

Class 1 integrons and their conjugal transfer with and without virulence associated genes in extra-intestinal and intestinal Escherichia coli of poultry

Noémi Nógrády, Judit Pászti, Henriett Pikó, Béla Nagy


▶ To cite this version:

Noémi Nógrády, Judit Pászti, Henriett Pikó, Béla Nagy. Class 1 integrons and their conjugal transfer with and without virulence associated genes in extra-intestinal and intestinal Escherichia coli of poultry. Avian Pathology, 2006, 35 (04), pp.349-356. 10.1080/03079450600827007. hal-00540055

HAL Id: hal-00540055 https://hal.science/hal-00540055

Submitted on 26 Nov 2010

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Class 1 integrons and their conjugal transfer with and without virulence associated genes in extra-intestinal and intestinal Escherichia coli of poultry

Journal:	Avian Pathology
Manuscript ID:	CAVP-2005-0002.R3
Manuscript Type:	Original Research Paper
Date Submitted by the Author:	20-May-2006
Complete List of Authors:	Nógrády, Noémi; National Centre for Epidemiology, Department of Phage-typing and Molecular Epidemilogy Pászti, Judit; National Centre for Epidemiology, Department of Phage Typing and Molecular Epidemiology Pikó, Henriett; Institute of Environmental Health, National Center for Public Health, Department of Molecular Genetics and Diagnostics Nagy, Béla; Veterinary Medical Reserach Institute of the Hungarian Academy of Sciences, Enteric Bacterilogy and Foodborn Zoonoses
Keywords:	antibiotic resistance, class 1 integrons, virulence genes, Escherichia coli

SCHOLARONE[™] Manuscripts

	4 .	1	Deleted:
1	CAVP-2005-0002 Revised-3	7	Formatted: Right
2	Class 1 integrons and their conjugal transfer with and without virulence	1	Formatted: Font: 14 pt, Complex Script Font: 14 pt
3	associated genes in extra-intestinal and intestinal Escherichia coli of poultry		
4	<u>۸</u> ۲	1	Formatted: Font: Bold
5	Noémi Nógrády, ¹ Judit Pászti ¹ , Henriett Pikó ² and Béla Nagy ^{3*}		
6		,	Formatted: Font: Italic
7	¹ Department of Phage-typing and Molecular Epidemiology, 'Johan Béla' National Center for	1	Formatted. Font. Italic
8	Epidemiology, Gyáli u. 2-6., H-1097 Budapest, Hungary_Department of Molecular Genetics		Deleted: 1
9	and Diagnostics, Institute of Environmental Health, National Center for Public Health, Gyáli		
10	u. 2-6. H-1097 Budapest, Hungary_ ³ Veterinary Medical Research Institute of the Hungarian		Deleted: 1
11	Academy of Sciences, Hungária krt. 21, H-1143 Budapest, Hungary		
12			
13			
14	Short running head: Class 1 integrons in intestinal and extra-intestinal avian E. coli		
15			
16			
17			
18	Received: 28 November 2005		Deleted: Keywords: antibiotic resistance, class 1 integrons, virulence genes, <i>Escherichia coli</i> ¶
19			Formatted: Font: Italic
20			

Corresponding author. Tel.: +36 (1) 467 4085 Fax: +36 (1) 467-4076 E-mail: bnagy@novell.vmri.hu

21	CAVP-2005-0002 Revised-3
22	Class 1 integrons and their conjugal transfer with and without virulence
23	associated genes in extra-intestinal and intestinal Escherichia coli of poultry
24	
25	Noémi Nógrády, ¹ Judit Pászti ¹ , Henriett Pikó ² and Béla Nagy ^{3*}
26	
27	Abstract
28	
29	Multiple-drug resistance in enteric bacteria is frequently associated with integrons. To
30	determine whether integrons may play a role in avian pathogenic Escherichia coli, isolates of
31	extra-intestinal (n=27) and intestinal (n=40) E. coli from dead chicks and turkey poults were
32	analysed for the presence of class 1 integrons and of the virulence-associated genes iss, tsh
33	and colV. Eleven extra-intestinal strains possessed a 1.0 kb class 1 integron with a variable
34	region of <i>aadA1</i> and were resistant to tetracycline. These traits were indicative of the presence
35	of the Tn21 transposon, which was confirmed by PCR. All extra-intestinal strains had the
36	colV, iss and tsh genes, but none of these genes were cotransferred with the 1.0 kb integron
37	when conjugal transferability was tested. The integron content of the intestinal strains showed
38	considerable variability: one or two of four different class 1 integrons, which varied from 1.0
39	kb to 2.4 kb in size, were detected in the eleven strains. The <i>aadA7</i> gene of the 1.0 kb
40	integron, the dfrA1-aadA1 genes of the 1.6 kb integron and the folA-catB3-aadA5 genes of the
41	2.4 kb integron were identical to those described by other workers. However, the orfIN682-
42	<i>dhfrV-orfD</i> gene cassette arrangement of the 1.5 kb integron of an intestinal strain of
43	serogroup O5 had no similarity to any previously reported integrons. Conjugal transfer of the

Corresponding author. Tel.: +36 (1) 467 4085 Fax: +36 (1) 467-4076 E-mail: bnagy@novell.vmri.hu

Page 3 of 31

Avian Pathology

- 44 1.6 kb and 2.4 kb integrons was successful, and in a serogroup O33 intestinal E. coli strain the
- 45 iss gene was apparently cotransferred with a 1.6 kb integron. The 1.0 kb and the 1.5 kb
- 46 integrons were not transferable. Our data suggest that intestinal E. coli strains of poultry may
- 47 be a reservoir for emerging multiresistant strains of avian pathogenic E. coli.

it

48 Introduction

49

50	Avian pathogenic Escherichia coli (APEC) comprise a specific subset of pathogenic E. coli
51	that cause extra-intestinal diseases such as air sacculitis, pericarditis or septicaemia in poultry
52	(Barnes et al., 2003). These diseases have traditionally been treated with antimicrobials,
53	which, in turn, has led to an increasing prevalence of antimicrobial resistant E. coli strains.
54	Multiple-drug resistance in enteric bacteria is frequently associated with integrons. Integrons
55	were initially described as mobile elements that contain one or more antimicrobial resistance
56	genes at a specific site and also the determinants for the site-specific recombination system
57	responsible for insertion of the resistance genes (Stokes & Hall, 1989). Later integrons
58	without inserted genes were also described. A minimal integron consists of an integrase gene
59	(intI), encoding a site-specific recombinase, and an adjacent recombination site, attI. However
60	integrons usually also contain one or more gene cassettes at attl. The gene cassettes contain a
61	recombination site $attC$ (also referred to as the 59 bp element) and an antimicrobial resistance
62	determinant or some other gene. Thus, together integrons and gene cassettes constitute a two-
63	component site-specific recombination system for gene acquisition and dissemination, in
64	which gene cassettes are the mobile elements and integrons are the recombinase-encoding
65	master elements for integration or excision of the cassettes (Recchia & Sherratt, 2002). On the
66	basis of the amino acid sequence of the recombinase five distinct integron classes have been
67	described (Collis et al., 2002), the best characterized and the most frequently detected of
68	which are the class 1 integrons (also referred to as type 1 or sull type integrons) (Hall &
69	Collis, 1998). They consist of three main parts. The 5' conserved segment (5'CS) always
70	contains the integrase (<i>int11</i>), its promoter (P _I) and the promoter which is responsible for
71	transcription of the inserted cassettes (Pant). The variable region contains the gene cassette(s):
72	the antimicrobial gene(s) and the <i>attC</i> site(s). The 3' conserved segment (3'CS) always

Page 5 of 31

Avian Pathology

73	contains a $qacE\Delta l$ gene (encoding resistance to quaternary ammonium compounds) and a
74	sull1 type gene (encoding resistance to sulphonamides). The detection of the variable region
75	of a class 1 integron by PCR is based on the use of primers binding to the 5' and 3' conserved
76	segments (Lévesque et al., 1995). Class 2 integrons can also contribute to the spread of
77	antimicrobial resistance genes (Goldstein et al., 2001). The remaining integron classes are not
78	well characterised and have only been detected in single isolates. Bass <i>et al.</i> (1999) examined
79	extra-intestinal E. coli isolated from chickens, turkeys and quail and found a high prevalence
80	of a 1.0 kb class 1 integron containing the <i>aadA1</i> gene cassette, which codes for resistance to
81	streptomycin and spectinomycin. They also confirmed that the majority of these integrons
82	were part of a Tn21-like transposon. Similarly, a high prevalence of class 1 integrons has
83	been found in extra-intestinal E. coli in China (Yang et al., 2004). However, no such study
84	has been conducted to examine integron carriage by intestinal E. coli of poultry. The aim of
85	this study was to compare the antimicrobial resistance and class 1 integron content of E. coli
86	isolates from the caeca of young chicks and turkeys that died of diseases unrelated to E. coli
87	infection to isolates of extra-intestinal E. coli from chicks and turkeys from the same farms.
88	Some virulence-associated genes of APEC, such as colV (colicin V), iss (increased serum
89	survival) and <i>tsh</i> (temperature sensitive haemaggutinin), have been found in an avian <i>E. coli</i>
90	isolate on a conjugative R-plasmid that also codes for the <i>int11</i> gene, the integrase of the class
91	1 integrons (Johnson et al., 2002). Therefore the presence and possible transferability of these
92	genes with the class 1 integrons was also investigated.
93	

Deleted: ,

94

95 Materials and Methods

96

97	Bacterial strains, serogroup determination and antimicrobial susceptibility testing. A
98	total of 67 Escherichia coli isolates were used: 27 from the lung, liver or bone-marrow (extra-
99	intestinal organs - EX) of chicks and turkey poults between a few days and a few weeks of age
100	that had died of colibacillosis; and 40 from the caecal contents (intestine - IN) of chicks and
101	turkey poults between a few days and a few weeks of age that had died on the same farms, and
102	were epidemiologically unrelated to the birds from which the extra-intestinal isolates were
103	obtained. Only a single isolate was included from each bird. All E. coli isolates were selected
104	from cultures on 5% sheep blood agar and bromothymol blue (BTB) agar (Merck, Darmstadt,
105	Germany) and confirmed as E. coli using standard biochemical tests. The isolates were stored
106	at -70 °C. Serotyping was carried out using standard tube agglutination techniques (Ørskov &
107	Ørskov, 1984) with 174 O-specific monovalent sera. Antimicrobial susceptibility testing of all
108	isolates was done using the disk diffusion method on Mueller-Hinton agar and with the
109	following antimicrobial disks (Oxoid Ltd., Basingstoke, UK): ampicillin (A, 10 µg),
110	chloramphenicol (C, 30 µg), streptomycin (S, 10 µg), tetracycline (Te, 30 µg), gentamicin
111	(Gm, 10 µg), kanamycin (Km, 30 µg), sulphamethoxazole-trimethoprim (SxT, 25 µg),
112	cefotaxime (Ctx, 30 µg), nalidixic acid (Nx, 30 µg) and ciprofloxacin (Cip, 5 µg). The zones of
113	growth inhibition were evaluated according to the Clinical and Laboratory Standards Institute
114	(CLSI, 2005) recommendations. E. coli strain ATCC 25922 was used as a reference strain in
115	antimicrobial susceptibility disk diffusion testing.
116	
117	Bacterial DNA preparation PCR and DNA sequencing Bacterial DNA used for PCR was

- 117 Bacterial DNA preparation, PCR and DNA sequencing. Bacterial DNA used for PCR was
- 118 prepared by boiling a bacterial culture in 200 µl F1 buffer (20 mM Tris-HCl, 2 mM EDTA,

Page 7 of 31

Avian Pathology

119	pH=8.0, Triton X-100, 0.5%) for 10 minutes. All strains were tested for the presence of class 1
120	integrons by PCR using primers specific for the 5' (forward primer) and the 3' (reverse primer)
121	conserved segments of the class 1 integrons (Lévesque et al., 1995; Table 1.) bordering the
122	variable region. As the number and size of the inserted gene cassettes within the variable
123	region of an integron may vary, the size of the amplicons was expected to be variable. The
124	integron-positive strains were further tested by PCR for the presence of the Tn21 transposon,
125	the mercury resistance gene <i>merA</i> , the tetracycline resistance genes <i>tetA</i> and <i>tetB</i> , and the
126	virulence-associated genes colV (colicin V), iss (increased serum survival) and tsh
127	(temperature sensitive haemagglutinin). The sequences of the primers, the expected size of the
128	PCR products and references for the PCR protocols are summarized in Table 1. Amplifications
129	were performed in an iCycler thermocycler (Bio-Rad Laboratories, CA, USA). The PCR
130	products were detected by horizontal agarose gel electrophoresis at 10 V/cm in 2% agarose
131	gels (Sigma-Aldrich Chemie GmbH, Steinheim, Germany) and Tris-acetate/EDTA buffer. The
132	pGEM marker (Promega Corp., MA, USA) was included as a molecular ruler. The gels were
133	stained in ethidium bromide solution and evaluated using the Bio-Rad Gel Documentation
134	system and Quantity One Software (Bio-Rad).
135	Partial sequencing of selected integrons was carried out on purified PCR amplicons
136	(QIAquick Gel Extraction Kit, Qiagen Inc., Hilden, Germany) obtained from both the donor
137	strains and from their transconjugants using the dye-terminator method and a DNA sequencer
138	(ABI Prism 373). The primers 5'CS and 3'CS were used for sequencing from each end of the
139	amplicons. In addition, for the 1.5 kb, 1.6 kb and 2.4 kb amplicons, internal primers were also
140	used to identify the resistance genes inserted in the amplicon. The sequences were compared to
141	those in GenBank using BLAST at <u>http://www.ncbi.nih.gov</u> .
142	
I	

Formatted: Indent: First line: 35.4

pt

143 Nucleotide sequence accession number: The partial sequence of the 1.5 kb integron in the

serogroup O5 intestinal E. coli strain (InEc682) was deposited in the EMBL nucleotide

sequence database under the accession number AM231806.

146

Plasmid preparation. Plasmids were prepared using the alkaline lysis method of Kado & Liu (1981). Agarose gel electrophoresis was performed in 0.75% agarose in a vertical system (Meyers *et al.*, 1976). The approximate sizes of plasmids were estimated by comparing them with the plasmids of *E. coli* V517 (2.0-53.7 kb) and *E. coli* R27 (168 kb) using Quantity One software. For each plasmid, mean sizes were calculated from three independent purifications and electrophoretic gels.

153

154 Conjugal transfer of plasmids harbouring class 1 integrons. The strains that were selected for integron sequencing were also used as donors for testing for the possible conjugal transfer 155 156 of these integrons. The rifampicin (Rif) resistant, plasmidless E. coli K12 J-53 strain was used 157 as a recipient in these conjugation experiments. Overnight cultures of the donor and the 158 recipient cells in Luria-Bertani (LB) broth were mixed at a ratio of 1:1 and plated onto the 159 surface of LB plates. Transconjugants were selected on LB agar containing streptomycin, 160 tetracycline or trimethoprim (depending on the resistance of the donor strain) and rifampicin, 161 in final concentrations of 20 µg/ml, 30 µg/ml, 50 µg/ml and 150 µg/ml, respectively. From 162 each conjugation experiment 3-5 colonies suspected to be transconjugants were tested for the 163 transferred antimicrobial resistance plasmid(s) and Tn21, tetA, colV, iss and tsh genes as 164 described above.

165

166 Southern hybridisation. In order to identify which of the transferred plasmids contained the

167 1.0 kb integron, the plasmids of the EX201 isolate and its transconjugant were probed with

Page 9 of 31

Avian Pathology

168	the ³² P-labelled 1.0 kb integron. Similarly, the plasmids of the IN664 isolate and its
169	transconjugant were probed with the ³² P-labelled 2.4 kb integron. For the labelling reactions,
170	PCR amplicons obtained from the TC201 and TC664 transconjugants and purified from 2%
171	agarose gels (Agarose Gel DNA Extraction Kit, Roche Diagnostics GmbH, Mannheim,
172	Germany) were used as specific DNA probes. Labelling was performed by random priming
173	using a Megaprime kit (Amersham/Pharmacia Biotech., Buckingham, Hampshire, U.K.) to
174	label 25 ng DNA with 0.8 MBq ³² P-dCTP (220 TBq/mmol) (Feinberg & Vogelstein, 1983).
175	The 12.5 μ l reaction volume contained 2 μ l of the primer solution (random nonamer primers
176	in an aqueous solution), 2 μl of DNA and 8.5 μl H_2O were boiled for 5 min, then 5 μl
177	labelling buffer (dATP, dGTP and dTTP) and 1 μ l Klenow polymerase was added, followed
178	by 2 μ l ³² P-dCTP. The labelled probe was added to the hybridisation solution (0.5 M
179	NaH ₂ PO ₄ /Na ₂ HPO ₄ , 7% SDS). Plasmid DNA isolated from EX201, TC201, IN664 and
180	TC664 was transferred from the agarose gel to a Hybond-N+ membrane (Roche Diagnostics)
181	in 10 x SSC buffer using a Vacuum Blotter (Model 785, Bio-Rad) for 1.5 hours. Transferred
182	plasmid DNA was fixed to the membrane by exposure to UV light for 10 min. The Hybond-
183	N+ membrane was incubated in the hybridisation solution overnight at 65°C in a
184	hybridisation oven. Following hybridisation, the membrane was washed twice for 15 min in
185	washing solution I (2 x SSC, 0.1% SDS), twice for 10 min in washing solution II (1 x SSC,
186	0.1% SDS) and once for 30 min in washing solution III (0.3 x SSC, 0.1% SDS). The
187	membrane was rinsed in 2 x SSC, wrapped in plastic film and exposed to autoradiographic
188	film overnight at -70°C. The film was photographed using the Bio-Rad Gel-Documentation
189	system.
190	

- 190
- 191
- 192 **Results**

193

194 Multi-drug resistance, integron-associated and virulence-associated genes of the extra-195 intestinal isolates carrying class 1 integrons. O types, the size of the class 1 integrons and 196 the results of assays for virulence-associated genes in the extraintestinal E. coli isolates are 197 summarized in Table 2. All strains were resistant to nalidixic acid and, with one exception, to 198 tetracycline, with the tetracycline resistance determined by the tetA gene. In addition to tetA, 199 the EX764 isolate also carried the tetB gene. Most of the isolates were resistant to 200 streptomycin, but most of the EX isolates were resistant to less than 4 antimicrobials (Table 201 3). Class 1 integrons were detected in 11/27 EX isolates (41%). All the fragments amplified 202 by the 5'CS-3'CS primers were 1.0 kb in size. As there was little variation between the 203 isolates one (EX201) was chosen for integron sequencing. Sequencing of the amplicon 204 obtained from isolate EX201 revealed that it contained the *aadA1*, which encodes resistance 205 to streptomycin and spectinomycin. The sequence had 99% identity with those of the aadA1 206 genes in GenBank (Accession numbers X12870.1 and AB188267.1). All integron positive EX 207 isolates yielded products of the expected size in PCRs specific for the Tn21 transposon. All 208 but one of the EX isolates that harboured integrons belonged to serogroup O78, and carried 209 the virulence-associated genes colV, iss and tsh.

210

Multi-drug resistance, integron-associated and virulence-associated genes of the intestinal isolates carrying class 1 integrons. As suggested by their more variable resistance patterns and generally greater spectrum of resistance (Tables 2 and 3), the intestinal isolates had more variable integron patterns than the EX isolates (Figure 1 and Table 2). Eleven IN isolates (28%) harboured one or two of the 1.0, 1.5, 1.6 or 2.4 kb class 1 integrons. The integron positive isolates belonged to four serogroups, O5 (1), O25 (1), O33 (1) or O86 (1), or were O-nontypable (ONT) (7). One intregron of each size was sequenced. Sequencing

Page 11 of 31

Avian Pathology

218 of the 1.0 kb integron from isolate IN305 revealed the presence of the aadA7 gene, the 219 sequence of which had 100% identity with that of the gene in GenBank (Accession number 220 AF224733), which encodes streptomycin and spectinomycin resistance. The 1.6 kb integron 221 obtained from isolates IN306 and IN674 contained the dfrA1 and aadA1 genes, which encode 222 resistance to trimethoprim and streptomycin/spectinomycin, respectively. The sequences had 223 99 % identity with that of the integron in GenBank (Accession number AJ884723.1). Isolate 224 IN682 contained a single 1.5 kb integron. It contained three genes. The open reading frame 225 (orf) at the 5' end (orfIN682) was 309 bp and had no similarity to any previously reported 226 sequences. The orf at the 3' end was 291 bp and had 100% sequence identity with orfD of 227 InS21 (Accession number AM040709). Between these two orfs lay a dhfrV gene, encoding 228 trimethoprim resistance, with 100% identity with GenBank Accession number AJ419169.1). 229 The structure of the 1.5 kb integron (InEc682) is shown in Figure 2. A single 2.4 kb integron 230 was detected in isolate IN664. It also contained three genes: folA at the 5' end (encoding 231 trimethoprim resistance), catB3 in the middle (encoding chloramphenicol resistance) and 232 aadA5 at the 3' end (encoding streptomycin and spectinomycin resistance). The sequence of 233 the 2.4 kb integron had 98% identity with the corresponding region of the class 1 integron in 234 the pAPEC-O2-R plasmid (Accession number AY214164, bases 89524-91815). Of eleven 235 integron-positive intestinal isolates, eight possessed the *tsh* gene and six the *iss* gene. Five 236 isolates contained *colV*, six *tetA* and three the Tn21 sequences (Table 2).

237

238 Conjugal transfer of plasmids harbouring class 1 integrons. The 1.0 kb integron of isolate

239 IN305 and the 1.5 kb integron of isolate IN682 were not transferable by conjugation. Plasmid

240 profiles of isolates EX201, IN306, IN664 and IN674, from which the integron was

successfully transferred, and those of their transconjugants are shown in Figure 3.

242 Characteristics of the transconjugants are summarised in Table 4. Three plasmids, of 117, 8.7,

243	and 2.9 kb, were transferred from isolate EX201, resulting in the transfer of the 1.0 kb
244	integron and also the Tn21 and tetA genes to the recipient. However, none of the virulence-
245	associated genes were transferred. Southern blot hybridisation with the ³² P-labelled 1.0 kb
246	probe revealed that in isolate EX201 both the 117 kb and the 28 kb plasmids possessed this
247	integron, and that the 117 kb plasmid was responsible for its conjugal transfer (Figure 3).
248	Isolate IN306 harboured only a singe plasmid of 128 kb, which was successfully transferred
249	to the recipient. This conjugative R-plasmid conferred resistance to streptomycin,
250	chloramphenicol, tetracycline, ampicillin and sulphamethoxazole-trimethoprim, and also
251	contained the 1.6 kb integron and the iss gene. Three plasmids, of 116, 7.5 and 3.8 kb, were
252	transferable from isolate IN664 and these conferred resistance to tetracycline and
253	sulphamethoxazole-trimethoprim, and also contained the 2.4 kb integron. Southern
254	hybridisation with the ³² P-labelled 2.4 kb probe revealed that the 116 kb plasmid contained
255	the 2.4 kb integron (Figure 3). No other resistance or virulence-associated gene was
256	transferred from this isolate. Of the three plasmids in isolate IN674, only one (158 kb) was
257	cotransferred with the 1.6 kb integron, and this plasmid conferred only sulphamethoxazole-
258	trimethoprim resistance.
259	
260	trimethoprim resistance. Discussion
261	Discussion
262	
263	The prevalence of multi-drug resistance in the avian E. coli isolates described here is similar
264	(Lanz et al., 2003) or lower (Blanco et al., 1997, Yang et al., 2004) than that reported in E.
265	coli from poultry in other countries. Class 1 integrons were identified with higher frequency
266	among extra-intestinal isolates (41% for the EX and 28% for the IN). All the integron-

267 carrying EX isolates contained a single 1.0 kb integron with an *aadA1* gene cassette. All these

Page 13 of 31

Avian Pathology

268	isolates contained Tn21 and all but one contained the merA gene as well. This uniform pattern
269	of integron, Tn21 and merA content in the EX isolates is in good agreement with previous
270	observations for APEC isolates (Bass et al., 1999). The integron-carrying EX isolates
271	belonged to serogroups O78 and O2, which have commonly been associated with
272	colibacillosis (Dho-Moulin-& Fairbrother, 1999). The association of these isolates with
273	disease in poultry may be attributable in part to the fact that all of them possessed the iss and
274	tsh virulence-associated genes which have been found to increase serum resistance and organ
275	invasion, respectively (La Ragione & Woodward, 2002, Mellata et al., 2003). All of these EX
276	isolates possessed <i>colV</i> , which is usually located on large, conjugative plasmids, and often on
277	R-plasmids (Wooley et al., 1992). Conjugation with isolate EX201 resulted in a
278	transconjugant that received the <i>aadA1</i> (on a 117 kb plasmid) and <i>tetA</i> antimicrobial
279	resistance genes, but not the <i>iss</i> , <i>tsh</i> or <i>colV</i> genes, indicating that the antimicrobial resistance
280	and virulence-associated genes of this isolate were not physically linked. In contrast Johnson
281	et al. (2002) reported the transfer of the iss, tsh and cvaC (the ColV structural gene) genes, as
282	well as tetracycline resistance and the <i>intII</i> gene (integrase gene of the class 1 integrons) on a
283	100 kb conjugative plasmid from an APEC isolate.
284	The IN isolates showed much variability in their content of class 1 integrons and
285	virulence-associated genes. Among the IN isolates four different class 1 integrons were
286	identified. Although the resistance genes of the 1.0 kb (aadA7), the 1.6 kb (dhfrI-aadA1) and
287	the 2.4 kb (folA-catB3-aadA5) class 1 integrons have already been reported in previous
288	studies (Mazel et al., 2000, Waturangi et al., 2003 and Johnson et al., 2005), the gene cassette
289	arrangement of the 1.5 kb integron (InEc682, orfIN682-dhfrV-orfD) was novel. Although it
290	would be interesting to investigate the function of these orfs as well as their location and the
291	genetic environment of the InEc682 integron, it was beyond the scope of this study. It is
292	worth noting that, although none of the gene cassettes identified within the integrons

Formatted: Indent: First line: 35.4 pt

293	conferred resistance to tetracycline, all of the transconjugants that originated from tetracycline
294	resistant donors acquired tetracycline resistance. Clarification of whether this was due to the
295	presence of the <i>tetA</i> gene on the same plasmid, or on a different plasmid that was also
296	transferred requires further investigation. It is also not clear why the TC201 and TC674
297	transconjugants were sensitive to streptomycin, even though both of them received the aadA1
298	gene from streptomycin resistant donor-strains. It is likely that either the transcription (which
299	is most probably initiated from P _{ant} promoter in the 5' conserved segment), or the translation
300	(which may be dependent on the translation of a short open reading frame (ORF-11) also
301	present in the 5'-CS of many class 1 integrons) of aadA1 (Hanau-Bercot et al., 2002) might
302	have been reduced in the genetic background of the E. coli K12 J-53 recipient. Detailed
303	analysis of the 5' conserved segment of these integrons could clarify this question.
304	Interestingly, many integron-carrying isolates possessed at least one of the three virulence-
305	associated genes (iss, tsh or colV). Conjugal transfer of resistance plasmid(s) possessing the
306	1.6 or the 2.4 kb integron occurred from three different donor strains, but only resulted in the
307	transfer of a virulence-associated gene (iss) with a 1.6 kb integron in one case (isolate IN306).
308	Unlike the EX isolates, the presence of Tn21 was not characteristic of the integron-carrying
309	IN isolates, suggesting that the class 1 integrons of the IN isolates may be located on, and
310	mobilized by, genetic elements other than Tn21.
311	In summary, our results indicate that the intestinal <i>E. coli</i> of poultry contain different
312	combinations of antimicrobial resistance elements within their class 1 integrons and different
313	virulence-associated genes. Conjugation experiments suggest that most of these intestinal
314	isolates may serve as potential reservoirs for the spread of antimicrobial resistance genes, and,
315	in some instances, of virulence genes and thus could be a source for emergence of new types
316	of multiresistant avian pathogenic E. coli.

Deleted:

317

318 319 Acknowledgements

320

321 The authors acknowledge the financial support obtained from the National Research and 322 Development Project NKFP 4/040/2001. The excellent technical assistance of Mrs. Margit 323 Király and Mrs. Éva Gönczi is gratefully acknowledged. We thank the Bacteriology 324 Department for serotyping the intestinal isolates. We thank Dr. Anna Kósa for providing the 325 isolates and Dr. Péter Zsolt Fekete for his help during the alignment and submission of the 326 InEc682 integron sequence. Dr. István Tóth provided helpful suggestions and assisted by 327 critically reading the manuscript, Noémi Nógrády is the holder of a Bolyai János stipend from 328 the Hungarian Academy of Sciences.

370 Potoroi	nnac
329 Refere	ILCO

330	
331	Barnes, H.J., Vaillancourt, J.P. & Gross, W.B. (2003). Colibacillosis. In Y.M. Saif, H.J.
332	Barnes, J.R. Glisson, A.M. Fadly, L.R. McDougald, D.E. Swayne (Eds), Diseases of
333	Poultry, 11th edn (pp.631-656). Ames: Iowa State University Press
334	Bass, L., Liebert, C. A., Lee, M. D., Summers, A. O., White, D. G., Thayer, S. G. & Maurer,
335	J. J. (1999). Incidence and characterization of integrons, genetic elements mediating
336	multiple-drug resistance in avian Escherichia coli. Antimicrobial Agents and
337	Chemotherapy, 43, 2925-2929.
338	Blanco, J.E., Blanco, M., Mora, A. & Blanco, J. (1997). Prevalence of bacterial resistance to
339	quinolones and other antimicrobials among avian Escherichia coli strains isolated from
340	septicemic and healthy chickens in Spain. Journal of Clinical Microbiology, 35, 2184-
341	2185.
342	Clinical and Laboratory Standards Institute/NCCLS. Performance Standards for
343	Antimicrobial Susceptibility Testing; Fifteenth Informational Supplement.
344	CLSI/NCCLS document M100-S15. Wayne, PA, 2005.
345	Collis, C. M., Kim, M. J., Partridge, S. R., Stokes, H. W. & Hall R. M. (2002)
346	Characterization of the class 3 integron and the site-specific recombination system it
347	determines. Journal of Bacteriology, 184, 3017-3026.
348	Dho-Moulin, M. & Fairbrother, J.M. (1999). Avian pathogenic Escherichia coli (APEC).
349	Veterinary Research, 30, 299-316.
350	Feinberg, A. P. & Vogelstein, B. (1983). A technique for radiolabeling DNA restriction
351	endonuclease fragments to high specific activity. Analytical Biochemistry, 132, 6-13.
352	Gilson, L., Mahanty, H. K. & Kolter, R. (1990). Genetic analysis of an MDR-like export
353	system: the secretion of colicin V. EMBO Journal, 9, 3875-3894.

354	Goldstein, C., Lee, M. D., Sanchez, S., Hudson, C., Phillips, B., Register, B., Grady, M.,
355	Liebert, C., Summers, A.O., White, D.G. & Maurer J.J. (2001). Incidence of class 1 and
356	2 integrases in clinical and commensal bacteria from livestock, companion animals, and
357	exotics. Antimicrobial Agents and Chemotherapy, 45, 723-726.
358	Guillaume, G., Verbrugge, D., Chasseur-Libotte, M., Moens, W. & Collard, J. M. (2000).
359	PCR typing of tetracycline resistance determinants (Tet A-E) in Salmonella enterica
360	serotype Hadar and in the microbial community of activated sludges from hospital and
361	urban wastewater treatment facilities in Belgium. FEMS Microbiology Ecology, 32, 77-
362	85.
363	Hall, R. M. & Collis, C. M. (1998). Antibiotic resistance in gram-negative bacteria: the role of
364	gene cassettes and integrons. Drug Resistance Updates, 1, 109-119.
365	Horne, S. M., Pfaff-McDonough, S. J., Giddings, C. W. & Nolan, L. K. (2000). Cloning and
366	sequencing of the iss gene from a virulent avian Escherichia coli. Avian Diseases, 44,
367	179-184.
368	Hanau-Bercot, B., Podglajen, I., Casin, J. & Collatz, E. (2002). An intrinsic control element
369	for translational initiation in class 1 integrons. Molecular Microbiology, 44, 119-130.
370	Johnson, T.J., Giddings, C.W., Horne, S.M., Gibbs, P.S., Wooley, R.E., Skyberg, J., Olah P.,
371	Kercher, R., Sherwood, J.S., Foley, S.L., & Nolan, L.K. (2002). Location of increased
372	serum survival gene and selected virulence traits on a conjugative R plasmid in an avian
373	Escherichia coli isolate. Avian Diseases, 46, 342-352.
374	Johnson, T. J., Siek, K. E., Johnson, S. J. & Nolan, L. K. (2005). DNA sequence and
375	comparative genomics of pAPEC-O2-R, an avian pathogenic Escherichia coli
376	transmissible R plasmid. Antimicrobial Agents and Chemotherapy, 49, 4681-4688.
377	Kado, C. L. & Liu, S.T. (1981). Rapid procedure for detection of large and small plasmids.
378	Journal of Bacteriology, 145, 1365-1373.

379	Lai-King, N. G., Mulvey, M. R., Martin, I., Petters, G. A. & Johnson, W. (1999). Genetic
380	characterization of antimicrobial resistance in Canadian isolates of Salmonella serovar
381	typhimurium DT104. Antimicrobial Agents and Chemotherapy, 43, 3018-3021.
382	Lanz, R., Kuhnert, P. & Boerlin, P. (2003). Antimicrobial resistance and resistance gene
383	determinants in clinical Escherichia coli from different animal species in Switzerland.
384	Veterinary Microbiology, 91, 73-84.
385	La Ragione, R. M., & Woodward, M. J. (2002). Virulence factors of Escherichia coli
386	serotypes associated with avian colisepticaemia. Research in Veterinary Science, 73,
387	27-35.
388	Lévesque, C., Piché, L., Larose, C. & Roy, P. (1995). PCR mapping of integrons reveals
389	several novel combinations of resistance genes. Antimicrobial Agents and
390	Chemotherapy, 39, 185-191.
391	Liebert, C. A., Wireman, J., Smith, T. & Summers, A. O. (1997). Phylogeny of mercury
392	resistance (mer) operons of gram-negative bacteria isolated from the fecal flora of
393	primates. Applied and Environmental Microbiology, 63, 1066-1076.
394	Maurer, J. J., Brown, T. P., Steffens, W. L. & Thayer, S. G. (1998). The occurrence of
395	ambient temperature-regulated adhesins, curli, and the temperature-sensitive
396	hemagglutinin Tsh among avian Escherichia coli. Avian Diseases, 42, 106-118.
397	Mazel, D., Dychinco, B., Webb, V. A. & Davies, J. (2000). Antibiotic resistance in the ECOR
398	collection: integrons and identification of a novel aad gene. Antimicrobial Agents and
399	Chemotherapy, 44, 1568-1574.
400	Mellata, M., Dho-Moulin, M., Dozois, C. M., Curtiss, I. R., Brown, P. K., Arne, P., Bree, A.,
401	Desautels, C. & Fairbrother, J. M. (2003). Role of virulence factors in resistance of
402	avian pathogenic Escherichia coli to serum and in pathogenecity. Infection and
403	Immunity, 71, 536-540.

404	Meyers, J.A., Sanchez, D., Elwell, L.P. & Falkow, D. S. (1976). Simple agarose gel
405	electrophoresis method for the identification and characterization of plasmid
406	deoxyribonucleic acid. Journal of Bacteriology, 127, 1529-1537.
407	Ørskov, F. & Ørskov, I. (1984). Serotyping of Escherichia coli. In T. Bergan (Ed.), Methods
408	in Microbiology, 14, 43-112. Academic Press, London.
409	Recchia, G. D. & Sherratt, D. J. (2002). Gene aquisition in bacteria by integron-mediated site-
410	specific recombination. In Craig N. L., Craigie, R., Gellert, M. & Lambowitz, A. M.
411	(Eds.) Mobile DNA II, (pp. 162-176). ASM Press, Washington, D. C.
412	Stokes, H. W. & Hall, R. M. (1989). A novel family of potentially mobile DNA elements
413	encoding site-specific gene-integration functions: integrons. Molecular Microbiology, 3,
414	1669-1683.
415	Villa, L., Visca, P., Tosini, F., Pezzela, C. & Carattoli, A. (2002). Composite integron array
416	generated by insertion of an ORF341-type integron within a Tn21-like element.
417	Microbial Drug Resistance, 8, 1-7.
418	Waturangi, D. E., Suwanto, A., Schwarz, S. & Erdelen, W. (2003). Identification of class 1
419	integrons-associated gene cassettes in Escherichia coli isolated from Varanus spp. in
420	Indonesia. Journal of Antimicrobial Chemotherapy, 51, 175-177.
421	Wooley, R. E., Spears, K. R., Brown, J., Nolan, L. K.& Dekich, M.A. (1992). Characteristics
422	of conjugative R-plasmids from pathogenic avian Escherichia coli. Avian Diseases, 36,
423	348-352.
424	Yang, H., Chen, S., White, D. G., Zhao, S., McDermott P., Walker, R. & Meng, J. (2004).
425	Characterization of multiple-antimicrobial-resistant Escherichia coli isolates from
426	diseased chickens and swine in China. Journal of Clinical Microbiology, 42, 3483-

427 3489.

428			
429	Figure Legends		
430	Figure 1. PCR products obtained from intestinal E. coli isolates of poultry that produce	1	Deleted: ¶
430	Figure 1.1 CK products obtained from intestinal E. contisoules of pounty that produce	4.5	Formatted: Font: Italic
431	different patterns of amplicons using the 5'CS and 3'CS primers.		Formatted: Font. Italic
432	Lanes 1 and 9, pGEM molecular weight marker (Promega); lane 2, 1.0 kb integron of isolate		
433	IN305; lane 3, 1.5 kb integron of isolate IN682; lane 4, 1.0 and 1.6 kb integrons of isolate		
434	IN306; lane 5, 1.6 kb integron of isolate IN674; lane 6, 2.4 kb integron of isolate IN664; lane		Formattad Cont Italia
435	7, 1.0 and 1.2 kb integrons of DT 104 S. Typhimurium isolate M117, used as a positive		Formatted: Font: Italic
436	control; lane 8, distilled water (negative control).		
437			
438	Figure 2, Structure of the 1.5 kb class 1 integron (InEc682) of isolate IN682.		Formatted: Body Text 2, Line spacing: single
150		~	Formatted: No underline
439	5'CS, part of the 5' conserved segment; orfIN682, a hypothetical gene without similarity to		Deleted: 🛛
		57- 1	Formatted: Font: Italic
440	any known gene; $dhfrV_{1}$ resistance to trimethoprim; $orfD_{1}$ hypothetical gene, identical to $orfD_{1}$	15	Formatted: Font: Italic
441	in InS21 (Accession number AJ311891); 3'CS, part of the 3' conserved segment. Only part of	11	Formatted: Font: Italic
441	in ms21 (Accession number AJS11691), 5 Cs, part of the 5 conserved segment. Only part of	, in	Formatted: Font: Italic
442	the sequences of the 5' and 3' conserved segments were determined. The black boxes		Formatted: Font: Italic
443	represent the open reading frames. Regions located between the open reading frames are		
444	indicated by light grey boxes. Dark grey boxes indicate parts of the conserved segments. The		
445	numbers above indicate the nucleotide positions within Accession number AM231806.		
446			
447	Figure 3. <u>Conjugal transfer of plasmids harbouring class 1 integrons.</u>		Formatted: Font: Italic
448	A. Plasmid profile of the integron containing isolates EX201, IN306, IN664 and IN674, from		
449	which the integron was successfully transferred to the E. coli K12-J53 recipient, and the		Formatted: Font: Italic
450	profile of their transconjugants.		

		Formatted: Font: Italic
451	Lane 1, plasmids of the control strains R27 (168 kb) and V517 (2.0-53.7 kb); lane 2, TC201;	
452	lane 3, EX201; lane 4, TC306; lane 5, IN306; lane 6, TC664; lane 7, IN664; lane 8, TC674;	
453	lane 9, IN674; lane 10, E. coli K12-J53 (recipient, plasmidless).	Formatted: Font: Italic Deleted: ¶
454	B. a) Plasmid profile and b) Southern blot of the plasmids of isolate EX201 (2) and its	
455	transconjugant TC201 (1) hybridised with the 1.0 kb integron probe.	
456	Lane 1; TC201; lane 2, EX201; lane M, plasmids of the control strains R27 (168 kb) and	
457	V517 (2.0-53.7).	
458	Arrows indicate the 117 kb plasmid that transferred the 1.0 kb integron.	
459	There is also a strong signal indicating the presence of the 1.0 kb integron on the 28 kb	Deleted: #
460	plasmid of isolate EX201,	
461	C. a) Plasmid profile and b) Southern blot of the plasmids of isolate IN664 (2) and that of its	
462	transconjugant TC664 (1) hybridised with the 2.4 kb integron probe.	
463	Lane 1, TC664; lane 2, IN664; lane M, plasmids of the control strains R27 (168 kb) and V517	
464	(2.0-53.7).	
465	Arrows indicate the 116 kb plasmid that transferred the 2.4 kb integron.	
466		

Table 1. Primers	used for PC	CR amplifications of integrons and virulence-	associated genes of avi	ian E. coli isolates		Formatted: Font: Bold
						Formatted: Font: Italic
Target gene	PCR	DNA sequence (5' to 3')	Expected size of	Reference		Formatted: Font: Italic
	primers		PCR product (bp)		Ň	Formatted Table
Integron (variable	5'CS	GGCATCCAAGCAGCTTTGAC	Variable	Lévesque et al, 1995.		
region)	3'CS	AAGCAGACTTGACCTGA				
merA	merAF	ACCATCGGCGGCACCTGCGT	1.232	Liebert et al., 1997.		
	merA R	ACCATCGTCAGGTAGGGGAACA				
<i>tnpM</i> of Tn21	TnpMF	TCAACCTGACGGCGGCGA	348	Villa et al., 2002.		
	TnpMR	GGAGGTGGTAGCCGAGG				
colV	cvi	TCTCTGCATTAATGTCTGC	1.203	Gilson et al., 1990.		
	cvaB	GATATGGGGCCAATATCCC				
iss	iss F	GTGGCGAAAACTAGTAAAACAGC	760	Horne et al., 2000.		
	iss R	CGCCTCGGGGTGGATAA				
tsh	tsh F	GGGAAATGACCTGAATGCTGG	420	Maurer et al., 1998.		
	tsh R	CCGCTCATCAGTCAGTACCAC				
tetA	tetA F	GCTACATCCTGCTTGCCT	210	Lai-King <i>et al.</i> , 1999.		
	tetA B	CATAGATCGCCGTGAAGA				
tetB	tetB F	GAGACGCAATCGAATTCGG	228	Guillaume <i>et al.</i> ,		
	tetB B	TTTAGTGGCTATTCTTCCTGCC				Formatted: Line spacing: Double

Page 23 of 31

Avian Pathology

solate ^a	0	Size of class 1				CR for:			Formatted: For	nt: Italic
.501ate	type	integron(s)	merA	Tn21		colV	iss	tsh	Deleted: 1	
EX201*	078	1.0 kb	+	+	+	+	+	+	Formatted: For	nt: Italic
EX205	O78	1.0 kb	+	+	+	+	+	+	Formatted Tab	ole
EX209	O78	1.0 kb	<u> </u>	+	-	+	+	+		
EX211	O78	1.0 kb	+	+	+	+	+	+		
EX748	O2	1.0 kb	+	+	+	+	+	+		
EX749	O78	1.0 kb	+	+	+	+	+	+		
EX761	O78	1.0 kb	+	+	+	+	+	+		
EX762	O78	1.0 kb	+	+	+	+	+	+		
EX763	O78	1.0 kb	+	+	+	+	+	+		
EX764	O78	1.0 kb	+	+	+	+	+	+		
EX766	O78	1.0 kb	+	+	+	1	+	+		
IN305*	025	1.0 kb	-	(+) ^e	+	-	<u> </u>	-		
IN306*	O33	$(1.0 \text{ kb})^{c}$; 1.6 kb	+	-	+	-	+	+		
IN664*		¹ 2.4 kb	-	-	+	-	+	+		
IN668	ONT		+	-	-	-	-	+		
IN669	086	1.0 kb	-	-	-	+	-	-		
IN672	ONT	1.6 kb	-	-	-	-	+	+		
IN674*	ONT	1.6 kb	+	-	-	+	-	+		
IN675			-	-	-	+	+	+		
IN682*	05	1.5 kb	+	+	+	-	-	-		
IN684	ONT	1.0 kb	-	-	+	+	+	+		
IN685	ONT	1.0 kb	+	+	+	+	+	+	← Formatted Tab	əle

*used as donors for conjugation experiments and sequencing of the class 1 integrons.

^a: Isolates designated as EX originated from the liver of diseased poultry except for isolate EX211, which originated from the lung.

Strains designated as IN originated from caecal contents.

- ^b: Intermediate resistances are not included.
- ^c: These integrons appeared as faint bands.
- ^d: ONT: O-nontypeable.
- .nd and non-specific bans. ^e: The specific amplicon appeared as a faint band and non-specific bands were also detected.

Tabla 3 Multi	drug registance* of avian F		• /	Deleted: ¶ ¶
	-drug resistance* of avian E. c			Formatted: Font: Bold
solate	Resistance profile	Class 1 integron	< 1 m	Formatted: Font: Italic
	1	(size is given in kbp)		Formatted: Font: Italic
EX747	STeKmNx	-	· · · · · · · · · · · · · · · · · · ·	Formatted: Line spacing: Double
EX762	STeANx	1.0	i. N	Deleted: 1
IN306	SCTeASxTKmNxCip	1.6		Formatted Table
IN650	TeKmNxCip			
IN656	STeKmNxĈip			
IN657	STeKmNxCip			
IN662	STeAKmNx			
IN664	TeASxTNx	2.4		
IN668	SAKmSxTNxCip	1.0		
IN674	SSxTGm	1.6		
IN686	SCTeKmNxCip	-		
IN687	SCATeKmNxCip			
IN688	SATeKmNx		+	Formatted Table
*: An isolate v	vas regarded as multi-resistant	if showed resistance against 4 or more of the antimicrobials listed.		

Page	26	of	31
------	----	----	----

Table 4	. Characteristics of	transconjugan	nts (TC) derived from	mating w	vith extra-intest	inal and in	testinal E. coli fror	n poultr	<u>У</u>				Deleted: ¶ ¶
Donor	Resistance	Integron(s):	Plasmid(s)	TC ^b		Ass	say result for transfe	erred tra	aits			· · · ·	Formatted: Font: Bold
strains		gene(s)	(kb) ^a				•					<u> </u>	Formatted: Font: Italic
(sero-		included			Resistance		U		tetA	colV	iss	tsh 🔪	Formatted: Font: Italic
group)						(kb)	gene(s) included						Formatted Table
EX201 (O78)	STeNx	1.0 kb: aadA1	167, 117, 88, (69), 50, 28, 8.7, 2.9	TC201	Te	117, 8.7, 2.9	1.0 kb: <i>aadA1</i>	+	+	-	-	-	
IN306* (O33)		1.6 kb: <i>dfrA1-aadA1</i>		TC306	SCTeASxT	128	1.6 kb: <i>dfrA1-</i> aadA1	NA ^c	+	NA	+	-	
IN664 (ONT)	TeASxTNx	2.4 kb: <i>dfrA1-catB3-</i> <i>aadA5</i>	172, 116, 48, (42), 7.5, 3.8	TC664	TeSxT	116, 7.5, 3.8	2.4 kb: dfrA1- catB3-aadA5	NA	+	NA	-	-	
												+	Formatted Table
IN674 (ONT)	SSxTGm	1.6 kb: <i>dfrI-</i> aadA1	158, 114, 47	TC674	SxT	158	1.6 kb: <i>dfrI-</i> aadA1	NA	NA	-	NA	-	_

*: Donor strain IN306 also carried a 1.0 kb integron which appeared as a faint band. It was not transferred to the recipient and therefore was not en only

sequenced.

^a: Plasmids in brackets appeared as faint bands.

^b:TC: transconjugant.

^c: NA: not applicable.

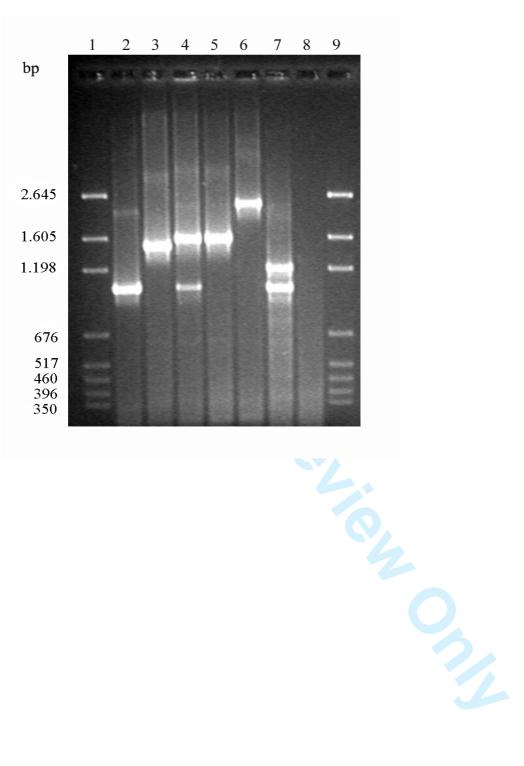


Figure 2.

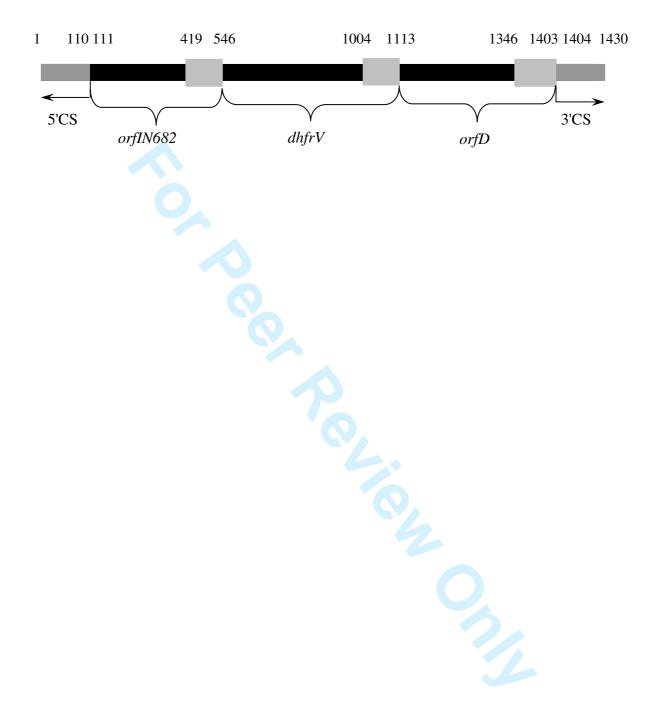
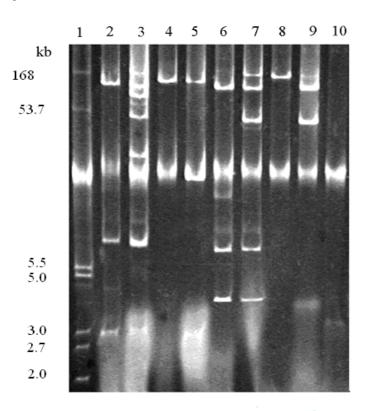
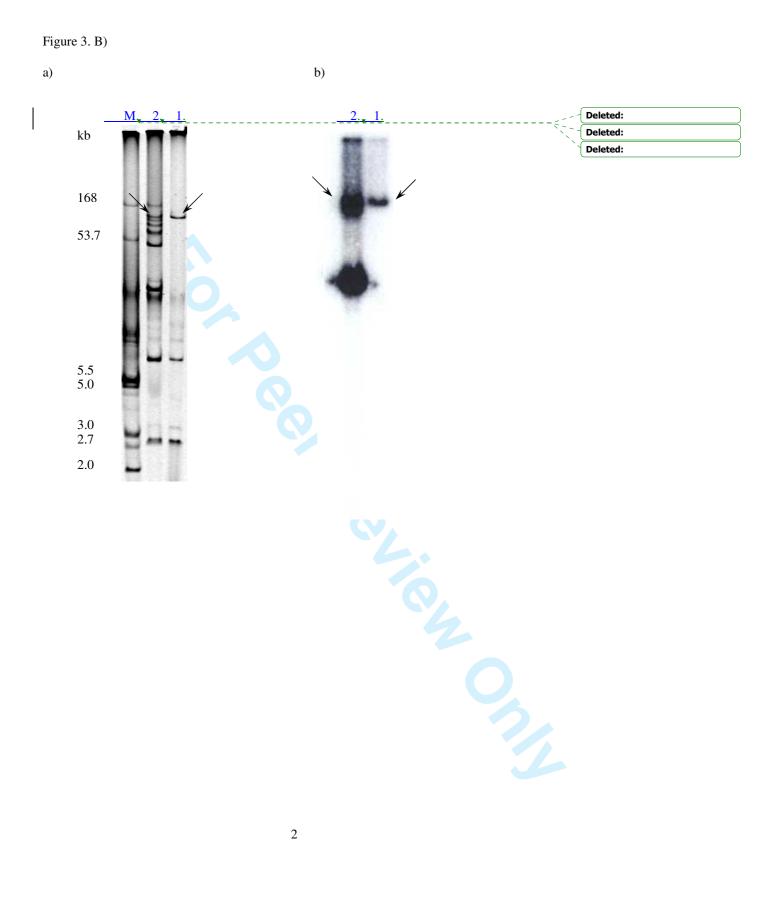
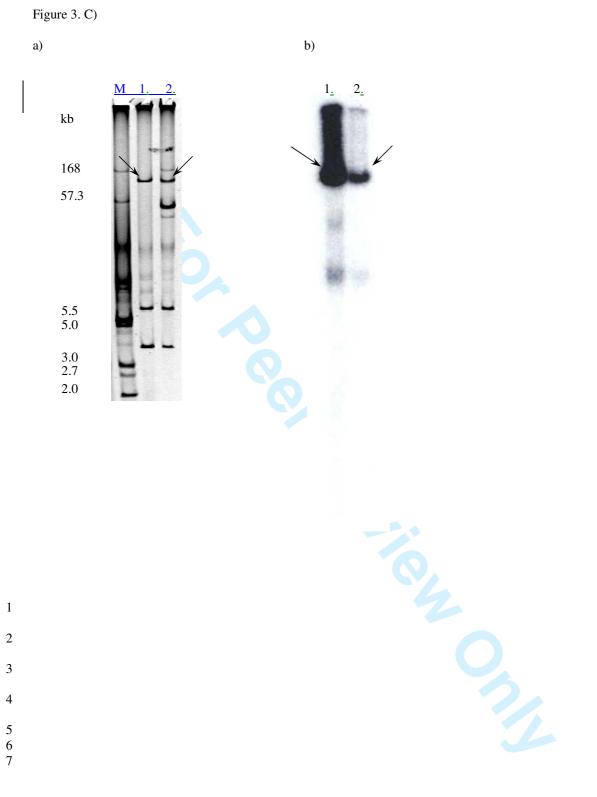





Figure 3. A)

