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This paper attempts to discuss, in a readily understandable way, some very common misapprehensions that occur in laboratorybased scientists' thinking about statistics. We deal mainly with three issues 1) P-values are best thought of as merely guides to action: are your experimental data consistent with your null hypothesis, or not.? 2) When confronted with statistically nonsignificant results, you should also think about the power of the statistical test

1) What 'p' values mean

Most modern statistical practice concerns constructing confidence intervals and testing hypotheses. (There is another mode, called Bayesian statistics, which deals with a related but different question: how firmly should we hold such and such an opinion, such as the question: has this person got cancer or not? We do not deal with Bayesian statistics in this paper.)

In hypothesis testing you state a hypothesis, usually called the null hypothesis. You then perform an experiment or make observations that aim to test whether this null hypothesis can be rejected as being (in some statistical sense) unlikely to be true. Often the null hypothesis is rather dull. For example, a null hypothesis might state: 'There is no difference in the mean value of the property X before and after treatment.' The researchers are expecting to see a difference. However, they must start their statistical analysis from a null hypothesis that makes a definitive statement (rather than a vague statement suggesting some effect, the nature of which is yet to be verified). Only by starting from a null hypothesis can a valid statistical procedure be constructed.

Even if the null hypothesis is correct, you would not expect to observe precisely the numbers suggested by the null hypothesis (because of sampling variation). For example, you may be testing whether the mean value of some property (e.g. the 2 patients' heart rates) is unchanged after treatment. The null hypothesis here would be 'the mean difference in heart rate is zero'. However, even if the null hypothesis were correct, because of natural variability across the population you would not expect to observe a mean difference of exactly zero. Suppose instead the observed difference was 2.19 bpm. In hypothesis testing you then take the data and perform an appropriate statistical test which in effect asks the following question: 'If the null hypothesis were true, and you repeated the experiment many many times, in what proportion of experiments would you observe a mean difference that deviates from zero to the extent found (± 2.19), or more?' This proportion is called a p-value. Note particularly we are not asking the apparently similar, but actually quite different, question: 'Given these numbers, what is the probability that the null hypothesis is correct? ' The statistical test you choose will depend on your experiment and the hypotheses of interest, as discussed most accessibly in [START_REF] Harris | Catch Up Maths and Stats: For the Life and Medical Sciences[END_REF]; [START_REF] Dytham | Choosing and Using Statistics: A Biologist's Guide[END_REF] and more mathematically in [START_REF] Casella | Statistical Inference (2 nd Edition)[END_REF]; [START_REF] Rice | Mathematical Statistics and Data Analysis[END_REF].

Suppose your test gives a p-value of 0.25. This is the so-called 'statistical significance' and here is equivalent to saying that if the null hypothesis were correct, you would get a value that deviates from the expected value to the extent found, or more, 25% of the time i.e. with a probability of 0.25. If you reject the null hypothesis, and it is in fact true, you make a so-called Type I error. If you accept the null hypothesis, and it is in fact false, you make a Type II error. How likely you are to make one or the other type of error is determined by the p-value and the decision you take. The table below sets this out.

Null hypothesis Rejected

Accepted Null hypothesis is true Type I error Correct Null hypothesis is false Correct Type II error You do not know, of course, whether the null hypothesis is true or false; that is why you have done the experiment. You can decrease the value of p that you will require before you reject the null hypothesis, say to p = 0.01 (that is, that if the null hypothesis is true, you will observe a value that exceeds the difference you have found, or more, only 1% of times). But in doing so, it becomes more likely that you will make a Type II error.

The p-value that emerges from an experiment is only a guide to action: 'Should we assume that this experiment is consistent with the null hypothesis, or not?' If your null hypothesis is that there is no effect, then rejecting the null hypothesis, and thereby assuming that there is an effect, should be done with care. What level of p you may wish to accept (and therefore your chances of making a Type I error) depends on the circumstances. If your p-value is say 0.04, then you might well reject the null hypothesis if the only downside of making a Type 1 error was a week's extra work. If however, you were staking your reputation on the fact that the null hypothesis was wrong then you might well want a more rigorous criterion, say p = 0.001 or less. Of course, if your criterion for rejection gets stricter you increase your chances of making a Type II error, because you really want to be very sure before you announce an astounding finding. In science, accepting the null hypothesis when it is false (Type II error) usually matters less than making a Type I error.

A word of warning. Say 10,000 independent results are being produced in labs round the world every day in which the null hypothesis is in fact true, probably a very conservative estimate. If in your lab you got a value of p = 0.0001 you would almost certainly reject the null hypothesis. Yet, on average about 1 experiment a day, somewhere in the world, will yield such a very low value of p. If the null hypothesis is rejected, which it almost certainly will be, a Type I error will be made; someone, somewhere, has been horribly misled by their data.

2) What it means (and what it doesn't mean) if you get a non-significant answer

People often understand more or less what a statistically significant result means, but are at sea if the result is 'non significant'. We can do no better than starting with the old mantra: 'Absence of evidence is not evidence of absence'.

Suppose we are interested in the effect of a drug (which has some mildly unpleasant side effects in some people) in reducing blood pressure. Suppose we have decided to use the usual standard for statistical significance: p = 0.05. We must emphasize that this is a purely arbitrary value; whether you choose to use it or not depends entirely on your aversion to Type I or Type II errors, and this will depend on the nature of the experiment. Nevertheless, p = 0.05, one in twenty, is roughly where common sense might put a standard (but not very important) boundary. Very often these values are assessed, before the experiment is done, in order to work out the sample size needed to be able to say with reasonable certainty that if a statistically non-significant result is obtained then there is only an x% chance of making a Type II error, that is, stating that the difference between the two means is not greater than the value we thought would be an interesting difference. Standardly one takes p = 0.05 as the value at which we will reject the null hypothesis, and a value 0.85 (1 -0.15) that we are not making a Type II error. This value 0.85 is said to be the 'power' of the experiment and the value of 0.15 is the Type II error. The calculation of power is often not straightforward, and you should ask for statistical help before the experiments are started, particularly if you are looking for 'evidence of absence', which is quite often the case in, for instance, epidemiological enquiries. Very often the result is that a depressingly large sample size is needed. If the conditions are set before the experiments, the unknowns are the spread of the values (which can often be guessed from previous experiments) and the difference in their means; the rest, namely the levels for statistical significance and power and the size of the samples, can be varied by the experimenter.

As an illustration, consider again the hypothetical experiment to study a new drug that claims to reduce blood pressure in hypertension sufferers. Suppose that the mean blood pressure of patients before they are given the drug is 175 mmHg. After the drug is administered their blood pressure reduces to a mean of 155 mmHg. The mean difference in patients' blood pressures is thus 20 mmHg and we will assume that the spread of these differences is given by a standard deviation of 40 mmHg. We conduct a two-sided paired t-test (the details are unimportant to this discussion, but see, for example, [START_REF] Harris | Catch Up Maths and Stats: For the Life and Medical Sciences[END_REF]. We are prepared to tolerate a Type II error of 0.15. For a particular sample size, n, the p-value (Type I error) we would expect to observe is shown as a solid line in Figure 1. Another word of warning. The null hypothesis is actually very rarely true. Your choice of breakfast cereal probably has a very tiny effect on the number of mitochondria in your liver cells, but you could discover this only if you had unlimited time and a practically infinite sample size! It is often naïve to ask only if a null hypothesis is true or false. Whenever a p-value is used to reject a null hypothesis an estimate of the size of the departure from the null hypothesis should always be presented. A confidence interval gives a range of values for the size of the departure, together with a measure of how likely this range is to contain the `true' departure (typically, 95% intervals are quoted. 99% intervals can be constructed, but necessarily have a wider range which can be less informative). See [START_REF] Rice | Mathematical Statistics and Data Analysis[END_REF] and [START_REF] Ziliak | The Cult of Statistical Significance: How the standard error costs us jobs, justice and lives[END_REF] for further discussion.

3) The difference between statistical significance and scientific importance

We come now to the matter of the importance of statistical results. An important and obvious fact (once you think about it) is that the level of statistical significance of an experiment tells you nothing about how important the effect is. Yet many people seem to think it does. For instance, you quite often see, in abstracts of papers, the level of statistical significance reported as a p-value, but not the means and confidence intervals to show the likely effect size as estimated from the data. Readers are nearly always interested primarily in the size of the effect. If some effect is reported in an abstract, then its size and preferably a confidence interval should be included. If you are interested in the result you can read the paper properly, and in there should be all the usual statistical rigour so that the study can be replicated and verified.

Consider again Figure 1. Suppose now that the calculations refer not to blood pressure but to the hours of pain relief from arthritis found after the administration of some new drug, which also has some mildly unpleasant side effects in some people, compared to the patients' conventional treatment with no side effects. Of course, we observe the same mean difference, the same standard deviations etc., and therefore the same p-values for particular sample sizes. However, what one feels about these results is very different. In the case of the blood pressure drug, if the statistics support it a difference of 9% is important. In the case of the reduction in arthritis pain, a difference of 9% would be possibly interesting, if statistically compelling (it can never be certain, of course) but really rather trivial in most people's eyes, particularly because there were possible side effects associated with the drug. Note that sample size can have nothing to do with whether any difference is important or not, only whether or not we are likely to discover that difference. The importance we attach to the results is completely different from their statistical significance. It is unfortunate that 'statistically significant' is very often shortened to 'significant' (we all do it!) although in everyday language 'significant' means in some way important. As a result the two meanings often become conflated or confused. In science, importance and statistical significance are not related.

4) Conclusions

We hope we have clarified what a p-value implies. We discuss the question of power, and underline how important it is, particularly in dealing with non-significant results. Finally, we emphasize how important it is to distinguish 'statistical significance' from 'importance', or even from the word 'significance' as it is used in everyday speech.

We hope we have clarified some statistical fundamentals which, as readers, writers and reviewers of many manuscripts, we believe to be widely misunderstood:

• A p-value is best thought of as a guide to action: are your experimental data consistent with your null hypothesis, or not? • When confronted with statistically non-significant results, you should also think about the power of the statistical test being used. • "Statistically significant" and "important" are not synonyms; in science they can mean very different things. Large volumes of mathematical and statistical detail lurk beneath these broad takehome messages, and readers are encouraged to refer to these or to seek assistance. In particular, many statistical tests make assumptions about the structure of your data. If these assumptions are not valid then such tests should not be used. We emphasize the importance of planning in detail which statistical tests you will use, and what p-values and power you are willing to accept and what sample sizes will be necessary to generate them, before any experimental programme is embarked upon; otherwise you may have wasted time and money generating data which can never lead to rigorous scientific results. 
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 1 Figure 1: an illustration of the influence of sample size (n) on statistical significance (pvalue). The solid line refers to a Type I error of 0.15. For comparison, the dashed line refers to a Type I error of 0.2 and the dotted line a Type I error of 0.10

  

  If we are comparing two means that differ, then the greater the spread of the values making up each of the two means (as measured by standard deviation) the more difficult it will be to be sure that the two means are statistically different. Measuring this spread, and seeing what effect it has on our hypotheses, is what much of statistics is about.We come now to the matter of the 'power' of a test. Suppose we calculate the means of two sets of data, and they are reasonably similar, and our tests show they are not statistically significantly different. We then have to ask what we mean by 'different'.Obviously, if we are comparing blood pressures before and after taking a drug and we find that one set has a mean of 175 mmHg and the other set a mean of 173 mmHg, it would be peculiar if we regarded such a difference as interesting. Therefore we don't care if we are making the type II error. If, on the other hand, the means were 175 mmHg and 155 mmHg (a difference of 9%) it is very likely that this would be interesting. So, first we have to decide what would be an interesting difference: 5%, 10%, 20% or whatever. Next we have to decide what level of Type I error we are prepared to tolerate. We would have to get (or estimate if we were doing this exercise before completing the experiments) a measure of the spread of the values. We would then have to determine the sample size (the greater the sample size the more reliance one can place on the mean values one obtains). Finally we need to consider what probability of making a Type II error we are prepared to put up with.
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When your null hypothesis is true you are likely to be caught out and make a Type I error only about one time in twenty if your p-value comes out at 0.05.
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