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localization

ABSTRACT The principles of strain localization analysis applied to geomaterials are
presented. Emphasis is given to the effects af #imd temperature in the occurrence and

development of instabilities.

RESUME Dans cet article, on présente les principes dendlyse de localisation des
déformations dans les géomatériaux. En particubber met I'accent sur les effets du fluide et
de la température sur I'apparition et le dévelopeaindes instabilités.
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1. Introduction

Failure of many engineering structures is charésdrby the formation and
propagation of a failure plane. Laboratory experiteeas well as in field
observations that the orientation of the failurang! (or fault surface) is controlled
by the directions of the principal stresses. Inws established Mohr-Coulomb’s
theory, the inclinatior® of the failure surface with respect to the directof the
minimum (in absolute value) principal stress isegivas wher@ is the friction angle
of the material. For typical values of Coulomb tiao angleg, 30° to 50°, values of
0 range from 60° to 70°, which is comparable witk tange of observed failure
plane inclinations. Mohr-Coulomb’s theory is comryonsed in geomechanics as
the dominant feature in the behaviour of geomdwetieehaviour is its frictional
character. The orientation of a failure surface lmamleduced from the knowledge of
the orientation of the principal stresses (notrtmeagnitude) and of one material
property (the internal friction angle). Inverseljne orientation of the principal
stresses can be simply deduced, using Mohr-Coulthieory, from the orientation
of the failure plane and the knowledge of the iibictcoefficient of the material.

Although the simplicity of this approach has maideery useful, the predictions
of Mohr-Coulomb’s theory have been criticized besgait is commonly observed
that the complete inelastic response of a matenfiiences the conditions of
incipient failure and not only one material paraanetuch as the internal friction
angle.

Moreover for studying the response of a structarié post-failure regime when
the strength is suddenly dropping, one has to wtaied what failure physically
means. This is exactly the question addressederedrly seventies by Professor
loannis Vardoulakis and for which he produced haneering work and milestone
contributions. The first observation was that wiyapears as a failure plane is in fact
a zone of localized shear deformation. Thus thdysand the modelling of strain
localisation phenomena has proven to be very usefile understanding of failure
mechanisms. Based on the theoretical studies dafriabstability as developed by
Hadamard (1903) for elastic materials and lateerdkd by Thomas (1961), Hill
(1962) and Mandel (1966) for inelastic materidi® Ibcalisation process is seen as
an instability that can be predicted from the @#ufe constitutive behaviour of the
material. The conditions for the onset of localmatare thus established by seeking
the possible critical conditions for which the ciitugive equations of the material
(in the pre-localised stage) may allow the existeota bifurcation point for which
the deformation mode will localize into a planamba(Rice 1976, Vardoulakis,
1976). In this approach, the initiation of failunethe form of the incipient of a shear
band is modelled as a constitutive instability awthsequently a great number of
studies have been dealing with the development mfrapriate constitutive
relationships which can predict satisfactorily tlmnset of shear banding.
Geomaterials are characterised by a non-associatetl non-coaxial plastic
behaviour and this has important effects on thalisation process (Rudnicki &
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Rice, 1975). Numerous experimental studies on soidsrocks have been performed
to understand the physical processes which costraln localization and validate
the theoretical and constitutive concepts (e.gdwalakis, 1980, Sulerat al 1999,
Bésuelleet al, 2000, Desrues & Viggiani, 2004).

Shear band formation in the form of localized shdsfiormation is not the only
possible localized deformation mode. Zones of laedl deformation are sometimes
observed in the direction normal to the maximum pssive stress as observed in
highly porous rocks. These structures are integpras compactions bands.

The problem of modelling localized deformation ieogaterials is quite a
challenging task, due to the difficulties which @mcountered while dealing with
softening materials and moving elastoplastic botiadalt is however one of the
most interesting bifurcation problems: Asking theestion of possible spontaneous
change of the deformation mode for a given loadhigtory and subsequent
evolution of this secondary deformation mode, orag search for the conditions of
uniqueness and stability of the corresponding bagndalue problem. Thus as first
presented by Mandel (1964, 1966) questions of wmigss and stability of solutions
arise naturally within the context of shear-bandlgsis. It turns out that the result of
such analyses dealing with geomaterials dependsagty on the assumed physical
non-linearities which are inherent to the undedyironstitutive description and is in
a lesser degree influenced by geometrical non4lities:

It is not possible in a single paper to reviewithportant literature published in
the last forty years on the subject. We will thiwwase to address some points and
give a flavour of the mathematical and physicalkigaound of bifurcation analysis
as applied to geomechanics with some special engpbashe effects of fluid and
temperature.

2. Notions of bifurcation and loss of stability

As the wordsbifurcation and instability are frequently used in thgiscussions
about failure of geomaterials, it is important tarify the meaning of these terms.
The reader can find in Chambenhal (2004) a very clear and solid presentation of
these notions and also guidelines when dealing thvém. In this paper presented in
a previous ALERT school, these authors have styoaegiphasized the importance
of the use of an appropriate vocabulary in ordeatoid misunderstandings and
ambiguous statements.

The word stability refers to Lyapunov (1892) theoretical results anakes
reference with the evolution in time of a well aefil perturbation on a given
mechanical system. Physically, it means that aesyst stable (in the sense of
Lyapunov) if a little disturbance of the initial mditions will not increase with time.
The wordbifurcation refers to the loss of uniqueness of the solutioiha given
boundary problem. These notions sfability and bifurcation thus refer to a
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mechanical system with well defined boundary andiain conditions. For
engineering applications, stability and bifurcatiamalyses usually involve a finite
domain subjected to non homogeneous stress aral states. Interesting results can
also be obtained when the studied system is resirio a material element which is
a representative volume of material in a homogesesiate of stress and strain.
Considering the evolution of this element, we d&kduestion of possible alternative
deformation modes for the next loading incremenporfaneous change of
deformation for example in the form of localizedfatenation in a planar band
corresponds thus to a bifurcation state (loss afueness) and corresponds to a
material instability Shear localization can be preceded with diffusen n
homogeneous deformation modes such as bulging oellirag especially in
axisymmetric compression tests (Sulem & Vardoulak®90, Chau & Rudnicki,
1990). These instabilities are of material and getoim nature. A discussion on
localized and diffuse bifurcation modes can be tbimthe recent paper of Nicot &
Darve (2010) in relation with the non associaterabir of the constitutive law. The
role of the loading control parameters on the aemge of homogeneous or non
homogeneous bifurcations has been investigateddwa \2004) with the concept of
controllability in geotechnical testing.

3. Shear band mode

Extensive presentation of shear band analysis @mgeerials can be found in
Vardoulakis and Sulem (1995) (see also Desrues &n@on 2002, Bésuelle &
Rudnicki, 2004 for a review of recent studies). Tdieain localisation analysis
consists in searching the incipient of a shear biand solid as a mathematical
bifurcation condition for the deformation field. @xdering an infinitesimal
neighbourhood of a point in an elastic-plasticaathich is homogeneous as for the
constitutive law and stress state, the strain isaabn phenomenon is understood as
the appearance of a discontinuity in strain ratééchv marks the onset of non-
uniform response. Such a bifurcation of the velogitadient along a loading path
can be caused by material destabilising effecth siscsoftening and lack of plastic
normality in the constitutive law, as well as gedmical destabilising effects such as
large deformation affecting equilibrium equatiofishis bifurcation condition is
obtained from (a) the constitutive relationshipghe material, (b) the conditions of
mechanical equilibrium across the shear band bayndad (c) the kinematic
compatibility conditions which expresses that tledouity field is to be continuous
(no material discontinuity). The latter conditiomglies that only the normal
component of the velocity gradient across the shead is discontinuous whereas
the tangential one is continuous (weak discontfiLithe above conditions describe
the so-called ‘continuous’ bifurcation modes. Islieeen shown that the critical state
for continuous bifurcation precedes the one foscdntinuous’ bifurcation where a
discontinuity of the velocity field itself (and namnly its gradient) is considered
(Simoet al 1993). Non-trivial solution for the condition obntinuous bifurcation is
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a necessary condition for the shear band existenderovides both the shear band
orientation and the deformation jump across theasst@nd. Rudnicki and Rice
(1975) and Rice (1976) have obtained solutions fealistic elasto-plastic
constitutive relationships for geomaterials.

Strain localization criterion

According to the definition proposed by Hill (1962)shear band is viewed as a
thin layer that is bounded by two parallel matedadcontinuity surfaces of the
incremental displacement gradient (Figure 1). Thaaterial discontinuity surfaces
D® and B? are called shear-band boundaries and their distald, is the
thickness of the shear-band. Within the frame ofstitutive theories without
material length, the shear-band thicknesis dindetermined.

n;

df: ___,.6', D'”

70

Figure 1. Model of a deforming shear-band with heat and flluctes

Let denote byn the unit vector normal to the band. Inside the dbdine
incremental displacement fieldu' depends only on the position across the band,;
outside the band the rate of deformation is assutoedemain homogeneous.
Assuming that the displacement field is continuaososs the band, then according
to Maxwell theorem, only the normal derivative bistfield may be discontinuous
across the band. Accordingly the followikipgematic compatibility conditiorisold:

[Au]=0and [61Aq]=gq [1]
where [.] denotes the jump of the quantity acrbssshear band boundary. Note that

as emphasized by Bésuelle and Rudnicki (2004)fdima of equation [1] requires
that [ajAuiJ has a vanishing intermediate eigenvalue and thotais a plane of

zero incremental displacement. Consequently, Ipatidin is favoured when the pre-
bifurcation, homogeneous field contains a planeesb extension rates, as in plane
strain whereas highly destabilizing effects asrgjrsoftening behaviour is needed to
generate shear band formation in axisymmetric dedition.
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Incremental strains and stresses are linked thrtheghonstitutive relationships:

Ao, =Cy q Ay [2]

Equilibrium across the shear band boundary implies following static
compatibility condition

[Ag; ]n =0 [3]

We observe that there are two possibilities, nartedy the constitutive behaviour
across the shear band boundaries is either comnondiscontinuous. Concerning
discontinuous bifurcations one has to examine thesipility that elastic unloading
occurs outside the shear band while continuedielpktstic loading occurs within
the band. If the elasto-plastic constitutive lawnitd a single smooth yield surface
and plastic potential, Rice and Rudnicki (1980) éhashown that continuous
bifurcation analyses provide the lower limit to tlenge of deformations for which
discontinuous bifurcations can occur. Accordinglg, restrict ourselves here to the

first possibility of continuous constitutive behawt, namely{ Gy, | =0.

Using the constitutive relationships [2], the statbmpatibility condition [3] and the
kinematic compatibility conditions [1], we finalgbtain

Mg =0 (4]

wherel, =Cynn is the acoustic tensor. It follows that weak stadiy

discontinuities for the incremental displacemenistegnly if the acoustic tensor is
singular:

detl' = 0 5]

Equation [5] is the characteristic equation in terof the direction cosines of a
statically, kinematically and materially admissibtliscontinuity surface. If the
characteristic equation provides real solutions the direction cosines;,
discontinuity surfaces for the incremental dispiaeat gradient exist and may also
develop in due course of the deformation. Equaftnis thus thelocalization
criterion.

Strain localization, loss of ellipticity and vanishing speed of acceleration waves

The governing equations of an incremental bounganplem are obtained from
the equations of equilibriund;Ag; =0 (for simplicity we omit here the body

forces), the constitutive relationships of the fogimen by equation [2], and the
boundary conditions (prescribed tractions or dispiaents at the boundary of the
considered body). Incorporating the constitutiveigmpns [2] into the equilibrium
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equations and assuming piecewise linear incremeotagtitutive equations yields
the following second order differential system:

Cj 0,04y =0 (6]

Theellipticity conditionof the above differential system is expresseabas:

On,C,, n n is strictly definite positive [7]

Consequently, the localization criterion [5] copesds to the state of loss of
ellipticity of the governing equations. They chamgee and from elliptic they turn to
hyperbolic. Shear bands are thus identified with tharacteristic lines of the
governing hyperbolic partial differential equations

Let us consider now the propagation of acceleratianes in a solid body along the
directionn. Acceleration waves are weak discontinuities ef various mechanical
fields across wave-fronts which propagate with gheedc. One can show that the
propagation speed is the solution of an eigen-value problem (cf. d@rlakis &
Sulem 1995) and thatis obtained from the following equation:

det(l’ik —pczé'ik) (8]

wherepis the density of the material. Thus, if the acmusnsor is strictly definite
positive, all the velocities of acceleration wawees real. When all waves are able to
propagate with real velocity, the material is staibl a dynamic sense. This is called
the Hadamard’'s stability criterion (Hadamard, 1908)st established for
hyperelastic materials. Consequently the localiratiriterion [5] corresponds to a
state for which the velocity of wave propagatiorttie direction normal to the band
is null (stationary wave).

4. Shear band formation in element tests on rocks
Drucker-Prager model

As seen above, the localization criterion depemdthe constitutive relation. The
Drucker-Prager plasticity model with non associe rule is commonly used for
porous rocks. The yield surface and the plastiem@! are expressed as

F=T-4(a-0),Q=T+po [©]

where o = g,, /3 is the mean stress (negative in compressiom,/s; § /2 is
the Mises equivalent stress (with = g, —oq ), s the friction coefficient an@¥ is

the dilatancy coefficient. For low-porosity rockelastic response is dilatant and
£>0; however, compressed high-porosity rock typicakxperiences initial
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compaction, followed by either dilation or furtheompaction, depending upon the
stress state. Negative values for the dilatancyficent and negative values for the
friction coefficient at high mean stress can bestbbserved as for cap yield surface.
The critical value of the hardening modulus for eththe localization is satisfied

(equation [5]) is given by (Rudnicki & Rice, 1975):

He_ 1+v o 1+v( o B+uY
e Toan)\PH (N+ 3 j [10]

where G is the elastic shear modulug,is the Poisson’s ratigy is the friction
coefficient andg is the dilatancy coefficienN is the normalized intermediate

principal deviatoric stressN; = /7 ) and varies from-1/~/3 for axisymmetric
extension (g, =g, > 0;) to 1/+/3 for axisymmetric compressiofo, >0, = 0J,) .
The valueN=0 corresponds to pure shefar, =-0,,0,=0). The shear band is in a

plane parallel to the intermediate principal strasd its normal is inclined with an
angle & with respect to thes - direction (most compressive direction) expressed
(Rudnicki & Olsson, 1998)

(213)A+v)B+u)-N (1 2 )

V4-3N?

The above equations give the largest critical valigae hardening modulus and the
shear band orientation as established by RudniukiRice (1975). As mentioned by

Perrin and Leblond (1993), these solutions aredvatily if |a| <1, thus when the
magnitude of#+is small enough

N(1-2)-+ 4- 3N?

G, = %[+—2arcsim , Witha = [11]

N 2 #V 4 N

200y 13 S PTHE T m s [12]
N(@1-2v)++/4- 3N?

The case for which8+ u > corresponds to the formation of

2(1+v)/3
dilation bands in the direction normal to the leasmpressive principal stress,
N@1-2v)++4- 3N?
2(1+v)/3
the formation of compaction bands in the direciianallel to the least compressive

principal stress, &=0 (Issen & Rudnicki, 2000). The corresponding critical
hardening modulus has the form

Hck_ 1+v _ 2_1+_V_1 _,3"',Uz_ __3 2
G 'wyv%ﬁ 4) rm[sz 3 ] @ 4NJ [13]

&=112, whereas, the case for whigB+ i < corresponds to
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where k =1for the dilation bands anll = 3for the compaction bands ahd andN;
are the least and most compressive principal vabtiiethe normalized deviatoric
stress tensor. These solutions for the criticatiéaing modulus and the orientation
of the band are continuous over the limits of eiguail 2].
For plane strain deformation an approximate satufar the shear band inclination
(equation [11]) has been given by Vardoulakis (1980

% Y

Vs
g, == +2 14
e= 2 2 [14]

where ¢, and ¢, are respectively the friction angle and the dilajaangle at peak
values. This expression was first proposed by Areitual (1977) on the basis of
experimental observations.

Non coaxial plasticity

In classical flow theory of plasticity, the diremti of the plastic deformation is fixed
with respect to the normal to the plastic potent@bnsequently, the direction is
fixed by the current state of stress and does eped upon the direction of the
stress increment. The plastic deformation rate ggses the same principal axes as
the stress tensor, which means that it is coagighé stress tensor. This is a strong
assumption and its consequences on the predictishear localization have been
discussed in many papers (e.g. Rudnicki & Rice, 519Vardoulakis, 1980,
Papamichos & Vardoulakis, 1995). In order to artivébetter predictions for shear-
band formation, one has to abandon the conceptaesical coaxial plasticity flow
rule and resort thypoplasticityflow rules, which consider one way or the other th
effect of stress rate. Rudnicki & Rice (1975) haeasidered the contribution of a
non-coaxial term motivated by a yield vertex plesti model. Other examples of
non-coaxial constitutive models have been propasetie form of a deformation
theory of plasticity (e.g. Vermeer and Schotmarg6l Sulem & Vardoulakis, 1990).
More generally, the incrementally non-linear lawisDarve, 1985, Chambon and
Desrues, 1989 developed for granular soils andsraok non-coaxial.

These modifications of the plasticity flow rule wé#sin significant changes in
material response for non-proportional loading pdfbesrues & Chambon, 2002,
Bésuelle & Rudnicki, 2004).

Cataclastic shear banding

At high confinement, suppressed dilatancy may keagrain crushing ocataclasis
inside the shear band (El Bietlal 2002) as shown in Figure 2 which in turn leads
to substantial porosity and permeability reductiSulem & Ouffroukh, 2006). At
large scale, similar phenomena are observed itefhziones when sheared. Usually
in fault zones, two main domains can be identifiedault core of small thickness
constituted of highly comminuted ultra-cataclasitessurrounded with a damage
zone which consists of fractured host rock (e.gsBhe& Chester, 1998). The
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ultracataclastic structure is the results of numerearthquake ruptures. As shown
for example in a recent study of Sulemal (2004) dedicated to the characterisation
of Aigion fault material in the Gulf of Corinth (8ece), the permeability of the fault
core is very low so that this zone acts as an impes barrier to transverse fluid
flow, whereas the highly fractured damage zone radcacts mostly as conduits for
nearly along-strike flow. Similar observations denfound in the work of Wibberley
and Shimamoto (2005).

Figure 2. Cataclastic shear banding in Fontainebleau sandst@gl Bied et al.,
2002).

Post-bifurcation behavior

The various drawbacks and shortcomings of the icklssontinuum theory in
connection with strain localization are relatedhe fact that in the post-bifurcation
regime we deal in general with mathematically dspd governing equations. The
origin of this undesirable situation can be trabadk to the fact that conventional
constitutive models do not contain material paramgetvith dimension of length, so
that the shear band thickness (i.e. the extenhefplastically softening region) is
undetermined. We can say that localization of defdion leads to a change in scale
of the problem so that phenomena occurring at tiadesof the grain cannot be
ignored anymore in the modelling of the macroscdygibavior of the material. Then
it appears necessary to resort to continuum maoaliéts microstructure to describe
correctly localization phenomena. These generalipedtinua usually contain
additional kinematical degrees of freedom (Cossewttinuum) and/or higher
deformation gradients (higher grade continuum).s€cat continua and higher grade
continua belong to a general class of constituth@dels which account for the
materials micro-structure. The contemporary foriotaof these models are based
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on the work of Mindlin (1964b), Germain (1973a,Bptation gradients and higher
velocity gradients introduce a material length scaito the problem, which as
already mentioned is necessary for the correct fimgdef localization phenomena.
This idea was widely publicized by the paper of Nidlus and Vardoulakis (1987).
In this case the underlying mathematical problestdbking localization phenomena
is 'regularized' and the governing equations rerabijptic. Moreover, this technique
allows robust computations to follow the evolutiohthe considered system in the
post-bifurcation regime and to extract additiomdbimation such as the shear band
thickness or to assess the effect of scale. Intihe last decades, large scale
numerical simulations which account for higher ordentinuum effects have been
developed (Papanastasiou & Vardoulakis, 2002, Zeev@l 2001, Matsushimat
al. 2002, Siefferet al 2009).

5. Effects of pore fluid and temperature
The mechanical interaction of pore fluid and defation affects the occurrence and
evolution of localization. Moreover, thermal weakenmechanisms as for example

by thermal pressurization of the pore fluid indudey frictional heating have
destabilizing effects (e.g. Rice, 2006, Sulethal 2007, Sulem, 2009).

o
r G T T On
uy(z,t) h

T u@h PT I

Vol

Figure 3. M odel of a defor ming shear-band with heat and fluid fluxes

We consider a layer of saturated rock of thickrtedlsat is sheared in plane strain
(Figure 3) in such a way that there is no exteradi@train in thex-direction and
displacementsl,, andu, of material points vary only with (and time t). The stress
state in the layer is a shear stresa normal stress;, in they-direction. The only
nonzero strains, a shear strainand a normal straire, are related to the
displacements by

ou ou

E=

= =z 15
4 0z 0z [15]
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Because the normal strains in the other directameszero, the volumetric strain is

equal toe.

The equilibrium equations during quasi-static defation reduce to:
9T _, 90 _, [16]
0z 0z

so that the stresses must be spatially uniform\amg only with time during the
deformation.

Constitutive equations

The rate thermo-poro elasto-plastic relationshipsexpressed as

y:éﬂyp;s:%(o"—bp)—aj#ép [17]

where G andK are the elastic shear and bulk modulus respegtokthe empty
porous solidp is the pore pressurg,is the temperaturds is the Biot coefficientgs
is the thermal dilation coefficient of the emptyrpos solid. The Biot coefficient is
related to the bulk modulus of the solid matixaccording to

K
b=1-— 18
” [18]

S

The rate of plastic deformation is written as (Rit@75)
o _ L. L
yr = (t-u(o-p)
£ = By

[19]

whereH(p?) is the plastic hardening modulus, and is relatetiédangent modulus
Hian Of the 7versusycurve by

Htan :L [20]
1+H /G

and is either positive or negative according to tiMaer versusy curve is rising

(hardening) or falling (softening), although thellifly portion may never be

observed as homogeneous deformation in a drairstdlteequation [19]4 is the

dilatancy coefficient.
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Mass balance equation

Conservation of fluid mass is expressed by

om, 0

21
ot 0z (2]

whereny is the total fluid mass per unit volume of poreosdium (in the reference
state), andy is the flux of fluid. The total fluid mass per uniolume of porous
medium is written asm, = p, n, wheren is the pore volume fraction (Lagrangian
porosity) andp, is the density of the saturating fluid. The ledinld side of equation

[21] is obtained by differentiating this product:
om, 0P on

—_ s N—-"+ —_— 22
at ot Pi ot [22]

The derivatives of the right hand side of equafi#] are given by:

00, op oT
—= —=-p A — 23
m P: B P [23]

and

@:n n@+mnﬂ+ﬂ [24]
ot ot ot ot

0 0
whereg, =i 9B is the pore fluid compressibility, =—i[ pf] is the
Py 0P, ). LT b,

pore fluid thermal expansion -coefficient of the @offluid respectively,

B, -1 on is the pore volume compressibility ant -1 on is the elastic
n{ op, B n\oT .
thermal expansion coefficient of the pore voluméiicl is equal to the elastic
thermal expansion coefficient of the solid fractiol) = a.

The expression of the pore volume compressibilgyobtained from poro-
elasticity theory and is given by (Rice, 2006, Gidbo and Sulem, 2009) as:

_1(1_ 20
ﬂn_n(K Ks] [25]




14 Revue. Volume X — n° x/année

p
In equation [24]'66Lt is the rate of plastic porosity change.

Using equations [2-4], the left hand side of equrafP1] is thus evaluated as [see
also Rice, 2006, Sulest al, 2007]

om;

o P (:Bn + By )%_pf n(/]f _An)

oT onP
+

LA AL 26
ot "' oot [26]

The flux term in equation [21] is evaluated assuynirarcy’s law for fluid flow
with viscosity77; through a material with permeability

dr =——ks [27]

Substituting [26] and [27] into [21] gives the etjoa which governs the pore
fluid production and diffusion:

ap 62p+ oT 1 orf

Mo TP AN = 28
at Mo ot g o 28]
where:
A=A
A=_f_"n [29]
:8n+ﬁf

is the thermo-elastic pressurization coefficientemundrained conditions (Rice,
2006). This coefficient is pressure and temperatdependent because the
compressibility and the thermal expansion coeffitdeof the fluid vary with pressure
and temperature, and also because the compreysifithe pore space of the rock
can change with the effective stress (Ghabezlooukr8, 2009). In equation [28],

L= n(,B’n +,6’f) is the storage capacity of the rock ang =k /(8n;) is the
hydraulic diffusivity. For incompressible solid eaand fluid,5 =1/K .

If we assume that the solid matrix is plasticaflgampressible,

on® 9gP
oo [30]
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Energy balance equation

Let Er be the rate of frictional heat produced duringasimg. The equation of
conservation of energy is expressed as

oT oq
C—=E -—
p E .

p [31]

where pC is the specific heat per unit volume of the matenaits reference
state andg,, is the heat flux. It is assumed here that allglastic work is converted

into heat and thu€; =7p°. The heat flux is related to the temperature gnatdby
Fourier’s law:

L
O =~k oz [32]

where k; is the thermal conductivity of the saturated mateiSubstituting [32]
into [31] gives the energy conservation equation:

2
%_I: a_T L [33]

wherec,, = k; / pCis the thermal diffusivity.

Undrained adiabatic limit

We assume that the drainage and the heat fluxrarehited at the boundaries of
the layer @, =0 andg, = (). We also assume that the normal steessting on the

sheared layer is constang €0). From equations [28], [30], [33], [19] we obtain
the following relationship between the pore pressate and the shear stress rate:

Ar_B
re B, [34]

p:
ANt B
H-p| -
”[,oc ﬁ]

Substituting equation [34] into equation [17] we ge

y:[_+ 1 ]r’ [35]
G H+uBlB —uNtlpC
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or

=[ H Bl B = el pc Jy a5
1+(H+pB1 B - Nt 1pC)1G

If we neglect the thermal effecd€0) the expression for dilatant hardening effect
as proposed by Rice (1975) is retrieved.

[ H+wgIp .
T_{1+(H +;1,8/,8*)/GJV 137]

Equation [36] has to be compared with titained casdor which

( H ).
T_(1+H /G]y [38]

For dilatant material£ > 0), we identify in equation [36] a hardening effect due
to dilatancy with the termyB/ and a thermal softening effect with the term
N1l pC. When thermal softening prevails against straimdéaing, plastic
localization in the form of adiabatic shear bandiag occur.

Instability of the undrained adiabatic limit

We consider again the shearing of the layer whilindge and heat fluxes are
prevented at its boundaries. The pertinent vargahte written in the form:

V=YtV =6 +E,0=0,+0 T=T,+T;p=py+ P; T=T+ T [39]

where the quantitiege, 1, etc., represent the solution of the last secfian
homogeneous deformation and wherng, 7 etc., are perturbation quantities.
Specifically, the layer is sheared by applicatidra anonotonically increasing shear
stressz, =7 () to its boundary while the normal stress is heldstamt atd,. From

the equilibrium equation [16], the stress fielduisiform within the layer, and thus
6 =0 and 7 =0.This problem is similar to the one addressed eR1975) with
the introduction here of the thermal effect. Frdm ¢onservation equations [28] and
[33], and by keeping only the first order terms, get the same type of rate
equations for the perturbation terms:
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~ 2 = =p
op_. 9°p, 0T 10¢

ot MoR ot g ot
= p [40]

oT _ 9°T 1 _ opP

& "ot <l

ot z2 pC ~ ot

with from the constitutive equation [19]

ayP op  0&P ayP of
V__ B G gV - pgHP [41]
ot Hot ot ot H ot

The spatial dependence of the perturbations isrdgosed into Fourier modes with
wavelenthi. Perturbations of the form
B = P(0)&" co{ZT”zj 7= T(0)&! COE%Z] [42]

with 2 = h/n andn equal to an integer satisfy the zero heat and filuix boundary
conditions aty = 0, h. In equation [42]s is the growth coefficient in time of the
perturbation. By substituting the perturbationgdfi@eq. [42]) into equation [40], we
obtain a homogeneous algebraic system for the icmafts P(0) andT(0). Thus a
nonzero solution is possible only if the determinafrthe coefficients vanishes:

2
ffapuls]
det] =0 [43]

7] 21\
pcH _[Qh (7j ' S]

The above condition yields a quadratic equatiortfergrowth coefficiens.

[%TO—%—HJ/]“SZ—[(%+QW) H+l'§€1)/lzs— Gy Gy H=0 [44]

If a solution of [44] has a positive real part, rihihe corresponding perturbation
grows exponentially in time.

If we do not consider the thermal effect, ife=0, the condition for stability is
simply H >0. Thus, the result of Rice (1975) is retrieved thadrained shearing is
stable only in those circumstances for which thdeulying drained deformation
would be stable. This problem has also been exahiiyeVardoulakis (1996a,b)
who proposed a regularization of the mathematicdllposed problem in the
softening regime by resorting to a second gradensibn of plasticity theory.
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If we take now into account the thermal effeet ¥0), we observe that if
H >0, the stability condition is

M <Py [45]

poC

Consequently, the condition of stability of undesdradiabatic shearing is

*

H>Oaner0<ﬁ'u+H [46]
pC B

and the system is always unstable in the softergigine.

Obviously, this condition is more restrictive thdre one for undrained shearing.
This result demonstrate the destabilizing effecttliérmal fluid pressurization:
undrained adiabatic shearing of a material withitp@s strain hardening is stable
only when the thermal pressurization is not todhig

6. Conclusion

Bifurcation analysis and localization theory comnsé the basis of contemporary
continuum theory of failure as a natural extensbrlassical theory of strength of
materials. Major advances have been made poshkénhs to the pioneering work of
Professor loannis Vardoulakis during the threedastades.
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