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Abstract. We address the enumeration and the leader election problems over partially anonymous
and multi-hop broadcast networks. We consider an asynchronous communication model where each
process broadcasts a message and all its neighbours receive this message after arbitrary and unpre-
dictable time. In this paper, we present necessary conditions that must be satisfied by any graph to
solve these problems and we show that these conditions are sufficient by providing an enumeration
algorithm on the one hand and a leader election algorithm on the other hand. From the complexity
viewpoint, our algorithms offer a polynomial complexity (memory, number of messages and size of
messages).
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1. Introduction

A network in which all nodes can communicate directly one with another is qualified as single-hop,
otherwise, as multi-hop. A multi-hop broadcast network is a collection of nodes which communicate by
broadcasting messages without relying on preexisting infrastructure. Such networks include multi-hop
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radio networks. Some of the important challenges in such a network are enumeration and leader election
which are well-known in the field of distributed systems.

1.1. Enumeration and Election

The aim of a naming algorithm is to give unique identities to all processes. The enumeration problem is
a variant of the naming problem and aims to give to each node a unique number between 1 and the size
of the graph. In multi-hop radio networks, such as radio sensor networks, existence of identified nodes
allows better routing of information, resource management and performance.

A distributed algorithm solves the election problem if it always terminates and in the final configu-
ration exactly one process is marked as elected and all the other processes are marked as non-elected.
Moreover, it is supposed that once a process becomes elected or non-elected then it remains in such a
state until the end of the algorithm. Election algorithms constitute a building block of many other dis-
tributed algorithms. The elected vertex acts as coordinator, initiator, and more generally performs some
special role (see [16] p. 262).

Using enumeration/naming algorithm, one can promote the process with the highest (resp. lowest)
identifier as elected. However, enumeration and election problems are not necessarily equivalent (see [3,
7]). We are here interested in characterizing graphs in which there exists an algorithm that solves the
enumeration problem or that solves the election problem.

1.2. The Model

We consider an asynchronous broadcast communication model (see [9, 8]). A network is represented
by a simple connected graph G = (V (G), E(G)) = (V,E) where vertices correspond to processes and
edges to direct communication links. The state of each process is represented by a label λ(v) associated
to the corresponding vertex v ∈ V (G); we denote byG = (G,λ) such a labelled graph.

We consider partially anonymous graphs, i.e., nodes can have names which are not necessarily dis-
tinct.

Emitted messages are only heard by reachable nodes. We consider the message passing model re-
lying on asynchronous broadcast communications: processes cannot access a global clock and execute
computation steps (atomic emit, hear and internal computation) at arbitrary speed. A message emitted
from a process to neighbours arrives within some finite but unpredictable time depending on algorithms
used to ensure messages delivery (e.g., collision-free and interference-free transmissions in multi-hop
radio networks). Note that communications are not necessarily FIFO.

We assume that the media access and data link problems such as collisions, interferences or additions
are solved by the Data Link sublayer Mac Access Control (see [13], [15] (Chap. 4)). Thus, the model
ensures that there is no loss and a node always receives a message emitted by one of its neighbours. A
process cannot distinguish its neighbours (there is no port-numbering function).

For the remaining of this paper, we indistinctly use node and process to qualify an entity endowed
with computing and networking capabilities.

1.3. Overview of our Contributions

We give complete characterizations of multi-hop broadcast networks where there exists an enumeration
algorithm or an election algorithm (Theorem 3.1 and Theorem 4.1). In this model, enumeration and
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election problems are not equivalent, meaning that even if we can elect a leader, we cannot always give
a unique number to every node.

Let G = (G,λ) be a labelled graph. We will denote by Dir(G) the symmetric labelled directed
graph (digraph) (Dir(G), λ) constructed in the following way. The vertices of Dir(G) are the vertices of
G and they have the same labels in G and in Dir(G). Each edge {u, v} of G is replaced in Dir(G) by
two arcs a(u,v), a(v,u) ∈ A(Dir(G)) such that s(a(u,v)) = t(a(v,u)) = u, t(a(u,v)) = s(a(v,u)) = v. Note
that this digraph does not contain multiple arcs or loop. The object we use for our study is (Dir(G), λ)
and results are stated with symmetric labelled digraphs.

A fibration between two digraphs D and D′ is a homomorphism from D onto D′ that induces an
isomorphism between the incoming arcs of each vertex of D and the incoming arcs of its image.

First, we prove that, in the asynchronous broadcast model, there exists an enumeration algorithm if
and only if Dir(G) is minimal for the fibration relation, i.e., if there exists a fibration between Dir(G)
andD′ then it is an isomorphism.

For the election problem, we prove that there exists an election algorithm if and only if as soon as if
there exists a fibration ϕ between Dir(G) andD′ then necessarily there exists a vertex v of D′ such that
ϕ−1(v) is a singleton.

Furthermore, our algorithms have a polynomial complexity: local memory, number of messages and
size of messages are polynomially bounded by the size of the network.

Remark 1.1. For the enumeration algorithm, it suffices that every node knows the size of the network
for the termination detection. For the election algorithm to detect the termination we assume that each
node knows a map of the whole graph; we also prove that it suffices that every vertex knows the size of
the graph and the size of its neighbourhood.

1.4. Related Works: Comparison and Comments

Graphs where election or naming are possible were already studied for different basic models. Solutions
depend on the type of basic computation steps, the type of network topology or the initial knowledge.

Angluin [1] has introduced the classical proof techniques used for showing the non-existence of an
election algorithm based on coverings, which is a notion known from algebraic topology [11]. Finally,
several characterizations of graphs for which there exists an election algorithm have been obtained [3,
17, 19, 12].

The model studied in this paper corresponds to the Broadcast-to-Mailbox communication mode of
Yamashita and Kameda [19] and to the no output port awareness and no input port awareness of Boldi
et al. [3]. We use intensively fibrations introduced in [3] and studied in [4]. The fundamental tool in
[19, 3] is the notion of view. The view from a vertex v of a labelled graph (G,λ) is an infinite labelled
tree rooted in v obtained by considering all labelled walks in (G,λ) starting from v.

The characterization of graphs where election is possible obtained in [19] is formulated by using
views whereas Boldi et al. [3] use fibrations. In both cases election algorithms are based on views
and the election algorithms presented in [19, 3] use messages with of exponential size, they need the
knowledge of the size of the graph and the size of the neighbourhood of each vertex; this knowledge
is used in the algorithms to ensure that all executions are pseudo-synchronous and that communication
links behave like FIFO channels.
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Techniques developed in this paper are inspired by the work of Mazurkiewicz [12]. He considers
the asynchronous computation model where in one computation step labels of vertices are modified on
a subgraph consisting of a node and its neighbours, according to rules depending on this subgraph only.
Mazurkiewicz’s characterization of the graphs where enumeration/election are possible is based on the
notion of unambiguous graphs and may be formulated equivalently using coverings of simple graphs
(see [10], p. 256). A graph G is a covering of another graph G′ if there is a surjective homomorphism ϕ
fromG toG′ which is locally bijective. He gives a nice and simple enumeration algorithm for the graphs
that are minimal for the covering relation, i.e., which can cover only themselves. The fundamental tool
is a total order attached to local views defined by a vertex and its neighbourhood. As consequence, our
algorithms are totally asynchronous, messages are not necessarily FIFO and their sizes are polynomial.

These techniques have been also used in [5, 6]. The model of [5] (it is the same one as [17]) is
such that in each step, one of the vertices, depending on its current label, either changes its state, or
sends/receives a message via one of its ports. The model of [6] is defined by local computations on
labelled edges of graphs. In both cases the election problem and the enumeration problem are equivalent.

Cidon and Mokryn present in [9] an election algorithm in multi-hop radio networks. This algorithm
partitions the network into fragments that are collections of processes where one process is identified
as a candidate and marked initially as active. They consider networks that are not anonymous: each
vertex has a unique identity. During the computation, a candidate can become inactive and joins another
candidate’s fragment.

1.5. Summary

First, we present in Section 2 the notion of fibration for digraphs and the fundamental lemma (Lemma
2.1) which connects fibrations and asynchronous broadcast communications. In Section 3, we charac-
terize graphs which admit and enumeration algorithm while in Section 4, we charcaterize graphs which
admit an election algorithm.

2. Preliminaries

In order to describe our characterization, one needs to consider directed graphs (digraphs for short) that
can have multiple arcs and self-loops. In this section, we present various definitions about digraphs and
labelled digraphs. We also present fibrations which are a particular type of homomorphism. From these
definitions, we give a fundamental lemma that establishes a link between fibrations and asynchronous
broadcast communications.

2.1. Labelled Simple Graphs and Digraphs

Undirected graphs without multiple edges or loop are also called simple graphs. Each such a graph is
written asG = (V (G), E(G)) where V (G) is the set of vertices ofG and where the set of edges E(G) is
a set of pairs of distinct vertices of G. For each edge {u, v} ∈ E(G), u and v are the ends of {u, v} and
u and v are said to be adjacent or neighbours. We denote by NG(u) the set of all vertices of G adjacent
to u and degG(u) is the degree of u in G, i.e., the size of NG(u).

A simple graph G is connected if for all vertices u, v ∈ V (G), there exists a path between u and v.
Otherwise, it is disconnected. In the following, we will only consider connected simple graphs.
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A digraph D = (V (D), A(D), sD, tD) is defined by a set V (D) of vertices, a set A(D) of arcs and
by two maps sD and tD that assign to each arc two elements of V (D): a source and a target (in general,
the subscripts will be omitted). If a is an arc, the arc a is said to be going out of s(a) and coming into
t(a); we also say that s(a) and t(a) are incident to a. Let a be an arc, if s(a) = u and t(a) = v then v
is an out-neighbour of u and u is an in-neighbour of v. A self-loop is an arc with the same source and
target.

A symmetric digraphD is a digraph endowed with a symmetry, that is, an involution Sym : A(D) →
A(D) such that for every a ∈ A(D), s(a) = t(Sym(a)). In a symmetric digraph D, the degree of a
vertex v is degD(v) = |{a | s(a) = v}| = |{a | t(a) = v}| and we denote by ND(v) the set of
neighbours of v which is equal to the set of out-neighbours of v and to the set of in-neighbours of v.

Given two vertices u, v ∈ V (D), a path π of length p from u to v in D is a sequence of arcs
a1, a2, . . . ap such that s(a1) = u,∀i ∈ [1, p−1], t(ai) = s(ai+1) and t(ap) = v. If for each i ∈ [1, p−1],
ai+1 %= Sym(ai), π is non-stuttering. A digraph D is strongly connected if for all vertices u, v ∈ V (D),
there exists a path from u to v in D. In a digraph D, the distance between two vertices u and v, denoted
distD(u, v) is the length of the shortest path from u to v in D. Note that distD(u, v) is not necessarily
equal to distD(v, u) unless D is a symmetric digraph. A digraphH is a subdigraph ofD, notedH ⊆ D,
if V (H) ⊆ V (D) and A(H) ⊆ A(D).

Definition 2.1. A homomorphism ϕ from the digraphD to the digraphD′ is given by a pair of functions
ϕV : V (D) → V (D′) and ϕA : A(D) → A(D′) commuting with the source and target maps, i.e.,
sD′ ◦ ϕA = ϕV ◦ sD and tD′ ◦ ϕA = ϕV ◦ tD.

A homomorphism ϕ is an isomorphism if ϕ is bijective. We write D ≈ D′ whenever D and D′ are
isomorphic.

In this paper, we consider digraphs where the vertices are labelled with labels from a recursive set L.
A digraph D labelled over L will be denoted by (D,λ), where λ : V (D) → L is the labelling function.
The digraph D is called the underlying digraph and the mapping λ is a labelling of D. A mapping
ϕ : V (D) → V (D′) is a homomorphism from (D,λ) to (D′, λ′) if ϕ is a digraph homomorphism from
D to D′ which preserves the labelling, i.e., such that λ′(ϕ(v)) = λ(v) for every v ∈ V (D). Labelled
digraphs will be designated by bold letters like D,D′, . . . IfD is a labelled digraph, then D denotes the
underlying digraph.

Let H be a subgraph of D and λH the restriction of a labelling λ : V (D) → L to V (H). Then the
labelled graph H = (H,λH) is called a subdigraph of G = (D,λ); we note this fact byH ⊆ D.

Our proofs use the notion of view. Informally, the view of a vertex v in a digraph D is obtained by
considering all labelled paths in D ending in v. From the computation viewpoint, the view of a node in
a network is a tree representing all the information it can gather about the network.

Definition 2.2. Given a labelled digraph D, the view TD(v0) of a vertex v0 is an infinite rooted labelled
tree that can be defined recursively. The root of the tree is a vertex x0 that corresponds to v0 and is
labelled by λ(v0). For each incoming neighbour vi of v0 in D, there is an arc between x0 and the root
xi of the tree TD(vi). Let d be an integer, the d-view T d

D
(v0) of v0 ∈ V (D) is the infinite view TD(v0)

truncated at depth d.

Remark 2.1. Note that computing the view of a node belongs to the set of tools which allows to capture
“symmetric” behaviour in distributed computations. The algorithms of Boldi et al. [3] and of Yamashita
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and Kameda [19] are based on the notion of view.

From this definition, we can state that the set of d-views of a digraphD is finite. Thus, we can define
a partial order ) on this set as follows:

Definition 2.3. For every vertex v,w ∈ V (D), if T = T d
D
(w) is a subtree of T ′ = T d

D
(v) then T ′ ) T .

Note that if there exists an isomorphism between T to T ′, they are said to be similar, denoted T ≈ T ′.

2.2. Homomorphism and Fibration

Fibrations, t -fibrations and nt -fibrations are important tools for this work (see [2, 4] for definitions and
properties).

A fibration is a homomorphism that induces an isomorphism between the incoming arcs of a vertex
and the incoming arcs of its image.

Definition 2.4. A digraphD is fibred over a digraphD′ via a homomorphism ϕ if ϕ is a homomorphism
fromD toD′ such that for each arc a′ ∈ A(D′) and for each vertex v ∈ ϕ−1(t(a′)), there exists a unique
arc a ∈ A(D) such that t(a) = v and ϕ(a) = a′; this arc a is called the lifting of a′ at v.

We say that the homomorphism ϕ is a fibration from D to D′, the digraph D is the total digraph of
ϕ and the digraph D′ is the base of ϕ.

The fibre over a vertex v′ (resp. an arc a′) of D′ is defined as the set ϕ−1(v′) of vertices of D (resp.
the set ϕ−1(a′) of arcs of D).

The digraph D is minimal if for every digraph D′ such that D is fibred over D′, D and D′ are
isomorphic.

If a digraph D is fibred over a digraph D′ via a homomorphism ϕ, and if D and D′ are not isomor-
phic, we say thatD is properly fibred overD′ and that ϕ is a proper fibration.

From [4], we know that there exists a unique digraph BG such that Dir(G) is fibred over BG, and
for each D such that Dir(G) is fibred over D, D is fibred over BG. This digraph is called the minimal
base ofG.

In this work, we need to define t -fibrations and nt -fibrations.

Definition 2.5. The fibre of a vertex v is qualified as trivial if |ϕ−1(v)| = 1, otherwise, it is non-trivial.
A fibration ϕ is a t -fibration if there exists at least one vertex such that its fibre is trivial; it is a

nt -fibration if all fibres are non-trivial.
A digraph D is t -fibred (resp. nt -fibred) over a digraph D′ via ϕ if and only if ϕ is a t -fibration

(resp. nt -fibration).
The digraph D is nt -minimal if for every digraph D′ such thatD is fibred overD′ via a fibration ϕ,

ϕ is a t -fibration.

A simple graph G is minimal if Dir(G) is minimal. Similarly, a simple graph G is nt -minimal if
Dir(G) is nt -minimal. An example of fibration is given in Figure 1.

Remark 2.2. As a corollary of Definition 2.3, we obtain: let H be a sub-digraph of Dir(G), for every
vertex v ∈ Dir(G), T d

Dir(G)(v) ) T d
H
(v).

Moreover, letD andD′ be two digraphs. IfD is fibred overD′ via ϕ, then TD(v) ≈ TD′(ϕ(v)), i.e,
the view of v inD is isomorphic to view ϕ(v) inD′.
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Figure 1. The labelled digraph Dir(G) is fibred over the digraphD. Therefore,Dir(G) is not minimal. Since
Dir(G) has a unique vertex of degree 3,Dir(G) is nt -minimal. The digraphD is minimal and also nt -minimal.

Note that the vertices of the minimal base B of G can be identified to their views in B: this defines
a unique homomorphism from G to B. We define the notion of candidate for a digraph D such that
Dir(G) is fibred overD.

Definition 2.6. Consider a nt -minimal graphG, let B be the minimal base of Dir(G), and let ϕ be the
unique fibration from Dir(G) to B. A vertex v ∈ V (B) is a candidate of B if |ϕ−1(v)| = 1, i.e., if
there is a unique vertex w ∈ V (G) such that TG(w) ≈ TB(v).

Given a digraphD such thatDir(G) is fibred overD, we know thatD is fibred overB via a unique
homomorphism ϕ′. A vertex v is a candidate ofD if and only if ϕ′(v) is a candidate of B.

We denote CG,D the set of candidates ofD.

Note that if a nt -minimal digraph Dir(G) is fibred over a digraph D via a homomorphism ϕ, then
for every vertex v ∈ CG,D, |ϕ−1(v)| = 1.

2.3. Fibrations and Broadcast Communications

In order to extend the Lifting Lemma of Angluin [1] to asynchronous broadcast communications, we
present the correlation between fibrations and asynchronous broadcast communications.

Leader election and enumeration problems require the network to reach a non-symmetric state. A
network state is qualified as symmetric if it contains different nodes that are in exactly the same situation;
not only their local states, but also the states of their neighbors, of their neighbors’ neighbors, etc. That
is, there exists a “local similarity” between different nodes of infinite radius.

The replay argument shows that different nodes that are locally similar with infinite radius will exhibit
the same behaviour in some infinite computation. Thus, there is no algorithm that guarantees that the
symmetry ceases in all finite computations.

It is not difficult to see that local similarity of infinite radius may exist in finite graphs. It is precisely
captured by the notion of graph homomorphisms (coverings) used by Angluin and this is the mathemat-
ical tool to prove the existence of symmetries of infinite radius.

In our model, when a process emits a message, it modifies its state according to only its previous
state, while its neighbouring processes that hear the message modify their states following their previous
states and the state of the emitting process.
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Thus, multi-hop broadcast networks in which symmetries exist are non minimal and impossibility
of symmetry breaking can be shown for these graphs. The following lemma connects fibrations and
asynchronous broadcast communication steps.

A maximal execution ρ of an algorithm is either an infinite execution, or a finite execution such that
in the final configuration, there is no message in transit and no process wants to emit a message.

Lemma 2.1. (Asynchronous Lifting Lemma)
Consider a digraph D1 fibred over a digraph D2 via ϕ and let A be an algorithm based on the asyn-
chronous broadcast model. If there exists a maximal execution ρ2 of A on D2 which yields D′

2 then
there exists a maximal execution ρ1 of A onD1 which yields D′

1 such thatD′
1 is fibred overD′

2 via ϕ.

Proof:
LetD1 = (D1, λ1),D2 = (D2, λ1) be two digraphs such that (D1, λ1) is fibred over (D2, λ2) via ϕ.

Consider a particular set of executions Π on D2 in which each emitted message from a process v is
followed by the hearing of all its neighbours. Consider a step of ρ ∈ Π: the process v emits a message
inD2 and all its neighbours hear the message just after its emission. Let λ′

2 be the labelling of D2 after
this step. One can lift this execution inD1 in which every vertex in ϕ−1(v) emits the same message (not
simultaneously and in any order). Then, all emitted messages are heard. Let denote λ′

1, the new labelling
ofD1. Each vertex w ∈ ND2(v) hears k messages, with k depending on the number of arcs a ∈ A(D2)
such that s(a) = v and t(a) = w. Since ϕ is a fibration relation, for every vertex w′ ∈ ϕ−1(w), w′ has k
neighbouring processes in ϕ−1(v) and hears k same messages. In this sense, λ′

1(w
′) = λ′

2(w) and labels
of all other vertices are not modified. Note that if there exist any self-loops on v, then there exist arcs
a ∈ A(D2) such that s(a) = t(a) = v. Once v has emitted a message, λ′

1(v) = λ′
2(ϕ

−1(v)). Thereafter
once v has heard this message, we have also λ′

1(v) = λ′
2(ϕ

−1(v)). Therefore, the digraph (D1, λ
′
1) is

fibred over (D2, λ
′
2) via ϕ. Thus, if the execution ρ is infinite on D2, the lifted execution on D1 is also

infinite. If the maximal execution ρ onD2 is finite, then all messages have arrived, and no process has to
emit a message. Hence, after the execution lifted form ρ on D1, D1 is fibred over D2 and all messages
have also arrived and no process has to emit a process: the lifted execution is maximal. *+

3. An Enumeration Algorithm for Broadcast Networks
In this section, we give a necessary condition based on an impossibility result which states that there
exists no enumeration algorithm for a graph G such that Dir(G) is not minimal. Then, we prove that
this condition is sufficient by presenting an enumeration algorithm M (Algorithm 1) which relies on
asynchronous broadcast communications and is inspired by the work of Mazurkiewicz [12].

3.1. Impossibility Result

Given a network represented by a graphG, we present a necessary condition that must be satisfied byG
to admit an enumeration algorithm. This is an impossibility result that relies on the notion of fibrations
for asynchronous computations. Following the proof of Lemma 2.1 presented above, we show that two
nodes belonging to a same fibre cannot have different names.

Proposition 3.1. Let G be a labelled graph such that Dir(G) is not minimal, there is no enumeration
algorithm forG in the asynchronous broadcast model.
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Proof:
Consider a simple graph G = (G,λ) and a strongly connected digraph D = (D, η) such that Dir(G)
is properly fibred over D via a fibration ϕ. Given an algorithm A relying on asynchronous broadcast
communications, consider an execution ofA onD as described in Lemma 2.1. Note that if this execution
ofA onD is infinite, then following Lemma 2.1 there exists an infinite execution ofA onG. Finally, A
is not an enumeration algorithm forG.

Suppose this execution of A on D is finite and yields a configuration D′. In the final configuration
every message has arrived and no process has to emit a message. Thus, each vertex has its final label.
Following Lemma 2.1, there exists a lifted execution of A on Dir(G) that yields a configuration G′

such that G′ is properly fibred over D′ via ϕ. Since G′ is fibred over D′ it implies that there exist at
least two vertices that have the same label inG′. Hence, the algorithm A does not give a distinct label to
each vertex and is not an enumeration algorithm forG. *+

3.2. An Enumeration Algorithm

During the execution of the enumeration algorithm, each vertex v attempts to get its unique identity
label : a number between 1 and |V (G)|. Once a vertex v has chosen a number n(v), it emits it to
its neighbourhood. When a vertex v hears a message from a neighbour u, it stores the number n(u).
From all information it has gathered from its neighbours, each vertex v is able to create its local view.
Schematically, the local view of v is the multiset of given numbers that appear in his neighborhood.
Then, a vertex broadcasts its number with its local view N(v). If a vertex u discovers that there exists
another vertex v with the same number then it should decide if its changes its identity : it compares its
local view with the local view of v. If the label of u or the local view of u is weaker (for an order we
define later), then u chooses another identity and emits it again with its local view. At the end of the
computation, if the digraph is minimal, then every vertex will have a unique number.

3.2.1. Labels

We consider a network G where G = (G,λ) is a simple labelled graph. The function λ : V (G) → L
is the initial vertex labelling and is kept during the computation. We suppose that there exists a total
order <L on L. During the execution, the label of each vertex v is a tuple (λ(v), n(v), N(v),M(v))
corresponding to the following information:

• λ(v) ∈ L is the initial label of v and is not modified by the algorithm.

• n(v) ∈ N is the current number of the vertex v computed by the algorithm.

• N(v) ∈ Pfin(N × Z)1 is the local view of v. Intuitively, once v has updated its local view, (n, p)
belongs to N(v) if v knows p neighbours that have n as an identity number.

• M(v) ∈ N × L × Pfin(N2) is the mailbox of v. The mailbox of v contains all information heard
by v during the execution of the algorithm. If (m, &,N ) ∈ M(v), it means that at some previous
step of the execution, there was a vertex u such that n(u) = m, λ(u) = & and N(u) = N .

1For any set S, Pfin(S) denotes the set of finite subsets of S.
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Algorithm 1: AlgorithmM in the asynchronous broadcast model.

var: emit : bool init false;
nold : int init 0 ;

I : {n(v0) = 0 and no message has arrived at v0}
begin

Mold := ∅;
n(v0) := 1 ;
M(v0) := {(n(v0), λ(v0), ∅)};
emit := true

end
S : {emit = true}
begin
emit < (n(v0), nold,M(v0)) >;
nold := n(v0);
emit := false

end
R : {A message < (n′, n′

old,M
′) > has arrived at v0}

begin
Mold := M(v0);
M(v0) := M(v0) ∪M ′;
if n(v0) = 0 or ∃(n(v0), &,N ) ∈ M(v0) such that (λ(v0), N(v0)) ≺ (&,N ) then

n(v0) := 1 + max{n | ∃(n, &,N ) ∈ M(v0)};

N(v0) := update(n′, n′
old);

M(v0) := M(v0) ∪ {(n(v0), λ(v0), N(v0))};
if ∀(n, p) ∈ N(v0), p > 0 andM(v0) %= Mold then

emit := true

end

Initially, each vertex v has a label of the form (λ(v), 0, ∅, ∅) indicating that it has not chosen any
number, that it has no information about its neighbours or about the other vertices of the graph.

In order to update the local view of a process v0 ∈ V (G), we define a function update(n, nold) the
operations defined as follows. First, if nold %= 0, we apply the following rule:

• if there exists (nold, 1) ∈ N(v0), N(v0) := N(v0) \ {(nold, 1)},

• if there exists (nold, p) ∈ N(v0) with p %= 1, N(v0) := N(v0) \ {(nold, p)} ∪ {(nold, p− 1)},

• otherwise, N(v0) := N(v0) ∪ {(nold,−1)}.

Then, symmetrically, we do the following operations.

• if there exists (n,−1) ∈ N(v0), N(v0) := N(v0) \ {(n,−1)},
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• if there exists (n, p) ∈ N(v0) with p %= −1, N(v0) := N(v0) \ {(n, p)} ∪ {(n, p + 1)},

• otherwise, N(v0) := N(v0) ∪ {(n, 1)}.

3.2.2. Messages

In our algorithm, processes exchange messages of the form < (m,nold,M) >. If a vertex u emits a
message < (m,nold,M) >, then m is the current number n(u) of u, nold is the previous number of u;
if in the meanwhile, u has not modified its number, then nold = m. AndM is the mailbox of u.

Remark 3.1. If there exists (n, p) ∈ N(v) with p < 0, then it means that among all the messages
< (m,nold,M) > that v has heard, there are more messages where nold = n than messages where
m = n. However, each time a node w emits a message < (m,nold,M) > withm %= nold, we know that
w has previously emitted a message < (nold, n

′
old,M) > with nold > n′

old.
Consequently, if there exists (n, p) ∈ N(v) with p < 0, then it implies that v has not heard yet all

messages sent by its neighbours, and thus it can wait until it hears a message of the form< (m,n,M) >.

3.2.3. An Order on Local Views

As in Mazurkiewicz’s algorithm [12], the nice properties of the algorithm rely on a total order on local
views, i.e., on finite subsets of Pfin(N2). The algorithm described above is such that the local view of
any vertex cannot decrease during the computation.

In order to compare two elements ofN2, we use the usual lexicographic order onN2: (n, p) < (n′, p′)
if n < n′, or if n = n′ and p < p′.

Let N1, N2 ∈ Pfin(N2), N1 %= N2. Consider (n, p) as the maximal element of the symmetric
difference N1 1 N2 = (N1 \ N2) ∪ (N2 \ N1). Then N1 ≺ N2 if and only if one of the following
conditions holds:

• (n, p) ∈ N1 and p < 0,

• (n, p) ∈ N2 and p > 0.

If N(u) ≺ N(v) then we say that the local view N(v) of v is stronger than the one of u (and N(u)
is weaker than N(v)). Note that in particular the empty set is minimal for ≺. We assume for the rest
of the paper that the set of initial labels L is totally ordered by <L. We extend ≺ to a total order on
L × Pfin(L × N): (&,N) ≺ (&′, N ′) if either & <L &′, or & = &′ and N ≺ N ′. We denote by 2 the
reflexive closure of ≺.

3.3. Correctness ofM

Let G be a simple labelled graph. In the following, i is an integer denoting a computation step. Let
(λ(v), (ni(v), Ni(v),Mi(v)) be the label of the vertex v after the ith step of the computation of the
algorithm M given above. We present some properties satisfied by each execution of the algorithm in
the asynchronous broadcast model.

The following lemma, which can be proved easily by induction on the number of steps, recapitulates
basic labelling properties.
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Lemma 3.1. For each vertex v and each step i,

1. ni(v) %= 0 =⇒ (ni(v), λ(v), Ni(v)) ∈ Mi(v),

2. ∀n′ ∈ Ni(v), n′ > 0 and ∃&′ ∈ L,∃N ′ ∈ Pfin(N2), (n′, &′, N ′) ∈ Mi(v).

The algorithm has some remarkable monotonicity properties that are described in the following
lemma.

Lemma 3.2. For each step i and each vertex v, Mi(v) ⊆ Mi+1(v), ni(v) ≤ ni+1(v), and Ni(v) 2
Ni+1(v). Moreover, if v applies the action S at step i and j with i %= j, thenMi(v) %= Mj(v).

Proof:
The property is obviously true for the vertices that are not active at step i. It is easy to see that, for each
vertex v, we always haveMi(v) ⊆ Mi+1(v).

For each vertex v and each step i such that ni(v) %= ni+1(v), ni+1(v) = 1+max{n1; (n1, &1, N1) ∈
Mi(v)} and either ni(v) = 0 < ni+1(v) or (ni(v), λ(v), Ni(v)) ∈ Mi(v) as shown in Lemma 3.1 and
therefore ni(v) < ni+1(v).

When v hears a message in the following form: mess =< (n′, n′,M ′) >,Ni+1(v) = update(n′, n′)
= Ni(v). If Ni(v) %= Ni+1(v) then v heard a message mess =< (n′, n′

old,M
′) > with n′ > n′

old and
thus Ni(v) ≺ Ni+1(v).

Moreover, the condition of S is satisfied when the value of emit becomes true, i.e., when the mailbox
M(v) of v is modified. *+

The local knowledge of a vertex v reflects to some extent some real properties of the current config-
uration. The two following lemmas enable us to prove that if a vertex v knows a number m (i.e., there
exist &,N such that (m, &,N) ∈ Mi(v)), then for eachm′ ≤ m, there exists a vertex v′ in the graph such
that ni(v′) = m′. We first show that if v knows m there exists v′ such that ni(v′) = m. we also show
that if a vertex v knows an identity numberm, then it knows all the numbers smaller than m.

Lemma 3.3. For each vertex v ∈ V (G) and each step i, let ni(v) %= 0, given (m′, &′, N ′) ∈ Mi(v), for
every 1 ≤ m ≤ m′, there exists a vertex w ∈ V (G) such that ni(w) = m and (m, &,N) ∈ Mi(v).

Proof:
By induction on step i, we show that for each vertex v with ni(v) %= 0, given (m′, &′, N ′) ∈ Mi(v), for
every 1 ≤ m ≤ m′, there exists (m, &,N) ∈ Mi(v). We state that it holds for all i ≥ 0. If the rule I is
applied by v, then,Mi(v) = (1, λ(v0), ∅) and trivially, the property holds.

If the rule R is applied by v, then, v heard a message mess =< (n′, n′
old,M

′) > from another
vertex v′. Let j be the step in which v′ emitted this message. We know thatM ′ = Mj(v′). If v keeps its
number at step i+1, then,Mi+1(v) = Mi(v)∪Mj(v′) and the assertion is true by induction hypothesis.
Besides, if v′ modifies its number, then, ni+1(v) = 1 + max{n | ∃(n, l,N) ∈ Mi(v) ∪ Mj(v′)} and
Mi+1(v) = Mi(v) ∪Mj(v′) ∪ (ni+1(v), λ(v), Ni+1(v)). Consequently, the assertion is true.

Assume that the number m is known by v and let U = {(u, j) ∈ V (G) × N | j ≤ i, nj(u) = m}.
Consider the set U ′ = {(u, j) ∈ U | ∀(u′, j′) ∈ U,Nj′(u

′) ≺ Nj(u) or Nj′(u
′) = Nj(u) and j′ ≤ j}.

It is easy to see that there exists i0 such that for each (u, j) ∈ U ′, j = i0. Since (m, &,N) ∈ Mi(v),
neither U nor U ′ are empty.
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If i0 < i, the number ni0(u) = m of uwas modified at step i0+1 but by maximality of (λ(u), Ni0(u)),
the vertex u could not modify its number. Hence, i0 = i and there exists a vertex w ∈ V (G) such that
ni(w) = m. *+

From Lemma 3.3, we deduce that for each step, the identity numbers of all the vertices form either a
set [1, k] or a set [0, k] with k ≤ V (G).

For each step i and each vertex v, if there exists n′ ∈ Ni(v), from Lemma 3.1, there exists v′ such
that ni(v′) = n′ and therefore N(v) can only have a finite number of values and the same holds for
M(v). During the algorithm, the consecutive labelling of each vertex v form an increasing sequence,
(ni(v), Ni(v),Mi(v)), i = 1, 2, . . . and, each vertex can emit a message only if it modifies its mailbox.
Since the number of possible accessible labels is finite (but dependent on the size of the graph), the
algorithm always terminates.

Moreover, we make the assumption that every node knows the size of the network. Hence, once a
process gets the number |V (G)|, from Lemmas 3.3, it knows that all the vertices have different identity
numbers that will not change anymore and it can locally detect the termination of the algorithm.

Since we have proven that M always terminates, we can give some properties about the final la-
belling:

Lemma 3.4. Any execution ρ ofM on a connected labelled graphG = (G,λ) terminates and yields to
a final labelling (λ, np, Np,Mp) satisfying the following conditions:

1. there exists an integer k ≤ |V (G)| such that {np(v) | v ∈ V (G)} = [1, k],

and for all vertices v, v′:

2. Mp(v) = Mp(v′),

3. (np(v), λ(v), Np(v)) ∈ Mp(v′),

4. np(v) = np(v′) implies that λ(v) = λ(v′) and Np(v) = Np(v′),

5. (n, p) ∈ Np(v) if and only if there exists w1, . . . , wp ∈ NG(v) such that for each i, np(wi) = n;
in this case, there exists (np(v), p′) ∈ Np(wi) with p′ ≥ 1.

Proof:

1. By Lemma 3.3 applied to the final labelling.

2. Otherwise, there exists two neighbours v, v′ such thatM(v) = M(v′). However, since the configu-
ration is final, both v and v′ have sent their mailboxes to their neighbours and thusM(v) = M(v′).

3. A corollary of the previous point using Lemma 3.1.

4. A corollary of the previous property and since neither v nor v′ need to change its number.
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5. Since each neighbour of v that has the number n has sent a message with its number, and since all
messages have been heard, we know that there exists (n′, p′) ∈ Np(v) with p′ > p. Moreover, due
to the design of the function replace, we know that

∑
(n,p)∈Np(v),p>0 p is bounded by the degree

of v. Consequently, the claim holds.
*+

In the next proposition, we prove that there exists a digraph D associated to the final labelling ofG
such that Dir(G) is a fibration ofD.

Proposition 3.2. Given a graph G, we can associate to the final labelling of any execution ρ of the
enumeration algorithm on G, a digraph D such that Dir(G) is fibred over D and V (D) is the set of
numbers appearing on the vertices ofG at the end of ρ.

Proof:
We use the notation of Lemma 3.4. LetG = (G,λ).

Consider the graphD defined as follows. Its set of vertices is V (D) = {m ∈ N | ∃v ∈ V (G), nρ(v) =
m}. For anym,m′ ∈ V (D), there are p arcs am′,m,1, . . . , am′,m,p fromm′ tom if there exists v ∈ V (G)
such that nρ(v) = m′ and (m, p) ∈ Nρ(v) with p > 0. From Lemma 3.4, this is independent of the
choice of v ∈ V (G). For every vertex v, v′ ∈ V (G), if nρ(v) = nρ(v′) then λ(v) = λ(v′) and we can
define the labelling η of D: for every v ∈ V (G), η(nρ(v)) = λ(v).

Let us recall that V (Dir(G)) = V (G) and for all edge {v, v′} ∈ E(G), there exist two arcs
av′,v, av,v′ such that s(av,v′) = t(av′,v) = v and t(av,v′) = s(av′,v) = v′. Moreover, for each v ∈ V (G),
the label of v inDir(G) is the same as inG.

It remains to define the homomorphism ϕ from Dir(G) to D. For every vertex v ∈ V (G), ϕ(v) =
nρ(v). For every vertex v such that ϕ(v) = n, and for each (m, p) ∈ Nρ(v) with p > 0, we know from
Lemma 3.4 that there exists p arcs a1, . . . , ap ∈ A(Dir(G)) such that t(ai) = v and nρ(s(ai)) = m.
For each 1 ≤ i ≤ p, ϕ(ai) = am,n,i.

By definition, ϕ is a fibration and thus Dir(G) is fibred overD. *+

From Proposition 3.2, one can show that Algorithm M terminates on G and the final labelling
verifies the following properties: (Dir(G), λ) is fibred over D. Thus if Dir(G) is minimal then D is
isomorphic to Dir(G) and therefore the set of numbers of the vertices is exactly 1, . . . , |V (G)|: each
vertex has a unique number. Moreover, we make the assumption that every node knows the size of the
network. Hence, once a process has |V (G)| different numbers in its mailbox, from Lemma 3.3, it knows
that all the vertices have different identity numbers that will not change anymore.

Finally, we have proven the following theorem :

Theorem 3.1. For every graph G, there exists a(n) naming/enumeration algorithm on G using asyn-
chronous broadcast communications if and only if the digraph Dir(G) is minimal.

3.4. Complexity Analysis

Complexity analysis of distributed algorithms constitutes a building block of many properties such as
energy consumption when considering radio networks. In this part, we deal with the complexity of
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Algorithm 1. We are interested in the number of messages exchanged by the processes and their size.
We also look at the memory needed by each vertex.

We consider that each vertex does not need to keep more than one element (n, &,N) for each n in
its mailbox. Indeed, if there are two elements (n, &,N), (n, &′, N ′) ∈ M(v), and if (&,N) ≺ (&′, N ′),
we can remove (&,N) from the mailbox. Moreover, we assume that the initial labelling of G is such that
each initial label & can be encoded with O(log |V (G)|) bits.

Proposition 3.3. LetG be a labelled graph of size nwithm edges and a maximum degree∆. Any run of
M yields O(mn2) emissions of messages of size O(∆n log n) bits. Moreover, it requires O(∆n log n)
bits of memory at any vertex.

Proof:
LetG be a labelled graph of size n with m edges, maximal degree vertex ∆ and diameter D. Consider
a run ρ of the algorithm onG. According to Lemma 3.3, we know that each vertex modifies its number
at most n times.

For every vertex v, since numbers of v and of its neighbours only increase, (n(v), N(v)) can change
(d(v) + 1)n times. When v modifies its number or its local view, it yields at most the emission of O(n)
messages (because vertices that already have (n(v), N(v)) in their mailbox do not emit this message).
Hence, any run of the algorithm needs O(mn2) messages. Since, each vertex only keeps useful infor-
mations in its mailbox, there exists at most n elements (n0, &,N) in M(v) and each of these elements
can be represented with O(∆ log n) bits. Hence, one can represented the mailbox of each vertex with
O(∆n log n) bits. Therefore, the size of each message is O(∆n log n) bits.

From these previous proofs, one knows that the mailbox of each vertex is encoded withO(∆n log n)
bits. Moreover, for each vertex v, n(v) can be represented with log n bits whileN(v) can be represented
with O(∆ log n) bits. Thus, the maximum local memory requirement at any vertex is O(∆n log n). *+

As a corollary of the complexity analysis, Theorem 3.1 is extended as follows:

Theorem 3.2. For every graphG, there exists a polynomial complexity (memory, messages and size of
messages) naming/enumeration algorithm on G using asynchronous broadcast communications if and
only if the digraph Dir(G) is minimal.

Algorithms of Yamashita and Kameda and of Boldi et al. presented in Section 1.4 yields O(n2)
emissions of messages of size 2O(n) bits. Moreover, each process requires 2O(n) memory bits. Thus,
considering different aspects of the complexity,M fits particularly well to multi-hop broadcast networks
composed with low-capabilities nodes (e.g. radio sensors).

4. A Leader Election Algorithm for Broadcast Networks

As stated in the introduction, if we can solve the enumeration problem on a graph G then we can solve
the election problem on this graph by declaring the vertex with the identity number |V (G)| as elected.
Nonetheless, in our model, the enumeration and the election problems are not equivalent. Consider the
graph G and the digraph Dir(G) of Figure 1. Since Dir(G) is fibred over D, from Theorem 3.1, the
enumeration problem cannot be solved on G. Nonetheless, if every vertex initially knows G, consider
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a leader election algorithm defined as follows: each vertex emits a message and, once a vertex receives
three messages, it can declare itself as elected. Since the vertex labelled 3 is the unique vertex of degree
greater or equal than 3 inG, the vertex 3 will be elected.

In this section, we also present an impossibility result which states that there exists no leader election
algorithm for a graph G if Dir(G) is not nt -minimal. This condition is sufficient and we give an
extension ofM (Algorithm 2) which effectively solve the election problem.

4.1. Impossibility Result

Given a network represented by a simple graph G, we present a necessary condition based on nt -
fibrations that must be satisfied byG to admit a leader election algorithm.

Proposition 4.1. Let G be a labelled graph such Dir(G) is not nt -minimal, there is no leader election
algorithm forG in the asynchronous broadcast model.

Proof:
Consider a simple graphG = (G,λ) and a strongly connected digraphD = (D, η) such that Dir(G) is
nt -fibred overD via a fibration ϕ. Given an algorithmA using asynchronous broadcast communications,
consider an execution ofA onD as described in Lemma 2.1. Note that if there exists an infinite execution
of A on D, then following Lemma 2.1 there exists an infinite execution of A on G. Finally, A is not a
leader election algorithm forG.

Suppose that there exists a finite and maximal execution ofA onD which yields a digraphD′. In the
final configuration every message has arrived and no process has to emit a message. Thus, each vertex
has its final label. Following Lemma 2.1, there exists a lifted execution of A on Dir(G) that yields a
configuration G′ such that G′ is fibred over D′ via ϕ. Since G′ is nt -fibred over D′, it implies that for
every vertex v ∈ V (G), there exist at least two vertices in ϕ−1(ϕ(v)) that have the same label in G′.
Hence, there exists no vertex v ∈ V (G) that has a unique label. The algorithm A is not a leader election
algorithm forG.

*+

4.2. Initial Knowledge

We here underline the importance of the initial knowledge. In the previous algorithmM, every process
only knows the size of the network. Using this initial knowledge, we ensure that at the end of the
execution, each process locally knows that each vertex has been given a unique identity even though
some messages are arbitrarily delayed. Boldi et al. [3] and Yamashita and Kameda [18] also show that
knowing the size of the graph allows to solve election problem whenever it is possible. However, in their
models, each vertex initially knows its degree (or can compute it easily) and this initial knowledge is
actually used in their views construction algorithm.

In our model, vertices do not initially know their degree and in this case, the initial knowledge of the
size of the graph is not sufficient to solve the election problem on graphs where it can be solved. For
instance, assume that there exists a leader election algorithm for the three graphs G1, G2 and G3 of
Figure 2. In G1 (resp. G2, G3), there exists a unique vertex of degree 4 (resp. 5, 4). Hence, similarly
to the graph of Figure 1, one can elect in these three graphs when we assume that each process initially
knows the graph. Consider the digraph B such that Dir(G1) is t -fibred over B via a fibration ϕ. When
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executed on B, a leader election algorithm for G1 has to elect a process such that its fibre is trivial.
Thus, there exist two vertices a, b ∈ B such that |ϕ−1(a)| = |ϕ−1(b)| = 1 and which can be declared as
elected. Assume that several messages are arbitrary delayed, i.e., several communication links are not yet
established. One can find two graphsG2 andG3 and two digraphsD2 andD3 such thatD2 ⊆ Dir(G2)
andD3 ⊆ Dir(G3) and such thatD2 andD3 are also t -fibred over B.

From Lemma 2.1, if there exists a finite and maximal execution of an algorithm that elects a leader
in B then there exists a finite and maximal execution on Dir(G1), D2 and D3 that also elect a leader.
Hence, if the vertex b is declared as elected in B, then there exists an execution on Dir(G2) where
messages sent along arcs in Dir(G2) \ D2 are delayed for an arbitrary long time. At some point in
this execution, two vertices have the final label elected. Similarly, if the vertex a is declared as elected
in B, then there exists a particular execution on Dir(G3) such that two vertices are marked as elected.
Therefore, we cannot find a universal leader election algorithm for all graphs of order 8 where election
problem can be solved. In the following, we provide a leader election algorithmMe which assumes that
each process knows a map of the network.

4.3. A Leader Election Algorithm

We present how to useM to solve the leader election problem on digraphs that are nt -minimal.
Consider a graph G such that Dir(G) is t -fibred over a digraph D. Our aim is to provide an

extension of our previous algorithm by using the termination detection algorithm of [14]. The idea is
to execute this algorithm and to reconstruct a graph from the contents of the vertices mailboxes (as it
is done in Proposition 3.2) and check if all processes are involved in the execution, i.e., if there is no
isolated process.

4.3.1. The SSP Algorithm

Initially, this algorithm was devised to detect the termination of another distributed algorithm. As stated
in Section 3.3, each process is able to determine its termination condition. The SSP algorithm detects an
instant in which the entire computation is achieved.

Let G be a graph, to each node v is associated a predicate P (v) and an integer a(v), its confidence
level. Initially, P (v) is false and a(v) is equal to −1. If a vertex v has finished its computation of the
initial algorithm, then it changes its value P (v) to true. Each time a vertex changes the value of P (v) or
a(v) then it informs its neighbours.

The modification of the value of a(v0) only depends on the value of P (v0) and the informations v0
has about the values {a(v1), . . . , a(vd)} of its neighbours:

• if P (v0) = false then a(v0) = −1,

• if P (v0) = true then a(v0) = 1 +min{a(vk) | k ∈ [0; k]}.

We will adapt this algorithm using the ideas of the algorithm GSSP [10]. For every vertex v, the
value of P (v), instead of being boolean, will be a graph reconstructed from the contents of the mailbox
of v. An important property of the function P is that it is constant between two moments where it has
the same value.
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Figure 2. The labelled digraphDir(G1) is fibred over the digraphB. This fibration is a t -fibration andDir(G1)
is nt -minimal; the subdigraphsD2 of Dir(G2) and D3 of Dir(G3) are also t -fibred over the minimal base B.
From Lemma 2.1, an execution of a leader election algorithm on B can be lifted to an execution on Dir(G1) and
an execution on D2 andD3. Thus, the vertex a can be declared as elected in B,G1 andG2 and the vertex b can
be declared as elected in B, G1 andG3. If the algorithm chooses a (resp. b), then two vertices inG2 (resp. G3)
are declared as elected: that is not possible.

In our models, a vertex cannot distinguish its neighbours: therefore we will use the numbers that
appear in the local view. A vertex v will increase its confidence level a(v) only if when |N(v)| = k, then
v has heard messages from k different nodes v′ such thatM(v′) = M(v) and a(v′) ≥ a(v).

In our algorithm, each vertex permanently tries to reconstruct a digraphD(M) from its mailbox. This
digraph is constructed as in Proposition 3.2. Given a mailboxM , we say that an element (n, &,N) ∈ M
is maximal if for all (n, &′, N ′) ∈ M , (&′, N ′) 2 (&,N); we denote by max(M) the set of maximal
elements of M ; note that for each n, there is at most one element (n, &,N) ∈ max(M). If there exists
(n, &,N) ∈ max(M) such that there is (m, p) ∈ N with p < 0, or if there is no (m, &′, N ′) ∈ max(M),
then D(M) is undefined. Otherwise, the digraph D(M) is defined as follows: V (D(M)) = {n |
∃(n, &,N) ∈ max(M)}, and for each (n, &,N) ∈ max(M), λ(n) = &, and for each (m, p) ∈ N , there
are exactly p arcs from m to n inD(M).
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Algorithm 2: AlgorithmMe in the asynchronous broadcast model.

var: emit : bool init false;
I : {n(v0) = 0 and no message has arrived at v0}
begin

n(v0) := 1; a(v0) := −1;
Mold := ∅; aold := −1; nold := 0;
M(v0) := {(n(v0), λ(v0), ∅)};
emit := true

end
S : {emit = true}
begin
if ∀(n, p) ∈ N(v0), p > 0 and ∀(n, p, a) ∈ A(v0), p > 0 then
if a(v0) = −1 then
emit < (n(v0), nold,M(v0), a(v0)) >;

else while aold < a(v0) do
aold := aold + 1 ;
emit < (n(v0), nold,M(v0), aold) >;

emit := false ; nold := n(v0) ; aold := a(v0);

end
R : {A message < (n′, n′

old,M
′, a′) > has arrived at v0}

begin
Mold := M(v0);
M(v0) := M(v0) ∪M ′;
if n(v0) = 0 or ∃(n(v0), &,N ) ∈ M(v0) such that (λ(v0), N(v0)) ≺ (&,N ) then

n(v0) := 1 + max{n | ∃(n, &,N ) ∈ M(v0)};

N(v0) := update(n′, n′
old);

M(v0) := M(v0) ∪ {(n(v0), λ(v0), N(v0))};
ifM(v0) %= Mold then

a(v0) := −1; aold := −1;
A(v0) := {(n, p,−1) | (n, p) ∈ N(v0)};

ifM(v0) = M ′ and a′ ≥ 0 then
A(v0) := confidence(n′, a′);

if ∀(n, p, a) ∈ A(v0), a(v0) ≤ a then
constructD(M(v0)) fromM(v0);
ifD(M(v0)) is fibred over BG then

a(v0) := 1 + min{a | ∃(n, p, a) ∈ A(v0)};

if a(v0) %= aold orM(v0) %= Mold then
emit := true;

if ai(v) > |V (G)| then
compute CG,D(M(v0));
if n(v0) = min{n | n ∈ CG,D(M(v0))} then status := elected;
else status := non-elected;

end
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4.3.2. Labels

As in the enumeration algorithm, we start with a labelled graph G = (G,λ). During the computation
vertices v will get new labels of the form (λ(v), n(v), N(v),M(v), a(v), A(v)). Thus, we add to the
label of each vertex two items:

• a(v) ∈ N is the confidence level of the vertex v,

• A(v) ∈ Pfin(N × Z × Z) is a set maintained by each vertex v. It contains the confidence level of
its neighbours in the form (n, p, a) where p is the number of the neighbours of v with n as identity
number and a as confidence level.

For sake of simplicity, we define a function confidence(n, a) to update the set A(v0) of a process
v0 as follows. First, if a ≥ 0, we let aold = a− 1 and we apply the following rule:

• if there exists (n, 1, aold) ∈ A(v0), A(v0) := A(v0) \ {(n, 1, aold)},

• if there exists (n, p, aold) ∈ A(v0) with p %= 1,A(v0) := A(v0)\{(n, p, aold)}∪{(n, p−1, aold)},

• otherwise, A(v0) := A(v0) ∪ {(n,−1, aold)}.

Then, symmetrically, we do the following operations.

• if there exists (n,−1, a) ∈ A(v0), A(v0) := A(v0) \ {(n,−1, a)},

• if there exists (n, p, a) ∈ A(v0) with p %= −1, A(v0) := A(v0) \ {(n, p, a)} ∪ {(n, p + 1, a)},

• otherwise, A(v0) := A(v0) ∪ {(n, 1, a)}.

Note that in Algorithm 2, the digraphBG is the minimal base of the initial digraphDir(G) on which
the algorithm is performed.

4.3.3. Messages

Amessage emitted by a process u and heard by the process v has the following form< (m,nold,M, a) >
where m, nold andM are identical to values of messages exchanged inM. We add the item a which is
the value of the confidence level a(u) of a.

4.4. Correctness ofMe

Let G be a simple labelled and connected graph. In the following, i is an integer denoting a computa-
tion step. Let (λ(v), ni(v), Ni(v),Mi(v), ai(v), Ai(v)) be the label of the vertex v after the ith step of
the computation of the algorithm Me. We present some properties satisfied by each execution of the
algorithm in the asynchronous broadcast model.

We can easily state by induction that if the mailbox of a vertex v is the same between two steps, the
confidence level of v increases.

Lemma 4.1. For each step i and each vertex v, ifMi(v) = Mi+1(v) then ai+1(v) ≥ ai(v). Moreover,
if v applies the action S at steps i and j, thenMi(v) %= Mj(v) or ai(v) %= aj(v).
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In the following lemma, we show that when a process emits a message, then ∀(n, p, a) ∈ A(v),
a ≥ a(v)− 1.

Lemma 4.2. For each step i and each vertex v, either ∀(n, p, a) ∈ Ai(v), a ≥ ai(v)− 1, or there exists
(n, p, a) ∈ Ai(v) such that p < 0 and ∀(n, p′, a′) ∈ Ai(v), a′ ≥ a.

Proof:
We prove the lemma by induction on i. Initially, A(v) = ∅ and the property obviously holds. Sup-
pose that the property holds for all vertices at step i and consider a vertex v that hears a message
< n′, n′

old,M
′, a′ > at step i + 1. If n′

old %= n′, or if M ′ %= Mi(v), then ai+1(v) = −1 and
for all (n, p, a) ∈ Ai+1(v), a = −1. Note that if Mi+1(v) = Mi(v) and ai+1(v) %= ai(v), then
ai+1(v) = 1 + min{a | ∃(n, p, a) ∈ Ai+1(v)} and the property holds.

Suppose that at step i, ∀(n, p, a) ∈ Ai(v), a ≥ ai(v). If a′ ≥ ai(v), then ∀(n, p, a) ∈ Ai+1(v),
a ≥ ai+1(v)−1. If a′ ≤ ai(v)−1, then there exists (n′,−1, a′−1) ∈ Ai+1(v) and ∀(n′, p′′, a′′) ∈ Ai(v),
a′′ ≥ a′ − 1.

Suppose now that at step i, there exists (n, p, a) ∈ Ai(v) such that p < 0 and ∀(n, p′′, a′′) ∈ Ai(v),
a′′ ≥ a. If n′ %= n, then the property still holds. Otherwise, if a′ ≤ a, then (n′,−1, a′ − 1) ∈ Ai+1(v)
and ∀(n, p′′, a′′) ∈ Ai+1(v), a′′ ≥ a′−1; If a′ = a+1, then (n′, p−1, a) ∈ Ai+1(v) and ∀(n, p′′, a′′) ∈
Ai+1(v), a′′ ≥ a; If a′ > a+ 1, then (n′, p, a) ∈ Ai+1(v) and ∀(n, p′′, a′′) ∈ Ai+1(v), a′′ ≥ a. *+

Consider a vertex v ∈ V (G) and a step i, for any given a ≥ 0, for every (n, p) ∈ Ni(v), let
Xi(n, a, v) = {p′ | ∃(n, p′, a′) ∈ Ai(v) such that a′ ≥ a} and xi(n, a, v) =

∑
p∈Xi(n,a,v)

p.

Lemma 4.3. Consider a step i. For every vertex v ∈ V (G) and any given a ≥ 0, if k = xi(n, a, v) > 0,
there exist k neighbouring vertices w1, . . . , wk ∈ Dir(G) such that for every 0 < l ≤ k, v has heard a
message < (n, n′,M, a) > from wl before step i.

Proof:
Assume that a = amax = max{a′ | (n, p, a′) ∈ Ai(v)}. Thus, Xi(n, amax, v) = {p′ | ∃(n, p′, a′) ∈
Ai(v) such that a′ = amax} and xi(n, amax, v) = p′. This means that the process v has heard p′ mes-
sages in the form < (n, nold,M, a) > before step i. By Lemma 3.2 and 4.1, we deduce that the assertion
is satisfied.

Consider a < amax. Suppose that the assertion holds for xi(n, a+ 1, v). Hence, v has heard at least
xi(n, a + 1, v) messages mess=< (n, nold,M, a + 1) >. Thus, from Lemma 4.2, for each message
mess heard by v, the confidence(n, a + 1) function is called and an element (n, a) is removed from
Ai(v). This means that if (n, p′, a) ∈ Ai(v), the process v has heard p′ + xi(n, a + 1, v) messages
< (n, nold,M, a) > before step i. By Lemmas 3.2 and 4.1, each of these messages has been emitted by
a different neighbour of v. Therefore, the property is verified. *+

Consider a step i0 and a vertex v0 such that ai0(v0) ≥ 0. We denote M = Mi0(v0). For every
vertex v ∈ V (G), we define i(v,M, i0) (or i(v) when it is clear from the context) as follows. If there
is a step i such that v emits a message < ni(v), nold,Mi(v), ai(v) > withMi(v) = M , then i(v) is the
last step where v emits a message of this form; otherwise i(v) = ∞. We define a digraph H(M, i0) as
follows. For every vertex v ∈ V (Dir(G)), v belongs to V (H(M, i0)) if i(v) < ∞. For each vertex
v ∈ V (H(M, i0)), for every (n, p) ∈ Ni0(v), let k = xi0(n, ai(v)(v) − 1, v). From Lemma 4.3, there
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exists k neighbouring vertices w1, . . . , wk of v such that for every 0 < l ≤ k, wl ∈ V (H(M, i0))
and ni0(wl) = n and v has heard a message < (n, nold,M, ai(v)(v) − 1) > from wl before step i(v).
Each corresponding arc from wl to v belongs to A(H(M, i0)). In the following, we prove that while
H(M, i0) %= Dir(G), then the execution of the algorithm is not terminated.

For every vertex v, since a(v) and the number of given identities are bounded by |V (G)|, we know
that any execution ofMe terminates. In the next lemma, we show that the confidence level of a vertex
allows to know how far from v the vertices have the same mailbox as v.

Lemma 4.4. Consider a step i0 and a mailboxM . For all vertices v,w ∈ V (H(M, i0)), if distH(M,i0)(w, v) ≤
ai(v)(v), then ai(w)(w) ≥ ai(v)(v) − distH(M,i0)(w, v).

Proof:
Let H = H(M, i0). This lemma can be proved by induction on the distance d between w and v in H.
Assume that d = 1. Hence, ai(v)(v) ≥ distH(w, v) ≥ 1 and w ∈ NH(v). Since ai(v)(v) ≥ 1, we
know that for all (m, p, a) ∈ Ai(v)(v), a ≥ ai(v)(v) − 1. Thus, from the definition of H(M, i) and
Lemma 4.2, for every vertex w ∈ NH(M,i)(v), w has sent a message < (n(w), nold(w),M, ai(v)(v) −
1) >. Consequently, for each w ∈ NH(M,i), there exists a step j < i(v) ≤ i0 such thatMj(v) = M and
aj(w) ≥ ai(v)(v)− 1, and thus ai(w)(w) ≥ ai(v)(v)− 1.

We assume that it holds for every vertex v,w such that distH(w, v) ≤ d. Consider two vertices v,w
such that ai(v)(v) ≥ d+1 and distH(w, v) = d+1. Consider a vertex u ∈ H such that (w, u) ∈ A(H)
and distH(u, v) = d. By induction hypothesis, ai(u)(u) ≥ ai(v)(v) − d and ai(w)(w) ≥ ai(u)(u) − 1.
Consequently, ai(w)(w) ≥ ai(v)(v) − (d+ 1). *+

Let us recall that BG is the digraph such that Dir(G) is t -fibred over BG via a fibration relation
ϕ and BG is the minimal base of Dir(G). When one considers an execution of Me in which some
messages are delayed, every process involved in the computation belongs to a subdigraphH ofDir(G).
In the following lemma, we show that whenH is fibred over BG, the view of each vertex v ∈ V (H) is
isomorphic to the view of v ∈ V (G).

Lemma 4.5. Let H be a subdigraph of Dir(G) and the digraph BG such that Dir(G) (resp. H) is
fibred over BG via a fibration relation ϕG (resp. ϕH). If x0 is the vertex with the maximal view in BG,
then ϕH(v) = x0 =⇒ ϕG(v) = x0. Moreover, for every vertex v ∈ H, TG(v) ≈ TH(v) and thus
H ≈ G.

Proof:
Since H is a subdigraph of G, from Remark 2.2, for each v, TH(v) 2 TG(v). Since H is fibred over
BG via ϕ, for every w0 in BG that has a maximal view, for every v0 ∈ ϕ−1(w0), TH(v0) is maximal in
G and thus TH(v0) = TG(v0).

We now prove that for every vertex v in V (G), TH(v) = TG(v). Let X0 be the set of vertices that
have a maximal view. Let v0 be the closest vertex from v in G such that TG(v0) is maximal, and let
distG(v,X0) be the distance from v to v0 in G. We prove the result by induction on distG(v,X0). If
v ∈ X0, then we already know the result holds. Otherwise, there exists a neighbour u of v such that
distG(u,X0) = distG(v,X0) − 1. By induction, we know that TG(u) ≈ TH(u), and thus u has the
same degree in G and in H. Moreover, the multiset of the views of the neighbours of u should be the
same in H and G. Consequently, if TH(v) ≺ TG(v), there exists another neighbour v′ of v such that
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TG(v) ≺ TH(v), which is impossible. Thus, for any v ∈ V (H), TG(v) ≈ TH(v) andNG(v) = NH(v).
SinceG is connected, V (G) = V (H) and Dir(G) ≈ H. *+

From Proposition 3.2, once the enumeration algorithm is terminated onH(M, i0), every vertex v has
the same mailbox M = M(v) and is able to construct a labelled digraph D(M(v)). We have to show
that ifD(M(v)) is fibred over BG, thenH(M, i0) = Dir(G).

We now prove in the following lemma that once a vertex gets a confidence level greater than the size
of the graph, all vertices of the graph have the same mailbox and have a confidence level greater than 0.

Lemma 4.6. If there exists a step i0 and a vertex v such that ai0(v) > |V (G)|, then there exists a
subdigraph H′ ofH(Mi0(v), i0) such thatH′ is fibred overD(Mi0(v)).

Proof:
Let M = Mi0(v) and consider the graph H(M, i0) defined above and let V ′ be the set of vertices
w ∈ V (H(M, i0)) such that there exists a path from w to v in H(M, i0). Let H′ be the subgraph of
H(M, i0) induced by V ′. From Lemma 4.4, for each w ∈ V (H ′), Mi(w)(w) = M and ai(w)(w) ≥ 1.
Since ai(w)(w) ≥ 1, there does not exists (ni(w)(w), &

′, N ′) ∈ M such that (λ(w), Ni(w)(w)) ≺ (&′, N ′).
Consequently, for all w,w′ ∈ V (H ′), if ni(w)(w) = ni(w′)(w

′), then λ(w) = λ(w′) and Ni(w)(w) =
Ni(w′)(w

′).
Note that since ai(w)(w) ≥ 1, for every (n, p, a) ∈ Ai(w)(w), a ≥ 0. Consequently, for every

(n, p) ∈ Ni(w)(w), xi(w)(n, ai(w)(w)−1, w) = p. Consequently, inD(M), for every (n, p) ∈ Ni(w)(w),
there are p arcs from the vertex n to the vertex ni(w)(w).

We define a homomorphism ϕ from H′ to D(M) as follows. For each vertex w ∈ V (H ′), let
ϕ(w) = ni(w)(w). Considering a vertex w ∈ V (H ′), we define the image by ϕ of all its incoming arcs
as follows. By construction ofH(M, i0), for each (n, p) ∈ Ni(w)(w), we know that there exists exactly
a1, . . . , ap ∈ A(H(M, i0)) such that for each l ∈ [1, p], t(al) = w and ni(s(al))(s(al)) = n. Thus, we
let ϕ(al) = an,ni(w)(w),l. By construction, H′ is fibred overD(M) via ϕ.

*+

Thus, if there exists a vertex v such that the digraph D(M(v)) reconstructed from its mailboxM(v)
is not fibred over the minimal base BG of Dir(G), the algorithm is not terminated.

In the following lemma, we show that, at the end of any execution of Me on a nt -minimal graph,
only one vertex is declared as elected.

Lemma 4.7. In every execution of Me on a graph G such that Dir(G) is nt -minimal, exactly one
vertex v is declared as elected.

Proof:
One knows that every maximal execution ofMe terminates. First, suppose that after the final step i, there
exists a vertex v such that ai(v) ≤ |V (G)|. Since all messages have been heard, for every v ∈ V (G),
for every (n, p) ∈ N(v), p > 0 and for every (n, p, a) ∈ A(v), p > 0. Among all vertices v such that
ai(v) is minimal, let v be the last one that hears a message and let i0 be the step where v hears this last
message. After v has processed the message ai0(v) = 1 + min{a | ∃(n, p, a) ∈ A(v)}. Thus, there
exists a neighbour w of v such that ai(w) = ai0(v) − 1 = ai(v) − 1, which is a contradiction with our
choice of v.
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From Lemmas 4.5 and 4.6, if there exists a step i0 and a vertex v ∈ V (G) such that ai0(v) >
|V (G)|, then H(M(v), i0) and Dir(G) are isomorphic. Moreover, from Lemma 4.4, we know that all
the vertices have the same mailbox and that for each w, n(w), N(w) andM(w)will not change anymore.
Consequently, after step i0, for any w, the digraph D(M(w)) is always D(Mi0(v)). Thus, there exists
a step i such that for all w ∈ V (G), Mi(w) = Mi0(v) and ai(w) > |V (G)|. Let M = Mi0(v).
Since Dir(G) is t -minimal, CG,D(M) is not empty. Thus, there is a unique vertex v ∈ V (G) such that
ni(v) = minCG,D(M), and this vertex is elected. *+

Therefore, we have proven the following theorem:

Theorem 4.1. For every graph G, there exists a polynomial (memory, messages and size of messages)
leader election algorithm onG using asynchronous broadcast communications if and only if the digraph
Dir(G) is nt -minimal.

4.5. Remarks on the Initial Knowledge: Degree Awarness

From previous assumptions on the initial knowledge, an interesting question could be to know what
happens when nodes initially know their degree.

LetG be a labelled digraph such that Dir(G) is nt -minimal. If each node knows its degree and the
size of the graph, one can modify the algorithmMe (Algorithm 2) to take into account this combination
of knowledge. Before increasing the confidence level in which all processes have the same mailbox, each
process v waits until it has received a message from all its neighbouring processes. Once the sum of p
such that (n, p) ∈ N(v) is equal to the degree deg(v) of v, we deduce that v has received a message from
all of its neighbouring processes at least once. From Lemma 4.4, for each step i, the ball inG centered
at v of radius ai(v) belongs to H(M, i). Hence, if ai(v) > |V (G)| then H(M, i(v)) and Dir(G) are
isomorphic. Note that knowing the diameter of the graph is sufficient. The radius of the ball centered
at v only increases when ai(v) ≤ ai(w) for every w ∈ NG(v). Consequentely, let Diam(G) be the
diameter of G, if ai(v) > Diam(G), we can easily extend our proofs and deduce that H(M, i(v)) and
Dir(G) are isomorphic.

We previously showed (Lemmas 4.6 and 4.5) that once each process have a confidence level greater
than the size of the graph, then all processes have the same mailbox and are able to reconstruct the same
digraph D. We also stated (Proposition 3.2) that the digraph Dir(G) is fibred over D. The following
lemma establishes a link between the degree of each node and the size of its fibre:

Lemma 4.8. ([3])
Let D be a labelled digraph, we denote d(v,v′) (resp. d(v′,v)), the number of arcs a such that s(a) = v
and t(a) = v′ (resp. s(a) = v′ and t(a) = v) in D. For every pair of vertices v, v′ ∈ V (D), there exist
two integers d(v,v′), d(v′,v) such that given a simple graph G, if Dir(G) is fibred over D via ϕ, then
d(v,v′)|ϕ

−1(v)| = d(v′,v)|ϕ
−1(v′)|.

With the initial knowledge of its degree, a process can compute from Lemma 4.8 the size of the
fibre of each process that belongs to the digraph D(M(v)) reconstructed from its mailboxM(v). Thus,
every process can locally identify processes that belong to the set of candidates (Definition 2.6) of the
reconstructed graph D. Therefore, the elected process is the vertex with the smallest identity of this set.
Hence, our leader election algorithm can be easily used in the model in which each process is endowed



J. Chalopin et al. / Enumeration and Leader Election in Partially Anonymous and Multi-hop Broadcast Networks 25

with degree-awarness (see [3]) while keeping a polynomial complexity and asynchronous broadcast com-
munications.

Remark 4.1. From the Lemma 4.8, given a minimal digraph B, we know that for any simple graph G
that is fibred over B, the set of candidates CG,B does not depend onG, but only on B.

In Algorithm 2, since processes only use the minimal base BG of Dir(G), one can relax the initial
knowledge of every process. In order to solve the leader election problem in our model, it suffices that
each process knows the size of the graph and the minimal base BG — and not necessarily the initial
graphG.

5. Conclusion

In this paper, we consider a model for computations in partially anonymous and multi-hop broadcast
networks. For this model, we present necessary conditions that must be satisfied by graphs to admit
solutions for the naming/enumeration and the leader election problems. We show that these conditions
are sufficient by giving an enumeration algorithm and a leader election algorithm. Finally, we obtain a
complete characterization of graphs that admit solutions for these problems.

Besides, we study the importance of the initial knowledge and communication assumptions. Our
algorithms rely on asynchronous communications. Moreover, they do not necessarily require communi-
cations to be FIFO. In order to give unique name to each node in fibration-minimal graphs, nodes do not
need to initially know their degree if they know the size of the network. On the contrary, this combination
of initial informations (each node knows the size but not its degree) is not sufficient to solve the election
problem on nt -minimal graphs. It suffices that nodes initially know a map of the graph (or its minimal
base). We show that it also suffices that nodes know their degree and the size of the graph. It remains
open to determine exactly what initial knowledge about the network is necessary and/or sufficient to
solve election in our model.

Our algorithms have polynomial communication and memory complexities, while the view-based
algorithms of Yamashita and Kameda [19] and of Boldi et al. [3] need that processes exchange messages
of exponential size and require every process to have an exponential number of bits of memory.
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