
HAL Id: hal-00540266
https://hal.science/hal-00540266

Submitted on 26 Nov 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Solving Two-Stage Hybrid Flow Shop Using Climbing
Depth-bounded Discrepancy Search

Abir Ben Hmida, Mohamed Haouari, Marie-José Huguet, Pierre Lopez

To cite this version:
Abir Ben Hmida, Mohamed Haouari, Marie-José Huguet, Pierre Lopez. Solving Two-Stage Hybrid
Flow Shop Using Climbing Depth-bounded Discrepancy Search. Computers & Industrial Engineering,
2011, 60 (2), pp. 320-327. �hal-00540266�

https://hal.science/hal-00540266
https://hal.archives-ouvertes.fr

 - 1 -

Solving Two-Stage Hybrid Flow Shop Using

Climbing Depth-bounded Discrepancy Search

Abir Ben Hmida
1,2,3

, Mohamed Haouari
3
, Marie-José Huguet

1,2
, Pierre Lopez

1,2

1
CNRS ; LAAS ; 7 avenue du colonel Roche, F-31077 Toulouse, France

2
Université de Toulouse ; UPS, INSA, INP, ISAE ; LAAS ; F-31077 Toulouse, France

(abenhmid@laas.fr, huguet@laas.fr, lopez@laas.fr)

3
Ecole Polytechnique de Tunisie, Unité ROI, La Marsa, Tunisia

(mohamed.haouari@ept.rnu.tn)

 - 1 -

Solving Two-Stage Hybrid Flow Shop Using

Climbing Depth-bounded Discrepancy Search

ABSTRACT

This paper investigates how to adapt a discrepancy-based search method to solve two-stage hybrid flowshop scheduling

problems in which each stage consists of several identical machines operating in parallel. The objective is to determine

a schedule that minimizes the makespan. We present an adaptation of the Climbing Depth-bounded Discrepancy Search

(CDDS) method based on Johnson’s rule and on dedicated lower bounds for the two-stage hybrid flow shop problem.

We report the results of extensive computational experiments, which show that the proposed adaptation of the CDDS

method solves instances in restrained CPU time and with high quality of makespan.

Keywords: Scheduling, Two-stage Hybrid Flow Shop, Discrepancy Search Methods, CDDS, Lower Bounds, Heuristics.

1. INTRODUCTION

In this paper, we consider the two-stage Hybrid Flowshop Scheduling (HFS) problem which can be stated as follows.

Consider a set J={J1, J2, …, Jn} of n jobs and two stages S1 and S2, each stage Si contains mi identical machines (i=1,2).

Successive operations of a job have to be processed serially through the two stages; each job j J has to be processed

first on a machine of stage S1 during p1,j units of time. After that, job j has to be processed on a machine of the second

stage S2 for p2,j units of time. Job preemption and job splitting are not allowed. Moreover, a job cannot be processed by

more than one machine at the same time and each machine processes at most one job at a time. Solving the two-stage

HFS problem consists in assigning a specific machine to each operation of each job as well as sequencing all operations

assigned to each machine. The objective is to find a schedule that minimizes the maximum completion time, or

makespan, defined as the elapsed time from the start of the first operation of the first job in stage S1 to the completion of

the last operation of the last job in stage S2. Following the notation of [1], the considered problem is

denoted F2(P) C
max

.

The F2(P) C
max

 problem is NP-Hard in the strong sense when there is, at least, more than one machine at a stage

(i.e., max(m1,m2) > 1) [2]. Detailed reviews of the applications and solution procedures of the F2(P) C
max

 problems

are provided in [3, 4, 5].

Most publications dealing with the two-stage hybrid flow shop problem assume that there is exactly one machine at one

of the two stages [6, 2]. In the latter work, authors presented a case study in a two-stage HFS with sequence-dependent

setup times and dedicated machines and they developed a branch-and-bound algorithm to solve it. For the general case

(i.e., with more than two machines in each stage), Lee and Vairaktarakis [7] show that the completion time obtained by

applying the Johnson's rule on an auxiliary two-machine flow shop instance is a lower bound for the two-stage hybrid

flow shop problem. The latter lower bound was improved in [8]. Authors show that their lower bound dominates the

Lee and Vairaktarakis [7] one's. Guinet et al. [18] propose a heuristic for the makespan minimization problem in two-
stage hybrid flow shop scheduling based on Johnson’s rule. This heuristic is compared with the Shortest Processing
Time (SPT) and the Longest Processing Time (LPT) dispatching rules. The authors conclude that the most effective

approach used Johnson's rule to provide the priority list for job assignment. Haouari et al. [9] developed a branch-and-

bound method to solve the problem and proved that their algorithm is more efficient than previous procedures. Tseng et

al. [17] dealt with the issue of missing operations at the first stage and proposed some simple heuristics. The reader is

referred to the survey paper of Ruiz and Vázquez-Rodríguez [16] for a recent overview on different methods proposed

to solve general hybrid flow shop problems.

 - 2 -

In this paper, we present some adaptations of a local search method, called Climbing Depth-bounded Discrepancy

Search (CDDS), which has been initially proposed to solve HFS in the general case and has proved its efficiency to

solve it [10]. To apply CDDS method to the particular case of F2(P) C
max

, we use the extended Johnson's rule

developed in [7] to generate an efficient initial solution and we use the so-called SPT-based lower bound developed in

[8] to prune the search tree. With these adaptations, the CDDS method has an excellent performance both in comparison

to the general CDDS used to solve HFS and in comparison with other methods, and gives in the great majority of the

cases a proven optimal solution. Furthermore, it provides high quality near-optimal solutions.

The remainder of the paper is organized as follows. Section 2 introduces the discrepancy-based search methods and

details CDDS method. Section 3 presents how to adapt CDDS to solve the two-stage HFS problem and details the lower

bounds used. Section 4 presents the results of a computational study of the proposed methods on well-known

benchmark instances. Finally, we report some conclusions and open issues to this work.

2. CLIMBING DEPTH-BOUNDED DISCREPANCY SEARCH METHOD

Discrepancy-based methods are tree search methods developed for solving combinatorial constraint satisfaction

problems. These methods are based on the depth-first search principle; however, when a dead-end occurs, the traditional

chronological backtracking is replaced by the concept of discrepancy to expand the search tree. Harvey [11] has

proposed the basic method called Limited Discrepancy Search (LDS). It consists in starting from an initial instantiation

suggested by a given heuristic and successively explores branches by changing the instantiation of some variables:

when considering one discrepancy, the instantiation of one variable is changed; with two discrepancies, the instantiation

of two variables is changed, and so on. One can note that a given number of discrepancy leads to a set of instantiations.

The search is stopped when a solution is found or when there is no solution (the entire tree is then expanded).

As an example to illustrate the above exploration processes, consider a decision problem consisting of four binary

variables x1, x2, x3, x4. The value ordering heuristic orders nodes left to right and, by convention, we consider that we

descend the search tree to the left with xi = 0, to the right with xi = 1, i = 1,2,3,4. A solution is obtained with the

instantiation of the four variables.

Figure 1(a) illustrates the complete search tree obtained using LDS. At each node, a branch without discrepancy (in the

left) is in plain line, while a branch corresponding to one discrepancy (in the right part of the tree) is drawn in dotted

line. The first line below the leaves is associated with the discrepancy number, the second line with the order of

apparition of each leaf during the search.

We consider the variant of LDS without redundancy: at the first iteration the leaf with a zero discrepancy is reached by

the heuristic and during each other iterations, k leaves with exactly k – 1 discrepancies are reached. In the following, we

use a variant of LDS in which discrepancies are applied first at the top of the tree to correct early mistakes of the

instantiation heuristic. Thus in the tree of Figure 1(a), leaves with one discrepancy are obtained from the right to the

left, as noted in the second line below the search tree.

To limit the tree search expansion, we also consider a truncated variant of the LDS method. Based on the idea

introduced for the Depth-bounded Discrepancy Search method (DDS) [12], we limit the discrepancy to a given depth d.

In this “truncated LDS”, discrepancies are applied only on levels of which the depth is less or equal than d.

Figure 1(b) depicts the search tree obtained by the truncated LDS with d=2. In this tree, the leaves are reached in the

same order as for the LDS method but there is no discrepancy at the level of depth 3; thus, the complete tree cannot be

obtained.

These two methods (LDS and truncated LDS) are closely connected to an efficient instantiation heuristic.

Another variant of LDS dedicated to optimization problems is called Climbing Discrepancy Search (CDS) [13]. CDS

can be viewed as a local search method that adapts the concept of discrepancy to find a good solution. It starts with an

initial solution (zero discrepancy) and explores its neighborhood by the way of increasing discrepancies. If no solution

with a better cost is found in this neighborhood, then the number of allowed discrepancies is increased. If a better

solution is reached, the reference solution is updated, the number of discrepancies is reset to zero, and the process for

exploring the neighborhoods is restarted. As mentioned by their authors, the CDS method is close to the Variable

Neighborhood Search (VNS) [14]. The interest of CDS is that the principle of discrepancy defines neighborhoods as

branches in a search tree. This leads to structure the local search method to restrict redundancies. The aim of CDS

strategy is not to find only a feasible solution, but rather a high-quality solution in terms of criterion value.

For an overview on discrepancy-based methods the reader is referred to the survey paper by Milano and Roli [13].

Figure 2 illustrates the CDS method. In Figure 2(a), initially the reference solution Sref is reached from the left branch of

the tree, with zero discrepancy. By progressively increasing the number of discrepancies, CDS finds a better solution,

 - 3 -

e.g., the seventh leaf with two discrepancies. In Figure 2(b), the method then restarts with this new refence solution

associated with zero discrepancy, and explores the neighborhood of this solution to find a better solution (e.g., the

fourth solution). One can note that there is no redundancy in a given iteration of the CDS method due to the LDS

principle. However, some solutions can be reached several times between two iterations of the CDS method: for

instance, the first solution in the second iteration of CDS was already obtained during the first iteration.

Figure 1. LDS and DDS search principles

Joining the idea of truncated LDS (which limits the level at which discrepancies are done), and CDS (which updates the

reference solution if a better solution is reached or increase the number of discrepancy otherwise), gives CDDS

(Climbing Depth-bounded Discrepancy Search) [10]. With this method, one can restrict neighborhoods to be visited by

only using discrepancies on variables at the top of the tree (see Algorithm 1). The Compute_Leaves() function

generates leaves at discrepancy k from the reference solution and at d-depth value from the top of the tree.

k 0 -- k is the number of discrepancy
kmax n -- n is the number of variables

Sref Initial_Solution() -- Sref is the reference solution

while (k < kmax) do
 k k+1
 -- Generate leaves at discrepancy k from Sref

 -- and at d-depth value from the top of the tree with 1 d k

 Sref’ Compute_Leaves(Sref, k)

 if Better(Sref’, Sref) then
 -- Update the current solution

 Sref Sref’

 k 0

 end if
end while

Algorithm 1. Climbing Depth-bounded Discrepancy Search

 - 4 -

 x2

 x1

 x3

a) First iteration of CDS

 0 2

d

 x4

 1

0

 1

 2

 3

fref = f1

 1 1 2

f7 < fref
fref = f7

 1

 x2

 x1

 x3

b) Second iteration of CDS

 0

d

 x4

 1

0

 1

 2

 3

fref

 1

f4 < fref
fref = f4

 1 1

Figure 2. CDS search principles

3. CDDS ADAPTATION TO SOLVE TWO-STAGE HYBRID FLOWSHOP SCHEDULING

To solve the two-stage HFS problem under study, we consider two kinds of variables: job selection and resource

allocation stage by stage. The values of these two kinds of variables are ordered following a given instantiation heuristic

presented below. The goal is to select an operation, to allocate a resource to the selected operation, and to set its start

time. The start time of each operation will be set at the earliest possible value.

3.1 Discrepancy strategy

Since we wish to improve the makespan of our solutions, and since all resources are identical, discrepancy on allocation

variables cannot improve it. As seen in Section 3.2, we use a list scheduling heuristic in which operations are assigned

to the first available machine. There is then no freedom of resource allocation. Thus, we only consider the discrepancy

on job selection variables. The reason is that only the sequence of jobs to be scheduled may have an impact on the

makespan.

Therefore, achieving a discrepancy consists in selecting a next job to be scheduled rather than the job firstly suggested

by the heuristic. Job selection variables are n-ary variables. The number of discrepancy is computed as follows: at each

step, the first value given by the heuristic corresponds to 0 discrepancy, all the other values correspond to 1 discrepancy

(see Figure 3). This binary counting mode provides diversified solutions.

 - 5 -

J1

J2

J2

J3

J2

J3

J1

 J3

J3

J1

J1

J2

J2

J1

 0 1 1 2 1 2

 J3

 k

Figure 3. Discrepancies on job selection (stage s)

To obtain solutions of 1+k discrepancies directly from a solution with k discrepancies (without revisiting solutions

with 0,…, k – 1 discrepancies), we consider the last instantiated variable having the k
th

 discrepancy value and we just

have to choose a remaining variable for the 1+k
th

 discrepancy value.

3.2 Heuristics

One could reasonably expect that the efficiency of the discrepancy-based methods depends closely on the quality of the

initial solution [11]. Heuristics considered for the general Hybrid Flow Shop can be used [10] but also some dedicated

heuristics for the two-stage HFS. As a dedicated heuristic, we schedule the operations at the first stage using the

extension of the Johnson’s rule to the two-stage HFS problem with at least two identical machines in each stage,

proposed in [7]. In the second stage, we first give the priority to the operation belonging to the job having the earliest

start time (EST) and in case of ties we consider the operation having the largest job duration.

Phase 1. Scheduling of Stage S1

1.1. Order the jobs using the Johnson’s rule. This rule is optimal if m1=m2=1. It sequences a job i before a job j

ifmin p1,i;{ p2, j} min p1, j; p2,i}{ . In the considered problem we have 21m and 22m , so we applied this rule for

the two-machine flow shop problem having Jj
m

p

m

p jj
,,

2

,2

1

,1
 as processing times [7]. Thus, we divide set J into two

disjoint subsets, 1J and 2J , where =
2

,2

1

,1

1 :
m

p

m

p
jJ

jj
 and >=

2

,2

1

,1

2 :
m

p

m

p
jJ

jj
. Order the jobs in 1J in the

non-decreasing order of
1

,1

m

p j
 and those jobs in 2J in the non-increasing order of

2

,2

m

p j
. Sequence jobs in 1J first,

followed by 2J . Let SEQ = J
1
. J
2
.

1.2. Whenever a machine is idle, schedule a job j SEQ . Set SEQSEQ = \{}j ,

1.3. If SEQ then go to Step 1.2.

Phase 2. Scheduling of Stage S2

2.1. For each job Jj set a release date jj Cr ,1= (completion time of j on stage 1S). Set JSEQ = .

2.2. Whenever a machine is idle, schedule an already released job SEQj with earliest rj and in case of ties with

longest jp ,2 . Set SEQSEQ = \{}j ,

2.3. If SEQ then go to Step 2.2. Else Stop.

Assignment of machines to operation is achieved by using the First Available Machine (FAM) rule.

After both instantiations, we use a simple calculation to update the finishing time of the selected operation as well as the

starting time of the successor operation. We also maintain the availability date of the chosen resource.

 - 6 -

3.3 Lower bounds

We can further enhance the CDDS strategy through the calculation of lower bounds on the makespan. Lower bounds

dedicated to the general HFS can also be applied but we propose to introduce the SPT-rule based lower bound

developed in [9] for the two-stage HFS, which can be presented as follows:

Let I
2
J() be a lower bound on the total idle time in stage S

2
. This idle time is a direct consequence of the flow shop

constraints. We take I
2
J() equals to the minimum sum of completion times, on stage S

1
, of the m

2
 jobs of J whose

processing times are the shortest. Clearly, I
2
J() can be obtained by applying the SPT rule. Thus,

LBSPT
2
(J) =

I2 J() + p2, j
j J

m2

defines a lower bound. By using the symmetry of the hybrid flow shop problem (i.e., by considering the inverse

problem), we get the following lower bound:

LBSPT
1
(J) =

I1 J() + p1, j
j J

m1

Hence, a valid lower bound is

LB
SPT

= max LB
SPT

1
,LB

SPT

2() .

CDDS joined with the SPT-lower bound follows the scheme of the algorithm provided for implementing a general

CDDS (Algorithm 1). The main difference is that the Compute_Leaves() function integrates an SPT-based lower

bound computation at each node to prune the associated branch if this lower bound is greater than the current value of

the makespan.

4. COMPUTATIONAL EXPERIMENTS

4.1 Test beds

Three sets of test problems have been considered. These instances were generated in a similar way as in [7].

• Set A: The number of jobs n was taken equal to 10, 20, 30, 40, 50, 100, and 150 jobs. The numbers of

machines (m1, m2) are (2, 2), (2, 4), (4, 2), and (4, 4). The processing times are drawn randomly either from the

discrete uniform distribution in [1, 20] for the first stage and in [1, 40] for the second stage. For each fixed n,

there are 4 different combining problem characteristics. For each combination, 20 instances were generated.

Hence, Set A contains a total number of 560 instances.

• Set B: This set contains 560 instances generated in the same way of Set A. However, the processing times on

the first stage were drawn randomly from the discrete uniform distribution in [1, 40] and in [1, 20] for the

second one.

• Set C: This set contains 560 instances generated in the same way of Set A. However, the processing times on

both stages were drawn randomly from the discrete uniform distribution in [1, 40].

Thus, we considered a total of 1680 instances.

It is worth mentioning that the B&B algorithm of Haouari et al. optimally solved many of these instances [8]. However,

this latter exact approach is significantly harder to implement than CDDS. Moreover, several small-sized instances

remained unsolved by the exact method. Therefore, CDDS constitutes an appealing alternative solution strategy for

deriving high quality solutions.

 - 7 -

4.2 Performance analysis

In the first set of our experiments, we compare four variants of the CDDS method to evaluate the relative impact of both

instantiation heuristics and lower bounds:

1. CDDS including heuristic and lower bound dedicated to the two-stage HFS, denoted by CDDS
2
;

2. CDDS developed initially for solving the general hybrid flow shop problem [10] and including heuristic and

lower bound for the general HFS with L stages, denoted by CDDS
L
;

3. CDDS using the different heuristics mentioned in [10] for the HFS but joined with SPT-rule lower bounds

dedicated to the two-stage HFS, denoted by CDDS
L-LB(2HFS)

;

4. CDDS with the specific heuristic for the two-stage HFS and the lower bound for the general HFS, denoted by

CDDS
2-LB(HFS)

 .

The proposed CDDS algorithms were coded in C and implemented on an Intel Core 2 Duo 2.9 GHz Personal Computer

with 2GB of RAM. We set the maximum CPU time limit to 15 sec. If no optimal solution was found within 15 s, then

the search is stopped and the best solution is output. Each instance and its inverse are successively considered. The

depth of discrepancy is fixed at 7 from the top of the tree; this number has been experimentally selected.

The results of the computational study on Set A are summarized in Table 1. The column headings are as follows:

• n: number of jobs;

• (m1, m2): numbers of machines in the first and second stage, respectively;

• US: number of instances that remain UnSolved (for which optimality was not proved after reaching the time

limit);

• Time: average CPU time (in seconds) for all instances;

• Dev: Average deviation from the lower bound for all instances where the deviation is BestCmax LB
SPT

LB
SPT

 100 and

where maxBestC is the best makespan obtained by CDDS method.

In Table 1, we observe that CDDS
2
 outperforms CDDS

L
, CDDS

L-LB(2HFS)
, and CDDS

2-LB(HFS)
 in terms of quality of

solutions and CPU time. Indeed, it provides solutions of high quality within 84 seconds of total CPU time faced to 163

seconds for CDDS
L
,

153 for CDDS

L-LB(2HFS)
 and 121 for CDDS

2-LB(HFS)
. On the other

hand, we remark that the integration

of the dedicated lower bound improves the quality of the produced solutions. Indeed, CDDS
L-LB(2HFS)

 solved 70% of the

test problems to optimality faced to 69% for CDDS
L
, and 90% of problems were solved to optimality by CDDS

2
 faced

to 85% for CDDS
2-LB(HFS)

. Furthermore, the results prove the efficiency of the dedicated heuristics for the two-stage

HFS. Thus, when all problems are considered, the average deviation of CDDS
2
 is strictly less than 0.19% faced to

0.91% for CDDS
L-LB(2HFS)

and of 0.36% for CDDS
2-LB(HFS)

faced to 0.96% for CDDS
L
.

The global performance of the proposed method CDDS
2

is confirmed by the computational results that were obtained on

Set B (see Table 2). Indeed, CDDS
2
 provided an average optimality gap of 0.17% faced to 0.89% for CDDS

L
, 0.85% for

CDDS
L-LB(2HFS)

, and 0.26% for CDDS
2-LB(HFS)

. In this set, 91% of the test problems were optimally solved, faced to 73%

for CDDS
L
, 74% for CDDS

L-LB(2HFS)
, and 87% for CDDS

2-LB(HFS)
. Furthermore, considering the total CPU time, CDDS

2

is about twice times faster than CDDS
L

and CDDS
L-LB(2HFS)

.

The experiments on Set C reported in Table 3 provide a further confirmation of the previous conclusions. Indeed, we

observe that CDDS
2

provided solutions that deviate from the lower bounds by 0.26% while requiring 88 seconds of

CPU time. On the other hand, CDDS
L

(resp. CDDS
L-LB(2HFS)

 and CDDS
2-LB(HFS)

) obtains solutions within 0.41% (resp.

0.39% and 0.30%) from LBs within 207 sec (resp. 191 sec. and 115 sec.). In this set, 86% of problems were solved to

optimality by CDDS
2

faced to 55% for CDDS
L

, 58% CDDS
L-LB(2HFS)

 and 81% for CDDS
2-LB(HFS)

.

General conclusions can be drawn from the analysis of Tables 1–3. First, the introduction of dedicated lower bounds

had a marginal impact on the efficacy of the method. Indeed, we found that CDDS
L-LB(2HFS)

 yielded 1% more optimal

solutions than CDDS
L
. This resulted in improving the average deviation by 0.03 and the average CPU time by 0.4 sec.

This is confirmed comparing CDDS
2
 and CDDS

2-LB(HFS)
 (improvements of 5%, 0.10, and 0.88 sec., respectively).

Secondly, dedicated heuristics are of great impact on these results since, going from CDDS
L
 to CDDS

2-LB(HFS)
, 18%

more of problems are solved, the average deviation is improved by 0.44, and the CPU time by 2.25 sec. Moreover,

going from CDDS
L-LB(2HFS)

 to CDDS
2
, 22% more of problems are solved, the average deviation is improved by 0.51, and

the CPU time by 2.73 sec.

 - 8 -

Table 1. Performance on Set A

 CDDS
2
 CDDS

L
CDDS

L-LB(2HFS)
CDDS

2-LB(HFS)

n (m1, m2) US Dev Time US Dev Time US Dev Time US Dev Time

(2, 2) 3 0.21 3.62 11 1.20 8.79 11 1.20 8.28 5 0.37 5.97

(2, 4) 10 2.47 8.28 17 6.24 12.83 15 5.42 11.31 13 3.20 9.81

(4, 2) 0 0.00 0.07 3 0.06 2.31 3 0.06 2.26 2 0.03 1.82
10

(4, 4) 0 0.00 0.13 4 0.12 3.10 4 0.12 3.03 1 0.02 1.61

(2, 2) 2 0.05 2.03 3 0.16 3.11 3 0.16 2.91 2 0.05 2.20

(2, 4) 9 0.91 8.42 20 5.79 15.00 19 5.66 14.64 11 2.13 10.31

(4, 2) 0 0.00 0.94 4 0.12 3.75 4 0.12 3.35 1 0.05 1.32
20

(4, 4) 4 0.21 4.60 11 1.34 8.77 11 1.34 8.47 6 0.48 6.23

(2, 2) 1 0.02 0.92 7 1.61 5.85 6 1.39 4.75 3 0.11 3.23

(2, 4) 6 0.86 6.89 17 5.61 12.92 16 5.54 12.88 9 2.05 11.51

(4, 2) 0 0.00 0.45 3 0.12 2.63 3 0.12 2.25 1 0.07 1.80
30

(4, 4) 3 0.07 3.78 8 0.32 6.76 8 0.32 6.56 5 0.16 5.09

(2, 2) 0 0.00 0.24 2 0.04 1.72 2 0.04 1.42 0 0.00 0.24

(2, 4) 4 0.21 5.18 8 0.97 6.78 8 0.97 6.43 5 0.61 6.22

(4, 2) 0 0.00 0.96 4 0.56 3.77 4 0.56 3.67 1 0.20 1.90
40

(4, 4) 2 0.05 2.89 4 0.12 4.16 4 0.12 4.16 2 0.05 2.98

(2, 2) 0 0.00 0.40 3 0.07 2.59 3 0.07 2.39 1 0.03 0.96

(2, 4) 2 0.15 2.37 6 0.70 5.33 6 0.70 5.23 3 0.23 3.56

(4, 2) 0 0.00 0.60 4 0.11 3.48 4 0.11 3.18 1 0.04 2.35
50

(4, 4) 2 0.06 3.91 4 0.08 4.56 4 0.08 4.53 4 0.08 4.55

(2, 2) 1 0.05 1.88 4 0.23 3.75 4 0.23 2.65 1 0.05 2.13

(2, 4) 2 0.06 3.68 6 0.30 5.79 6 0.30 5.19 2 0.06 4.02

(4, 2) 0 0.00 0.91 5 0.09 4.43 5 0.09 4.13 2 0.04 1.80
100

(4, 4) 2 0.02 3.71 6 0.15 5.80 6 0.15 5.07 2 0.02 5.88

(2, 2) 0 0.00 4.40 3 0.30 5.99 3 0.30 5.12 1 0.07 4.99

(2, 4) 0 0.00 2.41 2 0.16 3.67 2 0.16 3.66 1 0.10 2.98

(4, 2) 0 0.00 5.27 3 0.18 6.73 3 0.18 6.13 0 0.00 6.01
150

(4, 4) 1 0.01 8.10 2 0.05 8.79 2 0.05 8.34 1 0.01 8.21

Average 54 0.19 3.10 174 0.96 5.83 169 0.91 5.45 86 0.36 4.31

Total CPU time 84 163 153 121

 - 9 -

Table 2. Performance on Set B

 CDDS
2
 CDDS

L
CDDS

L-LB(2HFS)
CDDS

2-LB(HFS)

n (m1, m2) US Dev Time US Dev Time US Dev Time US Dev Time

(2, 2) 2 0.09 1.51 5 0.12 4.32 5 0.12 3.32 3 0.10 2.27

(2, 4) 0 0.00 0.44 5 0.38 4.08 5 0.38 3.98 2 0.16 1.71

(4, 2) 9 1.60 7.03 19 5.92 14.28 18 5.72 13.82 12 2.33 9.71
10

(4, 4) 2 0.29 1.52 7 1.18 5.74 7 1.18 5.34 4 0.53 3.32

(2, 2) 1 0.03 0.79 5 0.08 4.34 5 0.08 3.94 1 0.03 0.97

(2, 4) 0 0.00 0.03 3 0.09 2.28 3 0.09 1.85 1 0.03 0.61

(4, 2) 5 0.64 4.91 13 5.70 10.09 12 5.30 9.39 5 0.64 5.15
20

(4, 4) 3 0.14 2.91 4 0.15 3.78 4 0.15 3.58 3 0.14 3.24

(2, 2) 0 0.00 0.03 4 0.16 3.02 4 0.16 3.02 0 0.00 0.34

(2, 4) 0 0.00 0.10 3 0.12 2.34 2 0.09 2.04 1 0.07 1.23

(4, 2) 7 0.93 6.05 11 5.69 8.64 11 5.69 8.64 8 1.13 6.78
30

(4, 4) 2 0.11 2.49 3 0.19 3.31 3 0.19 3.11 3 0.23 2.77

(2, 2) 0 0.00 0.19 2 0.06 1.67 2 0.06 1.37 0 0.00 0.25

(2, 4) 0 0.00 0.09 3 0.53 2.33 3 0.53 2.43 0 0.00 0.42

(4, 2) 3 0.28 3.06 9 1.01 7.31 8 0.84 7.21 4 0.40 4.11
40

(4, 4) 2 0.05 13.09 4 0.55 8.24 4 0.55 7.94 2 0.05 6.90

(2, 2) 0 0.00 0.65 3 0.56 2.80 3 0.56 2.60 1 0.11 1.33

(2, 4) 0 0.00 0.10 2 0.43 1.59 2 0.43 1.49 1 0.07 1.51

(4, 2) 8 0.37 7.23 10 0.69 7.95 9 0.47 7.45 9 0.47 7.44
50

(4, 4) 1 0.02 2.94 3 0.06 4.75 3 0.06 4.35 2 0.13 3.32

(2, 2) 0 0.00 0.52 3 0.09 2.69 3 0.09 2.69 0 0.00 0.72

(2, 4) 0 0.00 0.55 2 0.09 2.00 1 0.04 1.98 0 0.00 0.82

(4, 2) 2 0.03 4.30 7 0.35 6.65 7 0.35 6.45 3 0.19 5.12
100

(4, 4) 2 0.02 3.30 8 0.17 6.99 8 0.17 6.91 2 0.02 3.65

(2, 2) 0 0.00 1.39 3 0.08 3.43 3 0.08 3.41 1 0.04 2.88

(2, 4) 0 0.00 0.90 4 0.13 3.72 3 0.10 3.63 1 0.03 1.67

(4, 2) 1 0.03 3.03 5 0.22 6.02 5 0.22 6.01 1 0.03 3.43
150

(4, 4) 1 0.01 5.06 3 0.03 6.55 3 0.03 6.43 2 0.34 5.34

Average 51 0.17 2.62 153 0.89 5.03 146 0.85 4.80 72 0.26 3.10

Total CPU time 73 141 134 87

 - 10 -

Table 3. Performance on Set C

 CDDS
2
 CDDS

L
CDDS

L-LB(2HFS)
CDDS

2-LB(HFS)

n (m1, m2) US Dev Time US Dev Time US Dev Time US Dev Time

(2, 2) 3 0.20 2.35 9 0.26 7.18 9 0.26 6.84 5 0.24 3.45

(2, 4) 1 0.34 0.81 6 0.45 5.07 6 0.45 4.73 3 0.39 0.92

(4, 2) 0 0.00 0.06 5 0.05 3.80 3 0.03 3.10 0 0.00 0.36
10

(4, 4) 9 1.89 6.75 18 1.98 13.58 16 1.95 13.22 12 1.91 9.45

(2, 2) 5 0.39 3.85 11 0.48 8.60 10 0.45 8.12 7 0.42 5.65

(2, 4) 0 0.00 0.07 7 0.07 5.30 7 0.07 5.63 1 0.02 0.82

(4, 2) 0 0.00 0.91 3 0.23 3.02 3 0.23 2.62 1 0.13 1.11
20

(4, 4) 13 1.19 9.87 20 1.47 15.00 20 1.47 15.00 15 1.31 11.32

(2, 2) 4 0.10 3.07 12 0.63 9.31 12 0.63 9.71 7 0.24 5.45

(2, 4) 0 0.00 0.44 8 0.08 6.26 7 0.05 5.76 0 0.00 0.97

(4, 2) 1 0.02 1.18 5 0.05 4.64 5 0.05 3.24 1 0.02 1.35
30

(4, 4) 9 1.42 9.10 14 1.95 10.80 14 1.95 10.67 11 1.76 9.85

(2, 2) 3 0.08 2.38 9 0.26 7.19 9 0.26 6.89 6 0.16 4.65

(2, 4) 1 0.01 0.81 7 0.14 5.78 6 0.09 4.98 1 0.01 1.09

(4, 2) 1 0.01 2.09 6 0.17 5.96 6 0.17 5.61 1 0.01 3.36
40

(4, 4) 5 0.46 5.39 11 0.61 8.74 10 0.59 8.34 7 0.53 7.87

(2, 2) 0 0.00 0.19 6 0.06 4.63 6 0.06 4.31 0 0.00 0.34

(2, 4) 0 0.00 0.26 8 0.28 6.16 8 0.28 6.01 0 0.00 0.62

(4, 2) 2 0.02 1.88 5 0.05 4.46 5 0.05 4.31 3 0.03 2.34
50

(4, 4) 5 0.84 4.89 12 1.20 9.39 11 1.16 8.90 8 0.94 6.38

(2, 2) 0 0.00 0.73 9 0.16 7.15 8 0.12 6.81 0 0.00 0.96

(2, 4) 0 0.00 0.56 11 0.15 8.50 10 0.13 8.13 0 0.00 1.11

(4, 2) 2 0.01 3.44 9 0.09 7.70 8 0.07 7.01 3 0.03 4.34
100

(4, 4) 6 0.22 6.73 7 0.32 5.98 7 0.32 5.21 6 0.22 7.21

(2, 2) 1 0.01 4.28 8 0.08 8.57 7 0.06 8.01 1 0.01 5.13

(2, 4) 0 0.00 1.62 9 0.09 7.64 9 0.09 7.12 0 0.00 1.82

(4, 2) 0 0.00 5.04 7 0.07 8.53 6 0.05 7.91 0 0.00 6.14
150

(4, 4) 7 0.11 9.69 10 0.14 8.19 10 0.14 7.94 9 0.12 11.02

Average 78 0.26 3.16 252 0.41 7.40 238 0.39 6.82 104 0.30 4.11

Total CPU time 88 207 191 115

In the second part of experiments, we propose to compare solutions provided by CDDS

2
 and results of the Tabu Search

(TS) method developed in [9]. This latter method considered only 900 instances generated in a similar way as in [7]; the

number of jobs n was restricted to 20, 30, 40, 50, and 100 jobs. The numbers of machines (m1, m2) considered are (2, 4),

(4, 2), and (4, 4). Solutions of both methods are compared with SPT-lower bounds values calculated at the root (see

Table 4).

As shown in Table 4, CDDS outperforms the Tabu Search method in all instances, except the instances of the subclass

(4,2) of Set B. It is however assumed that the CDDS is very efficient for all problem sizes. In most problems, the CDDS

procedure yields optimal or very near-optimal solutions. Considering all the problems, CDDS produced a proven

optimal solution for 85.8% of the cases (772 out of 900) within 2.26 sec (considering the average CPU time) while TS

yields the optimal solutions in 35% of the cases (316 out of 900) within 0.03 sec. Note that this latter value on TS CPU

time was computed using the normalization coefficients of Dongarra [15].

 - 11 -

Table 4. Performance comparison between the proposed CDDS
2
 and TS [9]

Performance on Set A Performance on Set B Performance on Set C n

(2, 4) (4, 2) (4, 4) (2, 4) (4, 2) (4, 4) (2, 4) (4, 2) (4, 4)

Average

CDDS
2
 0.95 0.00 0.26 0.03 0.73 0.14 0.00 0.05 1.48 0.40

20
TS 2.90 0.35 1.20 0.92 0.13 5.72 0.56 1.22 3.43 1.83

CDDS
2
 0.92 0.00 0.10 0.00 0.96 0.11 0.07 0.02 1.45 0.40

30
TS 1.43 0.06 0.85 0.57 0.05 3.10 0.27 1.46 1.45 1.03

CDDS
2
 0.21 0.00 0.05 0.00 0.28 0.05 0.02 0.01 0.46 0.12

40
TS 0.96 0.12 0.43 0.5 0.12 1.57 0.34 0.89 1.08 0.67

CDDS
2
 0.15 0.00 0.06 0.00 0.37 0.02 0.00 0.02 0.88 0.16

50
TS 0.54 0.02 0.30 0.26 0.04 1.09 0.20 0.42 0.95 0.42

CDDS
2
 0.06 0.00 0.02 0.00 0.03 0.02 0.00 0.01 0.22 0.04

100
TS 0.19 0.02 0.15 0.11 0.01 0.39 0.07 0.18 0.41 0.17

CDDS
2
 0.46 0.00 0.10 0.01 0.48 0.07 0.02 0.02 0.90 0.22

Average
TS 1.20 0.11 0.59 0.47 0.07 2.37 0.29 0.83 1.46 0.82

As displayed in Figure 4, we observe that the proposed CDDS
2
 method performs better for larger problems. Considering

all problems and all distributions, CDDS
2
 presents a deviation from LBs of 0.22% versus 0.82% for TS method.

Figure 4. Relative deviation of CDDS
2
 and TS for different problem sizes

5. CONCLUSIONS AND FUTURE RESEARCH

In this paper, we proposed an effective method to solve two-stage hybrid flow shop scheduling. This method is an

adaptation of the Climbing Depth-bounded Discrepancy Search initially developed for the general hybrid flow shop

problem. The adaptation integrates effective heuristics and lower bounds based on an extension of Johnson’s rule. We

presented extensive computational results which provide evidence that the proposed approach has an excellent

performance, outperforms the algorithm developed for the general case, and consistently outperforms a well-known

tabu search producing optimal solutions for the great majority of instances.

 - 12 -

An important conclusion of the computational experience is that the key ingredient of a discrepancy-based search to

solve two-stage flow shop scheduling relates to dedicated instantiation heuristics. In addition, the use of dedicated lower

bounds improves slightly the efficiency of the method.

Future research efforts need to be focused on the adaptation of CDDS method for solving more realistic hybrid flow

shop problems. In particular, as noticed by Ruiz and Vázquez-Rodríguez [16], a challenging research direction that

deserves future investigation is concerned with the design of an effective CDDS-based solution approach to

multiobjective HFS.

REFERENCES

[1] Hoogeveen J.A., Lenstra J.K., Veltman B., “Preemptive scheduling in a two-stage multiprocessor flow shop is NP-

Hard”. European Journal of Operational Research, 89:172–175, 1991.

[2] Gupta J.N.D., Hariri A.M.A, Potts C.N., “Scheduling a two-stage hybrid flow shop with parallel machines at the

first stage”. Annals of Operations Research, 69:171–191, 1997.

[3] Narasimhan S.L., Panwalker S.S., “Scheduling in a two-stage manufacturing process”. International Journal of

Production Research, 22:555–564, 1984.

[4] Sherali H.D., Sarin S.C., Kodialam M.S., “Models and algorithms for a two-stage production process”. Production

Planning and Control, 1:27–39, 1990.

[5] Lin H.T., Liao C.J., “A case study in a two-stage hybrid flowshop with setup time and dedicated machines”.

International Journal of Production Economics, 86:133–143, 2003.

[6] Gupta J.N.D., “Two-stage hybrid flowshop scheduling problem”. Journal of the Operational Research Society,

39:359–364, 1988.

[7] Lee C.Y., Vairaktarakis G.L., “Minimizing makespan in hybrid flow-shop”. Operations Research Letters, 16:149–

158, 1994.

[8] Haouari M., Hidri L., Gharbi A., “Optimal scheduling of a two hybrid flow shop”. Mathematical Methods of

Operations Research, 64:107–124, 2006.

[9] Haouari M., M’Hallah R., “Heuristic algorithms for the two-stage hybrid flowshop problem”. Operations

Research Letters, 21:43–53, 1997.

[10] Ben Hmida A., Huguet M.-J., Lopez P., Haouari M., “Climbing Discrepancy Search for solving the hybrid Flow

shop”. European Journal of Industrial Engineering, 1(2):223–243, 2007.

[11] Harvey W.D., “Nonsystematic backtracking search”. PhD thesis, CIRL, University of Oregon, 1995.

[12] Walsh T., “Depth-bounded Discrepancy Search”. Proceedings IJCAI-97, p. 1388–1395, Nagoya, Japan, 1997.

[13] Milano M., Roli A., “On the relation between complete and incomplete search: an informal discussion”.

Proceedings CPAIOR’02, p. 237–250, Le Croisic, France, 2002.

[14] Hansen P. and Mladenovic N., “Variable neighborhood search: principles and applications”. European Journal of

Operational Research, 130:449–467, 2001.

[15] Dongarra J., “Performance of various computers using standard linear equations software”. Computer Science

Department, University of Tennessee, Knoxville, Tennessee, 1998.

[16] Ruiz, R., Vázquez-Rodríguez, J.A., “The hybrid flow shop scheduling problem”. European Journal of

Operational Research, 205(1):1–18, 2010.

[17] Tseng, C. T., Liao, C. J., Liao, T. X., “A note on two-stage hybrid flowshop scheduling with missing operations”.

Computers & Industrial Engineering, 54(3):695-704, 2008.

[18] Guinet, A., Solomon, M.M., Kedia, P.K., Dussauchoy, A., “A computational study of heuristics for two-stage

flexible flowshops”. International Journal of Production Research, 34(5):1399–1415, 1996.

	Title-Page
	Solving_F2(P)_BenHmida_23nov

