat that the residues plunge to zero. Rippleskeep on existing when ones visualizes the numerial kineti density f(t; x; �) inthe plane x; � even if the residues are of the order of 10�7: see Figure 7 on theright. In sharp ontrast, our resulting well-balaned shemes stabilize nielywith time and, apart from the low veloities j�j < 0:2, the kineti density fis truly onstant in the � variable. Meaningful steps of this time stabilizationproess for the equation (1) inside a box with reeting boundary onditions areshown in Figure 5. This dynami is muh more onsistent with the asymptotibehavior [2, 35℄ of (1) than the one oming from more onventional upwinddisretizations.Aordingly, this paper is organized as follows: in x2, we reall both theCase's method of elementary solutions with the ompleteness results from [13,26, 34℄ and the ADO method of [5, 40℄. Later, the well-balaned sheme forrare�ed regime is derived relying on these solutions of the stationary equation,in the dissipative ase  < 1 in x3.1 and in the onservative ase  = 1 in x3.2;a omparison with a lassial time-splitting sheme is presented in x3.3. Thereformulation as a AP sheme is derived in x4.1; in x4.2, we show the relationexisting with an earlier sheme in [24℄. Numerial results for small values of" < �x are displayed in x4.3 where the onsisteny with (3) an be seen. Lastly,x5 ontains some onluding remarks.Let us lose this introdution with some bibliographi omments. Elemen-tary solutions (also referred to as \spetral Green funtions" [17℄) have been usedin a numerial ontext for steady-state radiative transfer problems (involvingoupling) in [32, 45℄. The disrete-ordinates method, onsisting in disretizingthe veloity variable aording to a Gaussian quadrature rule is lassial [44℄and has been studied in paraboli regime in e.g. [30℄. The method of resolutiondeveloped by Case is by no means limited to radiative transfer problems: it has3



been extended to BGK models by Cerignani in [12℄, see the survey in Chapter 6of [14℄. Ch. Dalitz [16, 18℄ extended it further to Boltzmann models of hargedpartiles for whih the ollision term is not a self-adjoint operator. More gener-ally, this method an be reast into the framework of exponentially dihotomousoperators: see the Chapter 5 in the book [42℄. Spurious long-time behavior ofstandard upwind numerial shemes in a partiular ontext has been deteted in[27℄ where stabilization onto stationary regimes with very big marosopi uxeshave been observed. Obviously, for the 2-veloity model onsidered in [27℄, anon-zero marosopi ux signals that the stationary regime isn't Maxwellian.2 The method of Case's elementary solutions2.1 Continuous solution of the steady-state problemIn his seminal paper, Case [10℄ onsiders the following equation:��xf(x; �) + f(x; �) = 2 Z 1�1 f(x; �0)d�0;  2 [0; 1℄; x 2 R: (4)In order to solve (4), his method stems on expanding f in terms of a set ofeigenfuntions; invariane by translation suggests the separation of variables:f(x; �) =  (x)'(�):Plugging into (4) and dividing by f leads to 0(x) (x) = �1� + 2�'(�) Z 1�1 '(�0)d�0Both sides of the equation must be equal to the onstant � 1� hene: �(x) = exp(�x=�); �1� ���'�(�) = 2 Z 1�1 '(�0)d�0 � 2 :The �rst step is to �nd the eigenmodes � suh that both the preeding equationsadmit solutions. The normalization of the integral term allows to rewrite theequation on '� as �1� ���'�(�) = 2 ; (5)whih highlights the two ases to examine, namely � 2 [�1; 1℄ and � 62 [�1; 1℄.1. � 62 [�1; 1℄: this orresponds to the disrete part of the spetrum. Thedenominator never vanishes thus one an safely write:'�(�) = 2 �1� ����1 :4



In order to meet with the normalization of the integral term, the followingondition should hold:�(�) = 1� �2 log�� + 1� � 1� = 0:For  < 1, 2 real roots exist for �, usually denoted ��0; hene,'��0(�) = 2 �1� ��0��1 :2. � 2 [�1; 1℄: let PV stand for the Cauhy prinipal value and Æ for theDira mass in zero. Generalized solutions of (5) read now:'�(�) = 2PV �1� ����1 + �(�)Æ(� � �); � 2℄� 1; 1[; (6)for whih the normalization ondition of the ollision term leads to�(�) = 1� �2 PV Z 1�1 d�� � � = 1� �2 log�� + 1� � 1� :Consequently, to any value of � 2℄� 1; 1[ an be assoiated a \generalizedeigenfuntion" of the type (6).This omputation should be ompleted by a ompleteness assertion: indeed, itis proved in [11℄ that any reasonable funtion f(x; �) an be expanded as follows:f(x; �) = a� 2 �1� ��0��1 exp(�x=�0) + Z 1�1A(�)'� (�) exp(�x=�)d�: (7)More preise ompleteness statements are available in [14℄ (pp. 291/2) or [34℄.The ase  = 1 is ritial for these omputations: it is explained in the AppendixF of [11℄ (see also [42℄ p.98) that the disrete part of the spetrum has to bemodi�ed as follows:f(x; �) = �+ �x+ Z 1�1A(�)'� (�) exp(�x=�)d�: (8)For  = 1, disrete eigenvalues are unbounded: more details on this situationare studied in [43℄. From [13℄ (page 610) omes a result diretly onerned with(4): the set of generalized eigenfuntions is omplete for funtions f suh that:1. � 7! f(x; �) is H�olderian in any losed subinterval of (�1; 1),2. � 7! f(x; �)(1� �2) is H�olderian in [�1; 1℄ (0 <  < 1).Extensions to \generalized kineti equations" T�xf(x; �) + Af = 0 in Hilbertspae for T bounded self-adjoint and A possibly unbounded, self-adjoint andFredholm are to be heked in [26℄. The orthogonality of the generalized eigen-funtions is easily proved in the original paper by Case (see Theorem I in [10℄):Z 1�1 �'�(�)'�0 (�)d� = 0; � 6= �0:5



2.2 The Analytial Disrete-Ordinate (ADO) methodThe Case's method of elementary funtions has been extended by many authors,see e.g. [11, 12, 13, 14, 16, 17, 18, 34℄. For numerial purposes, it has been intro-dued under the name \Analytial Disrete-Ordinate method" in [5℄. Roughlyspeaking, it onsists in �rst, introduing a N -point Gaussian quadrature on theinterval (0; 1) given by the following points and weights:� = (�1; �2; :::; �N ) 2 (0; 1)N ; ! = (!1; :::; !N ) 2 R+ : (9)Then, it omputes a vetor of eigenmodes � 2 (R+ )N whih is an approximationof both the disrete and ontinuous part of the spetrum derived in the preedingsubsetion. Last, it determines the oeÆients of the generalized eigenfuntionsout of the given inow boundary onditions. Let us rewrite (4) as follows:��xf(x; �) + f(x; �) = 2 Z 10 f(x; �0) + f(x;��0)d�0; x 2 [�x0; x0℄; (10)with � 2 [�1; 1℄ and supplemented by inow boundary onditions:f(�x0;�j�j) = FL=R(�); � 2 (0; 1℄: (11)Analogously with the ontinuous ase, the separation variable � is introdued:f(x; �) = '(�; �) exp(�x=�):Plugging into (10) and taking the quadrature rule into aount yields:�1� �k�k�'(�;��k) = 2 NX̀=1 !`�'(�; �`) + '(�;��`)�; k 2 f1; :::; Ng:It is at this level that a trik is used in order to redue the ost of this eigenvalueproblem: let us denote ��(�) = ('(�;��k))k2f1;:::;Ng and Id the identity matrixof RN . By using the same notation for a vetor in RN and its orrespondingN �N diagonal matrix, it omes:�1� ���(�) = �Id� 2!���(�)� 2!��(�) (12)Barihello, Siewert and Wright [5, 40℄ now observe that, upon de�ning S(�) =�(�+(�) + ��(�)) 2 RN , (12) redues to:��1(Id� !)��1S(�) = 1�2S(�):This problem an be reast under a very tratable one, to whih standard divide-and-onquer methods [15℄ an be applied; indeed, by multiplying by the diagonalN �N matrix T = diag(p!k), it omes(��2 � zzT )X(�) = 1�2X(�); (13)6



where: z = diag�p!k�k � = p!��1; X(�) = TS(�):The eigenproblem is known to possess numerous \good properties" as explainedin [40℄; in partiular, sine the omponents of z never vanish, we have theinterlaing repartition,0 < �1 < �1 < �2 < �2 < ::: < �N < �N 62 (0; 1℄:Clearly, �N stand for the disrete part of the spetrum and thus an beomevery big when  ! 1; in the limit  = 1, we have a degeneray at in�nity.Finally, we reall the normalization of the N eigenvetors:NX̀=1 !`�'(�k ; �`) + '(�k;��`)� = 1; k 2 f1; :::; Ng: (14)3 Well-balaned sheme based on exat Riemannsolver for kineti regimeStarting from here, we de�ne a spae/time omputational grid determined by atime step �t > 0 and the uniform width of the ells �x > 0 suh that the CFLondition holds: �t � �x. We obtain:xj = j�x; tn = n�t; Cj = (xj� 12 ; xj+ 12 ); j 2 Z; n 2 N:Then we introdue approximate values as follows:fnj (��k) ' f(tn; xj ;��k);where �k still refers to the Gaussian quadrature rule (9). The general methodol-ogy of well-balaned shemes stems on loalizing the soure terms of hyperboliequations onto a disrete lattie; presently, it onsists in passing from (1) to:�tf + ��xf =Xj2Z�x� 2 Z 1�1 f(t; x; �0)d�0 � f� Æ(x� xj+ 12 ): (15)The onsisteny with the original problem as �x! 0 is the onsequene of thesimple observation: Xj2Z�xÆ(x� xj+ 12 )* 1:More details about onsisteny for hyperboli systems of balane laws are tobe found in [1℄. For disontinuous solutions, the right-hand side of (15) hasbeome a non-onservative (NC) produt and should be de�ned arefully. Ithas been rigorously shown in [23℄ (see x2.1) that in the simpler ase of a disreteveloity model, the loalization proess yields a BV-bound on the orresponding7



sequene of solutions. The NC produt an therefore be de�ned as a weak limitin the theory of [36℄. It indues a stationary ontat disontinuity aross whihholds a jump relation following the integral urves of the steady-state equation(4). This is the reason why the steady-state problem has been studied in thepreeding setion. The marosopi density and ux are de�ned aording tothe quadrature rule introdued while setting up the ADO method:%nj = NXk=1!k �fnj (�k) + fnj (��k)� ; Jnj = NXk=1!k�k �fnj (�k)� fnj (��k)� :3.1 Dissipative ase 0 <  < 1 (absorption and sattering)We aim at onstruting our well-balaned sheme as a Godunov sheme relyingon the exat Riemann solver for the NC problem (15). We reall that thisformulation makes the problem nonlinear as it rewrites [23, 29℄:�tf + ��xf �� 2 Z 1�1 f(t; x; �0)d�0 � f��xa = 0; �ta = 0:The Riemann problem for (15) onsists in solving the equation for pieewiseonstant initial data for � 2 [�1; 1℄:f0(x < 0; �) = fleft(�); f0(x > 0; �) = fright(�):Its struture is simple sine �xa(x) 6= 0 only at x = 0, thus the propagatingadvetion waves are una�eted by the NC produt. Therefore, we are led tosolve the boundary value problem for (4) inside the interval x 2 (��x2 ; �x2 ) inthe disrete-ordinates approximation, that is, for �� 2 � only. The �rst stepis learly to determine the eigenmodes � 2 RN : they are valid whatever theomputational point xj ; tn so they must be omputed as a pre-proessing step,before starting the iterations in time.When the eigenmodes are known, we pass to the resolution of the boundary-value problem under the normalization (14) and the onditions (11) whih anbe dedued easily from the Riemann data:FL(� > 0) = fleft(� > 0); FR(� < 0) = fright(� < 0):The disrete-ordinates approximation onsiders the following expression for thestationary solution with �k 2 �: (see also x5.3.1 in [42℄)f(x;��k) = 2 NX̀=1 A` exp(�(�x2 + x)=�`)1� �k=�` + B` exp(�(�x2 � x)=�`)1� �k=�` !Comparing with (7), it appears that the N � 1 �rst terms orrespond to a�nite approximation of the integral term oming from the ontinuous spetrum(also alled \damped modes") and the last one mathes the disrete part. The8



oeÆients vetors A = (A`) and B = (B`) for ` = 1; :::; N are determined bythe boundary onditions through the resolution of:M � AB � = 2 � fleft(�)fright(��) � :Using tensorial produts notation, the symmetri matrix M reads as follows:M =  �1� � 
 ��1��1 �1 + � 
 ��1��1 exp(��x� )�1 + � 
 ��1��1 exp(��x� ) �1� � 
 ��1��1 ! ; (16)where exp(��x� ) stands for the N � N diagonal matrix of values exp(��x�k ).One again, this matrix has to be assembled and inverted one for all as apre-proessing step. By analogy with [22℄, we use the following notation:~fL(��k) := f ���x2 ;��k� ; ~fR(�k) := f ��x2 ; �k� : (17)The uniform (in N and �x) invertibility of M omes from the ompletenesstheorems for Case's generalized eigenfuntions. By realling the simple fat thatthe Godunov sheme onsists in evaluating numerial uxes at the interfaes ofeah omputational ell Cj , we are now in position to write it down:8><>: fn+1j (�k) = fnj (�k)� �k �t�x �fnj (�k)� ~fR;j� 12 (�k)� ;fn+1j (��k) = fnj (��k) + �k �t�x � ~fL;j+ 12 (��k)� fnj (��k)� : (18)The values ~fR;j� 12 (�k) are dedued from the \left" problem,M � AB � = 2 � fnj�1(�)fnj (��) � ;and the ones ~fL;j+ 12 (��k), from the \right" problem,M � AB � = 2 � fnj (�)fnj+1(��) � :Remark 1 We stress that the sheme (18) never makes any approximation ofthe integral ollision term by means of a �nite summation. Instead, it is theelementary solution itself whih is approximated through the ADO method, es-peially the ontinuous part of the spetrum. We believe, and numerial evidenesupports this idea, that the overall auray is improved by this treatment.Figures 1 and 2 display numerial results for this well-balaned Godunov sheme:we onsidered a bounded omputational domain x 2 [�1; 1℄ with reetingboundary onditions on eah side in order to study stabilization as time growsand �x > 0 is �xed. The value of �x is given by imposing 27 = 128 grid points9
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Figure 1: Marosopi density (left) and ux (right) at time t = 3.
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Figure 2: Kineti density at time t = 3.
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in the x variable and the time-step �t is dedued from the CFL number of 0:9.We took N = 15 grid points for the Gaussian quadrature rule whih gives 30points for gridding the interval � 2 [�1; 1℄. Initial data onsist in 2 bumps:f0(x; �) = 10 exp�� 20(� � 0:35)2 � 50(x� 0:35)2�:The parameter  = 0:85 and we iterate until time t = 3. The marosopidensity and ux are free from osillations, so is the kineti density too whendisplayed in the x; � plane.3.2 Conservative ase  = 1 (purely sattering)Let us begin by realling that the equation (1) with  = 1 has been ompletelyanalysed in x3 of [13℄ by means of the Laplae transform and the method ofelementary solutions. In our numerial ontext, we follow the Appendix F in[11℄ and replae the expansion (7) with the one (8) in order to deal with thedegeneray at in�nity, �0 ! +1. Clearly, this doesn't a�et the pre-proessingstep dealing with the omputation of the eigenmodes vetor �. However, theexpression of the ADO solution has to be amended aordingly:f(x;��k) = 12E(x;��k;�) + �2 + �2 (x� �k);whereE(x; �;�) = N�1X̀=1  A` exp(�(�x2 + x)=�`)1� �=�` + B` exp(�(�x2 � x)=�`)1 + �=�` ! :Consequently, the matrix M is dedued from the preeding one (16) only bymodifying two of its olumns (whih are related to the disrete spetrum of theontinuous equation):Mk;N � 1; Mk=1;:::;N;2N = ��; Mk=1+N;:::;2N;2N = � +�x:It is very interesting to relate this modi�ation of M with what has been foundin [22℄ for the 2-veloity model for whih there are no \damped modes" (theontinuous part of the spetrum). Indeed, in this ase, the matrix M reads:M = � 1 �11 1 +�x � ;With the notation of [22℄, we obtain that:� = 2((1 +�x)uL + vR)2 +�x ; � = 2(�uL + vR)2 +�x : (19)Hene, we reover the expressions~u = uL + �x=21 +�x=2(vR � uL); ~v = vR � �x=21 +�x=2(vR � uL);11



whih means that the jump relations derived in [22℄ are partiular ases ofelementary solutions with a disrete spetrum. The present Godunov sheme(18) with its interfae values determined either in the dissipative ase  < 1,or in the onservative ase  = 1 is likely to be the most natural generalizationof the simple disrete veloity model studied in [22℄. On Figures 3 and 4, wedisplay numerial results for the test-ase orresponding to the same initialdata than in the preeding subsetion. The only hange is that  = 1 and themodi�ed M matrix is used for omputing the vetors A and B. Sine thereis no dissipation, the total mass is preserved and we an therefore observe thetime-asymptoti behavior of the WB Godunov sheme, espeially the deay ofits numerial solution onto the Maxwellian distribution. We aim at observingnumerially that, as time passes, the numerial kineti density beomes less andless varying in the � veloity variable. This is atually what happens as an beseen in Figure 5 despite the reeting boundary onditions in x = �1.3.3 Comparison with a lassial time-splitting shemeOne may think that a onventional time-splitting sheme an behave equally wellsine the equation (1) is linear and the ordinary di�erential equation assoiatedto the ollision term an be integrated exatly sine the marosopi density %is invariant along its ow. Indeed, suh a sheme would read:8><>: fn+ 12j (�k) = fnj (�k)� �k �t�x �fnj (�k)� fnj�1(�k)� ;fn+ 12j (��k) = fnj (��k) + �k �t�x �fnj+1(��k)� fnj (��k)� ; (20)together with:fn+1j (��k) = exp(��t)fn+ 12j (��k) + 2�1� exp(��t)�%n+ 12j :Many variants, like the seond order Strang splitting, exist and they probablyshare the same problem when it omes to long-time behavior. Atually, the�rst part (20) reates variation in the � variable sine it separates the partilesaording to their veloity: in partiular, it drives apart left-moving partilesfrom right-moving ones; this is stated rigorously as the so{alled dispersionLemma 2.1 in [37℄. Later, omes the relaxation step whih projets the resultingkineti density onto %; however, this doesn't ompensate for the preeding step.There is no mehanism in this sheme whih an eÆiently tame the variationsin the � variable of its numerial kineti density. This manifests itself throughseveral signs: when onsidering the deay of the L2 time residues,Rn = k%(tn; :)� %(tn�1; :)kL2 ; n 2 N� ;one easily sees on the top of Figure 6 that the ones of the time-splitting shemederease less quikly and in a more errati way ompared to the ones of the well-balaned sheme (15). Moreover, by looking at the numerial kineti densities12
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Figure 3: Marosopi density (left) and ux (right) at time t = 3.
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Figure 4: Kineti density at time t = 3.
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Figure 5: Kineti densities at t = 5; 9:5; 25; 35 (left to right, top to bottom).in the x; � plane at later time t = 15 on Figure 7, one sees that many ripplesstill appear on the time-splitting solution w.r.t. the WB as a onsequene ofthe drawbak explained formerly. It omes as no surprise that the resultingmarosopi density also displays more variation. Time-splitting shemes havebeen studied in [20℄ for a relaxing system in hyperboli saling admitting BV-bounds aording to a NC formalism related to the one we used presently.4 Asymptoti-Preserving for di�usive regimeIn this setion, we shall always be onerned with the resaled problem (2) aswe now aim at modifying the Godunov sheme (15) in order to make stableindependently of the smallness of " and moreover onsistent with the limitingdi�usion equation (3) as "! 0 with �x > 0 �xed.
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Figure 6: Residues (top) and marosopi densities (bottom) at time t = 15.
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Figure 7: Comparison of kineti densities at t = 15: WB (left) and TS (right).15



4.1 Splitting between Maxwellian and di�usive uxesTo ope with the di�usive saling in (2), we rewrite the stationary equation,��xf(x; �) + f(x; �) = 12 Z 1�1 f(x; �0)d�0; x 2 ���x2" ; �x2" � ;together the ADO approximation of Case's elementary solution:f(x;��k) = 12E(x=";��k;�) + �2 + �2 �x" � �k� : (21)Thus the M matrix has to be modi�ed aordingly,M" =  �1� � 
 ��1��1 �1 + � 
 ��1��1 exp(��x"� )�1 + � 
 ��1��1 exp(��x"� ) �1� � 
 ��1��1 ! ;with its two olumns reading like:M"k;N � 1; M"k=1;:::;N;2N = ��; Mk=1+N;:::;2N;2N = � + �x" :The interfae values ome from the solutions of the linear systems:M"� AB � = 2� fnj�1(�)fnj (��) � ; M"� AB � = 2� fnj (�)fnj+1(��) � :Looking at (15), it seems far less easy than in [22, 23℄ to separate inside theinterfae values ~fL=R;j+ 12 (�k) between a Maxwellian O(1) term and a di�usiveO(") one as their expliit expression isn't available. However, we an proeedbased on the guidelines of the simple linear Goldstein-Taylor model: aordingto the omputation of the previous setion, the oeÆient � in (19) is a goodandidate for a di�usive term. Thus, we propose the following deompositionof the ADO interfae values:1. the Maxwellian terms 2ML(��k) = E(��x="; �k;�)+� and 2MR(�k) =E(�x="; �k;�)+�+��x" whereE ontains the \damped modes" expressedwith exponential funtions whih are probably very small when "� �x,2. the di�usive terms 2DL(��k) = �j�kj and 2DR(�k) = ��j�kj, independenton �x, whih also have the nie feature of making the oeÆient 13 easilyappear when the disrete equation on %nj is derived.By treating impliitly the Maxwellian part and expliitly the di�usive one, theGodunov sheme (15) rewrites in the di�usive saling as follows:8>>>><>>>>: fn+1j (�k) = " fnj (�k)1 + �k�t"�x + �k�t"�x1 + �k�t"�x MR;j� 12 (�k)#� �2k �t�x �nj� 12" ;fn+1j (��k) = " fnj (��k)1 + �k�t"�x + �k�t"�x1 + �k�t"�x ML;j+ 12 (��k)#+ �2k �t�x �nj+ 12" : (22)16



For the time being, we are not able to derive rigorous proofs for the sheme (22)and we shall mainly rely on numerial evidene displayed in the subsetion x4.3.Following [22℄, we an derive formally the onsisteny of (22) with (3) assumingthat eah fnj (�k) is lose to Maxwellian. Indeed, (22) rewrites:8>><>>: fn+1j (�k) = fnj (�k)� �k�t"�x �fn+1j (�k)�MR;j� 12 (�k)�� �2k �t�x �nj� 12" ;fn+1j (��k) = fnj (��k) + �k�t"�x �ML;j+ 12 (��k)� fn+1j (��k)�+ �2k �t�x �nj+ 12" :We multiply eah equation for �� by the weights vetor ! and sum up:%n+1j � %nj�t � 13 �nj+ 12 � �nj� 12"�x =NXk=1 !k�k"�x �[MR;j� 12 (�k) +ML;j+ 12 (��k)℄� [fn+1j (�k) + fn+1j (��k)℄� : (23)The right-hand side beomes small as "! 0 in the omputations shown in x4.3.Remark 2 The sheme (22) is hopefully asymptoti-preserving independentlyof the number of points N hosen in the Gaussian quadrature for the ADOmethod, and onsequently of the number of equations in the hyperboli systemobtained from the disretization in the � variable.One again, it is of interest to observe how behaves our Maxwellian/di�usivesplitting on the simple Goldstein-Taylor model; the matrix M" simpli�es toM" = � 1 �11 1 + �x" � ;and from the equation M"(� �)T = 2(uL vR)T solved at any interfae xj+ 12 ,j 2 Z, of the omputational domain, it omes:� = �22 +�x="(uL � vR) = �""+�x=2(uL � vR):And this is exatly the right term yielding the orret asymptoti di�usion whenmultiplied by �t="�x with " ! 0; moreover, this type of value would lead toa entered disretization of the seond derivative 13�xx% in (23). Thus we haveevery reason to believe that the aforementioned deomposition still works in thegeneral ase where 2N veloities �� are onsidered.Proposition 1 Let f be de�ned as (21); if  = 1, there holds:8x 2 ���x2 ; �x2 � ; Z 1�1 �f(x; �)d� � ��3 :17



Proof. It proeeds by approximately integrating the pieewise onstant fun-tion in (21) aording to the quadrature rule !; � introdued in (9):Z 1�1 �f(x; �)d� = NXk=1!k�k[f(x; �k)� f(x;��k)℄:One part of the integral learly vanishes beause � 7! (� + �x=")� is odd on(�1; 1). Conerning the exponential terms, we leave the part depending on x andreall the normalization ondition (14) in order to ompute for any � 2 (�1; 1):PNk=1 !k�k�'(�; �k)� '(�;��k)� = 2PNk=1 !k � �k1��k=� � �k1+�k=��= � �2 PNk=1 !k �2� 11��k=� � 11+�k=��= � �2 �2� 2 PNk=1 !k['(�; �k) + '(�;��k)℄� :At this point, inserting  = 1 ensures that this term vanishes. Thus remains:NXk=1!k�k [f(x; �k)� f(x;��k)℄ = ��2 NXk=1!k(2�2k) = ��3 : �Proposition 1 is somehow a restatement of equation (40) in [4℄; it explains whythe di�usive uxes appearing in the left-hand side of (23) are orret for  = 1and " small enough. The fat that neither �x nor " show up in the expressionof these uxes ensures the AP property and the onsisteny of (22) with (3).4.2 Relation with a previous AP sheme

Relative L2 error on A
L2 error on B

−2
10

−1
10

0
10

1
10

−4
10

−3
10

−2
10

−1
10

0
10

Relative L2 error on A
L2 error on B

−4
10

−3
10

−2
10

−1
10

0
10

−5
10

−4
10

−3
10

−2
10

−1
10

Relative L2 error on A
L2 error on B

−4
10

−3
10

−2
10

−1
10

0
10

−7
10

−6
10

−5
10

−4
10

−3
10

−2
10

−1
10

Figure 8: Errors on approximating �; � for various " with (24) and (25).In the previous deomposition, we inluded in the Maxwellian part the termsof the order of exp(��x="�) despite the fat they derease very quikly with". It is therefore very tempting to anel them when deriving the sheme (22);18



a �rst onsequene of this assumption is to get Maxwellian terms independenton �k . However, there is another interesting one: on Figure 8, we display thenumerial the behavior of the following approximations for the values � and �,� ' 22 +�x  (1 + �x) NXk=1!kfleft(�k) + NXk=1!kfright(��k)! (24)and � ' � 22 +�x  NXk=1!k�k (fleft(�k)� fright(��k))! ; (25)for " = 1; " = 0:01; " = 0:00001 as a funtion of time. Of ourse, for " � �x,the value �x is replaed by �x=" as we pass from the sheme (15) to theAP one (22). One sees that these simple approximations improve when thekineti density beomes slowly-varying in the veloity variable �. These valuesof � and � mean that two reasonable assumptions are made: one, the kinetidensity is lose to its Maxwellian distribution and two, the exponential termsorresponding to the ontinuous spetrum are negligible. Then it an be hekedthat, in the notation of (17), the following jump relations hold:~fL(��k) = 12 (� + ��k)= NX̀=1 !`fleft(�k)� 12 +�x=" NX̀=1 !`(fleft(�k)� fright(��k))� �k2 +�x=" NX̀=1 !`�`(fleft(�k)� fright(��k));= NX̀=1 !`fleft(�k)� " NX̀=1 1 + �k�`2"+�x!`(fleft(�k)� fright(��k))' NX̀=1 !`fleft(�k)� 2"�k2"+�x NX̀=1 !`(fleft(�k)� fright(��k))and~fR(�k) = 12 (�+ ��x="� ��k)= NX̀=1 !`fright(��k) + 1 +�x="2 +�x=" NX̀=1 !`(fleft(�k)� fright(��k))+�k ��x="2 +�x=" NX̀=1 !`�`(fleft(�k)� fright(��k));= NX̀=1 !`fright(��k) + NX̀=1 !` (1� �`)�x2"+�x (fleft(�k)� fright(��k))+" NX̀=1 !` 1 + �k�`2"+�x (fleft(�k)� fright(��k))' NX̀=1 !`fright(��k) + 2"�k2"+�x NX̀=1 !`(fleft(�k)� fright(��k))19



And this mathes the results in [24℄: the simpli�ations in the marosopiuxes follow the omputations in pp. 234{236. Thus, by treating impliitly thesti� terms, we obtain the equations of the sheme (34) with the integral termsreplaed by �nite sums involving the Gaussian quadrature rule:8>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>:
fn+1j (�k) = fnj (�k)� �k�t"�x  fn+1j (�k)� NX̀=1 !`fn+1j (��k)!+ 2�2k�t�x(2"+�x) NX̀=1 !`�fnj�1(�k)� fnj (��k)�;fn+1j (��k) = fnj (��k) + �k�t"�x  NX̀=1 !`fn+1j (�k)� fn+1j (��k)!� 2�2k�t�x(2"+�x) NX̀=1 !`�fnj (�k)� fnj+1(��k)�:We an exploit the rigorous stability results from [24℄ at least in this speial asewhere drasti simpli�ations have been made in the ADO approximate solutionassuming that the kineti density is very lose to Maxwellian. This also providesus with another manner of deriving the AP shemes studied in this earlier paper.Remark 3 A big di�erene between the present work and the former one [24℄is that, despite onsidering the numerial approximation of the same problems(1) and (2), the treatment of the stationary equations is quite di�erent. Indeed,in [24℄, we approximated this steady-state problem by �nite di�erenes; in sharpontrast, we treat it exatly by means of the method of elementary solutions, andwe approximate only the ontinuous part of the spetrum by means of a �nitesum with a Gaussian quadrature rule. So the WB sheme (15) an be onsideredas a potentially muh sharper version of the one proposed earlier in x2 of [24℄.4.3 Numerial resultsWe now present some numerial results from the sheme (22) in the parabolisaling (2) with the \nearly Maxwellian" initial data:� f0(x; �) = exp(�"(�2 � x2))�x2[�1=3;1=3℄;f0(x; �) = exp(�"�2 � x2)�x2[�1=3;1=3℄; x 2 [�1; 1℄;where �A stands for the indiator funtion of a set A. The paraboli CFLondition has been used, namely �t = 0:45�x2, we took again N = 15 and 127points to grid the x interval. Tests have been arried out up to t = 0:05 with" = 0:01 and " = 0:00001. For this smaller value of ", we display on Figure9 the marosopi density % and the ux J obtained out of the kineti densityfnj (��) omputed with (22); espeially, the density is ompared to the diretsolution of the equation (3) omputed by means of a standard entered sheme.The onsisteny an be onsidered satisfatory. On Figure 10, we display thekineti distribution for " = 0:01 at time t = 0:05; learly, it an be onsideredas \pratially Maxwellian" even if " is snaller but still of the order of �x.20
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Figure 9: Marosopi density (left) and ux (right) at time t = 0:05 for "� �x.5 Conlusion and outlookAn original well-balaned Godunov sheme for the linear kineti equation (1)has been presented and its numerial results have been ompared to the onesgenerated by a more lassial time-splitting disretization. Moreover, it hasbeen shown that it is possible, like in simpler 2-veloities models, to reformulatethe sheme in order to make it asymptoti-preserving in the di�usive saling(2), thus displaying onsisteny with the limiting di�usion equation (3) inde-pendently of the grid parameters as soon as the usual paraboli CFL restritionis met. This approah is by no means limited to this partiular radiative transferequation; namely, 2 main extensions emerge rather spontaneously:1. more elaborate kineti models: one an hoose to treat any ollision opera-tor for whih the formalism of Case's elementary solutions an be applied.This lass ontains for instane the BGK models studied by Cerignani[12, 13, 14℄ and treated numerially in the stationary regime by Siewert etal. [4℄. Another very interesting diretion is to treat Boltzmann equationsfor harged partiles: in this ase, one has to follow the results by Dalitz21
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