Abir Ben Hmida

Mohamed Haouari
email: mohamed.haouari@ept.rnu.tn

Marie-José Huguet
email: huguet@laas.fr

Pierre Lopez
email: lopez@laas.fr

Solving Two-Stage Hybrid Flow Shop Using Climbing Depth-bounded Discrepancy Search

Keywords: Scheduling, Two-stage Hybrid Flow Shop, Discrepancy Search Methods, CDDS, Lower Bounds, Heuristics

This paper investigates how to adapt a discrepancy-based search method to solve two-stage hybrid flowshop scheduling problems in which each stage consists of several identical machines operating in parallel. The objective is to determine a schedule that minimizes the makespan. We present an adaptation of the Climbing Depth-bounded Discrepancy Search (CDDS) method based on Johnson's rule and on dedicated lower bounds for the two-stage hybrid flow shop problem. We report the results of extensive computational experiments, which show that the proposed adaptation of the CDDS method solves instances in restrained CPU time and with high quality of makespan.

INTRODUCTION

In this paper, we consider the two-stage Hybrid Flowshop Scheduling (HFS) problem which can be stated as follows. Consider a set J={J 1 , J 2 , …, J n } of n jobs and two stages S 1 and S 2 , each stage S i contains m i identical machines (i=1,2). Successive operations of a job have to be processed serially through the two stages; each job j J has to be processed first on a machine of stage S 1 during p 1,j units of time. After that, job j has to be processed on a machine of the second stage S 2 for p 2,j units of time. Job preemption and job splitting are not allowed. Moreover, a job cannot be processed by more than one machine at the same time and each machine processes at most one job at a time. Solving the two-stage HFS problem consists in assigning a specific machine to each operation of each job as well as sequencing all operations assigned to each machine. The objective is to find a schedule that minimizes the maximum completion time, or makespan, defined as the elapsed time from the start of the first operation of the first job in stage S 1 to the completion of the last operation of the last job in stage S 2 . Following the notation of [START_REF] Hoogeveen | Preemptive scheduling in a two-stage multiprocessor flow shop is NP-Hard[END_REF], the considered problem is denoted F 2(P) C max .

The F 2(P) C max problem is NP-Hard in the strong sense when there is, at least, more than one machine at a stage (i.e., max(m 1 ,m 2) > 1) [START_REF] Gupta | Scheduling a two-stage hybrid flow shop with parallel machines at the first stage[END_REF]. Detailed reviews of the applications and solution procedures of the F 2(P) C max problems are provided in [START_REF] Narasimhan | Scheduling in a two-stage manufacturing process[END_REF][START_REF] Sherali | Models and algorithms for a two-stage production process[END_REF][START_REF] Lin | A case study in a two-stage hybrid flowshop with setup time and dedicated machines[END_REF].

Most publications dealing with the two-stage hybrid flow shop problem assume that there is exactly one machine at one of the two stages [START_REF] Gupta | Two-stage hybrid flowshop scheduling problem[END_REF][START_REF] Gupta | Scheduling a two-stage hybrid flow shop with parallel machines at the first stage[END_REF]. In the latter work, authors presented a case study in a two-stage HFS with sequence-dependent setup times and dedicated machines and they developed a branch-and-bound algorithm to solve it. For the general case (i.e., with more than two machines in each stage), Lee and Vairaktarakis [START_REF] Lee | Minimizing makespan in hybrid flow-shop[END_REF] show that the completion time obtained by applying the Johnson's rule on an auxiliary two-machine flow shop instance is a lower bound for the two-stage hybrid flow shop problem. The latter lower bound was improved in [START_REF] Haouari | Optimal scheduling of a two hybrid flow shop[END_REF]. Authors show that their lower bound dominates the Lee and Vairaktarakis [START_REF] Lee | Minimizing makespan in hybrid flow-shop[END_REF] one's. Guinet et al. [START_REF] Guinet | A computational study of heuristics for two-stage flexible flowshops[END_REF] propose a heuristic for the makespan minimization problem in twostage hybrid flow shop scheduling based on Johnson's rule. This heuristic is compared with the Shortest Processing Time (SPT) and the Longest Processing Time (LPT) dispatching rules. The authors conclude that the most effective approach used Johnson's rule to provide the priority list for job assignment. Haouari et al. [START_REF] Haouari | Heuristic algorithms for the two-stage hybrid flowshop problem[END_REF] developed a branch-andbound method to solve the problem and proved that their algorithm is more efficient than previous procedures. Tseng et al. [START_REF] Tseng | A note on two-stage hybrid flowshop scheduling with missing operations[END_REF] dealt with the issue of missing operations at the first stage and proposed some simple heuristics. The reader is referred to the survey paper of Ruiz and Vázquez-Rodríguez [START_REF] Ruiz | The hybrid flow shop scheduling problem[END_REF] for a recent overview on different methods proposed to solve general hybrid flow shop problems.

In this paper, we present some adaptations of a local search method, called Climbing Depth-bounded Discrepancy Search (CDDS), which has been initially proposed to solve HFS in the general case and has proved its efficiency to solve it [START_REF] Hmida | Climbing Discrepancy Search for solving the hybrid Flow shop[END_REF]. To apply CDDS method to the particular case of F 2(P) C max , we use the extended Johnson's rule developed in [START_REF] Lee | Minimizing makespan in hybrid flow-shop[END_REF] to generate an efficient initial solution and we use the so-called SPT-based lower bound developed in [START_REF] Haouari | Optimal scheduling of a two hybrid flow shop[END_REF] to prune the search tree. With these adaptations, the CDDS method has an excellent performance both in comparison to the general CDDS used to solve HFS and in comparison with other methods, and gives in the great majority of the cases a proven optimal solution. Furthermore, it provides high quality near-optimal solutions. The remainder of the paper is organized as follows. Section 2 introduces the discrepancy-based search methods and details CDDS method. Section 3 presents how to adapt CDDS to solve the two-stage HFS problem and details the lower bounds used. Section 4 presents the results of a computational study of the proposed methods on well-known benchmark instances. Finally, we report some conclusions and open issues to this work.

CLIMBING DEPTH-BOUNDED DISCREPANCY SEARCH METHOD

Discrepancy-based methods are tree search methods developed for solving combinatorial constraint satisfaction problems. These methods are based on the depth-first search principle; however, when a dead-end occurs, the traditional chronological backtracking is replaced by the concept of discrepancy to expand the search tree. Harvey [START_REF] Harvey | Nonsystematic backtracking search[END_REF] has proposed the basic method called Limited Discrepancy Search (LDS). It consists in starting from an initial instantiation suggested by a given heuristic and successively explores branches by changing the instantiation of some variables: when considering one discrepancy, the instantiation of one variable is changed; with two discrepancies, the instantiation of two variables is changed, and so on. One can note that a given number of discrepancy leads to a set of instantiations. The search is stopped when a solution is found or when there is no solution (the entire tree is then expanded).

As an example to illustrate the above exploration processes, consider a decision problem consisting of four binary variables x 1 , x 2 , x 3 , x 4 . The value ordering heuristic orders nodes left to right and, by convention, we consider that we descend the search tree to the left with x i = 0, to the right with x i = 1, i = 1,2,3,4. A solution is obtained with the instantiation of the four variables. Figure 1(a) illustrates the complete search tree obtained using LDS. At each node, a branch without discrepancy (in the left) is in plain line, while a branch corresponding to one discrepancy (in the right part of the tree) is drawn in dotted line. The first line below the leaves is associated with the discrepancy number, the second line with the order of apparition of each leaf during the search. We consider the variant of LDS without redundancy: at the first iteration the leaf with a zero discrepancy is reached by the heuristic and during each other iterations, k leaves with exactly k -1 discrepancies are reached. In the following, we use a variant of LDS in which discrepancies are applied first at the top of the tree to correct early mistakes of the instantiation heuristic. Thus in the tree of Figure 1(a), leaves with one discrepancy are obtained from the right to the left, as noted in the second line below the search tree.

To limit the tree search expansion, we also consider a truncated variant of the LDS method. Based on the idea introduced for the Depth-bounded Discrepancy Search method (DDS) [START_REF] Walsh | Depth-bounded Discrepancy Search[END_REF], we limit the discrepancy to a given depth d. In this "truncated LDS", discrepancies are applied only on levels of which the depth is less or equal than d. Figure 1(b) depicts the search tree obtained by the truncated LDS with d=2. In this tree, the leaves are reached in the same order as for the LDS method but there is no discrepancy at the level of depth 3; thus, the complete tree cannot be obtained. These two methods (LDS and truncated LDS) are closely connected to an efficient instantiation heuristic.

Another variant of LDS dedicated to optimization problems is called Climbing Discrepancy Search (CDS) [START_REF] Milano | On the relation between complete and incomplete search: an informal discussion[END_REF]. CDS can be viewed as a local search method that adapts the concept of discrepancy to find a good solution. It starts with an initial solution (zero discrepancy) and explores its neighborhood by the way of increasing discrepancies. If no solution with a better cost is found in this neighborhood, then the number of allowed discrepancies is increased. If a better solution is reached, the reference solution is updated, the number of discrepancies is reset to zero, and the process for exploring the neighborhoods is restarted. As mentioned by their authors, the CDS method is close to the Variable Neighborhood Search (VNS) [START_REF] Hansen | Variable neighborhood search: principles and applications[END_REF]. The interest of CDS is that the principle of discrepancy defines neighborhoods as branches in a search tree. This leads to structure the local search method to restrict redundancies. The aim of CDS strategy is not to find only a feasible solution, but rather a high-quality solution in terms of criterion value. For an overview on discrepancy-based methods the reader is referred to the survey paper by Milano and Roli [START_REF] Milano | On the relation between complete and incomplete search: an informal discussion[END_REF].

Figure 2 illustrates the CDS method. In Figure 2(a), initially the reference solution S ref is reached from the left branch of the tree, with zero discrepancy. By progressively increasing the number of discrepancies, CDS finds a better solution, e.g., the seventh leaf with two discrepancies. In Figure 2(b), the method then restarts with this new refence solution associated with zero discrepancy, and explores the neighborhood of this solution to find a better solution (e.g., the fourth solution). One can note that there is no redundancy in a given iteration of the CDS method due to the LDS principle. However, some solutions can be reached several times between two iterations of the CDS method: for instance, the first solution in the second iteration of CDS was already obtained during the first iteration.

Figure 1. LDS and DDS search principles

Joining the idea of truncated LDS (which limits the level at which discrepancies are done), and CDS (which updates the reference solution if a better solution is reached or increase the number of discrepancy otherwise), gives CDDS (Climbing Depth-bounded Discrepancy Search) [START_REF] Hmida | Climbing Discrepancy Search for solving the hybrid Flow shop[END_REF]. With this method, one can restrict neighborhoods to be visited by only using discrepancies on variables at the top of the tree (see Algorithm 1). The Compute_Leaves() function generates leaves at discrepancy k from the reference solution and at d-depth value from the top of the tree.

f ref = f 1 1 1 2 f 7 < f ref f ref = f 7 1 x 2 x 1 x 3 b) Second iteration of CDS 0 d x 4 1 0 1 2 3 f ref 1 f 4 < f ref f ref = f 4 1 1

Figure 2. CDS search principles

CDDS ADAPTATION TO SOLVE TWO-STAGE HYBRID FLOWSHOP SCHEDULING

To solve the two-stage HFS problem under study, we consider two kinds of variables: job selection and resource allocation stage by stage. The values of these two kinds of variables are ordered following a given instantiation heuristic presented below. The goal is to select an operation, to allocate a resource to the selected operation, and to set its start time. The start time of each operation will be set at the earliest possible value.

Discrepancy strategy

Since we wish to improve the makespan of our solutions, and since all resources are identical, discrepancy on allocation variables cannot improve it. As seen in Section 3.2, we use a list scheduling heuristic in which operations are assigned to the first available machine. There is then no freedom of resource allocation. Thus, we only consider the discrepancy on job selection variables. The reason is that only the sequence of jobs to be scheduled may have an impact on the makespan.

Therefore, achieving a discrepancy consists in selecting a next job to be scheduled rather than the job firstly suggested by the heuristic. Job selection variables are n-ary variables. The number of discrepancy is computed as follows: at each step, the first value given by the heuristic corresponds to 0 discrepancy, all the other values correspond to 1 discrepancy (see Figure 3). This binary counting mode provides diversified solutions.

J 1 J 2 J 2 J 3 J 2 J 3 J 1 J 3 J 3 J 1 J 1 J 2 J 2 J 1 0 1 1 2 1 2 J 3 k Figure 3.

Discrepancies on job selection (stage s)

To obtain solutions of 1 + k discrepancies directly from a solution with k discrepancies (without revisiting solutions with 0,…, k -1 discrepancies), we consider the last instantiated variable having the k th discrepancy value and we just have to choose a remaining variable for the 1 + k th discrepancy value.

Heuristics

One could reasonably expect that the efficiency of the discrepancy-based methods depends closely on the quality of the initial solution [START_REF] Harvey | Nonsystematic backtracking search[END_REF]. Heuristics considered for the general Hybrid Flow Shop can be used [START_REF] Hmida | Climbing Discrepancy Search for solving the hybrid Flow shop[END_REF] but also some dedicated heuristics for the two-stage HFS. As a dedicated heuristic, we schedule the operations at the first stage using the extension of the Johnson's rule to the two-stage HFS problem with at least two identical machines in each stage, proposed in [START_REF] Lee | Minimizing makespan in hybrid flow-shop[END_REF]. In the second stage, we first give the priority to the operation belonging to the job having the earliest start time (EST) and in case of ties we consider the operation having the largest job duration.

Phase 1. Scheduling of Stage S 1

1.1. Order the jobs using the Johnson's rule. This rule is optimal if m 1 =m 2 =1. It sequences a job i before a job j if min p 1,i ;

{ p 2, j } min p 1, j ; p 2,i } {

. In the considered problem we have 2 as processing times [START_REF] Lee | Minimizing makespan in hybrid flow-shop[END_REF]. Thus, we divide set J into two disjoint subsets, 1 J and 2 J , where = . Order the jobs in 1 J in the non-decreasing order of Assignment of machines to operation is achieved by using the First Available Machine (FAM) rule.

After both instantiations, we use a simple calculation to update the finishing time of the selected operation as well as the starting time of the successor operation. We also maintain the availability date of the chosen resource.

Lower bounds

We can further enhance the CDDS strategy through the calculation of lower bounds on the makespan. Lower bounds dedicated to the general HFS can also be applied but we propose to introduce the SPT-rule based lower bound developed in [START_REF] Haouari | Heuristic algorithms for the two-stage hybrid flowshop problem[END_REF] for the two-stage HFS, which can be presented as follows:

Let I 2 J () be a lower bound on the total idle time in stage S 2 . This idle time is a direct consequence of the flow shop constraints. We take I 2 J () equals to the minimum sum of completion times, on stage S 1 , of the m 2 jobs of J whose processing times are the shortest. Clearly, I 2 J () can be obtained by applying the SPT rule. Thus,

LB SPT 2 (J) = I 2 J () + p 2, j j J m 2
defines a lower bound. By using the symmetry of the hybrid flow shop problem (i.e., by considering the inverse problem), we get the following lower bound:

LB SPT 1 (J) = I 1 J () + p 1, j j J m 1
Hence, a valid lower bound is

LB SPT = max LB SPT 1 , LB SPT 2 () .
CDDS joined with the SPT-lower bound follows the scheme of the algorithm provided for implementing a general CDDS (Algorithm 1). The main difference is that the Compute_Leaves() function integrates an SPT-based lower bound computation at each node to prune the associated branch if this lower bound is greater than the current value of the makespan.

COMPUTATIONAL EXPERIMENTS

Test beds

Three sets of test problems have been considered. These instances were generated in a similar way as in [START_REF] Lee | Minimizing makespan in hybrid flow-shop[END_REF].

• Set A: The number of jobs n was taken equal to 10, 20, 30, 40, 50, 100, and 150 jobs. The numbers of machines (m 1 , m 2) are (2, 2), (2, 4), (4, 2), and [START_REF] Sherali | Models and algorithms for a two-stage production process[END_REF][START_REF] Sherali | Models and algorithms for a two-stage production process[END_REF]. The processing times are drawn randomly either from the discrete uniform distribution in [START_REF] Hoogeveen | Preemptive scheduling in a two-stage multiprocessor flow shop is NP-Hard[END_REF]20] for the first stage and in [START_REF] Hoogeveen | Preemptive scheduling in a two-stage multiprocessor flow shop is NP-Hard[END_REF]40] for the second stage. For each fixed n, there are 4 different combining problem characteristics. For each combination, 20 instances were generated. Hence, Set A contains a total number of 560 instances. • Set B: This set contains 560 instances generated in the same way of Set A. However, the processing times on the first stage were drawn randomly from the discrete uniform distribution in [START_REF] Hoogeveen | Preemptive scheduling in a two-stage multiprocessor flow shop is NP-Hard[END_REF]40] and in [START_REF] Hoogeveen | Preemptive scheduling in a two-stage multiprocessor flow shop is NP-Hard[END_REF]20] for the second one. • Set C: This set contains 560 instances generated in the same way of Set A. However, the processing times on both stages were drawn randomly from the discrete uniform distribution in [START_REF] Hoogeveen | Preemptive scheduling in a two-stage multiprocessor flow shop is NP-Hard[END_REF]40].

Thus, we considered a total of 1680 instances.

It is worth mentioning that the B&B algorithm of Haouari et al. optimally solved many of these instances [START_REF] Haouari | Optimal scheduling of a two hybrid flow shop[END_REF]. However, this latter exact approach is significantly harder to implement than CDDS. Moreover, several small-sized instances remained unsolved by the exact method. Therefore, CDDS constitutes an appealing alternative solution strategy for deriving high quality solutions.

Performance analysis

In the first set of our experiments, we compare four variants of the CDDS method to evaluate the relative impact of both instantiation heuristics and lower bounds: 1.

CDDS including heuristic and lower bound dedicated to the two-stage HFS, denoted by CDDS 2 ; 2.

CDDS developed initially for solving the general hybrid flow shop problem [START_REF] Hmida | Climbing Discrepancy Search for solving the hybrid Flow shop[END_REF] and including heuristic and lower bound for the general HFS with L stages, denoted by CDDS L ; 3.

CDDS using the different heuristics mentioned in [START_REF] Hmida | Climbing Discrepancy Search for solving the hybrid Flow shop[END_REF] for the HFS but joined with SPT-rule lower bounds dedicated to the two-stage HFS, denoted by CDDS L-LB(2HFS) ; 4.

CDDS with the specific heuristic for the two-stage HFS and the lower bound for the general HFS, denoted by CDDS 2-LB(HFS) .

The proposed CDDS algorithms were coded in C and implemented on an Intel Core 2 Duo 2.9 GHz Personal Computer with 2GB of RAM. We set the maximum CPU time limit to 15 sec. If no optimal solution was found within 15 s, then the search is stopped and the best solution is output. Each instance and its inverse are successively considered. The depth of discrepancy is fixed at 7 from the top of the tree; this number has been experimentally selected.

The results of the computational study on Set A are summarized in Table 1. The column headings are as follows:

• n: number of jobs;

• (m 1 , m 2): numbers of machines in the first and second stage, respectively;

• US: number of instances that remain UnSolved (for which optimality was not proved after reaching the time limit); • Time: average CPU time (in seconds) for all instances;

• Dev: Average deviation from the lower bound for all instances where the deviation is BestC max LB SPT LB SPT 100 and where max

BestC

is the best makespan obtained by CDDS method.

In Table 1, we observe that CDDS 2 outperforms CDDS L , CDDS L-LB(2HFS) , and CDDS 2-LB(HFS) in terms of quality of solutions and CPU time. Indeed, it provides solutions of high quality within 84 seconds of total CPU time faced to 163 seconds for CDDS L , 153 for CDDS L-LB(2HFS) and 121 for CDDS 2-LB(HFS) . On the other hand, we remark that the integration of the dedicated lower bound improves the quality of the produced solutions. Indeed, CDDS L-LB(2HFS) solved 70% of the test problems to optimality faced to 69% for CDDS L , and 90% of problems were solved to optimality by CDDS 2 faced to 85% for CDDS 2-LB(HFS) . Furthermore, the results prove the efficiency of the dedicated heuristics for the two-stage HFS. Thus, when all problems are considered, the average deviation of CDDS 2 is strictly less than 0.19% faced to 0.91% for CDDS L-LB(2HFS) and of 0.36% for CDDS 2-LB(HFS) faced to 0.96% for CDDS L .

The global performance of the proposed method CDDS 2 is confirmed by the computational results that were obtained on Set B (see Table 2). Indeed, CDDS 2 provided an average optimality gap of 0.17% faced to 0.89% for CDDS L , 0.85% for CDDS L-LB(2HFS) , and 0.26% for CDDS 2-LB(HFS) . In this set, 91% of the test problems were optimally solved, faced to 73% for CDDS L , 74% for CDDS L-LB(2HFS) , and 87% for CDDS 2-LB(HFS) . Furthermore, considering the total CPU time, CDDS 2 is about twice times faster than CDDS L and CDDS L-LB(2HFS) .

The experiments on Set C reported in Table 3 provide a further confirmation of the previous conclusions. Indeed, we observe that CDDS 2 provided solutions that deviate from the lower bounds by 0.26% while requiring 88 seconds of CPU time. On the other hand, CDDS L (resp. CDDS L-LB(2HFS) and CDDS 2-LB(HFS)) obtains solutions within 0.41% (resp. 0.39% and 0.30%) from LBs within 207 sec (resp. 191 sec. and 115 sec.). In this set, 86% of problems were solved to optimality by CDDS 2 faced to 55% for CDDS L , 58% CDDS L-LB(2HFS) and 81% for CDDS 2-LB(HFS) .

General conclusions can be drawn from the analysis of Tables 123. First, the introduction of dedicated lower bounds had a marginal impact on the efficacy of the method. Indeed, we found that CDDS L-LB(2HFS) yielded 1% more optimal solutions than CDDS L . This resulted in improving the average deviation by 0.03 and the average CPU time by 0.4 sec. This is confirmed comparing CDDS 2 and CDDS 2-LB(HFS) (improvements of 5%, 0.10, and 0.88 sec., respectively). Secondly, dedicated heuristics are of great impact on these results since, going from CDDS L to CDDS 2-LB(HFS) , 18% more of problems are solved, the average deviation is improved by 0.44, and the CPU time by 2.25 sec. Moreover, going from CDDS L-LB(2HFS) to CDDS 2 , 22% more of problems are solved, the average deviation is improved by 0.51, and the CPU time by 2.73 sec.

Table 1 .

 1 Performance on Set A

				CDDS 2			CDDS L		CDDS L-LB(2HFS)		CDDS 2-LB(HFS)
	n	(m 1 , m 2)	US	Dev	Time	US	Dev	Time	US	Dev	Time	US	Dev	Time
		(2, 2)	3	0.21	3.62	11	1.20	8.79	11	1.20	8.28	5	0.37	5.97
	10	(2, 4) (4, 2)	10 0	2.47 0.00	8.28 0.07	17 3	6.24 0.06	12.83 2.31	15 3	5.42 0.06	11.31 2.26	13 2	3.20 0.03	9.81 1.82
		(4, 4)	0	0.00	0.13	4	0.12	3.10	4	0.12	3.03	1	0.02	1.61
		(2, 2)	2	0.05	2.03	3	0.16	3.11	3	0.16	2.91	2	0.05	2.20
	20	(2, 4) (4, 2)	9 0	0.91 0.00	8.42 0.94	20 4	5.79 0.12	15.00 3.75	19 4	5.66 0.12	14.64 3.35	11 1	2.13 0.05	10.31 1.32
		(4, 4)	4	0.21	4.60	11	1.34	8.77	11	1.34	8.47	6	0.48	6.23
		(2, 2)	1	0.02	0.92	7	1.61	5.85	6	1.39	4.75	3	0.11	3.23
	30	(2, 4) (4, 2)	6 0	0.86 0.00	6.89 0.45	17 3	5.61 0.12	12.92 2.63	16 3	5.54 0.12	12.88 2.25	9 1	2.05 0.07	11.51 1.80
		(4, 4)	3	0.07	3.78	8	0.32	6.76	8	0.32	6.56	5	0.16	5.09
		(2, 2)	0	0.00	0.24	2	0.04	1.72	2	0.04	1.42	0	0.00	0.24
	40	(2, 4) (4, 2)	4 0	0.21 0.00	5.18 0.96	8 4	0.97 0.56	6.78 3.77	8 4	0.97 0.56	6.43 3.67	5 1	0.61 0.20	6.22 1.90
		(4, 4)	2	0.05	2.89	4	0.12	4.16	4	0.12	4.16	2	0.05	2.98
		(2, 2)	0	0.00	0.40	3	0.07	2.59	3	0.07	2.39	1	0.03	0.96
	50	(2, 4) (4, 2)	2 0	0.15 0.00	2.37 0.60	6 4	0.70 0.11	5.33 3.48	6 4	0.70 0.11	5.23 3.18	3 1	0.23 0.04	3.56 2.35
		(4, 4)	2	0.06	3.91	4	0.08	4.56	4	0.08	4.53	4	0.08	4.55
		(2, 2)	1	0.05	1.88	4	0.23	3.75	4	0.23	2.65	1	0.05	2.13
	100	(2, 4) (4, 2)	2 0	0.06 0.00	3.68 0.91	6 5	0.30 0.09	5.79 4.43	6 5	0.30 0.09	5.19 4.13	2 2	0.06 0.04	4.02 1.80
		(4, 4)	2	0.02	3.71	6	0.15	5.80	6	0.15	5.07	2	0.02	5.88
		(2, 2)	0	0.00	4.40	3	0.30	5.99	3	0.30	5.12	1	0.07	4.99
	150	(2, 4) (4, 2)	0 0	0.00 0.00	2.41 5.27	2 3	0.16 0.18	3.67 6.73	2 3	0.16 0.18	3.66 6.13	1 0	0.10 0.00	2.98 6.01
		(4, 4)	1	0.01	8.10	2	0.05	8.79	2	0.05	8.34	1	0.01	8.21
	Average		54	0.19	3.10	174	0.96	5.83	169	0.91	5.45	86	0.36	4.31
	Total CPU time		84			163			153			121	

Table 2 .

 2 Performance on Set B

				CDDS 2			CDDS L		CDDS L-LB(2HFS)		CDDS 2-LB(HFS)
	n	(m 1 , m 2)	US	Dev	Time	US	Dev	Time	US	Dev	Time	US	Dev	Time
		(2, 2)	2	0.09	1.51	5	0.12	4.32	5	0.12	3.32	3	0.10	2.27
	10	(2, 4) (4, 2)	0 9	0.00 1.60	0.44 7.03	5 19	0.38 5.92	4.08 14.28	5 18	0.38 5.72	3.98 13.82	2 12	0.16 2.33	1.71 9.71
		(4, 4)	2	0.29	1.52	7	1.18	5.74	7	1.18	5.34	4	0.53	3.32
		(2, 2)	1	0.03	0.79	5	0.08	4.34	5	0.08	3.94	1	0.03	0.97
	20	(2, 4) (4, 2)	0 5	0.00 0.64	0.03 4.91	3 13	0.09 5.70	2.28 10.09	3 12	0.09 5.30	1.85 9.39	1 5	0.03 0.64	0.61 5.15
		(4, 4)	3	0.14	2.91	4	0.15	3.78	4	0.15	3.58	3	0.14	3.24
		(2, 2)	0	0.00	0.03	4	0.16	3.02	4	0.16	3.02	0	0.00	0.34
	30	(2, 4) (4, 2)	0 7	0.00 0.93	0.10 6.05	3 11	0.12 5.69	2.34 8.64	2 11	0.09 5.69	2.04 8.64	1 8	0.07 1.13	1.23 6.78
		(4, 4)	2	0.11	2.49	3	0.19	3.31	3	0.19	3.11	3	0.23	2.77
		(2, 2)	0	0.00	0.19	2	0.06	1.67	2	0.06	1.37	0	0.00	0.25
	40	(2, 4) (4, 2)	0 3	0.00 0.28	0.09 3.06	3 9	0.53 1.01	2.33 7.31	3 8	0.53 0.84	2.43 7.21	0 4	0.00 0.40	0.42 4.11
		(4, 4)	2	0.05	13.09	4	0.55	8.24	4	0.55	7.94	2	0.05	6.90
		(2, 2)	0	0.00	0.65	3	0.56	2.80	3	0.56	2.60	1	0.11	1.33
	50	(2, 4) (4, 2)	0 8	0.00 0.37	0.10 7.23	2 10	0.43 0.69	1.59 7.95	2 9	0.43 0.47	1.49 7.45	1 9	0.07 0.47	1.51 7.44
		(4, 4)	1	0.02	2.94	3	0.06	4.75	3	0.06	4.35	2	0.13	3.32
		(2, 2)	0	0.00	0.52	3	0.09	2.69	3	0.09	2.69	0	0.00	0.72
	100	(2, 4) (4, 2)	0 2	0.00 0.03	0.55 4.30	2 7	0.09 0.35	2.00 6.65	1 7	0.04 0.35	1.98 6.45	0 3	0.00 0.19	0.82 5.12
		(4, 4)	2	0.02	3.30	8	0.17	6.99	8	0.17	6.91	2	0.02	3.65
		(2, 2)	0	0.00	1.39	3	0.08	3.43	3	0.08	3.41	1	0.04	2.88
	150	(2, 4) (4, 2)	0 1	0.00 0.03	0.90 3.03	4 5	0.13 0.22	3.72 6.02	3 5	0.10 0.22	3.63 6.01	1 1	0.03 0.03	1.67 3.43
		(4, 4)	1	0.01	5.06	3	0.03	6.55	3	0.03	6.43	2	0.34	5.34
	Average		51	0.17	2.62	153	0.89	5.03	146	0.85	4.80	72	0.26	3

.10 Total CPU time 73 141 134 87

An important conclusion of the computational experience is that the key ingredient of a discrepancy-based search to solve two-stage flow shop scheduling relates to dedicated instantiation heuristics. In addition, the use of dedicated lower bounds improves slightly the efficiency of the method. Future research efforts need to be focused on the adaptation of CDDS method for solving more realistic hybrid flow shop problems. In particular, as noticed by Ruiz and Vázquez-Rodríguez [16], a challenging research direction that deserves future investigation is concerned with the design of an effective CDDS-based solution approach to multiobjective HFS.

In the second part of experiments, we propose to compare solutions provided by CDDS 2 and results of the Tabu Search (TS) method developed in [START_REF] Haouari | Heuristic algorithms for the two-stage hybrid flowshop problem[END_REF]. This latter method considered only 900 instances generated in a similar way as in [START_REF] Lee | Minimizing makespan in hybrid flow-shop[END_REF]; the number of jobs n was restricted to 20, 30, 40, 50, and 100 jobs. The numbers of machines (m 1 , m 2) considered are (2, 4), (4, 2), and (4, 4). Solutions of both methods are compared with SPT-lower bounds values calculated at the root (see Table 4).

As shown in Table 4, CDDS outperforms the Tabu Search method in all instances, except the instances of the subclass (4,2) of Set B. It is however assumed that the CDDS is very efficient for all problem sizes. In most problems, the CDDS procedure yields optimal or very near-optimal solutions. Considering all the problems, CDDS produced a proven optimal solution for 85.8% of the cases (772 out of 900) within 2.26 sec (considering the average CPU time) while TS yields the optimal solutions in 35% of the cases (316 out of 900) within 0.03 sec. Note that this latter value on TS CPU time was computed using the normalization coefficients of Dongarra [START_REF] Dongarra | Performance of various computers using standard linear equations software[END_REF]. As displayed in Figure 4, we observe that the proposed CDDS 2 method performs better for larger problems. Considering all problems and all distributions, CDDS 2 presents a deviation from LBs of 0.22% versus 0.82% for TS method.

CONCLUSIONS AND FUTURE RESEARCH

In this paper, we proposed an effective method to solve two-stage hybrid flow shop scheduling. This method is an adaptation of the Climbing Depth-bounded Discrepancy Search initially developed for the general hybrid flow shop problem. The adaptation integrates effective heuristics and lower bounds based on an extension of Johnson's rule. We presented extensive computational results which provide evidence that the proposed approach has an excellent performance, outperforms the algorithm developed for the general case, and consistently outperforms a well-known tabu search producing optimal solutions for the great majority of instances.